Date of Award

Spring 4-29-2011

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Biology

First Advisor

Chun Jiang

Second Advisor

Vincent Rehder

Third Advisor

Zhi-Ren Liu

Abstract

The KATP channels play an important role in the membrane excitability and vascular tone regulation. Previous studies indicate that the function of KATP channels is disrupted in oxidative stress seen in a variety of cardiovascular diseases, while the underlying mechanism remains unclear. Here, we demonstrate S-glutathionylation to be a modulation mechanism underlying the oxidant-mediated vascular KATP channel inhibition, the molecular basis for the channel inhibition and the alleviation of the channel inhibition by vasoactive intestinal peptide (VIP). We found that an exposure of isolated mesenteric rings to H2O2 impaired the KATP channel-mediated vascular dilation. In whole-cell recordings and inside-out patches, micromolar H2O2 or diamide caused a strong inhibition of the vascular KATP channel (Kir6.1/SUR2B) in the presence, but not in the absence, of glutathione (GSH), indicating S-glutathionylation. By co-expressions of Kir6.1 or Kir6.2 with SUR2B subunits, we found that the oxidant sensitivity of the KATP channel relied on the Kir6.1 subunit. Systematic mutational analysis revealed three cysteine residues (Cys43, Cys120 and Cys176) to be important. Among them, Cys176 was prominent, contributing to >80% oxidant sensitivity. Biochemical pull-down assay with biotinylated glutathione ethyl ester (BioGEE) showed that mutations of Cys176 impaired the oxidant-induced incorporation of GSH to the Kir6.1 subunit. Simulation modeling of Kir6.1 S-glutathionylation revealed that after incorporation to residue 176, the GSH moiety occupied a space between slide helix and two transmembrane helices. This prevented the necessary conformational change of the inner helix for channel gating, and retained the channel in its closed state. VIP is a potent vasodilator, and is shown to have protective role against oxidative stress. We found that the channel was strongly augmented by VIP and the channel activation relied on PKA phosphorylation. These results therefore indicate that 1) the vascular KATP channel is strongly inhibited in oxidative stress, 2) S-glutathionylation underlies the oxidant-mediated KATP channel inhibition, 3) Cys176 in the Kir6.1 subunit is the major site for S-glutathionylation, and 4) the Kir6.1/SUR2B channel is activated in a PKA-dependent manner by VIP that has been previously shown to alleviate oxidative stress.

DOI

https://doi.org/10.57709/1985213

Included in

Biology Commons

Share

COinS