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Table 2 

Cognote Model for Evaluating Online Discussion Group Messages 

Specific interaction      Grade  

Assigned 

Code Name 

Acknowledgement of opinions (evidence of participation 1 acknowledge 

Question (thoughtful query)     1 Question 

Compare (similarity, analogy)    2 Compare 

Contrast (distinction, discriminate)    2 Contrast 

Evaluation (unsubstantiated, judgment, value)  1 Evaluation 

Idea to Example (deduction, analogy)   2 idea2ex 

Example to Idea (induction, conclusion)   2 ex2idea 

Clarification, elaboration (reiterating a point, building on a 

 point) 

2 clarify/elaborate

Cause and effect (inference, consequence)   2 Cause&effect 

Off-topic/faulty reasoning (entry inappropriate) 0 Offtopic 

 

 Although a content analysis is a crucial area for research, a large body of research 

does not exist.  Current content analysis techniques are largely manual and very labor 

intensive (Angeli, Bonk, Hara, 1998; Rourke, Anderson, Garrison, 1999).  This appears 

to have impacted both the volume of research, as well as the size of the research 

population (Fahy, Crawford, Ally 2001; Garrison, Anderson, Archer, 2001). 
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Cognitive Structures 

Finally, at least two educational research studies use content analysis to 

understand cognitive structures.  First, Tsai (1999) conducted a study to understand 

whether students organize their scientific knowledge along empiricist (traditional) or 

constructivist (non-traditional) lines.  To determine students’ self-reported scientific 

epistemological beliefs (SEB), Tsai used a Chinese version of Pomeroy’s (1993) bipolar 

agree-disagree questionnaire measuring the students’ SEB and a content analysis of the 

students’ cognitive structures.  The students’ cognitive structures were mapped following 

two treatment lessons on atomic physics.  Each student was tape-recorded and a flow 

map of the students’ narratives was diagrammed to allow researchers to acquire a 

complete view of the learners’ cognitive structure.  Each flow map was coded at the 

content (specifics, relations, transformations, and generalizations) and logic (defining, 

describing, comparing and contrasting, conditional inferring, and explaining) levels.  The 

subcategories within these levels are ordered which means that “specifics” and “defining” 

are lower-order tasks whereas “generalizations” and “explaining” are higher-level tasks.  

Tsia’s results indicate that these above-average students “tended to use relatively lower-

order modes of knowledge organization and cognitive reasoning when recalling the 

scientific information” (p. 131).  Another finding is that it took the students longer to 

retrieve information as the complexity level of their ideas increased.  To test the 

reliability of Tsai’s coding, a second researcher randomly selected and coded eight of the 

48 flow maps.  This test yielded a kappa coefficient of 0.87.   

Similar to Tsai’s analysis of students’ cognitive structures, Domin (1999) 

analyzed laboratory manuals to determine which cognitive structures they encourage.  
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Domin (1999) hypothesizes that chemistry laboratory manuals promote more lower-order 

thinking than higher-order thinking and uses Bloom’s taxonomy to separate these levels 

of cognition.  This study analyzed the content of three experiments (gas laws, kinetics, 

and calorimetry) in ten lab manuals and looked specifically at verbs in context to 

determine which cognitive skill the manual requires of the student.  Domin’s results show 

that eight of the ten lab manuals require students to work at the lower levels of cognition 

and notes, “the laboratory manual reduces the amount of time necessary to complete a 

laboratory activity by providing an instructional pathway that does not require the 

utilization of higher-order thinking skills” (¶ 8). 

The content analysis literature speaks to the complexity of Tsai’s and Domin’s 

work; it informs us of the complexity of using manifest artifacts to reveal latent 

constructs that brought those manifest artifacts about.  Specifically, Potter and Levine-

Donnerstein (1999) provide an important framework for content analysis which allows 

researchers to gauge the complexity of their content analysis task.  They mention three 

types of meaning to be gleaned from content analysis: manifest content, latent patterns, 

and latent projections.  Manifest information is the easiest to derive and reveals meaning 

contained within the text.  Manifest content answers questions like, “how many times did 

the word ‘yes’ appear?” Latent patterns ask coders to identify patterns within content that 

reveal a latent construct.  Coders objectively indicate the manifest parts which create a 

combined whole.  For example, identifying formal or informal attire in a content analysis 

of photographs may involve multiple indicators such as the presence of a necktie and a 

suit against a formal setting including others wearing similar attire.  Deriving latent 

projections, the most difficult meaning to reliably derive, means that coders use their own 
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schema to project meaning onto the text, to interpret text through their own social filters.  

A simple example of deriving latent projections would be to ask coders to identify humor 

in a series of stories.  It would be difficult to derive a reliable, objective rubric to identify 

manifest indicators of humor; coders are forced to code content based on their own 

interpretations of humor.   

Computational Approaches to Content Analysis 

 Certainly, recent technological innovations could advance research in content 

analysis of online learning environments.  First, computational statistics packages have 

been used for some time in content analysis as in most other research methods.  Evans 

(2001) suggests pushing the use of technology in content analysis a bit further through 

computer-supported content analysis.  There are many computational tools to assist with 

human coding (e.g. NUD*ist, Atlas-TI).  He also refers to Franzosi (as cited in Evans, 

2001) who recommends that coding protocols be available online and that the coding 

itself be done online.  Computers may also play a role in preprocessing content.  MoCA 

(Movie Content Analysis) is an example of a tool that preprocesses movies by identifying 

scene breaks, online events (e.g. explosions), and on-screen text (e.g. signs).  Finally, 

Evans (2001) mentions that we can reasonably expect computers to perform the actual 

coding that humans perform and to automatically derive coding categories.  Latent 

Semantic Analysis (LSA) (Landauer and Dumais, 1997; Landauer, Foltz, and Laham, 

1998) is one promising approach that has been used to improve the accuracy of electronic 

document retrieval tools, an innovation which applies to library scientists and anyone 

who performs searches for documents using popular internet-based search engines.  It 

uses a mathematical technique, singular value decomposition (Landauer, Foltz, and 
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Laham, 1998), to associate terms with document topics even though those terms may not 

appear in the same document.  Landauer, Foltz, and Laham (1998) have used this 

technique to build a tool that paired synonyms it had never before encountered – a tool 

which performed with 65% accuracy on the vocabulary portion of the Test of English as 

a Foreign Language (TOEFL) which is “identical to the average score of a large sample 

of students applying for college entrance in the United States from non-English speaking 

countries” (p. 22).  LSA may hold promise for computer-supported content analysis in 

that it may associate units of text with predefined categories, or its factor analytic 

approach may enable it to automatically derive coding categories. 

 Further, Evans (2001) refers to theme-based and clause-based techniques as 

crucial to computer-supported content analysis.  Theme-based techniques, as the name 

implies, computationally identify themes in content.  The General Inquirer (Danielson & 

Lasorsa, 1997) is an example of this in that it is a dictionary comprised of 12,000 words 

in 182 categories.  The General Inquirer associates content words with General Inquirer 

categories, and, by matching the words in the content analysis text to words in each of the 

General Inquirer categories, it indicates which categories are most deeply expressed by 

the text.  This is limited in that it focuses on decontextualized words.  The General 

Inquirer looks only for the occurrence of words, not for their meaning or context; it does, 

however, do some word sense disambiguation in that it correctly associates words which 

fall under multiple parts of speech into their correct part of speech (i.e. it distinguishes 

between the verb and noun forms of the term, walk).  Evans also cites clause-based 

techniques which seek to analyze and correlate clauses in content text.  That is, the clause 

is the locus of meaning.  There are two packages which analyze at this level and use a 
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neural network to do some of the processing:  Map Extraction, Comparison and Analysis 

(MECA) and Computer-Assisted Evaluative Text Analysis (CETA).  Another clause-

based program, Program for Linguistic Content Analysis (PSCA), simplifies clauses for 

further computational analysis.  For example, it has the ability to reduce an English 

sentence to its simplified and component parts and creates simpler sentences from the 

text’s more complex sentences taking the form of Agent   Action   Object.  For 

example, it may take the convert sentence A to sentence B: 

Sentence A: The angry senator from South Carolina exemplified general 
distrust over the way the administration handled the Gulf War Crisis. 

 Sentence B: Senator distrusts administration. 
 
Certainly some meaning is removed from the sentence, but if the converted text always 

falls into the same Agent  Action  Object format, then researchers can 

computationally analyze it, to fit agents and objects together.  Evans mentions that this 

offers the ability to connect objects and agents even if they appear many paragraphs apart 

from each other.  The example he provides is: 

 Sentence C: X supports house bill Y (in first paragraph) 
 Sentence D: House bill Y leads to unemployment (in a distant paragraph) 
 
The software then pieces sentences C and D together to achieve: 

 Sentence E: X supports unemployment 

 Finally, Hearst (2000) outlines the emergence of automated text grading, a 

practice currently employed by the Educational Testing Service (ETS) to grade student 

essays.  Hearst first mentions Ellis Page’s Project Essay Grader (PEG) which uses 

multiple linear regression performed on automatically extractable features of text 

(average word length; essay length in words; number of commas, prepositions, 

uncommon words) to approximate teachers’ grades. PEG was created between 1966 and 
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1968, was the first tool to be used by ETS for automated text analysis, and generated a 

correlation of .78, which was almost as strong as the .85 interrater reliability statistic 

among human readers.  Second, the Writer’s Workbench was used in the 1980’s as a tool 

to identify and extract measures of writing quality.  It was not used as an essay grader per 

se but did provide feedback to students on the quality of their writing by providing 

feedback on spelling, diction, and readability.  Finally, by the 1990’s, the need to 

automatically assist in scoring essays and short answer items on the Graduate 

Management Admissions Test (GMAT) coupled with advances in natural language 

processing and information retrieval (similar to the technology used by internet search 

engines) led to tools that measure syntactic variety, identify sentence type, and identify 

topic via lexical content analysis.  Still, these tools lacked the ability to identify 

individual arguments and to evaluate their rhetorical structure. In response to this, ETS 

developed tools to break an essay into its individual arguments and then to perform a 

vocabulary content analysis on those arguments.  This work produced the e-rater, 

advances to PEG and latent semantic analysis (LSA).  LSA is designed to go beneath the 

surface vocabulary to identify an essay’s semantic content.  Interestingly, e-rater is used 

by ETS to score GMAT essays, and human scorers are only brought in to resolve 

different scores by two e-rater models (Burstein, Marcu, Andreyev, & Chodorow, 2001).   

 Hearst (2000) outlines three current research topics.  Assessment of Lexical 

Knowledge (ALEK) is a technique to detect lexical grammatical errors such as “I 

concentrates” which provides an inverse relationship to an essay’s score.  Second, 

Centering Theory is designed to detect rough shifts in essay topics; the more rough shifts 

in an essay the lower the score.  Finally, current research focuses on generating 
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summaries to improve scoring performance.  These summaries are based on lexical shifts 

(e.g. because, therefore, however, etc.) to generate summaries, and these lexical shifts 

identify the presence or absence of specific arguments. 

Overall, numerous approaches have been taken to understand student-generated 

online text, support material, and student self reports.  This analysis indicates a lack of 

tools and knowledge concerning the pedagogical use of online discussions to support 

education.  Clearly, there is much yet to learn about online, student-generated text, and 

content analysis has a distinct, pedagogical role to play in reducing our current 

uncertainty. 

Uses of Artificial Neural Networks in the Social Sciences 

Certainly content analysis has a role to play in analyzing online discussions.  This 

research study proposes that content analysis can be automated using an artificial neural 

network, that a system can be built to automatically categorize messages.  With that 

application in mind, we must ask whether artificial neural network (ANN) research 

supports such tasks.  Broadly, ANN research supports using ANNs for categorization 

tasks, but there is conspicuously little available research in which ANNs are used as a 

method in education research.   

Artificial neural networks (ANNs) were first developed in the 1950’s to both try 

to understand the brain and to mimic its strengths (Fausett, 1994).  Fausett defines ANNs 

as information processing systems comprised of simple processing elements called 

neurons.  Each neuron is connected to other neurons and each connection is associated 

with a weight (w).  Connections with a higher weight represent strong connections 

whereas connections with a lower weight indicate weak connections.  The weights are 
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critical to ANNs because they represent how the information is used by a network to 

solve a problem.  Each neuron also has an internal function called an activation function 

which calculates the inputs and determines whether or not to send a signal.  A neuron 

may receive a signal from any input neuron but may only send a signal to one neuron. 

Let’s go back to the bruised grapefruit problem from the first chapter.  Recall that 

this system analyzes images of grapefruits to determine whether a grapefruit is bruised or 

not.  For this example, there are three inputs describing the grapefruit: size, shape, and 

color.  The neural network has been trained on data containing both descriptions and 

classifications of hundreds of grapefruits; the descriptions detail the size, shape, and color 

of each grapefruit while the classification indicates whether it is bruised or not bruised.  

Figure 3 shows that after training, the ANN indicates a strong relationship between color 

and the neuron which decides whether to categorize the grapefruit as bruised or not.  The 

weights w1 and w2 are depicted with a dashed line and show a relatively weak connection 

while the weight w3 is bold and shows a strong connection.  The neuron, H2, receives 

input from all three input neurons, applies its activation function on the three inputs, and 

then sends a signal to one of the two output layers.  For this example, the neuron, H2, 

receives input from all three input neurons but gives more weight to color.  Its activation 

function is trained to call a grapefruit bruised if more than 10% of the grapefruit’s image 

is brown.  Imagine a case in which 50% of the grapefruit’s image is brown.  This 

information is sent to the hidden layer, the activation function sees that the color exceeds 

its activation threshold of 10%, and the grapefruit is classified as bruised.
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Figure 3. A simple ANN that classifies grapefruits.

Garson (1998) describes two predominant uses for artificial neural networks: 

prediction and classification.  ANNs have been most notably employed to predict.  For 

example, they have been employed by financial analysts to predict the end-of-year net 

asset value of stocks (Chiang et al., 1996), to predict the mortality of critically ill patients 

(Dybowski, 1996), and to predict wilderness recreation use (Pattie and Haas, 1996).  

They have also been used to classify or categorize information.  The most notable 

examples of this are speech and optical character recognition.  In these examples, input as 

either sound or images is categorized into a finite list of available phonemes or letters. 

Artificial neural networks also offer an alternative to traditional linear models.  

Hedgepeth’s (1995) study of 400 years of military combat suggests that traditional, linear 

statistical analyses may outperform ANN approaches where the data are clean and 

filtered, but that ANN approaches outperform linear techniques when the data are noisy 

and imperfect.  Also, Garson (1998) mentions that neural models, unlike regression 
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models, are unaffected by the interaction of input variables, that ANNs can handle both 

non-linearity and interaction effects.   

In their work comparing artificial neural network approaches to linear methods 

for tackling psychological classification and prediction problems, McMillen and Henley 

(2001) agree with Garson (1998) that ANNs are more suitable for some data sets.  

McMillen and Henley (2001) compared ANNs to discriminant analysis and logistical 

regression techniques in the context of classifying Driving Under the Influence (DUI) 

risk status among heavy drinkers using psychological predictor variables.  This problem 

was chosen because, like many classification problems using survey data, there is often 

missing data and the data frequently violates the assumptions of common linear models 

(e.g. linearity, homoscedasticity, and intercorrelation of variables).  Specifically, the 

researchers compared several ANNs to a regression model using 10, 12, and 14 predictor 

variables for high-risk and low-risk drivers.  This study found that regression models 

using 10 and 12 predictor variables outperformed ANNs with the same number of 

variables.  However, ANNs with 14 predictors performed as well or better (but not 

substantially so) than the logistical regression method.  Ultimately, they side with Garson 

(1998) in claiming that ANNs are most useful with problematic data sets (sets with 

missing variables or multiple, conflicting variables) when insight and explanation are of 

less interest than accuracy. 

This final point is a critical one.  McMillen and Henley (2001) recommend 

employing ANNs when the researcher is more interested in accurate categorization than 

in insight or explanation of categorization.  Smith, McKenna, Pattison, and Waylen 

(2001) highlight this point as well.  They compared ANN techniques to structural 
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equation model (SEM) techniques.  The major benefits of structural equation modeling is 

that it provides for the flexible combination of numerous multivariate techniques, 

provides robust goodness-of-fit statistics, is available in fairly easy to use computer 

programs, and identifies significant variables and their relationships with one another on 

human decision-making tasks.  The authors recommend this technique as an intermediate 

step between theory speculation and fully-formed psychological theory.  The major point 

the authors make is that SEM provides information that leads researchers to a theory 

explaining the relationship between the inputs and the output whereas non-linear 

techniques, like ANNs, do not. 

Garson’s (1998) outline of recent research on neural networks suggests an 

increasing use of ANNs in the social sciences.  Financial analysis is one of the few social 

science domains to adopt artificial neural networks over regression models for 

multivariate analysis.  The reason for this switch is that ANNs excel at prediction and 

have offered financial analysts tools that improve investment performance, predict 

problem credit card applicants, and calculate risk.  Garson (1998) also mentions uses of 

ANNs in sociology.  They have been used to predict violent crimes, to predict white 

collar crime, to model human decision-making in relation to theories of religion, and 

have predicted child sex abuse.  Garson (1998) cites numerous uses of ANNs in political 

science including predicting the likelihood that students will pass the bar exam, 

predicting the administrative success of local school principals, and predicting the 

outcome of case law.  Finally, Garson mentions numerous applications of ANN to 

psychology to support research in combat psychology, depth perception, and information 
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acquisition.  Barring the use of ANNs to predict the performance of school principals, 

there is little indication that ANNs have been applied in education research. 

Garson (1998) mentions that the single largest drawback to using ANNs in the 

social sciences is the fact that inputs cannot be traced to outputs; scientists cannot provide 

the decision logic that the ANN takes.  Therefore, many have questioned the validity of 

using ANNs since no one can be absolutely certain that the answers derived from the 

ANN are not quirks of data.  For this reason, most researchers rely on reliability statistics 

to explain that their network has merit; reliability, however, only tells us that the same 

answers will be achieved from one time to the next not that the means of deriving those 

answers is valid.   

Overall, neural networks are appropriate for both prediction and categorization 

tasks, are appropriate for tasks that require accurate classification without a need to detail 

the relationship between inputs and outputs, may outperform linear statistical procedures 

for fuzzy, imperfect data, have been made accessible in the past decade through software 

providers who have simplified their use, and are being widely adopted in many of the 

social sciences. 

Summary 

This chapter outlines the progression of research which suggests that we not only 

can learn online but that learning environments can creatively blend face-to-face, 

synchronous, and asynchronous discussions offer educators learning environments rich in 

reflection, spontaneous conversation, and even conflict.  But knowing that we can learn 

online is just the first step; we must then ask what qualities determine whether learning is 

occurring.  Henri (1992) offered the first content analysis framework for exploring online 
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discussions and insists that we look at five dimensions of the discussion: participative, 

social, interactive, cognitive, and metacognitive.  Though the model has been modified 

over time, it has not been rejected outright.  Garrison, Anderson, and Archer (2000) 

created perhaps the most thorough modification and operationalization of Henri’s model 

by breaking it into three components (cognitive presence, social presence, and teaching 

presence) and by expanding each component into deeper subcomponents.  With this more 

elaborate model to guide our analysis of online discussions, we must then ask what units 

of the discussion are the best ones to analyze.  The debate over whether it is better to use 

theme-based units of analysis or syntactic ones continues.  Proponents of theme-based 

units contend that this method allows them the flexibility to capture each idea within a 

single discussion list posting; proponents of syntactic units reject theme-based analyses 

as unreliable because themes are difficult to operationalize and to consistently identify.    

Further, there is a growing body of literature describing how content analysis has been 

used in education.  It has been used as a tool to guide lesson planning, to describe the 

importance of the discussion facilitator, to evaluate online courses, and to identify the 

cognitive structures underlying discussions.  There are certainly many more potential 

applications of content analysis in education and a growing body of research indicates 

that computational approaches may reduce the resources currently required to conduct 

manual content analyses, may simplify transcripts, and may define content analysis 

categories.  To date, Latent Semantic Analysis (LSA) has been used to associate terms 

with topics and the Educational Testing Service (ETS) has demonstrated a tool to 

automatically grade essays.  
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 Collectively, this body of research reveals numerous needs.  Among them is the 

need to analyze the discussion list text to describe for instructors and researchers the 

learning displayed in online environments.  Just as important, this body of research 

reveals what we know.  We know that it is possible to learn in electronic environments, 

Henri (1992) and Garrison, Anderson, and Archer (2000) provide for us a model for 

analyzing discussion content, we know that content analysis has informed educational 

practice, we know that computational power can support content analysis, and we know 

that artificial neural networks have provided help in making complex prediction and 

categorization decisions.  Based on what we know from the literature, the following 

chapter offers a method to determine whether an automatic content analysis tool will 

code messages with the same accuracy as a human. 

 



 

 

 
 
 
 
 

CHAPTER 3 
 

METHODS 

The literature review reveals that we can learn in online environments, that we 

possess models to understand the message transcript, that content analysis offers methods 

for analyzing the transcript, and that artificial neural networks may assist in 

categorization tasks.  Informed by this body of research, this chapter outlines a method 

for determining whether an automatic content analysis tool can categorize messages as 

accurately as a human.  Specifically, this chapter describes the methods used to answer 

the research question, “how well does an artificial neural network (ANN) analyze and 

describe the cognitive effort students exhibit in online educational discussions as 

compared to humans?”  This question has two parts.  The first part hypothesizes that an 

artificial neural network (ANN) analyzes messages as well as a human.  The second part 

describes the information expected from an ANN content analysis tool.   

Comparing Artificial Neural Networks to Humans 

The “Research Method Steps” section outlines the method used to address the 

first part of the research question, “an artificial neural network (ANN) analyzes messages 

as well as a human.”  This series of steps has three major components:  message 

preparation, human content analysis, and artificial neural network content analysis.  The 

steps are provided below and expanded upon afterwards. 

40 
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Research Method Steps 

 The following steps were taken to address the first part of the research question. 

  Message preparation 

1. Transfer message text to a database. 

2. Use a systematic, random sampling technique to extract three unique bodies of 

messages: one for training coders (300 messages), one for reliability statistics 

(100 messages – all coders and the ANN tool will code this set of messages), and 

one that the coders will independently code (1200 messages = 200 per coder). 

3. Build an online tool to allow coders to rate messages.   

Human Content Analysis  

4. Modify the coding rubric to match the content. 

5. Select the human coders. 

6. Train the coders to apply the rubric. 

7. Coders code a body of training messages. 

8. Compare reliability statistics among coders after each training session until the 

coders exceed a reliability threshold. 

9. Coders use the online tool to rate their set of 300 messages (200 unique messages; 

100 messages used for inter-rater reliability).   

10. Build one aggregate set of human-coded message decisions.  This step applies the 

decision logic table (Table 5) for aggregating human-coded messages. 
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Artificial Neural Network Content Analysis 

11. Numerically describe each message.  A database script parses the message body 

into individual words.  That database script then counts the number of times each 

general inquirer theme is present in the message.  The script generates a database 

table containing a count of general inquirer themes.  Each General Inquirer theme 

category is a field in the table, and each row represents one message.   

12. Determine the predictor order.  A neural network model is constructed using all 

predictors (general inquirer categories, self-defined categories, structure 

categories).  A database table is built in which all the fields are re-ordered from 

highest to lowest discrimination.  

13. Build neural network models using the 1200 human-coded messages.  This step 

requires building three types of models, overall models, topic models, and course 

models.  To derive one overall model, 13 models were built and the best overall 

model was selected based on its ability to code messages similarly to the group of 

human coders. To derive the best topic models, 13 models for each topic (history 

and political science) were built and the best of these models were selected (one 

for each topic) based their ability to code messages similarly to the group of 

human coders.  To derive the best course models, 13 models for each of the six 

courses were built and the best course models (one for each course) was selected 

based on their ability to code messages similarly to the group of human coders. 

14. Compare the best overall model to the best topic and course model.  This 

comparison tells us whether the overall model is more reliable than the topic or 

course models. 
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15. Using the set of 100 messages set aside for measuring inter-rater reliability, 

compare how the ANN categorizes the 100 reliability messages to the aggregate 

of human coders.  

The above steps were repeated twice.  The first iteration revealed flaws in the 

human content analysis that resulted in a lower reliability among the human coders and 

between the ANN and aggregate of human coders.  The results section details the 

findings from the first iteration, outlines the modifications made to the method, and then 

presents the findings from the second iteration. 

