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Abstract 

 

   The effect of initial state correlation on high-energy dipole photoionization is considered 

and it is shown that for almost all atomic electron the asymptotic high-energy dependence is 

E-7/2, and the dominant transition is an ionization plus excitation satellite transition. This is 

demonstrated in numerical calculations of the photoionization of Ge 4p2 1S and Sn 5p2 1S. 
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1. Introduction 

 

   Atomic physics is the fundamental starting point for many fields in physics. From a 

macroscopic viewpoint, atoms can be treated as the basic content of matter, and the properties of 

atoms are needed in order to construct the full picture of matter. The interaction between atoms 

and electromagnetic fields is very important and has been studied for a long time. We know that 

the electromagnetic field actually consists of photons. When an atom absorbs a photon it changes 

state, and the probability for the transition is related to a dimensionless quantity- oscillator 

strength. From oscillator strengths, oscillator strength moments can be defined. [1] Sums of 

moments of nonrelativistic oscillator strengths can be used to calculate a variety of atomic 

properties. Although at high energy the oscillator strength decreases with energy, for some cases 

these sums still need to go to a very high energy to be reasonably accurate. And for these cases it 

is very important to know the asymptotic behavior of oscillator strength in the high energy limit. 

The oscillator strength and therefore its moments are related to dipole approximation for 

photoabsorption. It was once thought that in high energy limit, the interaction between electrons 

will become unimportant, and the dipole matrix can be accurately evaluated by using single 
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particle wave functions. However, as recent results have pointed out [2,3], interchannel coupling 

remains important even at high energies, and data obtained via single particle approximation can 

be very wrong. Therefore, a new approach to oscillator strengths in the high energy range is 

needed, and this is the purpose of present work. Here we extend the analysis of previous work 

using both theory and numerical calculation. 

   In order to better elaborate the idea, note that the oscillator strength is defined as 

2
ka

2 | |3 rka
ka

mf =
ω
=  

for a transition from state “a“ to state “k”, where ωka =
kE Ea−
=

 and rka is matrix element of 

r, . Interchannel coupling causes a change in the matrix element r| |rk a<
G

> ka, and, as a result, 

the oscillator strength at high energy is modified. This modification is important because in 

calculating atomic and molecular properties it is required to know the oscillator strength 

distributions from the lowest excitation to infinite energy. Actually, it was shown [1] that 40% of 

the sum comes from photon energy E>8 keV for one of the sum rules. When the photon energy 

is greater than the ionization energy, the excited electron goes into a continuum state, i.e., the 

case of photoionization. The dipole photoionization cross section is just proportional to the 

oscillator strength. (The cross section
2 2

2
2

4 |ka ka
ka

M
m
π ασ
ω

=
= | , where rka

ka ka
mM ω ε= − ⋅�
=

 is the 

dipole matrix element, so that it follows that
222 2

2 2
2 2

4 | r | 4 | r |ka
ka ka ka ka

ka

m
m

ωπ ασ π
ω

= =
=

=
2αω , 
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so
26

ka kaf
m
π ασ =

= , where α is the fine structure constant.) Owing to this proportionality, the 

sum of oscillator strengths can be used to check the consistency of measured and calculated 

photoionization cross sections.  

In practice we use numerical methods to solve the problem, so why we are especially 

interested in obtaining a theoretical asymptotic formula for high energy? Why not just use 

numerical methods all the way and which will give not only asymptotic, but exactly answers for 

all energy if the calculation is correct? The reason is that due to the limitation of computer 

memory we are not able to do that. It is true that for low energy we can use numerical methods 

to obtain the cross section. However, for high energy, the photoelectron wave function oscillates 

very rapidly and requires extremely small mesh size to evaluate the numerical integral, and this 

generates numerical errors. For example, in this thesis we use nearly one million mesh points in 

our calculation (which is the best our machine can do), and it is just barely enough to obtain an 

accurate result. Therefore, a theoretical derivation for the high energy nonrelativistic atomic 

cross section is necessary.     

   A general asymptotic formula for the high energy atomic photoionization cross section has 

been obtained by Fano & Rao[4] using single-particle wave functions, which shows that the 

photoionization of an nl atomic electron falls off as E(-7/2+l) at asymptotically high energy. 
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However, the true wave function of a general atom can be written as a summation over a 

complete set; a linear combination of all possible configurations. This makes possible transitions 

from the initial state to many possible final states. The result of adding electron-electron 

correlation to the single-particle approximation in the form of interchannel coupling for high 

energy atomic photoionization showed that the cross section for an nl state (l≠0) behaves as 

E(-9/2) instead of E(-7/2+l) asymptotically [3]. Moreover, if we use multi-configuration initial state 

wave functions in calculation to include the effects of initial state correlation, then using the 

same logic, one can imagine this will affect the result too. In this thesis, we show that correlation 

in the form of initial state configuration interaction induces a further dramatic change in the high 

energy behavior of the photoionization cross section. Specifically, the photoionization cross 

section of all closed and almost all open subshells throughout the periodic table behaves as E(-7/2). 

