Date of Award

9-26-2008

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Biology

First Advisor

George E. Pierce - Committee Chair

Second Advisor

Jayne B. Robinson - Committee Member

Third Advisor

Sidney A. Crow - Committee Member

Abstract

Nosocomial infections associated with implanted medical- devices are on the rise due to a growing immunocompromised patient population. The organisms of interest in this study are Pseudomonas aeruginosa and Candida albicans. These organisms are opportunistic pathogens and are frequently implicated as the cause of infection and colonization of medical devices. P. aeruginosa is a motile gram-negative bacterium that is able to suppress the growth of C. albicans. Quourm sensing mimicry and biofilm formation on the hyphal surface of C. albicans by P. aeruginosa aids in suppression. C. albicans is a dimorphic fungus capable of quorum sensing with E,E-farnesol and is a central focus in this work. The goal of this project is to determine changes in protein expression when P. aeruginosa is exposed to E,E,-farnesol using 2D DIGE®. Changes in the cytosolic proteome of P. aeruginosa expose metabolic shifts that result in suppression of C. albicans. This work summarizes the effect of growth phase and concentration of E,E-farnesol on P. aeruginosa PAO1 and GSU3. Preliminary results reveal a general response of P. aeruginosa to C. albicans as changes in relevant metabolic nodes that affect pyocyanin production and the induction of virulence factors that lead to the killing of C. albicans. The overall goal of this study was to generate a profile of protein expression where a variety of conditions to further characterize the response could be easily assayed.

Included in

Biology Commons

Share

COinS