Figure 4 presents another way to consider the research method.  Instead of 

following the series of activities, it looks at how the message text is transformed and 

ultimately categorized.  A human content analysis is first performed on the message text 

which results in a body of categorized messages.  Those categorized messages are used to 

train the automatic content analysis tool.  Before doing so, however, the messages are 

numerically described.  The ANN uses the numerically described messages from the 

human content analysis to train itself to code messages. 

Message Preparation 

 Before any analysis can begin, the discussion list messages must be prepared.  

This involves three steps:  exporting the messages from raw text into a relational 

database; separating out messages to be used for coder training, for calculating reliability, 

and for coding; and building an online tool allowing us to more efficiently relate message 

text to message codes. 
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Figure 4. Graphic overview of the research methods. 

Transfer Message Text to a Database 

 Most online learning environments, including WebCT (used in this analysis), 

allow administrators to export a semester of messages to a text file.  For analysis 

purposes, identifying marks such as names, telephone numbers, addresses, and email 

addresses are masked using an algorithm that prevents course participants from being 

revealed.  Once this initial change is made to the raw text file, the text file is parsed and 

each message including header information such as the student’s masked name, message 

number, message number to which the current message responds, along with the time and 

date the message was submitted are sent to the database.  One message, including its 

body and header information, comprises a single record in the database.  For clarity’s 

sake, a message is a single entry from an individual participating in an online discussion.  

This entry is comprised of the student’s name, the course number, the message number, 
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the parent message number, the subject, the date, the instructor’s name, and the message 

body.  The only parts students generate are the message subject and body; the remaining 

information is generated by the course management software.  For this analysis, the word 

“message” refers to the message body since this analysis is primarily focused on text that 

the student generates.  Once the message database has been created, the message body 

and its header information (subject, name, instructor, date, message number, and parent 

message number) are ready for computational analysis.   

Select Messages Used for Three Parts of the Analysis 

Once in a database, messages are selected using a systematic, random sampling 

technique.  Using this technique, three unique message collections are harvested.  One 

message collection comprised of 300 messages is used for coder training.  Another 

collection of 100 messages is used for reliability.  Each coder and the trained artificial 

neural network code the reliability collection, and these codes are compared to determine 

whether the ANN codes as reliably as a set of humans.  Finally, a set of 1,200 messages 

is harvested.  The six coders rate 200 messages each from this collection.  Each of the 

1,200 messages will be used to train the ANN.  This number of messages was chosen 

because the ANN requires a large number of messages (more than 1,000) in order to be 

properly trained and because it may have been too much to ask volunteers to code more 

than 300 messages (200 for the ANN and 100 for reliability) each. 

Create the Tool Enabling On-line Message Coding 

Finally, an online tool was constructed to allow coders to rate messages online.  

During training and actual coding, the coders used the tool to rate each message.  The 
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online tool sends each coder’s rating to a relational database which correlates the 

message to its coded value.  This allows reliability statistics among coders to be easily 

calculated both during training and after the coders rate their body of messages.   This 

also shows which coders have or have not completed their message coding tasks. 

Human Content Analysis 

 This work builds on a series of content analyses described by Garrison, Anderson, 

and Archer (2000, 2001) who analyzed online discussions based on a community of 

inquiry model which splits community-based learning into three overlapping areas: social 

presence, cognitive presence, and teacher presence.  The details of their work and method 

are described below.  According to Rife, Lacy, and Fico (1998), content analysis is “the 

systematic assignment of communication content to categories according to rules, and the 

analysis of relationships involving those categories using statistical methods” (p. 2).  

Rife, Lacy, and Fico (1998) also outline the steps for performing a quantitative content 

analysis as defining the units of analysis, operationally defining the construct to be 

measured, training coders, and taking reliability measures to determine how consistently 

the coders have measured the construct.  

Participants 

The pool of participants is comprised of every student who posted a message in 

any section of history and political science in Georgia’s eCore™ program during the Fall, 

Spring, and Summer terms of the 2000-2001 school year.  The eCore™ program is a 

distance education program administered by the Advanced Learning Technologies Group 

of the Georgia Board of Regents.  This program is designed to offer university-level core 
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curriculum courses to students who do not live within commuting distance to one of 

Georgia’s state universities.  According to Georgia’s Advanced Learning Technology 

Group (ALT Distance Education Student Profile Survey, 2001), the students in eCore™ 

courses are a mix of traditional and non-traditional students scattered across the state with 

some outside the state and even outside the country.  Approximately two-thirds of the 

students in 2001 had taken college courses within the past 12 months and about 25% are 

returning to school after an absence of more than 12 months.  Demographically, 

approximately 70% of those responding to the 2001 survey identified themselves as white 

and 15% identified themselves as African American.  The report also mentions that there 

have traditionally been three female students for every one male student enrolled, and 

slightly more than 50% of the students are married.  In general, the majority of students 

work full-time (40 or more hours per week).  Table 3 provides the number of students 

participating in online discussions in the six analyzed courses. 

Table 3 

Number of Students Contributing Messages in Course 

Course Section Number of Students 
  
History Section 1 31 

History Section 2 20 

History Section 3 41 

Political Science Section 1 23 

Political Science Section 2 23 

Political Science Section 3 24 
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Unit of Analysis 

 Garrison, Anderson, and Archer (2001) chose a syntactic, as opposed to thematic, 

unit of analysis in that they measure the entire message as opposed to individual 

paragraphs, sentences, or themes within a message.  Further, they use human coders to 

classify messages, and their study yielded a reliability figure of kappa=0.74.  To draw 

comparisons between this study and that of Garrison, Anderson, and Archer (2001), the 

same unit of analysis is used. 

Operational Definition of Cognitive Presence 

 This work focuses on cognitive presence, which Garrison, Anderson, and Archer 

(2001) define as “the extent to which learners are able to construct and confirm meaning 

through sustained reflection and discourse in a critical community of inquiry” (p. 11). 

Coding decisions are made using a coding rubric from Garrison, Anderson, and Archer 

(2001) in which they operationalize each cognitive presence category.  Each cognitive 

presence category is listed below along with a description of the category and a message 

from the study which exemplifies the cognitive presence category. 

1. Triggering Event: a message designed to evoke a response (e.g. “In an earlier post, 

FirstName2 reminded us that their diet was very similar to ours.  Do you think the 

frequency of diet related diseases in their culture was similar that in our culture?”)  

2. Exploration: a message which presents facts, feelings, ideas, suggestions, 

unsupported conclusions, or unsupported contradictions/disagreement (e.g. “They 

must have been very angry about the intrusion into their culture.”) 

3. Integration: a message which includes tentative substantiation, combination of ideas 

or synthesis (e.g. “The settlers must have been less austere than the author proposes.  
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The archeological evidence taken together with the social events described within the 

diaries and the town records all point towards the settlers enjoying an active social 

life.”) 

4. Resolution:  a message that indicates commitment to a solution and includes real 

world applications, testing of solutions or defense of solutions (e.g. “Based on the 

overwhelming evidence, it is apparent that the author’s account of the settlers 

austerity is incorrect.   The settlers definitely had an active social life.  This is 

supported by the following:  the remains of several musical instruments have been 

found at the site.   Equipment for making, storing and serving wine and ale have also 

been found at the site. Letters exist which describe social occasions in significant 

detail. Town records and diaries also include accounts of parties and social occasions.  

The evidence of an active social life in the settlement is overwhelming.”) 

Garrison, Anderson, and Archer (2001) did not include a category of messages which do 

not fit into any of the above categories.  The pilot study revealed that numerous messages 

which fall out of their cognitive domain; therefore, another category, noncognitive, has 

been added to the above four. 

5. Noncognitive:  a message which is unrelated to the course topic, addressed course 

management concerns, requests technical support, or makes an external reference 

(e.g. “Do you have plans for Friday night?”  “When I logged on last night, the server 

was unavailable.  Did anyone else have similar trouble?”)   

Modified Content Analysis Rubric 

 In many content analyses, a rubric is used to both train the coders and to guide the 

coders as they make their rating decisions.  The rubric should offer enough guidance to 
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enable the coders to code each message similarly and therefore should improve inter-rater 

reliability.  For this analysis, the rubric from Garrison, Anderson, and Archer (2000) was 

modified with examples taken from eCore™ courses in history and political science (see 

Appendix A). 

Coder Training 

 The content analysis was performed by six coders, each of which has either 

taught, administered, or taken an online course.  Five of the six coders have worked 

directly with the eCore™ project.  The coders were first trained to code online discussion 

messages using a rubric based on that developed by Garrison, Anderson, and Archer 

(2000).  With the coders scattered throughout the state of Georgia, training was 

conducted via telephone conferences, email, and a web-based coder training tool.  The 

coder training tool consisted of 300 messages chosen through a systematic random 

process that included a chronological cross-section of messages from each of the six 

courses.  The coding process occurs in three stages.  An initial meeting is scheduled with 

each coder to describe the project, to introduce the coding rubric, and answer general 

questions about coding messages using the rubric.  Each coder is then asked to code the 

first 30 messages in the training tool.  As the coders complete this set, they are contacted, 

provided further training based on the results for their first set of messages, and are then 

trained on coding instances that did not fit with the coding rubric.  The coders are asked 

to iterate through these steps until they reach an average pairwise reliability of kappa = 

0.70.   

 Once training is complete, the raters are asked to code three hundred messages 

each.  Two hundred messages from each course are chosen using a systematic, random 
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sampling technique.  That is, the first coder rates 200 messages from one section of a 

history course.  A second coder rates 200 messages from another history course and so 

on.  Each of these messages is unique.  This is done to provide the ANN with a large set 

of messages on which to train.  The coders must also rate a set of 100 messages 

systematically taken from all courses in the research study.  This set of 100 messages is 

used to calculate inter-rater reliability statistics, and therefore, is the same set of messages 

for each coder.  It took approximately three weeks to train all the coders, and once 

training was complete, it took another two weeks for all coders to rate their sets of 300 

messages. 

Reliability 

To enable a comparison between this study and that of Garrison, Anderson, and 

Archer (2000), Cohen’s (1960) kappa values are calculated among pairs of raters.  

Cohen’s kappa values may be interpreted in a number of ways, and this work employs 

both the lenient benchmarks of Landis and Koch (1997) as well as Rife, Lacy, and Fico’s 

(1998) more conservative benchmarks.  Landis and Koch (1997) describe reliability 

figures in Table 4.  Riffe, Lacy, and Fico (1998), however, question kappa values below 

0.80 but indicate that research which is breaking new ground, a category under which this 

research clearly fits, often has reliability figures below the 0.80 range.  Although Cohen’s 

kappa is widely used, many recommend using multiple reliability measures.  For that 

reason, Shrout and Fleiss’ (1979) two-way random effects average measure of reliability 

model is also to be used as an additional reliability measure.  This measure, intraclass 

correlation (ICC), is frequently used as a measure of inter-rater reliability, or inter-rater 

agreement.  The second of three Shrout and Fleiss (1979) intraclass correlation models 
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assumes that each rater is a member of a larger subset of potential raters. In this case, 

each rater is a member of the larger pool of all eCore™ instructors and administrators 

who could possibly rate student messages.  This measure is attractive because it provides 

a single reliability figure for more than two coders; Cohen’s kappa is limited to pairwise 

reliability statistics. 

Table 4 

Interpretation of Kappa Values from Landis and Koch (1997) 

Kappa Statistic Strength of Agreement 
  

<0.00 Poor 

0.00 – 0.20 Slight 

0.21 – 0.40 Fair 

0.41 - 0.60 Moderate 

0.61 – 0.80 Substantial 

0.81 – 1.00 Almost Perfect 

 

Artificial Neural Network Content Analysis 

 Armed with 1,200 human-coded messages, the artificial neural network (ANN) is 

ready to be trained.  This section describes the steps taken to train and test the ANN, a 

series of steps leading to a single model which rates discussion list messages more 

accurately than the other models.  First, two pieces of background information are 

offered.  The first describes the pilot study which led to this work.  The second 

background piece describes how artificial neural networks work.  The next section 
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explains how and why message text is converted into numeric information.  Afterwards, I 

describe the steps taken to arrange the predictor variables and why it is important to 

arrange predictor variables from those with the greatest predictive discrimination to those 

with the least.  I then describe how the human content analysis decisions were modeled 

using the ANN software.  Next, I describe how I compared three types of models to 

determine whether a single, generalizable model is the best to use.  Finally, I describe 

how to compare the ANN coding decisions to the human coders.   

Pilot Study 

 This work is an extension of an initial trial to determine the feasibility of using an 

artificial neural network (ANN) to perform a content analysis of online discussions.  The 

pilot study (McKlin, Harmon, Jones & Evans, 2001) performed two analyses of online 

discussion messages obtained from a graduate Instructional Technology course on Web-

Based Learning.  The first analysis was performed to determine whether a neural network 

could be used under the best of circumstances, by correctly categorizing messages 

identified as most indicative of each cognitive presence category.  This method resulted 

in a reasonably high reliability figure (kappa = 0.76) indicating that a neural network 

under the best of circumstances could categorize messages slightly better than humans 

can categorize messages under normal circumstances.   

 The second analysis required that the researcher code a systematic random 

sampling of messages and did not allow the researchers to skip all but the most indicative 

messages of each category.  The introduction of noise generated a less well-performing 

model (kappa=0.31) but the analysis revealed numerous optimization techniques that 

could improve the reliability of the method.  The present eCore™ analysis extends the 
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previous study in the following ways:  It experiments with the creation of a cross-

section/cross-course generalized neural network model and explores the feasibility of a 

single generic model to analyze multiple courses; it analyzes six courses instead of one; it 

incorporates optimization avenues discovered during the previous, single-course analysis 

(e.g. normalizing inputs, including structure information in the model, and including self-

defined categories). 

Overall, modeling the content analysis decisions of the six human coders involves 

four steps:  transferring a semester of messages into a database for electronic 

manipulation (mentioned above), numerically describing each message, ordering 

predictors by their level of importance to the model (the strongest predictors appear first 

and the weaker predictors appear last), and modeling the content analysis data with ANN 

software to derive the best model.  Given the preliminary indication that an artificial 

neural network could potentially and reliably categorize messages into cognitive presence 

categories, a second pilot was not conducted.   

How Neural Networks Work 

 The modeling of human decision-making using artificial neural network (ANN) 

software does not have a strict set of procedures.  Garson (1998) cautions the social 

scientist interested in using neural networks: 

The backpropagation model is the most common, but neural network 
analysis is not ‘a’ technique.  There are many, many neural models.  One 
could devote a lifetime to experimenting with the alternatives, optimizing 
them, and exploring the effects of different parameters.  Ultimately, neural 
modeling is an art form and the social scientist who embraces it is an artist 
whose work is never finished, or at least, an artisan who is never sure the 
analysis he or she presents to the public might not be suboptimal. (p. 16 – 
17)  
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The pilot study revealed some guidelines that will most likely apply to this study.  First, 

the backpropagation model performed better than other models and was used in the 

current analysis.  Garson (1998) supports this by saying that the backpropagation model 

is the standard by which the performance of other models is gauged (p. 41).  The 

following is how backpropagation models work. 

 

x1

Figure 5.  One artificial neuron. 

Figure 5 shows a simplified three-layer network adapted from Garson (1998, p. 43).  The 

three layers are the inputs (x1, x2, and xn), the one hidden neuron depicted as a large black 

circle containing a summation function and an activation function, and a single output 

(o).  Each input is multiplied by a weight (w1, w2, and wn).  The neuron performs two 

tasks.  It first sums the products of each input and weight and then uses an activation 

function.  The activation function is a transfer function which calculates the activation 

level of the neuron.  This activation level is then compared to a threshold value.  If the 
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activation value is above the threshold value, the neuron’s output is “on” or one; if the 

activation value is below the threshold value, the neuron’s output is “off” or zero.   

One important aspect of neural networks is that they learn from a set of training 

data.  In this case, the 1200 messages categorized by each coder serve as the training 

data.  This data correlates a set of inputs, the numeric description of each message, to a 

set of outputs, one of five cognitive presence categories (see Figure 4).  A neural network 

is trained on a data set containing inputs and outputs by first assigning a random weight 

between the neurons and then calculating the error which is the difference between the 

actual and expected results.  The neural network software repeats this procedure, and 

each time it repeats, it adjusts the weights between neurons in an attempt to reduce the 

error.  It continues repeating this process until the hidden neural pattern “fits” the data.   

Numerous adjustments may be made to the network to improve modeling.  A 

person may adjust the number of inputs, the number of hidden neurons, the number of 

hidden layers, and the number of outputs. 

 

Figure 6.  A simple ANN architecture showing layers and nodes. 
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In Figure 6, there are three hidden neurons (H1, H2, and H3) in one hidden neuron layer.  

The arrows connecting each neuron have weights which are adjusted during training to 

reduce error, to reduce the difference between the actual neural network results and the 

desired, human-coded, results.   

 At first glance, a person may wish to train the neural network until the error 

reaches zero.  Doing this, however, results in overtraining.  The model has memorized the 

input data and will probably not generalize well to new data.  To determine whether the 

model has been well-trained, a set of test messages is set aside to validate the model.  

Once a model has been trained, the model categorizes the test set of messages.  

 Numerous ANN software packages are commercially available.  This research 

used three software packages.  For the pilot and parts of this research, Pattern 

Recognition Workbench® (PRW) from Unica Technologies, Inc was used.  PRW was 

used more out of convenience than ease of use; this software was readily available.  

However, the software is no longer supported by the manufacturer.  For that reason and 

based on Garson’s (1998) recommendation, two software packages from Ward Systems® 

were used.  Neuroshell Classifier is relatively inexpensive and has a limited but simple 

interface focusing specifically on classification tasks.  Ward Systems® Neuroshell 2 is a 

more expensive and robust software package allowing the user to experiment with 

different types of ANN models. 

Numerically Describe Messages 

 The current state of ANN technology requires that inputs to the system be 

numeric.  Therefore, researchers are forced to derive a strategy to numerically describe 

their data; in this case, I was forced to numerically describe each message text.  This is 
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done by using a dictionary of themes and measuring the number of words or phrases in 

the message body which fall under each theme.  The General Inquirer (see the section 

entitled “Dictionary” below for a fuller description) is used as the primary dictionary of 

themes and is extended by creating numerous self-defined categories.  The messages are 

further described using a set of predictors to describe the placement of the message 

within the overall hierarchy of messages. 

Dictionary

The General Inquirer is a dictionary comprised of 11,788 words in 182 categories 

(Danielson & Lasorsa, 1997).  Each message is analyzed against each category of terms 

and a simple word count is taken to determine the weight of each category of terms in 

each message.  For example, the General Inquirer category “positiv” contains the words 

“up, abide, and yes” meaning that the following sentence will receive a “positiv” score of 

two:  “YES, I had to look UP to see the icon.”  For the present study, each message is 

parsed using the General Inquirer that assigns each message a numeric value for each of 

its 182 categories.   

For this analysis, the General Inquirer has been extended by the addition of 

several self-defined cognitive presence categories designed to improve classification.  

Specifically, 37 self-defined categories were added to the list of 100 General Inquirer 

categories and were developed using the following process.  I manually coded 

approximately 100 messages and reviewed them to determine what linguistic cues 

discriminate among cognitive presence categories, whether any messages contain words 

common to a single cognitive presence category but not found in other cognitive presence 

categories.  For example, a triggering event is a message designed to elicit a response.  
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From this, we understand that triggering events may take the form of a question; 

therefore, words signaling a question like “who,” “what,” “where,” “when,” and “how” 

are more likely to appear in triggering events than in other cognitive presence categories 

like exploration messages.  The goal is to derive a set of inputs which numerically 

describe the message text and which provide the neural network with enough information 

that it can assign messages to cognitive presence categories just as reliably as a human 

coder.  

Hierarchical Structure 

 Five structure categories provide a description of the message within the greater 

structure of messages.  Those five structure categories are thread number, width, depth, 

number child messages, and number of grandchild messages.  Identifying where a 

message lies within the hierarchy of messages may reveal information about the cognitive 

presence category in which it falls.  The set of messages in Figure 7 illustrates the five 

pieces of information gathered to describe where a message lies in the broader structure 

of messages. 
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Message no. 304:  
The letter from Cortes was a primary source somewhat exaggerated.  Cortes, being a 
conqueror and explorer, possibly felt that convincing the king that he was well respected 
and reveared [sic], capable of changing their religion and way of life, would make it 
necessary that the king and Spain would have to go through him to conquer Mexico. 
Giving him his place in history.  Cortes knew of the profitable trade routes with the 
W.Indies, causing him to exaggerate the economy. This exageration [sic] could lead to 
profitable trade, benefiting not only Spain but himself. 

Message no. 306: [Branch from no. 304] 
I do agree with you. Cortes was looking for ways to benefit himself. In his letter 
he seems so truthful and appreciative of the beautiful sites around him. 
Somewhere inbetween [sic] the lines I feel he is looking out for himself and what 
he may gain from such a beautiful account of the city and its happenings. This 
feelings [sic] is given through his exageration [sic] of how smooth everthing [sic] 
runs. 

Message no. 307: [Branch from no. 306] 
 I don't feel as though he were [sic] exaggerating at all. The Aztec 
civilization was trly [sic] flourishing in the 16th century. Just because they 
did not have a religion like that of the European explorers, did not mean 
that they were a backward people. Prior to the Aztecs, the Mayan people 
had calendars much more accurate than those in use by Spain, England, 
Portugal, and others. Their architecture was a sight to behold and it still 
exists to this day on the Yucatan peninsular [sic]. 

Message no. 348: [Branch from no. 304] 
I agree with you that Cortes used this account as a strategy to win over the king.  I 
do not think that it was as easy as he says it was to win over the people under 
Moctezuma's rule. 

Figure 7.  One section of the course transcript showing the hierarchical outline of 

messages. 

Figure 7 shows one small section of the course transcript.  Here, students are responding 

to the instructor’s question asking whether a letter presumably written by Cortes 

accurately depicted what Cortes saw in Mexico.  There are four messages, and the first 

message, message 304, is the beginning of this thread.  In any given course, there are 

numerous threads and each new thread may be a new discussion topic.  At the beginning 

of the course, the first few discussion threads generally address students getting to know 

each other or general classroom management.  The final threads of a course usually 

concern good-byes and well-wishes.  The threads in between, however, usually map to 
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the topics covered in the syllabus.  The thread in the example is one of a few threads 

addressing the accuracy of Cortes’ letter.  The thread number may indicate what type of 

message it is.  First threads would most likely address course management topics and 

would be categorized as non-cognitive. 

 Message width is the horizontal measurement of messages.  It tells us whether a 

message is the first in a discussion thread, a reply, a reply to a reply, and so on.  In Figure 

7, message 304 has a width of one because it is the first message in this example thread.  

Message 306 is the first reply to Message 304; its width is two.  Message 307 has a width 

of three because it is a reply to a reply.  Message width may provide a clue as to which 

cognitive presence category a message falls.  The first message in a thread is often a 

triggering event, a message culminating in a question or concern designed to spark 

further discussion.  Replies to a triggering event may often be exploration messages, 

messages in which students are playing with the question or concern from the triggering 

event, but offering no substantiated, definitive claims.  Message 348 is an example of 

such a message; the student agrees but offers no further substantiated claims.  

Presumably, messages with a greater width may be integration messages, messages 

which address the question or concern from the triggering event with substantiated, 

supported claims.  Message 307 exemplifies an integration message.  It addresses the 

triggering event with series of claims that are most likely supported by the course 

textbook.  This student is thoughtfully putting the pieces of a substantiated argument 

together. 

 Message depth is the vertical measurement of messages.  It tells us whether a 

message is a triggering event, the first reply to a triggering event, the second reply, and so 
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on.  Message 306 is the first reply to message 304; therefore, it has a depth of two.  

Message 348 is the second reply, so it has a depth of three.  Like message width, message 

depth may also provide clues to the cognitive presence category under which a message 

falls.  Messages with a depth of one are usually triggering events.  The first few replies to 

a triggering event are likely to be exploration messages and the later replies are usually 

made after a student has processed the first few exploration messages; therefore, a student 

may be more likely to incorporate and synthesize previous thoughts into a more 

reflective, substantiated message. 

 Finally, the number of children and grandchildren may provide a clue to the 

cognitive presence categorization of a message.  In Figure 7, message 304 has two 

children, messages 306 and 348, and one grandchild, message 307.  A message which has 

sparked many replies, many children and grandchildren, may be a triggering event.  