In addition, for almost all l≠0 subshells, the dominant transition at high energy is 

photoionization plus excitation, a two-electron satellite transition. We also indicate that certain 

type of initial-state configurations cannot be ignored when evaluating the high energy 

photoionization cross section no matter how small its mixing in the initial wave function is. This 

is also useful when one needs to decide which configurations should be taken into account in 

particular cases, since as a practical matter, it is impossible to take an infinite number of 
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configurations into account. 

   This thesis is divided into four parts: Theory, Method of Calculation, Calculated Results and 

Conclusion. The Theory consists of four parts: Discussion of the dipole approximation and its 

limitations, the general single-particle high energy result of Rau & Fano, the changes in high 

energy behavior induced by interchannel coupling, and finally, the new idea of this thesis, we 

give the derivation of the effects of initial state configuration interaction. In the Method of 

Calculation section, we discuss how the numerical results have been obtained. This section also 

has four parts: Discrete state Hatree-Fock method; Discrete state multi-configuration 

Hartree-Fock method; Continuum wave calculation; and Length and velocity formulations. In 

the Calculated Results section, we give two examples of the nonrelativistic high energy 

photoionization cross section which are photoionization of outer np2 1S subshells of Ge and Sn. 

In addition, the comparison of main and satellite lines is presented and discussed in this section. 
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2. Theory 

 

2.1 Dipole Approximation 

The origin of dipole approximation comes from time-dependant perturbation theory. Here we 

take the hydrogenic case as an example to illustrate the derivation, and using the same logic one 

can extend the result to the general case. For an atom in an electromagnetic field, in the 

Schrödinger equation momentum P must be replaced by P+eA. This gives             

2 2 2
2{ }

t 2 4 2
Z e e ei i

m r m mπ
∂ψ

= − ∇ − − ⋅ ∇ + ψ
∂ ε

AA== =
2

d

 ,   (2.1.1)  

and  ( ) ( )
0 ˆ= A ( ) [ ]i kr wt i kr wte eω ωδ δω ε ω− + − − ++∫A

G GG G
.  

2 2

2

2 4

Ze

m rπ
− ∇ −

ε

=
 represents the Hamiltonian of an electron in coulomb potential, and 

2 2

2

e e
i

m m
− ⋅∇+

A
A=  are the perturbation terms. The term 

2 2

2

e

m

A
 includes A² and if the field strength 

is small, A² is quite small compared to A, and this term can be neglected. Thus the remaining 

perturbation term is ei
m

− A= ⋅∇ , and the magnitude of A depends on the density of photons. In 

the very low photon density limit, the situation will be well approximated by the first order 

time-dependent perturbation result, and this is the case we interested in. We obtain the result of 

first order time-dependent perturbation theory by the following way.  
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In Eq. (2.1.1), define the first two terms on the right hand side as H0, and the solution for this 

Hamiltonian is the hydrogenic wave function, φk ; H0φk=Ekφk.

We note that the solution for (2.1.1) can be express by a linear combination of hydrogenic 

functions, 

k,t C ( ) ( )
kiE t

t e
−

κ
κ

ψ( ) = ϕ∑r r =  . (2.1.2) 

Substituting (2.1.2) into (2.1.1), 

k k k k k kC ( ) E C ( ) E C ( ) C ( )
k k k kiE t iE t iE t iE t

k k k k

i ei e e e e
m

− − − −

κ κ κϕ + ϕ = ϕ − ⋅∇∑ ∑ ∑ ∑r r r
i

= = = === κϕA  

 => k kC ( ) C ( )
k kiE t iE t

k k

i ei e e
m

− −

κ κϕ = − ⋅∇∑ ∑r A
i

= === ϕ   . 

Multipling both sides by φb* and integrating yields 

( )

C |
b ki E E t

b k b
k

e C e
m

−

κ= − < ϕ ⋅∇ ϕ >∑ A
i

= |  

 => 
0

| |ba
t i t

b b
eC e
m

ω= − < ϕ ⋅∇ ϕ >∫ A a dt   ,  (2.1.3) 

whereωba =
bE E−
=

a .  

Taking the absolute square of equation (2.1.3) gives the probability of transition from initial state 

“a” to final state “b”. After evaluating the integral in (2.1.3) we get, 

 
2 2

2 20
2

A| ( ) | 2 | ( ) |
mk ba

eC t M tπ ω� ba ,   where baM = ˆ| |ik r
b ae ε⋅< ϕ ⋅∇ ϕ >

G G
 . 

The transition rate  is then given by, baW

 
2 2

20
2

A2 | (
mba ba ba

eW Mπ= ) |ω .  (2.1.4) 
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From the transition rate we can calculate the oscillator strengths and cross section. 

   One difficulty in evaluating (2.1.4) comes from the matrix element baM . It contains the term 

 which represents the photon plane wave. In the low energy case, which means k is small, 

we can make an approximation called the dipole approximation. 

ik re ⋅
G G

Since 
2

4
2 2~ Ekr E E

c me mce
~ 10−=

= =
=

⋅ (E is in units of Rydbergs) for a medium size atom, we 

can expand and approximate it as 1 when the energy of the photon is small. 