However, it may also be a very compelling justification which has sparked avid 

disagreement or agreement.   

 Overall, five numeric, hierarchical descriptions of the message are added to the 

list of General Inquirer and self-defined categories.  Those descriptions are: thread 

number, message width, message depth, the number of children belonging to a message, 

and the number of grandchildren belonging to a message.   

Predictor Order 

 Building ANN models is often a trial and error process in which a number of 

models are built and the best one is chosen.  The strategy employed in this analysis is to 

construct models with different numbers of predictor variables or inputs.  Since the 

software used for this analysis, Neuroshell Classifier, only accepts a maximum of 150 
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inputs, a process was put in place to choose the most discriminating 100 General Inquirer 

categories as predictor variables along with the 37 self-defined categories and the 5 

structure categories.  This results in 142 inputs into the artificial neural network software. 

First, the most discriminating 100 of the 182 General Inquirer categories were 

selected by training the ANN to model all 1,200 messages.  The ANN software package, 

Pattern Recognition Workbench, was used to construct the model because it accepts more 

than 150 input variables.  Once the model was built, the ANN software associates a 

discrimination weight to each predictor; the higher the weight, the better the predictor 

variable is at assigning message input to the correct cognitive presence category.  This set 

of predictors was sorted by each predictor’s discrimination weight and the 100 most 

discriminating were kept.   

The next step was to order all the predictor variables.  This includes ordering the 

100 General Inquirer predictors as well as the 37 self-defined predictors and the five 

message hierarchy predictors.  These predictors, or inputs, were ordered from most to 

least discriminating using the same technique for selecting the 100 most discriminating 

General Inquirer predictors.  That is, a model was constructed using all 1,200 messages 

with 142 inputs and five cognitive presence outputs (non-cognitive, triggering, 

exploration, integration, and resolution).  After creating the model, the software produced 

discrimination weights for each input variable, and the inputs, or predictor variables, 

were ordered with the most discriminating first and the least discriminating last.   

Modeling Content Analysis Decision-Making 

At this point, we are ready to begin creating ANN models.  We possess a set of 

training data, 1,200 human-coded messages.  We have numerically described that data so 

 



 64

that it can be read by the ANN software, and the inputs have been ordered so that the 

most discriminating inputs are first.  The data are also separated into a set of inputs, 142 

predictors, and outputs, one of five cognitive presence categories.  The data are fed into 

the ANN software.  The software then asks that a set of test messages be separated from 

the set of 1,200 messages in order to test its accuracy and provides the capability for 

doing so.  The software then asks the user to define the inputs and outputs.  Following 

Garson’s (1998) advice earlier in this chapter, a backpropagation ANN model was 

chosen.  The ANN software was instructed to train itself on the data provided, and the 

first model with 142 inputs and 5 outputs was generated.  It takes between 5 and 20 

minutes for the ANN software to generate a model.  Once the model is complete, a report 

is provided showing how well the model categorizes the 100 messages set aside for 

testing.  If the model performs well, usually meaning that it correctly classifies more than 

70% of the test set correctly, then the model is tested against the set of 100 reliability 

messages.  If it categorizes that set of messages well, again usually more than 70% 

correctly classified, the model is retained and Cohen’s (1960) kappa is calculated 

between the ANN model and the aggregate of human coders.  

After the first model with 142 inputs and 5 outputs is built, tested, and retained if 

necessary, the second model is created.  The second model uses ten fewer inputs.  Recall 

that the input categories are ordered from most discriminating to least discriminating.  

The ten inputs removed from the model are the last ones, the ones which discriminate less 

well than the others.  A model of 132 inputs and 5 outputs is then constructed and the 

steps to test that model are repeated.  This entire process is repeated 13 times until the 

final model with just 22 inputs is constructed, tested, and retained if necessary. 
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The above series of steps is applied to create a single ANN model trained on 

messages from both course topics, history and political science, and from all six sections, 

three history sections and three political science sections.  This model is referred to as the 

full model because it incorporates messages from both topics and all sections.  The series 

of steps used to determine the best full model, is also applied to determine the best topic 

model, one model for history and one for political science, and the best section model, 

one model for each of the six courses analyzed.  A fuller description of this process is 

provided in the next section, “Comparison of Models.” 

Comparison of Models 

Before moving on to look at sample analyses, the accuracy of the full model was 

tested against that of the topic and section models.  This exercise shows whether we may 

continue along the most efficient path of creating one model from both history and 

political science or whether separate topic or section models should be developed.  There 

is reason to believe that the model is defined by linguistic cues not specific to any single 

topic; for example, the linguistic cues that predict that a message belongs to the 

exploration category are the same cues no matter what the topic.  To verify this, a brief 

comparison of models is performed.  The full model is an ANN constructed from the 

1,200 human-coded messages from all six sections of history and political science.  The 

topic models are two models constructed from 600 messages in each topic, history and 

political science.  The section models are six models built from 200 messages in each of 

the six sections, three history sections and three political science sections.   

In order to build each model, a test set and a training set are created.  The ANN 

model is built using the training set and tested for accuracy using the test set.  For the full 
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model containing 1,200 coded messages, a model is created using a training set of 1,100 

messages and a test set of 100 messages.  To create the topic models, the 600 messages in 

each topic are divided into a training set of 500 messages and a test set of 100 messages.  

For the section models, the 200 human-coded messages from each section are divided 

into a training set of 150 messages and a test set of 50 messages.  Most importantly, each 

model is compared on its training set reliability.  

For each model in this analysis, a systematic process for deriving the best model 

in each comparison category was used.  This process required setting the model 

parameters, defining a training set of messages and a test set of messages, building the 

model, then testing the model to determine what percentage of test set messages were 

correctly categorized.  Thirteen models were created for each comparison category.  That 

is thirteen models were created using the full set of 1,200 messages and the best of these 

models was kept.  Thirteen models were then created using the 600 history messages, and 

the best of these models was kept; thirteen models were created using the 600 political 

science messages, and the best of these models was kept.  The method for choosing 

thirteen models is as follows.  For each message, there are 142 predictors (see “Predictor 

Order”).  The first of thirteen models uses all 142 predictors; the second model uses the 

top 132 predictors; the third uses the top 122 predictors; the fourth uses the top 112 

predictors; and so on  to the thirteenth model containing only 22 predictors.   

Spelling Analysis 

Since the ANN model is build from the presence or absence of words in a 

discussion list message, it is imperative that the algorithm which numerically describes 

the message sufficiently recognize words.  This means that misspellings may threaten the 
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ANN’s ability to correctly classify messages.  To determine the effect spelling has on the 

ANN model, a sample of 100 messages was selected from the message set, corrected for 

spelling errors, coded by the automatic content analysis tool, and compared to the 

original set of 100 messages.  The hypothesis is that correcting spelling errors will not 

change how the messages are categorized. 

A systematic, random sample of 100 messages was chosen from the 8 courses 

(four history and four political science) used in the second experiment of this study.  The 

model from the second experiment was chosen because it is more robust than the first 

experiment’s model and would therefore be more sensitive to spelling errors.  To ensure 

consistency in detecting spelling errors, the text of each message body was placed in 

Microsoft Word©.  Word automatically identifies the spelling errors and those errors are 

corrected until Word identifies no further spelling errors.  This step is repeated for all 100 

messages.  The spell-corrected set of messages is then placed into the database and the 

method used for numerically describing messages is applied.  Once the messages are 

numerically described, the ANN algorithm is applied to each message in order to 

categorize that message into cognitive presence categories.  Again, the hypothesis is that 

the ANN model will place correctly-spelled messages into the same category as their 

misspelled counterparts. 

For this analysis, an error is defined as any word misspelled so that it is 

unrecognizable by the General Inquirer and self-defined dictionaries.  Grammatical errors 

or errors in word choice do not count.  Grammatical errors are unaffected by the 

dictionary.  For example, the dictionary does not care that "i" is lower-case; it is still 

recognized as a first-person pronoun.  Errors in word choice do not count because it is not 
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possible to discern the intent of the author.  Though it may be a word choice error, 

changing the word for this study may bring about a meaning that the author did not intend 

thereby creating a greater error than the word choice error.  Some error will be introduced 

into the model in the form of homonyms (e.g. “to,” “too,” and “two”). 

Comparing Human and ANN Coding Decisions 

To ultimately answer the first part of the research question which hypothesizes, 

“An artificial neural network (ANN) analyzes messages as well as a human,” human 

coding decisions must be compared to ANN coding decisions.  Six human coders coded 

the same set of 100 messages and reliability scores for the human group were calculated.  

However, we must now determine the reliability between the set of human coders and the 

artificial neural network.  To do this, an aggregate categorization of all six human coders 

was first derived.  Table 5 illustrates the process for gleaning the aggregate 

categorization.  
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Table 5 

Decision Logic for Aggregating Human-Coded Messages 

 Coder Decision Aggregate  

Example 

number 

A B C D E F Decision Action 

         
1. 2 2 2 2 2 2 2 Use mode 

2. 0 0 1 1 1 1 1 Use mode 

3. 0 1 2 3 4 4 4 Use mode 

4. 0 0 1 1 2 2 1 Use mode first, then mean. 

5. 0 0 3 3 4 4 3 Use mode first, then mean, 

and select the choice 

closest to the mean. 

6. 1 1 1 2 2 2 1 Score of least reliable 

coder is thrown out and 

the mode is used to make 

the decision 

 

First, the messages have been coded into one of five categories in which 0 is 

noncognitive, 1 is a triggering event, 2 is an exploration message, 3 is an integration 

message, and 4 is a resolution message.  Each of the six coders is represented by a letter 

where A is the first coder, B is the second, and so on.  The following decision logic was 

used.  The mode of all raters is used first in order to give the greatest weight to the 

decisions made by each individual.  The intent is for the artificial neural network to 
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model the decision-making of all coders.  In the first three examples above, the mode is 

sufficient for making the aggregate decision.  However, if there is a tie among the coders, 

as in examples four, five, and six, the mean should be used to break the tie.  In example 

four, there is a tie among three possible modes; therefore, the mean, one, is employed to 

break the tie.  Garrison, Anderson, and Archer (2001) lead us to believe that the cognitive 

presence categories are situated along a continuum.  They refer to them as “phases” (p. 

10) and suggest that online discourse progresses through each phase beginning with a 

triggering event and culminating in resolution.  For this reason, the mean score of the six 

coders is used as a tie-breaker if the mode fails.  Looking again to example four, some 

feel the message is higher along the continuum than others.  The mean is chosen because 

it incorporates each coder’s decision into the reliability score and centers that group 

decision.  However, in those situations like example five in which there is a three-way tie 

and the mean is a category number that no coder has chosen, then the mode nearest the 

mean should be selected.  Again, this tactic more fully incorporates each coder’s decision 

into the reliability score.  Finally, in the rare event that neither the mode nor the mean is 

sufficient to identify an aggregate coding, then one coder’s ranking should be discarded 

in order to break the tie.  Selecting the one coder to remove is based on each coder’s 

average pairwise reliability score.  The coder with the lowest average pairwise reliability 

should be removed from the decision on that single item.  Example six above assumes 

that coder F’s average pairwise reliability is lower than all the others; therefore, F’s score 

is removed and the mode is used. 
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Sample ANN Analyses 

Once an acceptable artificial neural network model has been constructed, that 

model may be run against the entire body of messages returning a cognitive presence 

value for every message in every analyzed course.  A number of analyses immediately 

surface from the data, and the following is a sample of the analyses we should expect 

once each message has been assigned a cognitive presence weight.   

Descriptive Analyses 

Mean Cognitive Presence Weights 

 For a given body of messages such as those from one course or from a number of 

courses by topic, a mean cognitive presence weight can be derived.  This weight shows 

the overall cognitive presence, or intellectual effort, exerted by the course participants.  

The mean cognitive presence weight is an average of messages whose cognitive presence 

value falls along a continuum between zero and four as follows: 

0.  Non-cognitive 

1.  Triggering Event 

2.  Exploration 

3.  Integration 

4.  Resolution 

Figures 8 and 9 exemplify mean cognitive presence weights for a body of messages.  

Figure 8 shows the cognitive presence weight by course allowing for the comparison of 

instructors and Figure 9 shows the cognitive presence weight by course topic allowing, in 

this case, the overall cognitive presence in history to be compared to the overall cognitive 

presence in political science.     
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Mean Cognitive Presence Weight by Instructor
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Figure 8.  Mean cognitive presence weight by instructor. 
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Figure 9.  Mean Cognitive Presence Weight by Course Topic 

Occurrences of Each Cognitive Presence Category 

The above analysis provides a broad-level view of each student’s cognitive 

output, but does not indicate how cognitive presence is distributed.  That is, the above 

analysis does not answer the question, “how many messages were non-cognitive?”  For 
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that analysis, a percentage of the occurrence of each cognitive presence category may be 

generated.  Figures 10 and 11 provide the percentage of messages falling into each 

cognitive presence category by course section and topic respectively.  From this example, 

we see the reason why Instructor 1 had the largest overall cognitive presence; this 

instructor’s class generated far more integration messages than the others.  Further, we 

can also compare course topics (history and political science) along each cognitive 

presence category allowing us to see, for example, which topic generates more triggering 

events and exploration (see Figure 11). 
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Figure 10.  Cognitive Presence Percentage by Instructor 
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Cognitive Presence Percentages by Topic

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Non
-co

gn
itiv

e

Trig
ge

rin
g

Exp
lor

ati
on

Int
eg

rat
ion

Res
olu

tio
n

History
Political Science

 

Figure 11.  Cognitive Presence Percentages by Topic 

Analyses Based on Course Section Variables 

Aside from discerning global information about a single course section or a topic, 

fine-grained analyses related to a single course are also revealed as a result of a cognitive 

presence value associated with each message.  Two examples are shown below; the first 

is an analysis of each student’s performance, and the second views the cognitive presence 

from each week of a course.  Table 6 shows the mean cognitive presence weight of each 

student over the course of one term along with the total number of messages each student 

contributed and the number of messages falling into each cognitive presence category.  

The following equation is used to assign mean cognitive presence weights to students 

MT
) x W(MC  ) x W(MC  ) x W(MC  ) x W(MC  ) x WMC( 4433221100 ++++        (1) 
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where MC is the number of messages from each cognitive presence category, W is the 

weight of each category (in which noncognitive = 0, triggering event = 1, exploration = 2, 

integration = 3, and resolution = 4), and MT is the total number of messages the student 

generated. 

Table 6 

Sample Cognitive Presence Values by Student 

Student 

Cog 

weight 0 1 2 3 4 Total 

   

FirstName1 

LastName1 4.00 0 0 0 0 1 1 

FirstName2 

LastName2 0.67 2 0 1 0 0 3 

FirstName3 

LastName3 0.75 78 7 18 15 0 118 

FirstName4 

LastName4 1.56 25 4 28 20 0 77 

FirstName5 

LastName5 1.73 7 1 10 8 0 26 

Note:  This shows sample cognitive presence values by student in which 0 represents 

noncognitive messages, 1 represents triggering events, 2 represents exploration messages, 

3 represents integration messages, and 4 represents resolution messages. 
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The cognitive presence weight in Table 6 is derived using Equation 1.  The range of 

cognitive presence values a student may receive is the same as the range of cognitive 

presence values, zero to four.  In the above example, it becomes clear that a student may 

receive a high overall cognitive presence value even though that student submitted only 

one message.  This indicates that a true measure of course-long cognitive effort must 

incorporate the number of messages a student contributed. 

 The second course section variable is topic.  In this case, we may assume that a 

topic is given each week in the course, and we may see how the level of cognitive 

presence is distributed as the course progresses.  We may assume that the first and last 

weeks will contain relatively low cognitive presence since little content is discussed 

during those times.  Figure 12 depicts the type of analysis an instructor would receive 

showing the cognitive presence values for each week of the semester. 
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Figure 12.  Cognitive presence by week. 
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Beyond Descriptive Analyses 

 The above descriptive analyses immediately surface as a result of associating 

cognitive presence values with each message; however, the researcher or instructor with 

statistical experience may perform a number of more rigorous statistical analyses in 

which the cognitive presence weight serves as the dependent variable.  Specifically, the 

instructor may perform analyses of variance (ANOVA) or regression analyses holding 

the cognitive presence weight as the dependent variable and the following as independent 

variables: 

1. Instructor:  The researcher may compare multiple instructors across multiple 

topics. 

2. Student:  The researcher may compare various demographic groups or 

treatment groups. 

3. Message length:  The researcher may ascertain whether message length 

correlates with cognitive presence value.  

4. Course Topic:  The researcher may determine whether the topic explains a 

portion of the variability in cognitive presence values. 

5. Number of messages:  The researcher may question whether the amount of 

student participation as displayed by the number of messages a student posts 

contributes to increases or decreases in cognitive presence.  

6. Instructor participation:  The researcher may also determine whether the 

amount of participation by an instructor across various course topics makes a 

difference in the overall cognitive presence elicited by the students. 
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Overall, associating a cognitive presence weight to each message in an online educational 

discussion provides not only a wealth of descriptive statistics but may also provide a 

dependent variable enabling even richer analyses. 

Limitations and Bias 

 Figure 4 at the beginning of this chapter outlines the artificial neural network and 

human content analysis procedures.  This graphical outline also shows the points within 

the model where limitations may occur.  I’ll begin the description of the limitations by 

following the model from the message input into the artificial neural network content 

analysis, through the human content analysis, and finally to the five output categories. 

First, the message itself is limited in that we are using it as a unit of analysis as 

opposed to a theme-based unit of analysis.  The limitation is that the entire message is 

being categorized into one cognitive presence category.  It is true that a message may 

contain aspects of multiple categories, it may serve as a triggering event and an 

exploration message within the posting.  This is addressed at the coder level in that each 

coder is asked to code the message based on how that coder would respond to the 

message.  Here we are relying on the latent projections (see “Cognitive Structures” above 

for a discussion of Potter & Levine-Donnerstein’s (1999) latent projections) each coder 

brings to make the appropriate coding decisions.   

Another set of limitations appears in converting message text to a numeric 

description.  The most obvious limitation is that this stage does not feed the message into 

the decision-making artificial neural network; instead, it feeds an array of numbers 

describing that message.  In defense of the artificial neural network, it may be making 

decisions based on more identifiable information about each message than human coders 
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do.  Even if the ANN is categorizing messages based on only the best 40 discriminators, 

it would be difficult for a set of human coders to identify 40 factors contributing to the 

decisions they make when categorizing messages.  Also, within the numeric description 

of the model is a dictionary analysis.  One limitation to the dictionary analysis is that the 

numeric description of each message becomes an array of weighted themes.  For 

example, the message as described as having a large amount of “positiv” or a low amount 

of “strong.”  This means that the meaning underlying the message is replaced by the 

prevalence or absence of a series of themes.  One response to this limitation is the 

argument that if the ANN reliably makes the same decisions as humans, then it does not 

matter that humans and the ANN have arrived at those decisions through separate means.   

Another limitation to the dictionary analysis is that the array of weighted themes 

describing each message is based on correctly spelled words.  This means the 

misspellings may inadvertently skew the numeric description of each message.  A 

spelling analysis was conducted in which a sample of messages were corrected and re-

analyzed using the full ANN model.  Presumably, if spelling threatens the accuracy of the 

model, then the model would code correctly spelled messages differently than their 

misspelled counterparts.  A fuller, but much more time-consuming study could be done in 

which a model is constructed using only correctly-spelled messages and then compared to 

a model constructed from original, misspelled messages.  Further, neural networks are 

designed to work well with fuzzy, incomplete, and noisy data.  

Further, hierarchical structure is a limitation only in that this information may not 

help discriminating one category of messages (e.g. triggering event) from another (e.g. 

exploration).  This further becomes problematic in generalizing from one course to 
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another.  Some instructors may pay closer attention to ensuring that each discussion topic 

has its own message thread whereas others may not.  This means that a model constructed 

from messages in which the instructors adhere to strict message structures may perform 

less well with a new set of messages from courses lacking strict structure.  The best 

response to this limitation occurs in the implementation of the ANN content analysis tool.  

The best implementation of such a tool would be to allow the instructor to modify the 

ANN model much like a user of speech recognition technology “trains” the speech 

recognition software to recognize the user’s voice.  This implementation would allow 

each instructor to train the ANN to more accurately categorize his/her own set of 

messages. 

Another set of limitations surrounds the trained and tested artificial neural 

network (ANN) model.  Garson (1998) explains the largest limitation of ANN modeling: 

It can be difficult to understand how neural nets arrive at their results.  
Systems designed thus far do not include the capacity of alternative 
techniques like expert systems to provide an audit trail fully explaining 
how the system arrived at its conclusions…. While there are approaches to 
causal analysis using neural models, it is still fair to state that the social 
scientist’s core concern with explication, not simple prediction, has been 
the primary reason why neural models have not spread more than they 
have. (p. 16) 
 

Garson (1998) responds to this limitation by saying that neural networks not only 

outperform statistical approaches but are robust under conditions in which the input data 

are “noisy, nonlinear, and with missing measurements” (p. 162). 

In the model outlined in Figure 4, the artificial neural network (ANN) models the 

decision-making of six human coders and each coder brings his/her own bias to the 

coding decision.  Three measures have been employed to reduce the bias inherent in 

human decision-making.  First, all six coders have either taught, taken, or administered 
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distance learning courses meaning that they have some understanding of online learning.  

Second, each coder has been trained through numerous coder training sessions to set their 

biases aside and to categorize messages reliably.  Finally, the coders rely on a rubric to 

guide their decision-making and they are trained to consult the rubric in all message 

categorizing decisions.  Just as bias exists within the coders, bias may also exist within 

the rubric itself.  Though the rubric is derived from previous online discussion list coding 

rubrics, the rubric may still contain culture bias.  It treats higher-order thinking, as 

exemplified in integration and resolution categories, as those messages displaying 

justified knowledge claims and lower-order thinking as brainstorming and personal 

narrative. 

Certainly, the model is also limited by the number of output categories 

comprising cognitive presence which is understood as the amount of intellectual effort 

exemplified by a single posting.  Intellectual effort is far more complex than the five 

output categories imply.  The output categories, therefore, should be viewed as broad 

categories of cognitive presence under which lies deeper complexity.  This limitation is 

brought about in part by the limitations of content analysis.  In order to perform a reliable 

content analysis, the number of coding categories must be limited to a bare minimum.  

The presence of more categories increases the complexity of the coders’ tasks and 

reduces reliability. 

Further, at least one limitation has been revealed by projecting the types of 

analyses an automatic content analysis tool would create.  That is, a student may receive 

a high cognitive presence value even if that student only submitted one resolution 

message the entire term.  Therefore, when this tool is implemented, cognitive presence 
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weights assigned to each student must be reported alongside the number of messages 

each student generated.  Further, such a report should also detail each student’s number 

of messages assigned to each cognitive presence category (see Table 6 for an example). 

Summary 

Overall, the research question, “how well does an artificial neural network (ANN) 

analyze and describe the cognitive effort students exhibit in online educational 

discussions as compared to humans,” has two parts.  The first part hypothesizes, that an 

artificial neural network (ANN) analyzes messages as well as a human.  The second part 

describes the information expected from an ANN content analysis tool.   

Two methods are used to answer the first question.  First, a human content analysis is 

performed and reliability statistics are calculated among coders.  Second, an artificial 

neural network (ANN) is built from the set of coded messages, and the reliability 

between the set of human coders and the ANN is calculated to determine how well the 

ANN model performs.  The ANN is applied to all messages, and a series of sample 

analyses answers the second research question.  Those analyses include descriptive 

analyses that compare cognitive presence values by cognitive presence category and by 

course section variables and statistical analyses comparing means by variables such as 

instructor, student, and course topic.

 



 

 

 
 
 
 
 

CHAPTER 4 
 

RESULTS 

 
This section describes the results to the methods used to answer the research 

question, “how well does an artificial neural network (ANN) analyze and describe the 

cognitive effort students exhibit in online educational discussions as compared to 

humans?”  This question has two parts.  The first part hypothesizes, that an artificial 

neural network (ANN) analyzes messages as well as a human.  The second part describes 

the information expected from an ANN content analysis tool.  This chapter is divided into 

two sections, one addressing the first part of the research question and one addressing the 

second part.  The first section is further divided into two subsections, one for each 

iteration of the method, experiment one and experiment two.  The following graphic 

overview (Figure 13) of the research method guides the presentation of the results.   

Comparing Artificial Neural Networks to Humans 

 The method used to answer the hypothesis that an ANN analyzes messages with 

the same accuracy as a human was performed twice with two separate groups of coders, 

and the results from both experiments are presented in the sections “First Experiment” 

and “Second Experiment” below.  Lessons learned from the first experiment are outlined 

in the section of this chapter entitled, “Modifications to the Human Content Analysis.”  

Those lessons are applied in the second experiment with the intent of improving the inter-

83 
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rater reliability among the group of human coders and thereby improving the ANN 

model.  
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Figure 13.  Graphic overview of the research methods. 

First Experiment 

The first part of the research question asks whether an automatic content analysis 

tool can categorize messages as well as a set of human content analysts.  Stated in 

measurable terms, it asks whether an automatic content analysis tool codes messages with 

a Cohen’s kappa value comparable to the mean pairwise kappa values of the human 

coders.  This question is answered in two parts.  The first part determines how reliably a 

group of humans categorize messages, and the second part compares a trained artificial 

neural network (ANN) model to the humans.  To do this, Cohen’s kappa is used as a 

common reliability measure among the human coders and between the human coders and 

 



 85

the ANN model.  Recall from Chapter 3 that the human coders have been trained to use 

the cognitive presence coding rubric outlined by Garrison, Anderson, and Archer (2000).  

During that analysis, each of the six human coders was asked to code the same 100 

messages chosen using a systematic random sampling technique from six eCore™  

courses.  As for the second part, the trained ANN coded the same 100 messages the 

humans coded, and the reliability scores among the humans is compared to the reliability 

score between the group of humans and the ANN.  Looking at Figure 13, this means that 

the reliability score is derived by comparing how similarly the two large blocks, human 

content analysis and automatic content analysis, categorize messages.  Overall, to answer 

the first research question, we must know how reliably each human coder rated messages 

compared to the other human coders and then how reliably the artificial neural network 

coded messages compared to the group of human coders.  The next section, “Human 

Content Analysis,” describes how reliably each human coder rated messages compared to 

the other human coders. 

Human Content Analysis 

 This section describes how reliably each coder rated messages compared to the 

other human coders.  This section describes the message sample used in this comparison 

and then compares the coders’ performance.  A systematic, random sample of messages 

was chosen from discussions held in six courses: three sections of history and three 

sections of political science.  Table 7 shows the total number of messages in each course 

by section and topic.  Interestingly, the history sections consistently generated over twice 

as many messages as the political science sections. 
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Table 7 

Number of Messages by Course Section and Topic 

Section History Political Science 
   
Section 1 1,564 688 

Section 2 1,060 429 

Section 3 1,619 677 

Total 4,243 1,794 

Note:  Total number of messages by topic.   

 After three training sessions, the coders reached pairwise Cohen’s kappa 

reliability scores over 0.70, indicating that training could cease and that they were 

prepared to code messages.  The six coders were then asked to code 300 messages.  Of 

those 300 messages, 100 messages rated by each coder were used for a reliability 

comparison, and 200 from each coder (1,200 in all) were used to train the ANN.  Table 8 

shows the pairwise reliability of the six human coders and ANN using Cohen’s kappa 

above the diagonal and percentage agreement below the diagonal.  The mean Cohen’s 

kappa among the human coders is 0.6, the average percent agreement is 74%, and coder 

A is the lowest performing coder (kappa=0.566).  A human-to-ANN comparison is 

provided in the next section.  The reliability scores for this set are lower than the scores 

reached during the last training session, and possible reasons for that are outlined in the 

section headed “Modifications to the Human Content Analysis” below.  Rife, Lacy, and 

Fico (1998), accept kappa values below 0.80 for content analyses breaking new ground, a 

category into which this research clearly fits.  Landis and Koch (1997) offer a less 
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conservative interpretation of kappa values by considering those between 0.41 and 0.60 

as moderate and those between 0.61 and 0.80 as substantial agreement.   

 
Table 8 

Agreement and Kappa Scores for Each Coder 

 A B C D E F ANN 
        
A - .535 .559 .524 .532 .680 .509 

B 70% - .742 .682 .617 .531 .504 

C 72% 84% - .714 .600 .586 .446 

D 69% 80% 82% - .645 .563 .490 

E 69% 75% 74% 77% - .494 .426 

F 79% 69% 73% 71% 66% - .541 

ANN 70% 70% 67% 69% 64% 71% - 

Note:  Percentage agreement scores are below the diagonal and kappa values are above 

the diagonal comparing each coder to the others.  

Automatic Content Analysis 

To address the hypothesis that an ANN categorizes messages as accurately as a 

set of humans, we must compare ANN reliability scores to human reliability scores.  The 

group of human coders generated reliability scores between 0.494 and 0.742 with a mean 

score of 0.6.  Therefore, a model coding within that range would be acceptable, and an 

ANN reliability value close to 0.6 would be desirable.   

 To briefly recap, the ANN model was constructed from 1,200 messages 

coded by the group of six human coders.  Each coder rated 300 messages; 200 of 
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those are used to train the ANN whereas 100 are used to calculate reliability.  

Three coders rated messages from history courses and three coders rated 

messages from political science courses.    

During the creation of the ANN, 1,100 messages are used to train the 

model and 100 messages are randomly reserved for testing.  Numerous models 

were built (see the section of Chapter 3 entitled “Comparison of Models”), and 

the best of these yielded a percent agreement of 71% and a kappa value of 0.519, 

within the range of human pairwise kappa values extending from 0.494 and 0.742.  

A full description of the ANN settings is provided in Appendix C. 

 At first glance, the ANN-to-human reliability value (kappa = 0.519) appears 

comparable to the range of human kappa values (kappa range = 0.494 to 0.742), but this 

is tempered by the fact that the human reliability scores are low and that the ANN coded 

messages unlike human coders would have.  Table 9 compares the messages coded by 

humans to the messages coded by the ANN.  This table shows human coding decisions 

from top to bottom and ANN coding decisions from left to right.  Numbers along the 

diagonal represent the number of messages in which both the humans and the ANN 

agree.  Numbers off the diagonal show disagreement and indicate how the model may be 

flawed.  For example, the human coders rated 51 (45 + 5 + 1) messages as non-cognitive, 

and the ANN agreed with the humans on 45 of those 51 ratings.  Table 9 shows that the 

ANN model over-generalizes on non-cognitive, exploration, and integration categories 

and under-generalizes on triggering events and resolution messages.  That is, the ANN 

failed to code messages into those categories for which there were few human-coded 
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messages.  This results in a model that only codes into three of the five cognitive 

presence categories.   

Table 9 

Comparison of Coding Decisions for the First Experiment 

 Desired (Aggregate of Human Coders) 

 Non- 

Cognitive 

Triggering 

Event 

Exploration Integration Resolution

Non- 

Cognitive 

45 4 7 1 0 

Triggering 

Event 

0 0 0 0 0 

Exploration 5 4 19 2 0 

Integration 1 0 5 7 0 

Pr
ed

ic
te

d 
(A

N
N

) 

Resolution 0 0 0 0 0 

Note.  This comparison of coding decisions for the full artificial neural network model 

yields a kappa of 0.519.   

These findings point to a set of modifications to make to the ANN.  The most 

fundamental modification is that the ANN training set must be improved.  The results 

above show that low reliability among the coders may result in conflicting decision logic 

within the ANN.  Therefore, to improve the ANN’s training set, we must first improve 

the reliability among the human coders.  These modifications are outlined in the section 

below entitled “Modifications to the Human Content Analysis.”   
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Modifications to the Human Content Analysis 

 The research method described in Chapter 3 was conducted, and based on the 

results from that experiment, the research method was modified, and a second experiment 

was conducted.  This section outlines the modifications made to the research method 

between the first and second experiment.  Specifically, this section describes 

modifications to the human content analysis in an effort to improve the reliability among 

the human coders thereby providing a better training set for the ANN.   

Results from the first experiment reveal a relatively low agreement among the 

coders.  Since the ANN model is built from the logic of the human coders, there is reason 

to believe that the accuracy of the ANN model would be increased by improving the 

reliability among the human coders.  This was done by improving the coding rubric and 

the coder training.  That is, improvements in the human content analysis are necessary 

before improvement in the automatic content analysis can be realized, and those 

modifications are outlined below. 

 First, the number of coding categories was reduced from five to four.  Garrison, 

Anderson, and Archer’s (2000) resolution category contains very few messages in their 

own research, in the pilot study, and in the first experiment of this study.  In general, less 

than four percent of all messages were coded as resolution messages.  Further, the 

Garrison, Anderson, and Archer (2001) study mentions that the course topic and 

facilitation medium do not lend themselves to the type of real-world hypothesis-testing 

required of this category (p. 6).  Empirical, concrete hypothesis testing is difficult, 

perhaps impossible, to achieve in electronic discussion forums on history and political 

science.  Finally, Garrison, Anderson, and Archer (2001) refer to the categories within 

 



 91

the cognitive presence domain as sequential, “the idealized, logical sequence of the 

process of critical inquiry” (p. 2).  Taken as a sequence, the resolution category is the 

closest neighbor to the integration category.  For these reasons, the resolution category 

was removed, and any messages which would have fallen into this category were placed 

into the integration category, the sequentially closest category to the resolution category. 

 Second, a systematic process for modifying and clarifying the rubric was used.  

Two coders went through three rounds of coding messages from the first experiment set 

and made modifications to the rubric based on their disagreements.  The most significant 

clarification of the rubric occurred between the exploration and integration category.  In 

Garrison, Anderson, and Archer’s (2001) rubric, disagreement or divergence fell within 

the exploration category while agreement or convergence fell within the integration 

category (p. 10-11).  Going back to Figure 7, message 307 disagrees with the message to 

which it replies, but it does so by offering plenty of justification.  Under the rubric from 

experiment one, coders would be confused.  They would be unsure whether it should be 

an exploration message because it shows disagreement or whether it should be an 

integration message because it presents a justified claim.  The rubric was changed so that 

agreement or disagreement without justification is placed in the exploration category 

while agreement or disagreement with justification is placed in the integration category.  

Besides collapsing integration and resolution messages into one category, exploration 

was made distinct from integration messages by defining exploration messages as falling 

along the lower order thinking skills in Bloom’s taxonomy (Bloom and Krathwohl, 

1956), and integration messages were tied to Bloom’s higher order thinking skills 

(analysis, synthesis, and evaluation).  This change was primarily made during training 
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because each of the coders was familiar with Bloom’s taxonomy and understood dividing 

messages along these lines. 

Third, another way to improve coding accuracy is to construct the ANN from 

good examples.  Chi (1997) recommends removing difficult-to-code items from the final 

results.  In the second experiment, coders were asked to code all messages but indicate 

which messages were difficult to code.  This modification allows the ANN model to be 

constructed from the best examples of each category thereby removing some of the noise 

within the model.   

 Fourth, not only was each coder asked to code more messages in the second 

experiment, but each coder was also asked to code messages from both history and 

political science.  In the first experiment, each coder was asked to code messages from 

one section of one topic.  Overall, each coder rated 500 messages, 200 from political 

science, 200 from history, and the same 100 messages from both history and political 

science used for reliability testing. 

 Fifth, in the first experiment, messages were selected using a systematic, random 

sampling technique.  This meant that the coders had little or no context for each message 

making it difficult to accurately categorize messages especially when a coder was 

struggling to determine whether a message should be coded as an exploration or 

integration message.  The message set for the second experiment was modified so that 

coders were given sets of 20 or 25 contiguous messages.  For example, a single coder 

would rate ten sets of 20 messages from one history course, ten sets of 20 messages from 

one political science course, and for the reliability set, four sets of 25 messages from two 

history courses and two political science courses.  A systematic, random sampling 
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technique was used to determine the first message in each set of 20 or 25 contiguous 

messages. 

 Sixth, the coders were required to meet for face-to-face training sessions, and a 

different set of coders was used for the second experiment.  In the first experiment, 

coders were scattered across Georgia and training was done primarily by telephone with 

one or two coders on the line at a time.  The coders never gathered in the same physical 

space and never knew how each other coded.  For the second experiment, the coders were 

asked to not only meet in the same physical space but to scrutinize each others’ coding 

decisions.  Further, when a coder rated a message differently from the others, that coder 

was asked to justify his/her ranking.  I hypothesize that this process of justifying rankings 

solidified the coders’ ratings and ultimately led each coder to rely more heavily on the 

rubric for making final coding decisions.  Together, the coders solidified their 

understanding of each coding category, but more importantly, shared their process of 

coding.  Sharing the process of coding ensured that each coder was using similar decision 

logic when making coding decisions.  Further, fewer coders were used in the second 

experiment (n=4) than in the first experiment (n=6).  Fewer coders provides a greater 

likelihood for increased inter-rater reliability. 

Finally, to determine whether these modifications were valid and could be 

communicated easily during training, one outside coder unfamiliar with the project was 

asked to code a set of 200 messages using the new rubric.  This coder was trained, and 

this coder’s categorization decisions were analyzed for accuracy.  This exercise revealed 

complex aspects of training allowing the trainers to anticipate questions the coders would 

ask.  Primarily, this training revealed that extra effort is required to train coders on the 
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differences between exploration and non-cognitive categories and between exploration 

and integration categories. 

 Overall, this body of changes was applied to the rubric, to the set of messages 

coded, to coder training, and to the selection of coders.  The method outlined in Chapter 3 

was repeated with these modifications, and the results are detailed in the following 

section. 

Second Experiment 

Human Content Analysis   

 Like the first experiment, this section describes how reliably each coder rated 

messages compared to the other human coders.  This experiment repeats the method 

outlined in Chapter 3 with the modifications outlined in the previous section.  This 

section first describes the message sample then compares the coders.  A systematic, 

random sample of messages was chosen from history and political science eCore™  

courses.  The sampling technique for this experiment was modified so that ten sets of 20 

messages were chosen from each course section beginning from a random starting point 

and at a randomly chosen interval.  Messages were chosen from eight eCore™  courses in 

history and political science held during the 2002 calendar year.  Table 10 shows the total 

number of messages in each course by section and topic.  Unlike the first experiment, 

there is approximately the same number of messages in both history and political science 

with the exception of the fourth section of political science. 
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Table 10 

Number of Messages by Course Section and Topic 

 History Political Science 

   

Section 1 1,100 1,053 

Section 2 1,423 1,117 

Section 3 1,357 782 

Section 4 1,096 2,716 

Total 4,976 5,668 

Note.  Total number of messages by topic for the second experiment.   

 After four training sessions, the coders reached pairwise Cohen’s kappa reliability 

scores over 0.80 indicating that they were prepared to code messages.  The four coders 

were then asked to code 500 messages: 200 from one section of history, 200 from one 

section of political science, and 100 from both topics used for reliability comparison.  

Table 11 shows the pairwise reliability of the four human coders and the ANN.  Cohen’s 

kappa values are reported above the diagonal, and percentage agreement is below the 

diagonal.  The mean pairwise Cohen’s kappa among the humans is 0.848 while the mean 

percentage agreement is 90%.  ANN-to-human comparisons are provided in the next 

section.  Coder B has the lowest mean kappa value (kappa = 0.816).  On average, the 

kappa values exceed Rife, Lacy, and Fico’s (1998) minimum of 0.8.  Moreover, these 

reliability values exceed those from the first experiment indicating that the modifications 

outlined in the previous section may have had a positive impact. 
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Table 11 

Agreement and Kappa Values for Each Coder 

 A B C D ANN 

A - 0.798 0.866 0.864 0.697 

B 87% - 0.789 0.862 0.704 

C 91% 86% - 0.911 0.664 

D 91% 91% 94% - 0.687 

ANN 81% 82% 78% 80% - 

Note.  Percentage agreement scores are below the diagonal, and kappa values are above 

the diagonal.   

Automatic Content Analysis 

 Just as in the first experiment, the messages coded in the human content analysis 

are used to develop the automatic content analysis tool, also referred to as the ANN 

model.  The trained ANN model codes the same set of 100 messages used to determine 

human inter-rater reliability, and the ANN results are compared to the aggregate of 

human coders.  The ANN model was constructed from 1,600 human-coded messages.  

Each of the four coders rated 500 messages; 200 from history, 200 from political science, 

and 100 reserved for reliability comparison.   

To build the ANN model, the 1,600 human-coded messages were used to train 

and test the neural network.  During training, the coders were asked to identify those 

messages which were difficult to code.  The coders identified 125 difficult-to-code 

messages which were removed from the neural network training/testing set leaving 1,475 

messages.  From that set of messages, 1180 messages were used to train the model while 

 



 97

295 messages (25%) were reserved for testing.  By default, the ANN software, Ward 

Systems’® Neuroshell 2, reserves 25% of the cases for testing.  Numerous models were 

built from this set of messages, and the best of these was saved.  These models were then 

used to code the set of 100 messages used for human inter-rater reliability, and the single 

model with the best overall reliability value, measured using Cohen’s kappa, was kept.  

An aggregate of all four coders was used to generate one set of human-coded messages 

against which to compare the machine-coded messages.  Where there was a tie among 

human coders, the algorithm described in Chapter 3, “Comparing Human and ANN 

Coding Decisions” was employed.  The highest-performing ANN model yielded a 

percentage agreement of 81% and a Cohen’s kappa value of 0.704.  This kappa value 

shows an increase from the model built during the first experiment but does not equal the 

higher reliability achieved during the second experiment human content analysis.   

Recall that 13 full models were constructed and the one model that most closely 

matches the human coders’ decisions was retained.  This model was built using the most 

discriminating 40 inputs.  Appendix D provides a fuller description of the ANN settings 

and Appendix E provides a list of the 40 inputs and their descriptions.  Interestingly, this 

model contains none of the hierarchy structure categories (thread number, message width, 

message depth, number of children, and number of grandchildren).  The most 

discriminating input is word count, the number of words in a message.  Presumably, 

longer messages are more indicative of integration messages which make substantiated 

claims.  The next most discriminating input is whether or not the message contains a 

question.  This input most likely separates triggering events from other messages.  The 

third most discriminating input is whether or not a message contains the name of a person 
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from the class.  We can hypothesize that this input separates exploration and integration 

messages from the others because a reply to a triggering event may contain the name of 

the person writing the triggering message.  

Table 12 compares the coding decisions between the ANN model and the 

aggregate of human coders.  This comparison reveals not only higher accuracy than the 

model from the first experiment but also that every category contains a message.  This 

indicates that the second experiment model performs better than the model from the first 

experiment which undergeneralized on some categories while overgeneralizing on others. 

Table 12 

Comparison of Coding Decisions for the Second Experiment 

 Desired (Aggregate of Human Coders) 

 NT TE EX IN

NT 37 1 10 0 

TE 1 1 0 0 

EX 0 0 7 0 

Predicted 

(ANN) 

IN 1 1 5 36 

Note.  This confusion matrix for the full artificial neural network model yields a kappa of 

0.704.  Here, NT is non-topical, TE is triggering event, EX is exploration, and IN is 

integration. 

 Table 13 summarizes the research results from the Garrison, Anderson, and 

Archer (2001) study, the first experiment, and the second experiment of this study.  

Overall, the second experiment shows improvement over the first and shows that the 
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automatic content analysis tool from the second experiment is approaching the human 

content analysis reliability of the seminal Garrison, Anderson, and Archer (2001) study. 

Table 13 

Synopsis of Reliability 

Study Content Analysis 

Type 

Agreement Kappa 

Garrison, Anderson, & Archer (2001) Manual 84% 0.74 

Manual 74% 0.608 First Experiment 

ANN 71% 0.519 

Manual 90% 0.848 Second Experiment 

ANN 81% 0.704 

 
 

Before addressing the second part of research question, results of two other 

analyses should be addressed: the comparison of models and the effect of spelling errors. 

Comparison of Models 

This research has assumed that a single ANN model could be used to categorize 

both history and political science messages.  The purpose of this section is to determine 

whether this assumption is valid.  This is done by comparing three types of ANN models: 

the full model comprised of both history and political science messages, topic models, 

and section models.  The full model is an ANN constructed from all of the human-coded 

messages from all sections of history and political science; there is one full model for 

experiment one and another for experiment two.  The topic models are two models 

constructed from messages in each topic, history and political science.  The section 
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models are built from messages in each of the course sections, three history sections and 

three political science sections from experiment one and four history sections and four 

political science sections from experiment two.  The purpose of comparing these models 

is to determine whether one model, the full model, may be built to code both history and 

political science messages.  If the full model is either more accurate than or just as 

accurate as the topic and section models, then this work may proceed along the more 

efficient path of constructing one model for all messages.   The results from both 

experiments are presented below. 

Experiment One 

To reiterate, the full model from experiment one is built from 1,200 messages, 

and 100 of those messages are reserved to test the model.  The kappa reliability statistic 

for the full model is 0.519 with a percentage agreement of 71%.  In comparison, there are 

two topic models, one comprised of all coded history messages and one for political 

science messages.  Each topic model is built from 600 messages, 500 to train the model 

and 100 to test the model.  Reliability statistics for the topic models are outlined in Table 

14.   

Table 14 

Reliability Statistics for Topic Models 

Model Agreement Kappa 

History 82% 0.7 

Pol. Science 74% 0.56 

Note.  Both history and political science topic models exceed the full model 

(kappa=0.519; Percent Agreement=71%). 
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The reliability statistics for both the history and political science topic models exceed the 

reliability statistics of the full model. 

There are also six section models, three for history and three for political science.  

Each section model is built from 200 messages, 150 to train the model and 50 to test the 

model.  Reliability statistics for the section models are outlined in Table 15.  Four of the 

six section kappa values exceed the full model (kappa = 0.519).  However, each section 

model is lower than the best topic model (history kappa = 0.7) and comparable to the 

lowest topic model (political science kappa = 0.56). 

Table 15 

Reliability Statistics for Section Models 

Model Agreement Kappa 

History Section 1 78% 0.61 

History Section 2 72% 0.54 

History Section 3 80% 0.66 

Pol. Sci. Section 1 70% 0.43 

Pol. Sci. Section 2 70% 0.50 

Pol. Sci. Section 3 74% 0.56 

Note.  Four of the six section models exceed the full model (kappa = 0.519). 

This finding suggests that, in experiment one, individual topic models may be more 

accurate.   

The above comparisons for the first experiment reveal that the topic models and 

section models may outperform the full model.  The reliability values for the first 

experiment are low which calls the overall comparison of models for the first experiment 
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into question.  If the topic and section models continue to outperform the full model on 

the more robust second experiment, then there may be reason to question whether one, 

generic model should be constructed.  The analysis below compares the full model to the 

topic and section models for the second experiment. 

 Experiment Two 

 For the second experiment, the full model is comprised of 1,475 messages, and 

25% (295 messages) of those were reserved for testing.  The kappa reliability statistic for 

the full model is 0.704 with a percentage agreement of 81%.  Like the first experiment, 

there are two topic models, one for history and one for political science.  With the 

difficult-to-code messages removed from each topic model, the history model was built 

from 726 messages.  Recall that each coder categorized the same set of 100 messages for 

a reliability comparison.  Fifty of those were history messages, and 50 were political 

science messages.  Therefore, the history topic model is comprised of 726 human-coded 

messages with 50 messages reserved for testing, and the political science topic model is 

built from 749 human-coded messages with 50 messages reserved for testing.  Reliability 

statistics for the topic models are outlined in Table 16. 

Table 16 

Reliability Statistics for Topic Models 

Model Agreement Kappa 

History 80% 0.621 

Pol. Science 78% 0.639 

Note.  Neither the history nor political science topic models are more accurate than the 

full model (kappa=0.704; Percent Agreement=81%). 
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Unlike the first experiment, the full model is more accurate than both topic models. 

 The performance of the full model compared to the topic models for the second 

experiment indicates that one, generic, full model is not only more efficient to construct, 

but more accurate than individual topic models.  The following comparison studies the 

performance of the full model against individual section models.  For the second 

experiment, there are four sections of history and four sections of political science.  

Numerous section models were constructed and the models with the highest kappa values 

are reported.  Like the first experiment, there are 200 messages from each section: 150 

are used to train the model and 50 are reserved for testing.  Reliability statistics for the 

section models are outlined in Table 17. 

Table 17 

Reliability Statistics for Section Models for Experiment Two 

Model Agreement Kappa 

History Section 1 66% 0.451 

History Section 2 84% 0.731 

History Section 3 76% 0.605 

History Section 4 82% 0.729 

Pol. Sci. Section 1 82% 0.722 

Pol. Sci. Section 2 66% 0.488 

Pol. Sci. Section 3 78% 0.66 

Pol. Sci. Section 4 94% 0.802 

Note.  Four of the eight section models exceed the full model (kappa = 0.704). 
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Overall, the full model for the second experiment is more accurate than four of the eight 

section models and more accurate than both topic models.   

For the first experiment, most topic and section models outperformed the full 

model.  However, this finding did not persist into the second experiment in which the full 

model outperformed all topic models and half of the section models.   These initial 

findings indicate that the full model is a viable candidate against the more pinpointed 

topic and section models.   

Spelling Analysis 

Recall from Chapter 3 that the ANN model is built from the presence or absence 

of words in a discussion list message.  Therefore, misspellings may threaten the ANN’s 

ability to correctly classify messages.  A systematic, random sample of 100 messages was 

chosen from the 8 courses (four history and four political science) used in the second 

experiment of this study.  The text of each message body was placed in Microsoft Word 

which automatically identified the spelling errors.  Those errors were corrected until 

Word© identified no further spelling errors, and this process was repeated for all 100 

sampled messages.  The spell-corrected set of messages was then placed into the database 

and the method used to numerically describe messages was applied.  The ANN algorithm 

was then applied to each of the 100 messages in order to categorize that message into 

cognitive presence categories.  Again, the hypothesis is that the ANN model will place 

correctly-spelled messages into the same category as their misspelled counterparts. 

Of the 100 messages sampled, each misspelling that Microsoft Word© identified 

was counted.  Based on that count, the average number of spelling errors per message 

which could contribute to the message being falsely categorized is 0.92 (SD = 2.34).  Had 
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the entire population been analyzed, the mean number of misspelling errors would fall 

between a lower confidence boundary of 0.46 and an upper confidence boundary of 1.39 

assuming 95% confidence.  Though this low number does not make it seem that spelling 

affects the outcome of the model, greater certainty may be reached by sending the 

corrected messages back through the ANN model to see if the existing model categorizes 

the corrected messages differently than the messages with misspellings.  

Both the original set of uncorrected messages and the set of messages corrected 

for misspellings were sent back through the ANN model from the second experiment.  

Both sets of messages were coded exactly the same by the model.  This indicates that the 

spelling errors were not significant enough contribute to errors in coding.  It may still be 

the case that spelling errors in some messages cause them to be miscoded by the ANN, 

but the current analysis suggests that the number would be less than one percent of all 

messages. 

Overall, there is an average of approximately one spelling error per message.  

There may appear to be more spelling errors because messages contain a number of 

errors other than spelling errors including grammatical and word choice errors.  Many of 

these errors do not affect the correct message classification.  For example, the message 

below appears riddled with errors making it at first appear to be a reasonable candidate 

for false classification.   

i [sic] thought the same thing.  the basic behavior of humanity really 
hasen't [sic] changed and i'm [sic] sorry to say that i [sic] doubt it ever 
will.  just think, if osama had had as strong an army as cortes did (as 
opposed to the aztecs), the ones of us left would be wearing burka's [sic] 
and growing beards. 
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This message contains poor capitalization, an emotional topic, an arguably exaggerated 

point, the incorrect use of possessive case, but just one misspelling.  Recall that the 

average misspellings per message is 0.92.  This message contains many errors, but just 

one is an error that would possibly contribute to its false classification. 

 
Sample ANN Analyses  

 Recall that the research question, ““how well does an artificial neural network 

(ANN) analyze and describe the cognitive effort students exhibit in online educational 

discussions as compared to humans” has two parts.  The first part hypothesizes that an 

ANN analyzes messages as accurately as a group of humans, and that part was addressed 

in the section above.  This section addresses the second part of the research question, a 

description of the information we should expect from an ANN content analysis tool.   

After deriving the ANN model that categorizes messages closest to the set of 

human coders, the model was run against every message in every course.  The most 

outstanding benefit of an ANN model is that it tirelessly categorizes every message.  At 

the very minimum, such a tool should offer descriptive statistics in the form of mean 

cognitive presence values for a body of messages, the distribution of cognitive presence 

categories among a body of messages.  However, a manual content analysis will provide 

that information.  An ANN content analysis, on the other hand, goes beyond manual 

content analyses by offering fine-grained analyses of course variables such as cognitive 

presence by student, weekly topic, or major thread.  Since the results from the previous 

section reveal that the model from experiment two possesses a higher reliability than the 

model from experiment one, the examples used come from messages analyzed using the 

second experiment’s model. 
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Comparison of Means 

First, an instructor or administrator may conduct broad-level comparisons based 

on mean cognitive presence values by both topic and section.  As mentioned in Chapter 

3, the mean cognitive presence weight is an average of messages whose cognitive 

presence value falls along a continuum between zero and four as follows: 

0:  Non-cognitive 

1:  Triggering Event 

2:  Exploration 

3:  Integration 

4:  Resolution 

Given the modifications to the model from experiment one to experiment two, the first 

category, non-cognitive, is more accurately named “non-topical” and the final category, 

resolution, is removed leaving the following values: 

0:  Non-topical 

1:  Triggering Event 

2:  Exploration 

3:  Integration 

For example, Figure 14 compares mean cognitive presence values by topic, history and 

political science.  Here, political science displays a slightly higher mean cognitive 

presence than history.  Upon further inspection, however, Figure 15 shows one political 

science section is responsible for skewing the results of all reported political science 

courses.   In fact, on removing that section from the analysis, history sections slightly 

outperform the political science sections.  A closer inspection of Figure 15 also prompts 
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the instructor or administrator to ask what factors in political science 4 are responsible for 

its improved performance. 

Mean Cognitive Presence Weight by Course 
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Figure 14.  Mean cognitive presence value by course topic. 
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Figure 15. Mean cognitive presence weight by section. 
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Distribution of Messages by Cognitive Presence Category 

This section exemplifies the automatic content analysis tool’s ability to provide 

gradually deeper levels of information about a body of messages.  This section shows the 

distribution of messages by cognitive presence category (non-topical messages, triggering 

events, exploration messages, and integration messages) and across topics and sections. 

Figure 16 shows the distribution of messages by cognitive presence category over 

each topic, history and political science.  Notice that over half of all messages in both 

topics are non-topical messages devoted most likely to technical support and social 

exchanges such as greetings.  This analysis also shows little fluctuation between topics on 

any of the cognitive presence categories.  Interestingly, there are far more integration 

messages than exploration messages meaning that students may be justifying their claims 

more than they are engaging in exploratory activities such as brainstorming.  This 

certainly prompts instructors and administrators to ask whether this is desirable.   

Distribution of Messages by Cognitive Presence 
Category and Topic

0.0%

20.0%

40.0%

60.0%

80.0%

Cognitive Presence Category

History 60.1% 0.2% 6.8% 32.9%

Political Science 54.1% 0.3% 7.1% 38.5%

Non-Topical Triggering Exploration Integration

 

Figure 16. Distribution of messages by cognitive presence category and topic. 
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Figure 17 shows how each cognitive presence category is distributed over each 

section, three sections of history and three sections of political science.  As expected, a 

majority of messages are coded as non-cognitive.  Also notice that in Figure 15, political 

science section 4 showed the highest mean cognitive presence value.  Figure 17 offers an 

explanation: this section had fewer non-topical and more integration messages than any 

other section.  Looking back at Table 10, political science section 4 generated 2,716 

messages, two to three times more messages than any other course possibly because this 

course had 48 students while most of the other courses had between 28 and 32 students.  

Certainly, an array of questions emanates from this combination of variables: “How was 

this instructor able to maintain a high number of integration messages?”  “What 

contributed to the relatively low percentage of non-topical messages?”   
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Distribution of Messages by Cognitive Presence 
Category and Section
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History 2 60.1% 0.3% 7.3% 32.3%
History 3 60.9% 0.2% 6.4% 32.4%
History 4 60.1% 0.3% 7.3% 32.4%
Pol. Sci. 1 61.6% 0.3% 6.9% 31.1%
Pol. Sci. 2 60.5% 0.3% 7.3% 32.0%
Pol. Sci. 4 62.4% 0.4% 6.4% 30.8%
Pol. Sci. 4 46.1% 0.3% 7.4% 46.2%

Non-Topical Triggering Exploration Integration

 

Figure 17.  Distribution of messages by cognitive presence category and section. 

Analyses Based on Course Section Variables 

The value of an automatic content analysis tool is that it categorizes every 

message instead of a sample of messages.  This capability allows fine-grained analyses 

related to a single course.  Three examples, all related to one section of one course, are 
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shown below; the first is an analysis of each student’s performance, and the second two 

describe a specific discussion thread.  Table 18 shows the mean cognitive presence 

weight of each student along with the total number of messages each student contributed 

and the number of messages falling into each cognitive presence category.  This reveals 

that the number of messages is no indicator for a high cognitive presence value.  In fact, 

the student contributing the largest number of messages (FirstName47 LastName47 who 

posted 221 messages) possesses a mid-range cognitive presence value of 1.48.  The range 

goes from a low of 0.00 to a high of 2.21; the highest value a student could possibly 

achieve is a three.  Although a high message count does not predict a high mean 

cognitive presence value, a high mean cognitive presence value can still be achieved by 

making far too few contributions to the class.  In fact, the student with the highest 

cognitive presence value, FirstName 33 LastName 33 with a mean cognitive presence 

value of 2.21, made only 28 contributions to the discussion.  At this early stage, it is too 

soon to tell what should be considered an acceptable number of messages and an 

acceptable cognitive presence weight.  
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Table 18 

Mean Cognitive Presence Values by Student 

Student 

Mean 

Cognitive 

Presence 

Value NT TE EX IN Total

FirstName1 LastName1 1.21 24 1 1 16 42

FirstName2 LastName2 1.21 41 0 4 26 71

FirstName4 LastName4 1.93 48 0 16 86 150

FirstName6 LastName6 1.41 62 0 10 51 123

FirstName7 LastName7 0.00 1 0 0 0 1

FirstName8 LastName8 1.38 57 0 2 48 107

FirstName12 LastName12 0.67 7 0 0 2 9

FirstName13 LastName13 1.65 21 1 1 26 49

FirstName14 LastName14 1.00 3 0 1 1 5

FirstName16 LastName16 1.81 54 0 12 80 146

FirstName17 LastName17 1.68 45 1 11 55 112

FirstName19 LastName19 1.09 7 0 0 4 11

FirstName20 LastName20 1.41 65 0 10 54 129

FirstName22 LastName22 0.83 4 0 1 1 6

FirstName23 LastName23 1.29 7 1 1 5 14

FirstName24 LastName24 1.70 14 0 1 18 33

FirstName26 LastName26 1.00 6 0 0 3 9
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Table 18 (continued) 

Mean Cognitive Presence Values by Student 

Student 

Mean 

Cognitive 

Presence 

Value NT TE EX IN Total

FirstName27 LastName27 1.74 56 0 17 74 147

FirstName28 LastName28 1.31 29 0 4 21 54

FirstName29 LastName29 0.64 10 1 1 2 14

FirstName31 LastName31 0.75 9 0 0 3 12

FirstName32 LastName32 1.61 17 0 2 19 38

FirstName33 LastName33 2.21 7 0 1 20 28

FirstName34 LastName34 1.88 37 1 8 62 108

FirstName35 LastName35 1.28 60 0 8 41 109

FirstName36 LastName36 1.77 12 0 2 17 31

FirstName39 LastName39 1.91 11 0 3 19 33

FirstName40 LastName40 0.00 1 0 0 0 1

FirstName41 LastName41 1.81 28 2 5 43 78

FirstName42 LastName42 1.33 55 0 7 41 103

FirstName44 LastName44 2.00 11 0 6 22 39

FirstName46 LastName46 1.83 53 0 14 81 148

FirstName47 LastName47 1.48 108 0 13 100 221

FirstName48 LastName48 2.00 12 0 0 24 36
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 Aside from analyzing each student’s individual cognitive contributions, we may 

also discern information related to course topics.  Here, course topics may be teased from 

the data in two ways, by time interval, such as a week, or by message thread number.  

First, an instructor may ask students to contribute to a specific topic each week in which 

case each week is associated with a unique topic.  Figure 18 shows the cognitive presence 

values for each topic, assuming that a new topic is introduced each week.  This shows 

that the first week is for general introductions which tend to be non-cognitive and that the 

final week of messages is usually comprised of well-wishing and thanks which would 

also be considered non-cognitive.  In between, however, an instructor may analyze each 

topic for the level of intellectual effort exemplified in student messages.  Figure 18 shows 

that the topic from weeks six and nine carried the greatest effort while that from week 

four carried the least effort.  Further, Figure 19 shows the number of messages 

contributed each week for the same course.  Over 500 messages were generated in the 

first week, yet the mean cognitive presence value was low, further indicating that most 

messages during this time were greetings and introductions.  After week one, the weekly 

message count tapered off to between 200 and 300 messages per week until the final two 

weeks of this summer course.   
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Cognitive Presence by Week
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Figure 18. Mean cognitive presence values by week. 

Number of Messages by Week
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Figure 19. Number of messages by week 

An instructor may also break the discussion of a particular topic into individual 

threads in which case one thread represents one topic.  In this case, the cognitive presence 

of a single discussion is measured allowing the instructor to see which threads generated 

discussion that goes beyond non-cognitive or exploratory comments.  Figure 20 shows 
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that, of the more than 1,000 discussion threads in History 4, thread 619 generated the 

highest mean cognitive presence value, but this does not indicate how many messages are 

in this thread nor the individual cognitive presence weights.  For that, Figure 21 shows 

the cognitive presence distribution for a single message thread, thread 619.  From this, we 

see that there are 17 messages in this thread and that 13 of these messages fell into the 

integration category meaning that the majority of contributions to this topic may be 

substantiated claims.     
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Figure 20.  Mean Cognitive Presence Values by Thread for History 4 
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Cognitive Presence Category Counts for History 
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Figure 21.  Cognitive Presence Category Counts for History 4, Thread 619 

Secondary analyses 

 The above analyses immediately surface as a result of associating cognitive 

presence values with each message; however, the researcher or instructor with statistical 

experience may perform a number of more rigorous statistical analyses in which the 

cognitive presence weight serves as the dependent variable.  Specifically, the instructor 

may perform analyses of variance (ANOVA) or regression analyses among various 

factors.  Some of those factors are (a) instructor, (b) student, (c) message length, (d) 

thread number, (e) week in course, (f) topic (assuming that an instructor presents a topic 

for discussion over a specific period of time), (g) student participation either in length of 

messages or number of messages, and (h) instructor participation. 

Summary 

Overall, this chapter presents the results of the research question: “how well does 

an artificial neural network (ANN) analyze and describe the cognitive effort students 
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exhibit in online educational discussions as compared to humans?”  This question has 

two parts.  The first part hypothesizes, that an artificial neural network (ANN) analyzes 

messages as well as a human.  The second part describes the information expected from 

an ANN content analysis tool.  Compared to humans, the ANN models from both the first 

and second experiment possess lower reliability statistics measured using Cohen’s kappa.  

The ANN model from the second experiment, however, possesses a greater reliability 

value than the mean pairwise kappa values from the human content analysis of the first 

experiment, suggesting that the modifications made during the second experiment 

improved the model’s accuracy.  This chapter answers the second research question by 

demonstrating the analyses an instructor should expect from a automatic content analysis 

tool.  In brief, an instructor should expect a cognitive presence variable showing results 

over time, by topic, section, instructor, student, and thread.  This variable should also 

enable action research through statistical procedures more sophisticated than descriptive 

analyses.

 



 

 

 
 
 
 
 

CHAPTER 5 
 

DISCUSSION AND RECOMMENDATIONS 

This chapter explains the results of the research question, “how well does an 

artificial neural network (ANN) analyze and describe the cognitive effort students exhibit 

in online educational discussions as compared to humans?”  This question has two parts.  

The first part hypothesizes, that an artificial neural network (ANN) analyzes messages as 

well as a human.  The second part describes the information expected from an ANN 

content analysis tool.  Broadly, Chapter 3 describes the methods used to answer the 

research question, Chapter 4 outlines the results, and this chapter offers possible 

explanations for those results.  This set of explanations is followed by the limitations and 

bias of the study beyond those explained in Chapter 3, the study’s major contributions, 

and a road map for future research.  To guide the discussion, the graphic overview of the 

research method is presented again in Figure 22. 

Comparing Artificial Neural Networks to Humans 

The first part of the research question which hypothesizes that an ANN analyzes 

messages as well as a human is addressed by the two iterations of the research method.  

Explanations of the results from the two experiments are presented in the following two 

sections.   
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Figure 22.  Graphic overview of the research methods. 

First Experiment 

In the first experiment, the ANN model and the aggregate of human coders 

describe the cognitive landscape of online discussions approximately as well as the 

lowest-performing coders.  That is, based on reliability statistics, the range of pairwise 

Cohen’s kappa values among human coders (0.504 to 0.747) encompasses the pairwise 

kappa value between the ANN model and the aggregate of human coders (kappa=0.519).  

In this example, the ANN model could be introduced as a seventh coder and emerge with 

pairwise reliability statistics that do not distinguish it as non-human.  However, upon 

looking at the way the ANN model and the group of humans code messages, differences 

emerge making the ANN model look clearly non-human.  The following sections outline 

those differences and offer possible explanations. 
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The Differences Between ANN- and Human-Coded Messages 

Three distinct differences emerge between the way the ANN model codes 

messages and the way the humans code the same messages.  The ANN model is not as 

sensitive to categories with few messages, the ANN model confuses non-cognitive with 

exploration messages, and the ANN model differs in the way it categorizes exploration 

and integration messages.  The first difference between the ANN model and the human 

coders is that the group of human coders may be more sensitive to cognitive presence 

categories with fewer messages.  Table 9 shows that the group of human coders placed 

messages into four of the five cognitive presence categories, but the ANN only placed 

messages into three of the five categories.  Though one coder identified a message as a 

resolution message, the aggregate of human coders placed no messages into the 

resolution category.  The aggregate of human coders identified eight triggering events 

whereas the ANN model placed no messages into the triggering event category.  Instead, 

the ANN model distributed all 100 messages into either the non-cognitive, exploration, or 

integration categories.  This finding indicates that, at this stage, the ANN model may not 

be as sensitive as human coders are to rare messages. 

The second difference between the ANN and the group of human coders is that 

the ANN model confuses non-cognitive and exploration messages.  Table 9 shows that 

the ANN model agrees with the humans on 45 non-cognitive messages, but the ANN 

non-cognitive category held seven human-coded exploration messages.  Further, the 

ANN exploration category held five human-coded non-cognitive messages.  Though the 

ANN and humans agree on the vast majority of non-cognitive messages, the ANN non-

cognitive category remains partially entangled in the exploration decision space. 
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The third major difference between the way humans code messages and the way 

the ANN model codes is found in the way the two code exploration and integration 

messages.  As for exploration messages, Table 9 shows that the ANN model places 

human-coded exploration messages into both the non-cognitive and integration 

categories, ultimately disagreeing with the human coders on 12 of 31 human-coded 

exploration messages.  Further, the ANN exploration category contains 11 messages that 

humans do not consider being exploration messages.  This exemplifies the most common 

coder complaint during training that the line separating exploration and integration is not 

clear.  Further, the ANN model and the humans disagree on some integration messages.  

The ANN model missed three of the 10 human-coded integration messages and placed 

them, instead, into the non-cognitive and exploration categories.  Inversely, the ANN 

integration category contains one human-coded non-cognitive message and five human-

coded exploration messages.   

Overall, this reveals differences between the ANN and the aggregate of human 

coders, but this does not show that the ANN errors are different than the errors among 

humans.  The next section, “Renegade Coding,” analyzes those types of errors. 

Renegade Coding 

 To more deeply understand the differences between the human and ANN coding 

decisions, renegade coding patterns may be analyzed.  Renegade coding occurs when one 

coder (human or ANN) makes a coding decision unlike any other human coder.   

 Among the 100 reliability messages comparing the ANN model to the human 

coders, there are twelve instances in which the ANN model disagrees with every human 

coder.  For example, in the message below, four coders rated this message an integration 
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message, two coders rated it as an exploration message, yet the ANN rated it as non-

cognitive. 

What a sad state of affairs you must bear witness to my brother.  You must 
continue in your efforts to circumspent [sic] these horrific acts against the 
Natives and thus against our Holy Father's way.  In your efforts you must 
always remember that you do the most divine of works and try to take 
comfort in the fact that there are brothers trying to do the same.  Hopefully 
the Spaniards of which you speek [sic] will come to the Lord and see the 
evilness they have wrought and repent.  I feverently [sic] pray this will 
come to pass in the name of all that is good. Humbly, FirstName25 
LastName25 
 

This message exemplifies the role playing many of the instructors in this study asked of 

their students.  Students adopted the persona of a historical figure and posted messages in 

character.  One by-product of this is that the students also adopted the manner of 

speaking of their character.  This by-product may throw off an algorithm designed to 

code messages based on lexical cues.  In this example, that may have been the case.  The 

coders all rated it as either an exploration or integration message while the ANN model 

placed it in the non-cognitive category. 

 Interestingly, though there are 12 instances in which the ANN model coded unlike 

any single coder, there are 20 instances total in which one coder rated a message unlike 

any other coder.  Table 19 outlines the instances of renegade coding.  It shows that the 

ANN coded more messages unlike any human coder, but that human coders were also 

fallible.  
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Table 19 

Renegade Coding for Experiment One 

Coder Instances of 

Renegade Coding 

Comparison 

ANN 12 Compared to the six human coders 

A 6 Compared to the other five human coders 

B 4 Compared to the other five human coders 

C 3 Compared to the other five human coders 

D 2 Compared to the other five human coders 

E 1 Compared to the other five human coders 

F 4 Compared to the other five human coders 

Note.  The ANN codes unlike any human coder more often than the human coders, but 

the human coders also exhibit independence. 

Though 12 instances of renegade coding distinguish the ANN model from the set of 

human coders, a few instances of renegade coding are certainly within the realm of 

human expectation. 

Further, there are three instances in which there is uniform agreement among all 

human coders yet disagreement between the ANN model and the human coders.  In the 

message below, every human coder rated this message as a triggering event, yet the ANN 

model placed it in the non-cognitive category:  “You have noted how government affects 

your lives.  How do you account for the 50% of Americans over the age of 18 who don't 

vote?  Why do people not vote?”  This shows that the model is not picking up on the very 

distinct triggering event cues.  This message is clearly a question designed to evoke a 
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response.  At this stage, there may be too few training messages for the ANN model to 

distinguish it from other messages. 

The following message is the second example of uniform agreement among the 

human coders but disagreement between the aggregate of human coders and the ANN 

model.  Each human coder called it an integration message, yet the ANN model coded it 

as an exploration message.     

In his statement "our detached and distant situation enables us to pursue a 
different course", Washington was saying since we are not apart [sic] of 
and we are so far from the other nations we should be able to keep our 
affairs separate.  Being separated by to [sic] vast bodies of water the 
Atlantic and the Pacific oceans made is [sic] a lot easier to [sic] we are a 
world unto ourselves, what goes on here stays here and what goes on there 
stays there.    
 

One distinguishing feature of an integration message is that it refers to another source, 

and this message clearly does.  Three linguistic cues show that the author of this message 

is invoking an outside source, yet the ANN model is not sensitive enough to pick up on 

the combination of quotation marks and reference phrases like “In his statement” and 

“was saying.” Again, this may be explained by the fact that there simply were not enough 

examples or that competing noise in the message made it appear exploratory.   

Explanation of the Differences Between ANN- and Human-Coded Messages 

Broadly, the first experiment shows that the ANN model codes messages within 

the range of human pairwise kappa values.  However, three errors make it appear non-

human.  It identifies no triggering events, it confuses non-cognitive and exploration 

messages, and it confuses exploration and integration messages.  By looking at the 

instances of human renegade coding, some error is to be expected from a model built 

from human decisions. 
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 Numerous potential reasons may explain why the ANN model describes the 

cognitive landscape of discussion list messages differently than a group of humans.  The 

most obvious of these is that the ANN model is not human.  It may be too much to expect 

that software trained on a few hundred messages will make decisions identical to a group 

of humans with a biological neural networks constructed from a lifetime of experience.  

Most other reasons for the differences emanate from the single reason that the 

information used to train the ANN model forces it to make decisions distinctly different 

than humans.  The discussion below explains why the information used to train the ANN 

model created a model unlike the lineup of human coders.  The graphic overview of the 

research methods shown in Figure 22 provides the causal structure leading up to an ANN 

model reliable at kappa = 0.519 to a group of human coders.  That causal structure is as 

follows:  The ANN model is built from a set of training messages with a less-than-

desirable inter-rater reliability; the less-than-desirable inter-rater reliability of the training 

set was produced by human coding decisions; the human coding decisions are a product 

of coder training; the quality of coder training is affected by the coding rubric.  If error is 

introduced to any link in this causal chain, the entire ANN model is potentially 

weakened.  The discussion below follows the causal chain from the rubric to coder 

training to the human coding decisions to the less-than-ideal set of messages used to train 

the ANN model.   

To begin, the rubric may have failed to adequately guide coder decisions in two 

obvious ways.  First, many coders complained that they had trouble understanding the 

difference between exploration and integration messages indicating that the guidelines 

and examples were not adequate.  It may also indicate that the constructs themselves, 
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exploration and integration, may not be clearly distinct from one another.  Garrison, 

Anderson, and Archer’s (2001) rubric mentions that disagreement or divergence falls 

within the exploration category while agreement or convergence falls within the 

integration category (p. 10-11).  Message 307 in Figure 7 disagrees with the message to 

which it replies but offers justification:   

I don't feel as though he were exaggerating at all. The Aztec civilization 
was trly [sic] flourishing in the 16th century. Just because they did not 
have a religion like that of the European explorers, did not mean that they 
were a backward people. Prior to the Aztecs, the Mayan people had 
calendars much more accurate than those in use by Spain, England, 
Portugal, and others. Their architecture was a sight to behold and it still 
exists to this day on the Yucatan peninsular [sic]. 
 

The coders were unsure whether a message like this should be an exploration message 

because it shows disagreement or whether it should be an integration message because it 

presents a justified claim.   

Second, coders had difficulty correctly coding triggering events that were 

intentionally initiated by the instructor.  The following example is from one of the history 

courses: 

I would like you focus on the following ideas.  How accurate do you think 
Cortes' account is?  How much of it do you think was inflated, or reflected 
ideas that he might not have actually had first hand experience with?  Why 
do you think Cortes wrote this letter? Do you find any elements in it that 
could be construed as self-serving?  What about this account surprised 
you? Remember that for evaluation purposes, you need to make at least 
two substantive posts to this discussion. That means that messages such as 
"I agree with so and so.." are not sufficient.  You should provide ideas that 
contribute to the discussion, and respond to others' ideas by addressing 
those ideas directly, and providing insight, analysis, etc. 
 

In some instances, a message like this was coded under the non-cognitive subcategory 

called “Unrelated/Course Management.”  This may be due to the lack of a triggering 

event subcategory that is consistent with an instructor-initiated triggering event.  Current 
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subcategories under triggering event are “Sense of Puzzlement” and “Recognizes 

Problem,” subcategories that are inconsistent with an intentional, instructor initiated, 

triggering event.  Clearly, the instructor was not puzzled, nor was the instructor 

recognizing a problem.  This issue is easily corrected by adding a new triggering event 

subcategory for instructor-initiated triggering events.  These two issues with the rubric 

could cause the coders to define certain messages for themselves without using the rubric 

as a guide, a process that might bleed into other coding decisions.  That coder uncertainty 

is translated into ANN uncertainty.   

During coder training, a number of issues may partially explain the difference 

between the human and ANN performance.  That is, coder training may not have 

prepared coders to code messages exactly alike.  First, the coders in experiment one may 

not have coded enough messages during training.  Most coders were trained on 90 

messages.  During training, coders were asked to code 30 messages during each training 

session and reliability scores were calculated after each session.  In hindsight, this low 

number of messages inflated the reliability scores during the third training session falsely 

indicating that training could cease.  The mean pairwise reliability of the third and final 

training session was 0.7, much higher than the reliability achieved during coding, 0.608.  

Ending training early may have meant that the coders were not unified in their decision-

making.  Further, the threshold for ending coder training was a mean pairwise Cohen’s 

kappa reliability score among coders of 0.70 which may have been too low.  Aside from 

ending training too early, coder training for experiment one may not have been rigorous 

enough.  Coders were trained at a distance usually via teleconference and were not asked 

to justify their responses before a group of peer coders.  This strategy did not ensure 
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similar coding and may have created multiple, conflicting decision strategies among 

coders.   

Finally, the sample of messages provided to coders, both during training and 

during coding, provided no context for messages.  The systematic, random sampling 

technique plucked single messages from their context and prevented coders from 

discerning the conversation topic by knowing the body of messages surrounding the ones 

they were reading.  This meant that some exploration messages may have been coded as 

non-cognitive because the coder could not discern the topic.  Again, this creates 

competing, noisy decision logic for the ANN. 

Another explanation for the discrepancies between human and ANN coding is 

that the message set used to train the ANN included too many conflicting examples.  

Though Garson (1998) states that artificial neural networks are robust under conditions in 

which the input data are “noisy, nonlinear, and with missing measurements,” (p. 162) 

there is a threshold at which the ANN cannot compensate for poor training cases.  

Specifically, difficult-to-code messages were not eliminated, two conflicting coding 

strategies were fed into the ANN, and the ANN model may need more examples of rare 

messages than were provided.  First, Chi (1997) describes a coding discrepancy in which 

coders are unsure which code to assign to a coding unit, the message in this case.  Chi’s 

recommendation is that those difficult-to-code items be removed from the final results.  

Removing the messages that the coders found difficult ensures that the ANN is trained on 

a more consistent and less noisy set of messages and may also correct some of the error 

of the rubric.  Second, inspecting the pairwise kappa values for each coder shows two 

potentially conflicting coding strategies.  Table 8 shows the kappa values among the six 
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human coders.  From this, two high-reliability groups of coders emerge.  One group, 

comprised of coders B, C, and D show reliability greater than the group mean (kappa = 

0.6).  The mean kappa value of these three coders (B and C = 0.742; B and D = 0.682; 

and C and D = 0.714) is 0.713.  The second group, coders A and F, also shows pairwise 

reliability (A and F = 0.68) above the group mean.  Further, the mean pairwise reliability 

between these two groups of coders (kappa = 0.55) is below the mean pairwise reliability 

for the entire group of coders.  These kappa reliability values indicate two distinct groups 

of coders.  Since the ANN model is constructed from the coding logic of the human 

coders, the ANN model may have been constructed from two competing decision 

strategies.  Finally, there simply may not be enough triggering event and resolution 

messages to adequately train the ANN.  To adequately categorize messages, the ANN 

may need a larger set of rare messages than it was provided.  Ultimately, the set of 

messages used to train the ANN may have possessed competing decision logic for some 

cognitive presence categories and too little decision logic for other categories. 

The causal structure described above linking the rubric to the creation of a less-

than-ideal training set of messages describes where error may occur within the human 

content analysis.  Figure 22 shows that yet another explanation for the difference between 

ANN and human message categorization may lie within the automatic content analysis.  

Specifically, the strategy used to describe each message before it is sent to the ANN may 

introduce error.  Recall from Chapter 3 that messages are translated into an array of 

numbers, and each number describes a specific quality of that message.  Those qualities 

are defined by two dictionaries, the General Inquirer and a self-defined dictionary of 

qualities developed for this study to help discriminate one cognitive presence category 
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from another.  That is, each quality description should provide enough numeric 

information to the ANN that it can distinguish, for example, a non-cognitive message 

from a triggering event.  It may be that the numeric description of each message does not 

contain the full set of message qualities needed to adequately categorize messages.      

Overall, Figure 22 shows four areas where error may be introduced ultimately 

creating a less-than-ideal training set used for constructing the ANN model.  The three 

areas related to the human content analysis (the rubric, coder training, and message 

categorization) are addressed during the second experiment, and those changes are 

described in the section of Chapter 4 entitled “Modifications to the Human Content 

Analysis.”  An explanation of the impact of those modifications is described in the 

section below.  

Second Experiment 

For the second experiment, changes were made to reduce the error in the human 

content analysis section of the model.  Figure 22 shows three areas in the human content 

analysis portion of the diagram where error may occur, and a description of the changes 

made to the rubric, coder training, and message categorization is presented in the section 

of Chapter 4 entitled “Modifications to the Human Content Analysis.”   

In the second experiment, the ANN model performs less well than all the coders 

but better than the model from the first experiment.  The range of pairwise kappa values 

among the four human coders extends from coder B's low of 0.816 to coder D's high of 

0.879.  This displays a narrower range than the first experiment.  For the first experiment, 

the range in pairwise kappa values is 0.243, and the range for the second experiment is 

0.063.  The reliability between the aggregate of human coders and the ANN model is 

 



 133

0.704.  This reliability value is below the range of human coders for the second 

experiment but is higher than the value from the first experiment (kappa = 0.519).  If the 

ANN model were introduced as the fifth coder, a person could most likely distinguish it 

from the lineup of human coders based on kappa values alone.  Further comparison of the 

errors the ANN model makes versus the errors the human coders make reveals deeper 

distinctions between the two and an outline of areas to address in future research.   

The Differences Between ANN- and Human-Coded Messages 

Two major differences emerge between the way the ANN model codes messages 

and the way the humans code the same messages.  The ANN model confuses non-topical 

messages with exploration messages and does not perfectly discriminate between 

exploration and integration messages.   

Like the model from the first experiment, the second ANN model also confuses 

non-topical and exploration messages.  Table 12 shows that the ANN model agrees with 

the aggregate of human coders on 37 non-topical messages, but the ANN model 

consumed ten human-coded exploration messages.  However, the ANN exploration 

category did not falsely code any human-coded messages.  This suggests that the ANN 

non-topical category overgeneralizes while the ANN exploration category 

undergeneralizes.   

Also like the model from the first experiment, the second ANN model confuses 

exploration and integration messages.  Table 12 shows that the ANN model agrees with 

the human coders on 36 integration messages, but the ANN model's integration category 

also picked up five human-coded exploration messages.  Like the errors mentioned in the 
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previous paragraph, the ANN integration category overgeneralizes while the ANN 

exploration category undergeneralizes.   

Overall, the model from the second experiment shows improvements over the first 

experiment's model in that it possesses higher reliability and it codes messages into all 

coding categories.  However, the second experiment ANN continues to have non-

topical/exploration and exploration/integration errors.   

Renegade Coding 

 As in the first experiment, an analysis of renegade coding patterns offers a clearer 

picture of the differences between the human and ANN coding decisions.  Recall that 

renegade coding occurs when one coder (human or ANN) makes a coding decision unlike 

any other human coder.  A closer look at the 100 reliability messages coded by all four 

coders and the ANN model reveals a potential source for the confusion between the non-

topical and exploration messages.   The ANN codes unlike any human coder more often 

than the human coders, but the human coders also exhibit independence. 
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Table 20 

Renegade Coding for Experiment Two 

Coder Instances of 

Renegade Coding 

Comparison 

ANN 11 Compared to the four human coders 

A 3 Compared to the other three human coders 

B 6 Compared to the other three human coders 

C 3 Compared to the other three human coders 

D 0 Compared to the other three human coders 

Note.  The ANN model codes unlike any single human coder more often than any single 

human coder codes unlike any other coder. 

Table 20 shows that the ANN model missed 11 messages in which there was 

uniform agreement among the human coders.  Seven of those errors are instances in 

which all human coders rated the message as an exploration message, but the ANN 

model coded it as non-topical.  Similarly, looking at the instances of renegade coding 

among the human coders, Coder B had six errors in which that coder differed from the 

uniform coding of all the other coders.  Of those six disagreements, four were 

exploration/non-topical errors.  All other human coders rated the messages as 

exploration, but Coder B rated them as non-topical.  Coder B differed from the other 

coders in the same way that the ANN model differed from the human coders.  To further 

confuse the ANN model, one of Coder A’s errors was identical to Coder B’s described 

above, and two of coder C’s errors were exactly opposite.  While the other coders 

uniformly rated a message as non-topical, Coder C rated it as exploration.  Overall, seven 
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of the 12 human renegade coding errors were non-topical/exploration errors.  Since the 

ANN model is constructed from messages the humans coded, there is reason to believe 

that error in the ANN model emanates from disagreements among the human coders.   

Interestingly, analyzing accounts of human renegade coding shows the other 

primary error found in the ANN model, exploration/integration errors.  While seven of 

the 12 human renegade coding errors were non-topical/exploration errors, the remaining 

five were exploration/integration errors.  Three of those are instances in which one 

human coder rated a message as exploration while the remaining coders rated it as 

integration.  The remaining two errors are the opposite; one coder rated the message as 

integration that the others considered to be exploration.  Again, confusion in the ANN 

model’s training set will most likely manifest itself as confusion in the ANN model. 

Explanation of the Differences Between ANN- and Human-Coded Messages 

Looking at Figure 22, there are three areas where the human content analysis may 

introduce error: the rubric, coder training, and message coding.  Since the 12 human 

renegade coding errors are the same type as the ANN renegade coding errors, it would 

appear that coder error has indeed been translated into ANN error.  The similarity in 

coding error also suggests that there is error in those areas each coder shares.  Of the 

variables this study controls, each coder shares the same rubric and in the second 

experiment the same training experience.  First, the rubric may cause coders not to code 

uniformly.  This divergence from uniformity exists in Coder B's non-topical/exploration 

errors.  Since Coder B made errors unlike other coders in 6 of 100 cases, it would appear 

that coders A, C, and D applied the rubric more systematically than coder B.  The error 

then lies in either the coder training or the message coding.  It could be that during coder 
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training, Coder B required more coaching on non-topical/exploration errors.  It may also 

be that the Coder B did not apply the rubric as stringently as the others during coding.  

During training, the coders often mentioned that upon looking at the message a second 

time, they can see that they made a mistake, but could not explain it.  The coders would 

say of these errors, "Yes, I just made a mistake in coding.  It's clear that that message is 

not what I coded it as."  Indeed, the human content analysis introduces error into the 

ANN model indicating that further improvements can be made to the rubric and coder 

training; however, little can be done to correct obvious human error. 

As in the first experiment, another explanation for the difference between ANN 

and human message categorization may lie within the automatic content analysis.  The 

explanation of errors for the first experiment suggests that translating messages into an 

array of numbers may introduce error.  This is one area that was not modified between 

the two experiments which means that any error this caused in the first experiment would 

also appear in the second experiment.  Certainly, one area that the numeric description of 

messages must address is identifying parts of speech.  The current, numeric description 

does not identify parts of speech which means that messages with words like “account” 

contain all meanings of the word including a record of events, a list of financial 

transactions, and to allow for as in “take into account.”  This is an important, technically 

possible, yet labor-intensive task requiring the technical capability to accurately identify 

the part of speech of each word in every message. 

 Overall, though the ANN model from the second experiment performs better than 

the one from the first experiment, the gap between the kappa values of the human coders 

and ANN model is larger for the second experiment than the first.  By looking at the 
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errors in the second experiment, the ANN model makes roughly the same errors that the 

set of human coders makes, it just makes more of them.  This suggests that future 

improvements should be made to the automatic content analysis portion of the model, to 

improving the numeric description of messages and improving the self-defined dictionary 

so that it better discriminates among cognitive presence categories.  

Explaining the Shift in Exploration and Integration Decision Space Between Experiments 

Looking at the Garrison, Anderson, and Archer (2001) study,  the pilot study 

mentioned in Chapter Three, and the first experiment, messages are distributed 

approximately the same.  About half of the messages are non-Cognitive or non-topical, a 

little under 10% are triggering events, about 25% to 30% of the messages are exploration 

messages, about 10% are integration and between 0% and 4% of the messages are 

resolution messages.  The second experiment, however, distributes exploration and 

integration messages differently.  Looking at the 100 messages coded to measure 

reliability among coders (see Table 12), the aggregate of human coders codes 22% as 

exploration messages and 36% as integration.  This shows a shift in the exploration and 

integration decision space in which exploration has shrunk while integration has grown.  

This section seeks to explain that shift in decision-making. 

Since the shift is noticed in the human coding, studying the human content 

analysis will reveal the most likely causes of the shift.  Looking again at the human 

content analysis portion of Figure 22, there are three areas within the human content 

analysis to study: the rubric, coder training, and message coding.  Intentional changes in 

the rubric most likely account for the greatest shift in decision space.  The rubric used 

from the first experiment (see Appendix A) was offered from Garrison, Anderson, and 
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Archer (2001) and modified to fit this context.  A closer look at the subcategories used to 

describe exploration and integration from that rubric offer a source of coder confusion.  

Specifically, coders expressed confusion over the “divergence within” and “divergence 

among” subcategories of the exploration category and over the “convergence within” and 

“convergence among” subcategories of the integration category.  Coders were told that a 

major difference between exploration and integration was justification.  In general, a 

message is an exploration message if it offers no substantiation and an integration 

message if it offers some substantiation.  The coders became confused over poor or 

illogical substantiation claiming that the rubric was unclear on messages in which the 

student was clearly justifying a claim but doing so poorly.  The “divergence within” and 

“divergence among” subcategories forced them away from looking at substantiation to 

looking at arguments that showed disagreement or multiple conflicting ideas.  This may 

have brought about miscoding true integration messages into the exploration category 

because a well-justified argument disagreed with a previous message and was therefore 

coded as an exploration message.  Further the “convergence among” and “convergence 

within” subcategories within the integration category may compete with the justification 

this category requires.  A message showing agreement or merging of ideas may not 

display justification of a claim.  Figure 23 show the competing decision logic within the 

exploration and integration categories.  Either a coder makes decisions along the x or y 

axis, but not both. 
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Divergence Convergence 

No Justification 

Justification 

Figure 23.  Decision logic within exploration and integration categories. 

For the second experiment, intentional modifications were made to the 

exploration and integration categories focusing on justification over divergence or 

convergence.  This modification has possibly reduced the confusion between the 

categories, has generated a greater reliability among human coders, and has produced an 

ANN model with a reliability statistic which agrees with human coders 0.108 greater than 

the model from the first experiment.  However, this modification may mean that 

cognitive presence cannot be measured accurately with one rubric.  It may be that 

cognitive presence is best measured with one rubric focusing on justification and another 

focusing convergence/divergence.  This study does not seek to validate the constructs 

underlying cognitive presence, but to clarify the existing constructs in order to improve 

the reliability between a group of human coders and an artificial neural network.  That 

clarification could not happen without choosing either substantiation over 

convergence/divergence or vice versa.  Perhaps it is better to say that the cognitive 

presence model used in the second experiment is the substantiation variant of the 

cognitive presence model.  As such, this variant may reveal more integration messages. 
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Another explanation could be the message set itself.  Many instructors from the 

second experiment required their students to engage in role-play activities.  These 

activities require students to adopt the persona of a historical figure and to post messages 

in character.  Such messages fit most cleanly into the “interpretation” and “synthesis” 

subcategories of the integration category of the second experiment rubric.  Clearly, 

adopting the persona of a historical figure requires students to interpret a character’s 

experience, an act often requiring the integration of ideas.  Here, the reason for more 

integration messages may simply be that the instructional strategy used in these courses 

may lend itself to a greater number of integration messages than those from the previous 

studies.   

Question Two: Sample ANN Analyses 

This work lays the groundwork for an inexpensive, rapid, frequent, and objective 

measure of expressed critical thinking.  The second part of the research question 

describes the information expected from an ANN content analysis tool.  Chapter 4 

displays the type of reports instructors and administrators may expect from an automatic 

content analysis tool applied to online discussions.  The broad implication of such reports 

is that it offers objective evidence that an instructor may use to modify instruction and 

that it may be used as an action research tool promoting more specific questions about the 

quality and use of online discussions. 

Moreover, with a nationwide focus on accountability among K-12 public schools, 

school leaders are demanding this type of measure, one that allows them to gauge the 

progress of their students between state tests.  State tests, often offered only once a year, 

are often not reported until many months and in some cases almost a year after they are 
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administered, yet these tests are used to determine whether some schools receive federal 

funding.  Where such accountability measures have been in place, especially in Texas, 

district-level school leaders say that frequent monitoring is critical (Skrla, Scheurich, & 

Johnson, 2000; Massell, 2000).  Though the automatic content analysis tool has not been 

analyzed to predict success on state tests nor has it been used with secondary students, 

researchers and education leaders may adapt the method applied in this research.  That is, 

this work outlines how to use an artificial neural network to build a tool that objectively 

measures one aspect of student learning.  Researchers may verify the reliability of such 

tools by comparing cognitive presence values to standardized test performance to 

determine how well such tools predict success on state measures.  Though much work 

would have to be done, it is certainly feasible to develop a battery of predictive and 

reliable tools that allow teachers to monitor their students’ performance on what has 

previously gone unmeasured and ultimately to adjust their own approach.  Skrla, 

Scheurich, & Johnson (2000) refer to this latter aspect, using data to inform and alter 

what happens in the classroom, as a critical step to improving student achievement. 

Limitations and Bias 

At the end of Chapter 3, the limitations and bias of the methods is presented.  The 

same methodological limitations and biases apply, and this section outlines additional 

limitations and biases revealed during the study.   

One area of concern emerged during the comparison of ANN models from the 

first and second experiments.  That is, the categories which operationalize cognitive 

presence may not perfectly define cognitive presence.  Most notably, Figure 23 reveals 

that the rubric forces coders to decide along two competing axes, justification and 
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convergence/divergence.  Certainly, more work is needed to validate the cognitive 

presence coding categories. 

Other limitations and biases emerge in the comparison of models.  One model is 

not equal to another of different parameters, so any comparison is forced.  The most 

notable differences among the full, topic, and section models are that they are constructed 

from different message sizes.  The full model is built from the most messages while the 

other models are built with considerably fewer messages.  As a rule, models built from 

more cases should outperform those constructed from fewer cases provided the decision 

logic is similar.  Therefore, the full model should outperform the other models.  However, 

the decision logic among the cases that built each model may not be similar.  Topic and 

section models most likely contain more homogenous messages, while the full model 

most likely contains more heterogenous messages.  In both experiments, section models 

are rated by one coder which means that the accuracy of the model depends upon the 

consistency of the coder.  Consistency of language used within the course may also be a 

factor.   Without the ability to hold these variables, message number and homogeneity, 

constant, a better comparison is not possible. 

 For the spelling analysis, bias is controlled by using an external mechanism, 

Microsoft Word©, to define a spelling error.  This reduces human bias, but introduces the 

bias of the software in making misspelling decisions.  Second, a more thorough analysis 

may be performed by employing the time-consuming, though accurate, task of correcting 

every message from an entire course, constructing an ANN model from the completely 

corrected set, and then analyzing the coding decisions of each model.  Given the 

resources required, this effort is not feasible.  The spelling analysis does, however, point 
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to one broad bias.  Messages filled with errors may not be coded as highly as those 

without errors.  Coders may carry the false assumption that an integration message is 

inherently better than an exploration message and may code error-filled messages into 

what they perceive to be a lower category.  Appropriate training can correct for this bias, 

but it must be done deliberately. 

Additionally, student cognitive presence within on-line messages is dependent 

upon a number of factors such as verbal ability, comfort with technology, comfort with 

communicating to a group of unknown course participants, and undistracted time to 

devote to the course.  In private correspondence, Terry Anderson (2002) mentions that in 

the original Garrison, Anderson, and Archer work (2000, 2001) little attention is devoted 

to validity.  It may be that both a human and an automatic content analysis of cognitive 

presence does not measure pure cognitive presence.  Factors, such as those mentioned 

above, may be inextricably tied to cognitive presence meaning that future research may 

seek to understand the degree to which other factors confound the cognitive presence 

measure.  Also, the scope of this study is to analyze the cognitive effort displayed 

through on-line messages within on-line courses.  Other aspects of the course such as 

quizzes, exams, telephone conferences, face-to-face meetings and written assignments, 

contain indicators of cognitive effort which lie outside that scope.   

Potential users of automatic content analysis tools to measure cognitive presence 

are cautioned against using the tool as either a measure of individual student performance 

or cognitive ability.  Instead, this tool should be used to evaluate the structure and 

delivery of the course as well as the instructor’s teaching approach.  
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Major Contributions of this Study 

 This study makes three major contributions to the research literature.  It 

demonstrates a method for transferring a human decision-making process to a 

computational decision-making process; it demonstrates that a computer model may 

categorize student-generated text with near-human accuracy; and it sets expectations 

instructors should demand from a content analysis of online discussion list messages.  

This study adds to the body of knowledge by showing that an artificial neural 

network may be used to perform a task traditionally reserved for humans alone.  This 

study is an example of transferring some of the cognitive load of educational evaluations 

to a computer.  This work provides a road map for developing an artificial content 

analysis tool to measure the other dimensions within Garrison, Anderson, and Archer’s 

(2000) model, namely social presence and teaching presence.  Looking beyond Garrison, 

Anderson, and Archer’s (2000) model, this approach may be applied to other areas of 

educational decision-making.  Wherever human evaluations are made, we may also ask 

whether the process of making those decisions may be captured and performed using a 

computational model.  The major contribution, in this case, is that this work expands 

what we typically expect computers to do. 

This study also adds to the body of knowledge in the research literature by 

demonstrating a method of computationally evaluating student-generated text.  Scant 

education literature is devoted to using computers to analyze text, and to date, even less 

of that literature is devoted to analyzing text with the goal of improving instruction.  Most 

computational text-analysis literature is devoted to grading students (see Burstein, Marcu, 

Andreyev, & Chodorow, 2001; Hearst, 2000). 
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Finally, this study adds to the body of knowledge by demonstrating the 

information instructors should reasonably expect from a content analysis whether that 

content analysis is conducted by humans or by using artificial intelligence.  Specifically, 

it sets the quantitative expectation that all units of analysis, in this case all messages, can 

be measured instead of a sample.  This expectation allows for a much deeper analysis of 

the subgroups within the message set.  For example, it allows for analyses by instructor, 

by course topic, by weekly topics within a course, and by student.  This work sets the 

expectation that performing a content analysis should not be an end in itself but should 

provide a variable enabling further, deeper analysis. 

 
Suggestions for Future Research 

Figure 24 shows an outline of the research efforts that would take this work from 

its current state to widespread adoption among educators.  From its current state, there are 

three research options, tracks one to three.   
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Automatic Content Analysis Research Outline 

Current State: We currently have a tool that measures discussion list messages in 
history and political science for lower and higher order thinking almost as well as a 
group of humans. 

Track 1: The current tool only 
distinguishes between lower and higher 
order thinking along Bloom’s taxonomy.   
Build/adapt a rubric that allows humans 
to categorize messages into all six levels 
of Bloom’s taxonomy.  

Track 2: 
Build a web-
based pilot.  
Allow 
teachers to 
submit 
messages and 
receive an 
analysis of 
their 
messages.   

Track 3: 
Improve the 
tool.  Make 
computational 
changes to the 
ANN model to 
make the tool 
more accurate. 

 
Using the above rubric, conduct a 
content analysis using human coders.  
 
Using the above content analysis, build a 
tool that categorizes messages into all 
six levels of Bloom’s taxonomy.  

Build training capability.  Allow users to train the software.  

Determine needs for widespread use.  Can we release one model for use in both 
humanities and sciences?  Should we have separate models for each?  Should we 
have separate topic models? 

Construct recommended models.  

Release as a software application for widespread use among educators.  Advertise 
and promote its use.  

Provide ongoing support and updates.  

This provides a tool for measuring cognitive effort.  Repeat the process to measure 
social and teaching presence.  

Figure 24.  Automatic content analysis research outline. 
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The first track requires expanding the coding categories of the current tool.  

Currently, messages are coded into four categories (non-topical, triggering event, 

exploration, and integration).  The last two, exploration and integration are broadly 

considered to encompass lower- and higher-order thinking respectively along Bloom’s 

taxonomy (Bloom & Krathwohl, 1956).  There are six levels to Blooms taxonomy: 

Knowledge, Comprehension, Application, Analysis, Synthesis, and Evaluation.  

Exploration messages, therefore, include behaviors such as recognizing recalling 

information, whereas integration messages require behaviors such as inferring, planning, 

and appraising (see Domin, 1999, p. 109).  Caution should be taken when expanding the 

number of coding categories for content analysis research.  More categories will require 

improving the coder training to ensure that coders place messages into the correct 

category, and more coding categories may also result in poorer reliability.  One possible 

direction would be for coders to code messages in two passes.  In the first pass, the 

coders place messages into the four categories described in this research study (non-

topical, triggering event, exploration, and integration).  In the second pass, the coders 

look specifically at messages in the exploration and integration categories.  All 

exploration messages are coded into Bloom’s lower order categories, and all integration 

messages are coded into Bloom’s higher order categories.  The same two-pass strategy 

may also be used when building the artificial neural network (ANN) models.  One model 

may code broadly into the current four categories while two subsequent models code only 

exploration and integration messages.   

The second track requires releasing the automatic content analysis tool for 

instructor use.  Studying how instructors use it and structuring feedback from instructors 
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on the usefulness of this tool provides a list of needs for improving the usability of the 

tool.  This answers such questions as: “How easy is it for instructors to submit messages 

for analysis?”  “How long does it take to provide feedback?”  “Is this lag-time 

acceptable?”  “Do instructors use the feedback?”  “How do instructors use the feedback?”  

“What changes have instructors made to their delivery of instruction?”  “Have these 

changes resulted in improvement in student learning?” 

The third track involves improving the artificial neural network (ANN) model to 

make the tool more accurate.  Results from the second experiment show that human 

coders have a reliability of kappa = 0.848 whereas the artificial content analysis tool is 

about has a reliability of kappa = 0.704..  This indicates a reliability gap of approximately 

0.15 meaning that humans will categorize messages with 15% more accuracy than the 

current ANN.  Improving the model would mean reducing this 15% gap between the 

human coders and the automatic content analysis tool.  This effort requires expertise in 

artificial neural networks and computational linguistics. 

The three research tracks all feed into a final set of research and development 

areas including building training capability, determining needs for widespread use, 

developing recommended models, releasing and supporting the software, and reiterating 

all the steps to build social and teaching presence models.  Of these, the first two and the 

last one require research efforts.   

To disseminate an automatic content analysis tool among instructors, we must 

first determine whether users should be given the ability to train the tool to accurately 

categorize messages unique to each instructor’s setting.  We may look to other tools 

using artificial neural network (ANN) technology for guidance.  Most notably, ANNs are 
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used in speech and handwriting recognition software.  Most speech and handwriting 

recognition software may be used both with and without training.  The mode not 

requiring training allows nearly any person to use the software, but the recognition is not 

as accurate as models trained to a specific user.  Just as a person would train speech and 

handwriting recognition to recognize their own personal voice or handwriting style, so 

instructors may also train ANNs to categorize messages unique to their own instructional 

context.  We do not know for certain that one model is generalizable across multiple 

topics, though one model has been constructed from both history and political science 

courses.  We do not know, for example, that a model built from messages in which an 

instructor predominantly uses one strategy (e.g. role play) will most correctly categorize 

messages from a course in which an instructor uses another strategy.  Therefore, future 

iterations of discussion list analysis tools may consider allowing instructors to train the 

model to their own specific context.  A base model may be provided and the instructor 

may simply submit sample messages from his/her course which exemplify cognitive 

presence categories.  The instructor tweaks the model to his/her own course.   

With networked computers as the norm in educational institutions, trained models 

may be created not only at the instructor level but at the department or university level.  

This means that a group of instructors may train a single model that most closely matches 

departmental instructional strategies.  This means that more instructors may submit more 

messages to train the model which improves the model’s accuracy.  We may have already 

reached the threshold in the accuracy of non-trained models.  Adaptive models allowing 

for user-training may be the only way to improve the accuracy of categorizing messages. 
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Introducing an artificial neural network content analysis tool into instruction 

could change instructional strategy decisions.  Such a tool would provide a measurement 

of cognitive effort at any time during a course providing immediate feedback which may 

confound or support other objective measures of the effectiveness of an instructional 

strategy such as assessments and feedback surveys.   

Second, the research efforts involved in determining needs for widespread use are 

similar to track 2 above.  The same research questions focusing on meeting instructor 

needs are applicable to determining widespread use; however, these research efforts 

should be expanded to all stakeholders including administrators and students as well as 

instructors.  At this point, research may also be conducted to determine whether an 

automatic content analysis tool focusing on cognitive presence predicts student 

achievement. 

 Finally, Garrison, Anderson, and Archer’s (2000) Community of Inquiry model is 

comprised of three broad domains: cognitive presence, social presence and teaching 

presence.  This work focuses solely on developing an automatic content analysis tool for 

the cognitive presence domain.  This work may be replicated to build tools which assign 

social presence and teaching presence values to messages as well.  Once such tools are 

built, researchers may then analyze the rich correlation among the domains.  This effort 

would begin answering questions such as: “What percentage of the variability in 

cognitive presence is explained by social presence or teaching presence?”  “Do students 

exhibiting high social presence also exhibit high cognitive presence?”  “Is social presence 

an inhibitor or a catalyst for cognitive presence?”  “How well to the three domains 

predict student achievement?”  
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Summary 

 Overall, an ANN can be constructed to categorize discussion list messages with 

near-human accuracy.  Improvements made to the second experiment indicate that the 

human content analysis can be improved; however, the two models did not keep pace 

with each other.  A 24.8% improvement in the human content analysis from experiment 

one (kappa = 0.6) to experiment two (kappa = 0.848) resulted in only an 18.5% 

improvement in the ANN model from experiment one (0.519) to experiment two (0.704).  

Since most of the improvement efforts between the two experiments were made to the 

human content analysis, future work should focus on improving the elements within the 

automatic content analysis, the second major area of the model (see Figure 22).  The 

results also indicate that spelling errors have little effect and that a full model constructed 

from both history and political science courses is not only a simpler solution but also no 

worse than a combination of topic and section models.  Finally, users of automatic 

content analysis tools should expect to perform analyses on the entire population of cases 

and should expect to describe fine-grained detail of their courses. 

 In the first chapter, I outlined a brief history of technology use in education.  This 

history provides repeated examples of initial exuberance over the promise of a 

technology to improve education only to be followed by a retrospective look which finds 

little, if any, impact.  Kozma (1994) suggests that if we are to break out of this cycle, we 

must use our technology do to what cannot be otherwise be done.  If the combination of 

computers and the internet are to have any lasting impact, we must use them to create 

learning opportunities, strategies, and environments that otherwise would not exist.  This 

work gives researchers the groundwork for a tool that allows them to study online 
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discussions in a way that we have never before experienced.  It enables the analysis of 

every message instead of a sample; it does so with near-human accuracy; with further 

development, it can be used in action research projects with very little resources; it can be 

deployed at departmental levels to understand the quality of messages among multiple 

courses, and it serves as one of potentially many similar tools upon which to confirm 

theories of online learning.  This work provides one of many necessary examples of using 

our technology to encourage fundamentally different learning opportunities which is 

critical if we are to break out of Reiser’s (2002) hundred-year cycle. 

 



 

 

 
 
 
 
 

References 
 

Alston, W.  (1994).  Belief-forming practices and the social.  In F. F. Schmitt (Ed.), Socializing 

epistemology: The social dimensions of knowledge.  Lanham, MD: Rowman and 

Littlefield. 

Alston, W.  (1996).  A realist conception of truth.  Ithaca, NY: Cornell University Press. 

ALT distance education student profile survey. (2001).  Retrieved October 23, 2003, from 

http://alt.usg.edu/research/studentprofile_2001_crossterm.pdf 

ALT distance education student profile survey. (2002).  Retrieved October 23, 2003, from 

http://www.alt.usg.edu/research/studentprofile_2002_crossterm.pdf 

Angeli, C., Bonk, C., & Hara, N.  (1998, November).  Content analysis of online discussion in an 

applied educational psychology course.  Retrieved February 20, 2002, from 

http://crlt.indiana.edu/publications/crlt98-2.pdf 

Bloom B. S., & Krathwohl, D. R. (1956). Taxonomy of educational objectives, book 1:  

Cognitive domain.  New York: Longmans, Green. 

BonJour, L.  (1978).  Can empirical knowledge have a foundation?  American Philosophical 

Quarterly, 15, 1–13. 

Bullen, M. (1998). Participation and critical thinking in online university distance education. 

Journal of Distance Education/Revue de l'enseignement à distance: 13, 2.  Retrieved 

January 15, 2002, from http://www.icaap.org/iuicode?151.13.2.1 

154 



 155

Burstein, J., Marcu, D., Andreyev, S., & Chodorow, M. (2001). Towards automatic classification 

of discourse elements in essays.  Proceedings of the 39th Annual Meeting of the 

Association for Computational Linguistics, 90-97. 

Boyles, D.  (2000).  Students as knowers:  An argument for justificatory social epistemology by 

way of blind realism.  Social Epistemology, 14(1). 

Center for Social Organization of Schools.  (1983).  School uses of microcomputers: Reports 

from a national survey (Issue no. 1).  Baltimore, MD: Johns Hopkins University, Center 

for Social Organization of Schools. 

Chiang, W. C., Urban, T. L., & Baldridge, G. W. (1996).  A neural-network approach to mutual 

fund net asset value forecasting.  Omega-International Journal of Management Science, 

24(2), 205-215. 

Code, L.  (1999).  Is the sex of the knower epistemologically significant?  In L. P. Pojman (Ed.), 

The theory of knowledge: classical and contemporary readings.    London:  Wadsworth 

Publishing Co. 

Cohen, J. (1960).  A coefficient of agreement for nominal scales.  Educational and 

Psychological Measurement, 20, 37-46. 

Daft, R., & Lengel, R.  (1986).  Organizational information requirements, media richness and 

structural design.  Management Science, 32(5), 554-571. 

Danielson, W. A., & Lasorsa, D. L.  (1997).  Perceptions of social change:  100 years of front-

page content in The New York Times and The Los Angeles Times.  In C. W. Roberts (Ed.), 

Text analysis for the social sciences: Methods for drawing inferences from texts and 

transcripts (pp. 103-115).  Mahwah, NJ: Lawrence Erlbaum. 

 



 156

Doerfel, M. L., & Barnett, G. A. (1999). A semantic network analysis of the International 

Communication Association. Human Communication Research, 25, 589-603. 

Domin, D. S. (1999).  A content analysis of general chemistry laboratory manuals for evidence 

of higher-order cognitive tasks.  Journal of Chemical Education 76(1), 109-112. 

Dybowski, R., Weller, P., Chang, R. & Grant, V. (1996).  Prediction of outcome in critically ill 

patients using artificial neural network synthesized by genetic algorithm.  The Lancet, 

347(9009), 1146-51. 

Ennis, R. (1987). A taxonomy of critical thinking dispositions and abilities.  In J. Baron & R. 

Sternberg (Eds.), Teaching thinking skills: theory and practice. New York: W.H. 

Freeman. 

Evans, W. (2000). Teaching computers to watch television: Content-based image retrieval for 

content analysis. Social Science Computer Review, 18, 246-257. 

Evans, W. (2001). Computer environments for content analysis: Reconceptualizing the roles of 

humans and computers.  In O. V. Burton (Ed.), Computing in the social sciences and 

humanities. Champaign, IL:  University of Illinois Press. 

Fahy, P. J., Crawford, G. & Ally, M.  (2001, July). Patterns of interaction in a computer 

conference transcript. International Review of Research in Open and Distance Learning, 

2(1).  Retrieved January 17, 2002, from http://www.icaap.org/iuicode?149.2.1.4 

Feldman, R.  (1994).  Good arguments.  In F. F. Schmitt (Ed.), Socializing epistemology: The 

social dimensions of knowledge.  Lanham, MD: Rowman and Littlefield. 

Franzosi, R. (1995).  Computer-assisted content analysis of newspapers: Can we make an 

expensive research tool more effective? Quality and Quantity, 29, 157-172. 

 



 157

Fausett, L. (1994).  Fundamentals of neural networks: Architectures, algorithms, and 

applications.  New Jersey: Prentice Hall. 

Garson, G. D.  (1998).  Neural networks:  An introductory guide for social scientists.  Thousand 

Oaks:  Sage. 

Garrison, D. R. (1992).  Critical thinking and self-directed learning in adult education: An 

analysis of responsibility and control issues. Adult Education Quarterly, 42(3), 136-148. 

Garrison, D. R., Anderson, T., Archer, W. (2000).  Critical inquiry in a text-based environment: 

Computer conferencing in higher education.  The Internet and Higher Education, 2(2-3), 

87-105. 

Garrison, D. R., Anderson, T., & Archer, W.  (2001).  Critical thinking, cognitive presence, and 

computer conferencing in distance education.  American Journal of Distance Education, 

15(1), 7-23. 

Gay, G., Pena-Shaff, J., & Martin, W. (2001). An epistemological framework for analyzing 

student interactions in computer-mediated communication environments. Journal of 

Interactive Learning Research 12(1), 41-68.  Retrieved July 10, 2003, from 

http://dl.aace.org/6402 

Georgia distance learning numbers increase dramatically; more statewide have internet access, 

according to Georgia GLOBE research.  Yahoo!Finance.  Retrieved December, 17, 2001, 

from http://biz.yahoo.com/prnews/011211/attu016_1.html 

Gilbert, M.  (1994).  Remarks on collective belief.  In F. F. Schmitt (Ed.), Socializing 

epistemology: The social dimensions of knowledge.  Lanham, MD: Rowman and 

Littlefield. 

Goldman, A.  (1999).  Knowledge in a social world.  Oxford, England:  Oxford University Press. 

 



 158

Griffin, E.  (1997).  Information theory of Claude Shannon and Warren Weaver [Electronic 

version].  In E. Griffin, A first look at communication theory (5th ed. Chapter 4).  New 

York:  McGraw-Hill.  Retrieved September 3, 2004, from 

http://www.afirstlook.com/archive/information.cfm?source=archther 

 

Hara, N. (2000, April). Visualizing tools to analyze online conferences.  Paper presented at the 

annual meeting of the American Educational Research Association, New Orleans, LA. 

Retrieved January 17, 2002, from http://www.ils.unc.edu/~haran/paper/fca/fca_aera.html 

Hara, N., Bonk, C., & Angeli, C. (1998, March).  Content analysis of online discussion in 

educational psychology courses.  Paper presented at the meeting of the Society for 

Information Technology and Teacher Education 98, Washington, DC.  Retrieved January 

17, 2002, from http://www.coe.uh.edu/insite/elec_pub/HTML1998/re_hara.htm 

Hearst, M. A. (2000).  The debate on automated essay grading.  IEEE Intelligent Systems, 15(5), 

22-37. 

Henri, F. (1992). Computer conferencing and content analysis. In A. R. Kaye (Ed.), 

Collaborative learning through computer conferencing: The Najaden papers (pp. 115-

136).  New York: Springer. 

Howell-Richardson, C., & Mellar, H. (1996). A methodology for the analysis of patterns of 

participation within computer mediated communication courses. Instructional Science, 24, 

47-69. 

Kanuka, H., & Anderson, T. (1998).  On-line social interchange, discord, and knowledge 

construction.  Journal of Distance Education, 13(1), 57-74. 

 



 159

Kitcher, P.  (1994).  Contrasting conceptions of social epistemology.  In F. F. Schmitt (Ed.), 

Socializing epistemology: The social dimensions of knowledge.  Lanham, MD: Rowman 

and Littlefield. 

Knight, J. E. (1990).  Coding journal entries.  Journal of Reading, 34(1), 42-46. 

Kuehn, S. A. ( 1994).  Computer-mediated communication in instructional settings:  A research 

agenda.  In Communication Education 43(2), 171-184. 

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: The Latent Semantic 

Analysis theory of the acquisition, induction, and representation of knowledge. 

Psychological Review, 104, 211-240. 

Landauer, T. K., Foltz, P. W., & Laham, D. (1998).  Introduction to Latent Semantic Analysis. 

Discourse Processes, 25, 259-284. 

Landis, J. R., & Koch, G. G., (1977).  The measurement of observer agreement for categorical 

data.  Biometrics, 33, 159-174. 

MacKinnon, G. R. (2000).  The dilemma of evaluating electronic discussion groups.  Journal of 

Research on Computing in Education, 33(2), 125-131. 

MacKinnon, G., & Aylward, L.  (2000).  Coding electronic discussion groups.  International 

Journal of Educational Television 6(1), 53-61. 

McDonald, J. (1998).  Interpersonal group dynamics and development in computer conferencing.  

American Journal of Distance Education, 12(1), 7-25. 

McCluskey, F. D. (1981). DVI, DAVI, AECT: A long view. In J.W. Brown & S. N. Brown 

(eds.), Educational media yearbook: 1981. Littleton, CO: Libraries Unlimited. 

 



 160

McKlin, T., Harmon, S., Jones, M., & Evans, W.  (2001).  Cognitive presence in web-based 

learning:  A content analysis of students’ online discussions.  Proceedings of the 2001 

Association for Educational Communications and Technology International Convention.  

McQuail, D. and Windahl, S. (1981). Communication models for the study of mass 

communications. New York: Longman. 

Misulis, K. (1997).  Content analysis:  A useful tool for instructional planning.  Contemporary 

Education, 69(1), 45-50. 

Moore, C.  (2001, December 11).  E-learning leaps into the limelight.  CNN.Com/Sci-Tech.  

Retrieved December 17, 2001, from 

http://www.cnn.com/2001/TECH/internet/12/11/elearning.leaps.idg/index.html 

Newman, D. R., Webb, B., & Cochrane, C. (1995). A content analysis method to measure 

critical thinking in face-to-face and computer supported group learning.  Interpersonal 

Computing and Technology: An Electronic Journal for the 21st Century, 3(2), 56-77.  

Pattern Recognition Workbench (Version 2.1.253) [Computer software].  (1992-1997).  

Waltham, MA:  Unica Technologies, Inc.  

Pattie, D. C., & Haas, G. (1996).  Forecasting wilderness recreation use – neural network versus 

regression.  AI Applications 10(1): 67-74. 

Picciano, A. G.  (1998).  Developing an asynchronous course model at a large, urban university. 

Journal of Asynchronous Learning Networks, 2(1).  Retrieved July 13, 2002, from 

http://www.aln.org/publications/jaln/v2n1/pdf/v2n1_picciano.pdf 

Pojman, L. P. (2001).  What can we know: An introduction to the theory of knowledge, second 

edition.  U.S.: Wadsworth. 

 



 161

Pomeroy, D. (1993).  Implication of teachers’ beliefs about the nature of science: comparison of 

the beliefs of scientists, secondary science teachers, and elementary teachers.  Science 

Education, 77, 261-278. 

Potter, W. J., & Levine-Donnerstein, D. (1999). Rethinking validity and reliability in content 

analysis. .Journal of Applied Communication Research, 27, 258-284. 

Riffe, D., Lacy, S., & Fico, F. G. (1998).  Analyzing media messages:  Using quantitative content 

analysis in research.  Mawah, New Jersey:  Lawrence Erlbaum. 

Reiser, R. A.  (2002).  A history of instructional design and technology.  In R. A. Reiser & J. V. 

Dempsey (Eds.), Trends and Issues in Instructional Design and Technology (pp. 26-53).  

Upper Saddle River, New Jersey: Merrill Prentice Hall. 

Romiszowski, A. J., & Mason, R. (1996). Computer-mediated communication. In D. Jonassen 

(Ed.), Handbook of research for educational communciations and technology, first 

edition (pp 438-456). New York: MacMillan. 

Romiszowski, A. J., & Mason, R. (2003). Computer-mediated communication. In D. Jonassen 

(Ed.), Handbook of research for educational communciations and technology, second 

edition (pp. 397-431).  New York: MacMillan. 

Rorty, R.  (1979).  Philosophy and the Mirror of Nature.  Princeton, NJ:  Princeton University 

Press. 

Rourke, L., Anderson, T., Garrison, D. R., & Archer, W.  (1999).  Assessing social presence in 

asynchronous text-based computer conferencing.  The American Journal of Distance 

Education, 14(2).  Retrieved March 7, 2001, from 

http://cade.athabascau.ca/vol14.2/rourke_et_al.html

Saettler, P.  (1968).  A history of instructional technology.  New York:  McGraw-Hill. 

 

http://cade.athabascau.ca/vol14.2/rourke_et_al.html


 162

Schön, D. A. (1987).  Educating the reflective practitioner:  Toward a new design for teaching 

and learning in the professions.   San Francisco, CA:  Jossey Bass. 

Seaver, J. D., Smith, T., & Leflore, D. (2000).  Constructivism:  A path to critical thinking in 

early childhood.  International Journal of Scholarly Academic Intellectual Diversity, 

4(1). 

Shannon, C. E. (1948).  A mathematical theory of communication.  The Bell System Technical 

Journal, 27, 379-423. 

Shera, J.  (1970).  Sociological foundations of librarianship.  New York:  Asia Publishing House. 

Sherry, L., Tavalin, F., & Billig, S. H. (2000).  Good online conversation: Building on research 

to inform practice.  Journal of Interactive Learning Research, 11(1), 85-127.  

Short, J., Williams, E., & Christie, B. (1976).  The social psychology of telecommunications.  

Toronto, ON:  Wiley. 

Shrout, P. E., & Fleiss, J. L., (1979), Intraclass correlations:  Uses in assessing rater reliability.  

Psychological Bulletin, 86(2), 420-428. 

Sproull, L., & Keisler, S. (1986). Reducing social context cues: Electronic mail in organizational 

communication.  Management Science, 32, 1492-1513. 

Tsai, C.  (1999).  Content analysis of Taiwanese 14 year olds’ information processing operations 

shown in cognitive structures following physics instruction.  Research in Science and 

Technological Education, 17(2), 125-138. 

Weiss, R., & Morrison, G. (1998). Evaluation of a graduate seminar conducted by listserv.  

Proceedings of Selected Research and Development Presentations at the National 

Convention of the Association for Educational Communication and Technology (AECT). 

 



 163

Zhu, E.  (1998).  Learning and mentoring: Electronic discussion in a distance-learning course.  In 

C. J. Bonk & K. S. King (Eds.), Electronic collaborators: Learner-centered technologies 

for literacy, apprenticeship, and discourse (pp. 233-259).  New Jersey: Lawrence 

Erlbaum Associates, Inc.

 



 

Appendices 
 

 

 

 

 

Appendix A 
 

Coder Training Rubric for Experiment One 

The following rubric is adapted from that used by Garrison, Anderson, and Archer (2002) 

with examples and instructions provided with assistance from Patricia Oliver. 

The task will involve the following: 

1. Read a student message 

2. Select the most appropriate Cognitive Presence Subcategory for this message 

3. Indicate the Cognitive Presence Subcategory by writing the corresponding Cognitive 

Presence Subcategory Code in the space provided for message’s Code.    

General Guidelines: 

If a message contains multiple categories, determine the essence of the message, and 

code the message accordingly.  If you are unable to determine the essence of the message, then 

select the category that is highest within the cognitive hierarchy.  For example: 

“Greetings fellow students.  Several of us are planning to meet at Rocky 
Mountain Pizza on Friday night.  Please feel free to join us.  On another note, did 
anyone experience problems logging in to take the quiz?  I had some problems 
last night.  Name_1’s discussion about the negative aspects of colonialism 
reminded me of some disturbing elements within Conrad’s Heart of Darkness.  I 
find it hard to comprehend Cortes and some of the other explorers.  Cortes must 
have been somewhat like Kurtz.  It would be interesting to study the different 
motivational forces at work among different explorers and colonists.  What do 
you all think was the primary motivational factor for most explorers or for 
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colonists?  While the text, Historical narratives and his letters all mention gold as 
a motivating factor for Cortes, his letters also indicate religious motivations.  
From his actions during the incident described in the text we might infer some 
additional motivating forces such as power.  I agree with Name_3’s and 
Name_4’s characterization that Cortes’ primary motive was personal gain (Power 
and Money).    I’ve researched several websites re: Cortes.  The Catholic 
Encyclopaedia’s Website mentions his ambition and desire for power and that he 
had ‘no excess of scruples in morals’.  That doesn’t appear to be a very ringing 
religious endorsement.  Additionally, the article characterized his use of the 
Church as primarily utilitarian.  The U. Michigan website describes him as ‘the 
perfect Machiavellian blend of will power and good luck’.  These sources, along 
with the text, his letters and Historical narratives all lend credence to the view that 
Cortes was motivated by ambition, power and wealth”. 
 

An analysis of the above message yields the following: 

1. The greeting and invitation to Rocky Mountain Pizza fall within the Unrelated (UR) 

category. 

2. The statement and question regarding problems logging in to take the quiz fall within the 

Technical Support (TS) category. 

3. The reference to Name_1’s discussion and “disturbing elements within” Heart of 

Darkness contain elements of Personal Narrative (PN).  

4. The statement “Cortez must have been somewhat like Kurtz” is a Leap to Conclusion 

(LC). 

5. The statement and question about explorers’ and colonists’ motivations show a Sense of 

Puzzlement (SP). 

6. The statements referring to conflicting information related to Cortes’ motivations from 

the Text and Cortes’ letters show Divergence Within (DW). 

7. The support of prior messages augmented with the information from the websites, text, 

Cortes’ letters and historical narrative shows Convergence Among (CA) the messages 

and these sources. 
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Although the above message contains elements that fall into a significant number of Cognitive 

Presence Subcategories, the majority of the message is in support of Convergence Among (CA).  

The first reference to explorers’ and colonists’ motivations (SP) are a lead in to a discussion that 

culminates in Convergence Among.  The example message would be coded as CA because that 

is the essence of the message and, of the cognitive subcategories present within the message, it is 

the highest within the hierarchy. 

Table A1 

Coder Training Rubric for Experiment One 
 
Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

Not Cognitive 

 

 

Unrelated 

 

UR Statements that are 

not related to the 

course concepts, nor 

are they related to 

technical issues 

regarding the eCore 

course; Social 

Pleasantries. 

“Do you have plans for 

Friday night?  Several of 

us are planning to meet at 

Ruby’s.” 
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Course 

Management  

CM Statements regarding 

logistics or 

management of the 

course (materials, 

schedules, 

assignments) 

“When do we meet 

next?”  “The bookstore 

has finally obtained some 

additional course texts.”  

“When is the exam?” 
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Table A1 (continued) 

Coder Training Rubric for Experiment One 
 
Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

Technical 

Support 

TS Providing technical 

support or assisting 

others with technical 

issues related to the 

course. 

“When I logged on last 

night, the server was 

unavailable.  Did anyone 

else have similar 

trouble?”  “First 

download v 5.5, and 

execute the install”. 

 

External 

Reference 

ER Reference to an 

external source for 

additional 

information. 

“The following link has 

some information which 

you might find useful: 

http://www.newinfo.org” 
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Table A1 (continued) 

Coder Training Rubric for Experiment One 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

Triggering 

Event 

(Evocative) 

Recognizes 

Problem 

RP Presenting 

background 

information that 

culminates in a 

question. 

“In an earlier post, 

Name_2 reminded us that 

their diet was very 

similar to ours.  I wonder 

if the frequency of diet 

related diseases in their 

culture was similar that 

in our culture”.  
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Table A1 (continued) 

Coder Training Rubric for Experiment One 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

 Sense of 

Puzzlement 

SP Asking questions, 

Messages that take 

discussion in a new 

direction, Sense of 

Puzzlement 

“In H’s earlier post, he 

mentioned that it was 

difficult to fit half day 

kindergarten into the 5 

year olds’ busy 

schedules.  If this is true, 

how busy will the 

children be by 4th grade?  

What does all of this fast-

paced living do to their 

health?” 

Exploration 

(Inquisitive) 

Leap to 

Conclusion 

LC Offers unsupported 

conclusions 

“They must have been 

very angry about the 

intrusion into their 

culture.” 
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Table A1 (continued) 

Coder Training Rubric for Experiment One 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

Personal 

Narrative 

PN Personal narratives 

containing 

descriptions or facts 

that are not used as 

evidence to support a 

conclusion. 

“I found their actions to 

be quite disturbing.”  “I 

have a friend who grew 

up on an Indian 

Reservation and he 

said...” 

 

Brainstorming BS Adds to the 

established points but 

does not 

systematically 

defend, justify or 

develop this addition. 

 “I’m beginning to 

wonder if this might just 

be the key…”  “What 

if…”  “Here’s an idea...” 
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Table A1 (continued) 

Coder Training Rubric for Experiment One 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

Information 

Exchange 

IE Descriptions or facts 

that are not used as 

evidence to support a 

conclusion, but that 

are course or topic 

related. 

“The author states…”  

“One of the narratives 

was completed shortly 

after the events occurred.  

The second narrative was 

completed many years 

later”. 

 

Suggestion SU 

 

Suggestion(s) for 

consideration.  

Author explicitly 

characterizes the 

message as 

exploration. 

“I’m beginning to 

wonder if this might just 

be the key… What do 

you think?  Am I on 

target?”  “Does that seem 

about right?” or “Am I 

way off base?” “What do 

you think?” 
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Table A1 (continued) 

Coder Training Rubric for Experiment One 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

 Divergence 

Among 

DA Divergence or 

disagreement within 

the online 

community; 

unsubstantiated 

contradiction of prior 

ideas, divergence 

among messages 

“I disagree with that 

statement…”  “I’m not so 

sure about that...” 
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Table A1 (continued) 

Coder Training Rubric for Experiment One 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

 Divergence 

Within 

DW Presenting many 

different ideas or 

themes within one 

message; divergence 

within a message. 

“Narrative one states ….. 

while narrative 2 states 

the opposite.”  “While 

one author suggests that 

the settlers were quite 

austere, other evidence 

suggests that they held, 

and enjoyed parties, 

games and other social 

events.” 
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Table A1 (continued) 

Coder Training Rubric for Experiment One 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

Integration 

(Tentative 

substantiation, 

combining 

ideas) 

Creating 

Solutions 

CS The writer explicitly 

characterizes the 

message as a 

solution. 

“I believe this is the key 

because…”  “The 

following hypothesis ties 

it all together…” 
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Table A1 (continued) 

Coder Training Rubric for Experiment One 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

 Synthesis SY Connecting ideas, 

integrating 

information from 

various sources – 

textbook, articles, 

personal experience 

“There is definitely 

social interaction in 

WebCT.  As mentioned 

in Khan, p. 363, A free 

exchange of ideas, 

opinions, and feelings is 

the lifeblood of 

collaborative learning.  In 

evaluating the success of 

this class, we can’t 

overlook the value of the 

open forum we have 

enjoyed on the bulletin 

board.” 
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Table A1 (continued) 

Coder Training Rubric for Experiment One 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

 Convergence 

Within 

(one message) 

CW Justified, developed, 

defensible, yet 

tentative hypothesis. 

“The settlers must have 

been less austere than the 

author proposes.  The 

archeological evidence 

taken together with the 

social events described 

within the diaries and the 

town records all point 

towards the settlers 

enjoying an active social 

life”. 
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Table A1 (continued) 

Coder Training Rubric for Experiment One 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

 Convergence 

Among 

(one or more 

messages or 

sources) 

CA Reference to one or 

more prior 

message(s) followed 

by substantiated 

agreement, e.g., “I 

agree because…”; 

building on and 

adding to others’ 

ideas 

“I agree with Name12.  I 

think the settlers had an 

active social life.  As 

well as the town records, 

personal diaries and 

archeological evidence, a 

settler, John E. described 

a very gay party in letters 

to England.  He discusses 

the food, drink, music, 

dancing and games at the 

party as follows:  

……..”.   
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Table A1 (continued) 

Coder Training Rubric for Experiment One 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Code Description Example 

Resolution 

(Committed) 

Resolution RE Committed, 

characterized by 

applications to the 

real world, testing 

solutions and 

defending solutions. 

“Based on the 

overwhelming evidence, 

it is apparent that the 

author’s account of the 

settler’s austerity is 

incorrect.   The settlers 

definitely had an active 

social life.  This is 

supported by the 

following:  the remains 

of several musical 

instruments have been 

found at the site.   

Equipment for making, 

storing and serving wine 

and ale have also been 

found at the site. Letters 
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exist which describe 

social occasions in 

significant detail. Town 

records and diaries also 

include accounts of 

parties and social 

occasions.  The evidence 

of an active social life in 

the settlement is 

overwhelming  ……..”.   

 

 

 



 

 
 

 

 

 

 

    

Appendix B 

Coder Training Rubric for Experiment Two 

The following rubric is a modified version of the coder training rubric from 

experiment one which was adapted from that used by Garrison, Anderson, and Archer 

(2002) with examples and descriptions provided with assistance from Patricia Oliver. 

Table B1 

Coder Training Rubric for Experiment Two 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Description Example 

Non- 

Topical: 1 

 

 

Unrelated Statements that are not related 

to the course concepts, nor are 

they related to technical issues 

regarding the eCore course; 

Social Pleasantries. 

“Do you have plans for 

Friday night?  Several of 

us are planning to meet at 

Ruby’s.” 
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Table B1 (continued) 

Coder Training Rubric for Experiment Two 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Description Example 

Course 

Management  

Statements regarding logistics 

or management of the course 

(materials, schedules, 

assignments) 

“When do we meet next?”  

“The bookstore has finally 

obtained some additional 

course texts.”  

“When is the exam?” 

Technical 

Support 

Providing technical support or 

assisting others with technical 

issues related to the course. 

“When I logged on last 

night, the server was 

unavailable.  Did anyone 

else have similar trouble?”  

“First download v 5.5, and 

execute the install”. 

 

External 

Reference 

Reference to an external 

source for additional 

information with no reference 

to the course topic. 

“The following link has 

some information which 

you might find useful: 

http://www.newinfo.org” 
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Table B1 (continued) 

Coder Training Rubric for Experiment Two 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Description Example 

Simple 

Restatement or 

Question 

Restatement or simple 

clarification, or a simple 

question. 

“I meant to say that 

Montezuma was …” 

Simple 

Agreement or 

Disagreement 

Statement of agreement or 

disagreement related to non-

course content or unknown 

content 

“I absolutely agree with 

you.”  

“I don’t think I can agree 

with you on that.” 

 

Topic 

Undetermined 

If you are unable to determine 

if the message is related to 

course content. 

 

 

Topical 

Compliment 

Statements such as ‘good job’ 

or ‘great budget’ which do 

not tell why.   

Statements 

complimenting a team 

member on a joint project 

on a piece of submitted 

work. 
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Table B1 (continued) 

Coder Training Rubric for Experiment Two 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Description Example 

 Topical 

Course 

Management 

Statements or questions which 

are course related or topical but 

are course or project 

management. 

“Have you finished your 

piece on the 

Revolutionary War?” 

“I plan to report on the 

Cuban Missile Crisis.” 

Triggering 

Event (2): 

Problem-

posing 

events, 

evocative 

in terms of 

conceptuali

zing a 

problem or 

issue. 

Recognizes 

Problem 

Presenting background 

information that culminates in a 

question. 

“In an earlier post, 

Name_2 reminded us that 

their diet was very similar 

to ours.  I wonder if the 

frequency of diet related 

diseases in their culture 

was similar that in our 

culture”.  
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Table B1 (continued) 

Coder Training Rubric for Experiment Two 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Description Example 

 Sense of 

Puzzlement 

Asking questions, Messages 

that take discussion in a 

new direction 

“In H’s earlier post, he 

mentioned that it was 

difficult to fit half day 

kindergarten into the 5 

year olds’ busy schedules.  

If this is true, how busy 

will the children be by 4th 

grade?  What does all of 

this fast-paced living do 

to their health?” 
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Table B1 (continued) 

Coder Training Rubric for Experiment Two 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Description Example 

 Challenge One student 

challenges another 

student’s position or 

opinion, but does not 

substantiate, develop 

or justify. 

“Tell me one good 

thing this person 

has done with his 

presidency”. 
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Table B1 (continued) 

Coder Training Rubric for Experiment Two 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Description Example 

Exploration 

(3): 

Inquisitive, 

search for 

relevant 

information

, inquisitive 

or 

divergent 

process in 

search for 

ideas to 

make sense 

of a 

problem 

Opinions or 

Information 

Exchange 

Offers unsupported 

conclusions.  Leaps to 

conclusions. 

 

Suggestion(s) for 

consideration.  Author 

explicitly characterizes the 

message as exploration. 

 

Information, descriptions or 

facts that are not used as 

evidence to support a 

conclusion, but are course or 

topic related.  Facts or 

descriptions can be 

divergent. 

 

“They must have been 

very angry about the 

intrusion into their 

culture.” 

 

“I’m beginning to wonder 

if this might just be the 

key… What do you think?  

Am I on target?”   

 

“The author states…”  

“One of the narratives was 

completed shortly after the 

events occurred.  The 

second narrative was 

completed many years 

later”. 
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Personal narratives 

containing descriptions or 

facts that are not used as 

evidence to support a 

conclusion. 

 

Brainstorming. 

 

Drawing Parallels without 

offering explanation of 

relationships. 

 

Adding to the established 

points with no justification. 

 

“I found Montezuma’s 

treatment of the disabled 

or exceptional to be quite 

disturbing.”   

“My friend grew up on an 

Indian Reservation..” 

 

“I’m beginning to 

wonder” “What if…”  

 

“I think this is similar to 

the Cuban Missile Crisis.” 

 

“In addition, to your 

arguments, avoiding war 

would have caused 

additional unrest.” 
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Table B1 (continued) 

Coder Training Rubric for Experiment Two 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Description Example 

 Topical 

Agreement or 

Disagreement 

Agreement or disagreement 

within the online 

community with respect to 

the subject matter; 

unsubstantiated 

contradiction or support of 

prior ideas, divergence 

among messages 

“I disagree with your 

assessment of the 

Columbian Exchange”  

“I agree with your 

statement about the 

British not acting in 

accordance with their 

stated principles.”   

“I agree with your 

position on states rights.” 
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Table B1 (continued) 

Coder Training Rubric for Experiment Two 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Description Example 

Integration 

(4): 

Constructi

on of a 

possible 

solution, or 

a tentative 

conversion, 

or 

connecting 

relevant 

ideas 

capable of 

providing 

insight 

Drawing 

Conclusions 

The writer may explicitly 

characterize the message as 

a solution.   

 

He or she may connect 

ideas, integrate information 

from various sources – 

textbook, articles, personal 

experience which lead to a 

conclusion. 

 

Evidence of a tentative, yet 

developed, defensible, 

hypothesis with some 

justification.  

 

Reasoned comparison and 

“I believe this is the key 

because…”  “The 

following hypothesis ties 

it all together…” 

 

“There is definitely social 

interaction in WebCT.  As 

mentioned in Khan, p. 

363, A free exchange of 

ideas, opinions, and 

feelings is the lifeblood of 

collaborative learning.” 

 

“The settlers must have 

been less austere than the 

author proposes.  The 

archeological evidence 
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contrast  taken together with the 

social events described in 

diaries all point 

towards…”. 

Substantiated 

Agreement or 

Disagreement 

Reference to one or 

more prior 

message(s) followed 

by substantiated 

agreement or 

disagreement, 

building on and 

adding to others’ 

ideas. 

“I agree with 

Name12.  I think 

the settlers had an 

active social life.  

The town records 

show social events 

such as…”   
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Table B1 (continued) 

Coder Training Rubric for Experiment Two 

Cognitive 

Presence 

Category 

Cognitive 

Presence 

Subcategory 

Description Example 

 Interpretation 

and Synthesis 

Logical progression 

showing cause and effect 

among numerous ideas or 

events. 

 

 

 

Showing internalization 

through summarization. 

 

Drawing parallels with 

descriptions of how events 

or concepts are related. 

 

Narrative justification: the 

effective use of narrative. 

The economic difficulties 

led then to social unrest.  

The social unrest began 

first in large cities, then 

spread to smaller cities.  

This social unrest 

progressed to talk of 

revolution, plans for 

revolution and, 

eventually… 

 

Stating ideas from 

external sources in their 

own words, not simply 

quoting or parroting a text 

or source. 
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Parallels that more than 

just relate or link items, 

but describe or explain 

relationships. 

 

Narrative offering 

significant insight, 

meaning, richness to the 

topic; may support a 

conclusion. 

 
 

 



 

 
 

 

 

 

 

    

Appendix C 

Neural Network Settings for Experiment One 

This model was built using the neural network package, Pattern Recognition 

Workbench, using the best 102 predictors (see the section of Chapter 3 entitled “Predictor 

Order”).  Specifically, a backpropagation/MLP model using two hidden layers, a learning 

rate of 0.05, momentum of 0.1, 102 inputs (in order of importance -- see "Predictor 

Order" in Chapter 3), five outputs (one for each cognitive presence category), two hidden 

neurons in the first layer, five hidden neurons in the second layer, an automatically 

generated random selection pattern with a random seed of 1563029628 and training saved 

on the best test set.  Pattern Recognition Workbench describes this type of model as 

follows: 

Milti-layer perceptron (MLP), also known as a “backpropagation neural network," 

is a neural network algorithm which generates input-to-output mappings based on 

computations of interconnected nodes.  Nodes are arranged in layers.  Each node's 

output is a nonlinear function of the weighted sum of inputs from the nodes in the 

preceding layer.  (Unica Technologies, Inc, 1992 – 1997) 
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Appendix D 

Second Experiment Neural Network Settings for Experiment Two 
 
This model was built using Ward Systems’ Neuroshell 2 Release 4.0.  Specifically, a 

three-layer backpropagation network was employed with a learning rate of 0.05, 

momentum of 0.5, 40 inputs (in order of importance – see “Predictor Order” in Chapter 

3), 4 outputs (one for each cognitive presence category), 56 hidden neurons, a rotational 

(as opposed to random) pattern selection with training saved on the best test set. 
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Appendix E 

Descriptions of the 40 Categories Used in Experiment Two 
 
The following list names and describes each of the top 40 categories used by the artificial 

neural network to categorize discussion list messages in experiment two. 

WordCount:  number of words in the message.  Words are separated by spaces. 

Question: number of questions (identified as question marks) in the message. 

PersonNames: number of names of fellow classmates in the message. 

Increas*: 111 words indicating change connoting increase 

Know*: 348 words indicating awareness or unawareness, certainty or uncertainty, 

similarity or difference, generality or specificity, importance or unimportance, presence 

or absence, as well as components of mental classes, concepts or ideas. 

Self*: 7 pronouns referring to the singular self 

Region*: 61 words referring to regions and routes between them. 

POLIT*: 507 words having a clear political character, including political roles, 

collectivities, acts, ideas, ideologies, and symbols. 

MALE*: 56 words referring to men and social roles associated with men. 

WltTot*: 378 words in wealth domain. 
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EVAL*: 314 words which imply judgment and evaluation, whether positive or negative, 

including means-ends judgments. 

Polit@*: 263 words having a clear political character, including political roles, 

collectivities, acts, ideas, ideologies, and symbols. 

Race*: 15 words (with important use of words senses) referring to racial or ethnic 

characteristics. 

TrnLoss*: Transaction loss, 113 general words of not accomplishing, but having setbacks 

instead. 

Web: self defined category referring to the WWW. 

Social*: 111 words for created locations that typically provide for social interaction and 

occupy limited space 

ThirdPersonPronouns: Self defined category of third person pronouns. 

TimeSpc*: a general space-time category" with 428 words.  

Pleasur*: 168 words indicating the enjoyment of a feeling, including words indicating 

confidence, interest and commitment. 

WltOth*: 271 wealth-related words not in the above, including economic domains and 

commodities. 

Object*: category with 661 words subdivided into Tool, (318 words), Food (80 words), 

Vehicle (39 words), BldgPt (46 words for buildings, rooms in buildings, and other 

building parts), ComnObj (104 words for the tools of communication) and NatObj (61 

words for natural objects including plants, minerals and other objects occurring in nature 

other than people or animals). Last, a list of 80 parts of the body (BodyPt) 
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PowAuth*: Authoritative power, 79 words concerned with a tools or forms of invoking 

formal power. 

Strong*: 1902 words implying strength. 

PtLw*: A list of 68 actors not otherwise defined by the dictionary. 

Exprsv*: 205 words associated with the arts, sports, and self-expression. 

Thread: structure category identifying the thread to which the message belongs. 

Width: structure category identifying the depth of the message (1 is a top level message 

in a thread; 3 is a grandchild message to a top level message). 

ArenaLw*: 34 words for settings, other than power related arenas in PowAren. 

RcRelig*: Religion, 83 words that invoke transcendental, mystical or supernatural 

grounds for rectitude. 

Time@*: 273 words indicating a time consciousness, including when events take place 

and time taken in an action. Includes velocity words as well. 

TrnGain*: Transaction gain, 129 general words of accomplishment 

Quality*: 344 words indicating qualities or degrees of qualities which can be detected or 

measured by the human senses. Virtues and vices are separate. 

Work*: 261 words for socially defined ways for doing work. 

TranLw*: 334 words of transaction or exchange in a broad sense, but not necessarily of 

gain or loss. 

TransitionsContrast: self-defined category of transition terms dealing with contrast. 

PowAuPt*: Power authoritative participants, 134 words for individual and collective 

actors in power process 

Decreas*: 82 words indicating change connoting decrease 
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Exch*: 60 words concerned with buying, selling and trading. 

Exert*: 194 movement terms connoting exertion. 

EnlPt*: Enlightenment participant, 61 words referring to roles in the secular 

enlightenment sphere. 

Reply: self-defined category indicating that a message is a reply to another message. 

 

*categories belonging to the General Inquirer 

(http://www.wjh.harvard.edu/~inquirer/homecat.htm) 

 

 