The physical meaning for this approximation is that the wave length of photon is much longer 

than the size of an atom. Of course, for very high energy photons, dipole approximation will no 

longer be valid. However, since many properties of atoms, like the various sum rules, can be 

calculated in terms of dipole oscillator strength, it is of interest to study the dipole matrix 

element even in energy regions where it is not directly applicable to transitions. Furthermore, the 

asymptotic high-energy dipole photoionization cross section (oscillator strength) is an interesting 

and much-studied question in itself.  

1 ....ikre ik r= + ⋅ +
GG G G

 

2.2 General single-particle high energy result 

In 1967, Rau and Fano evaluated the behavior of the inelastic scattering form factor in high 

energy region [4]. The form factor is given by: 
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* exp( )f j
j

iq r drψ ψ⋅∑∫
G G

i , (2.2.1) 

where  is the momentum transfer. Note that this form factor is similar in form as the matrix 

element for photoionization,

qG

baM , except for photoionization there is a gradient in the transition 

operator in the matrix element.  

The methodology of Ref.[4] is to expand exp( )jiq r⋅G G  in a sum of products of Legendre 

polynomials, (cos )LP θ and spherical Bessel functions, ( )Lj qr , 

1/ 2
1/ 2( ) [ ] ( )

2L Lj qr J qr
qr
π

+= . 

Plugging this into the integral in (2.2.1) yields a sum of products of the radial parts (2.2.2) and 

angular part (2.2.3), 

2
'

0

( ) ( ) ( )kl L nlR r j qr R r r dr
∞

∫ ,  (2.2.2) 

*
' ' (cos )l m L lmY P Y dθ Ω∫ ,     (2.2.3)     

where L varies from |l-l’| to l+l’. The integral of (2.2.3) is related to the parity selection rule and 

the triangular condition, which gives further constraints to the value of L (L=1,3,5,…). To 

evaluate (2.2.2), note that if q is very large, the Bessel function oscillates very rapidly except at r 

near the origin, and the larger the q is, the smaller this region around the origin is. It is clear that 

integral (2.2.2) decreases with energy due to the smaller region near the origin. The rapid 

oscillation of the spherical Bessel function outside this region causes cancellation in outer region, 
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so that the main contribution to the integral, (2.2.2), arises from the region of small values of r, 

and the bigger the q is, the smaller this region is. To evaluate the explicit relationship, we expand 

the radial parts of the wave functions in a power series in r, 

  , (2.2.4) 1
0 1 ....l l

nlR b r b r += + +

 , (2.2.5) ' ' 1
' 0 1 ....l l

klR f r f r += + +

Then the integral (2.2.2) becomes: 

' ' 1 1 2
0 1 0 1

0

' 2 ' 3 ' 4
0 0 0 1 1 0 0 2 1 1 2 0

( ...) ( )( ...)

( ) ( ) ( ) ( ) ( ) ...

l l l l
L

l l l l l l
L L

f r f r j qr b r b r r dr

f b r j qr dr f b f b r j qr dr f b f b f b r j qr dr

∞
+ +

+ + + + + +

+ + + +

= + + + + +

∫

∫ ∫ ∫ L +

 

= , (2.2.6) ' 2

0

( )l l s
s L

s

C r j qr dr
∞

+ + +∑ ∫

with s i s i
i s

C f b −
≤

≡ ∑ . 

To evaluate (2.2.6), we use [5], 

1

0

1 1( ) 2 [ ( 1)] / [ ( 1)]
2 2

b b b
ar J qr dr q a b a b

∞
− −= Γ + + Γ − +∫  , 

with the conditions Re(a+b)>-1 and Re(b)<1/2 (Re means real part). The latter condition is not 

fulfilled in our case. However, we can still use this formula in the following manner. We factor 

out of Eq. (2.2.6) exp( )rε− , so it becomes 
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' 2

0

( )r l l s
Le r j qr drε

∞
− + + +∫ , (2.2.7) 

whereε  is a small positive number. This allows us to apply Eq.(3), Sec. 13.2 of Ref.5, which 

states that the value of (2.2.7) is proportional to 

2 2 21 1 3( [ ' 3 ), [ ' 2 ], , /[ ])
2 2 2

F l l L s L l l s L q q ε+ + + + − − − − + + .  

Applying the formula in the limit 0ε → , the integral of (2.2.6) then is equal to 

' 1 ( ' 3 ) 1 1( )2 [ ( ' 3 )] / [ ( ' )
2 2

l l s l l s
s

s
C q l l L s L l lπ + + + − + + + ⋅Γ + + + + Γ − − −∑ ]s . (2.2.8) 

From (2.2.8), since we are interested in very large q, we can take the lowest order non-vanishing 

term in (1/q). In this way the general dependence of q is obtained. Since ( )xΓ  equals to an 

infinite complex number if x is a negative integer, and the angular integral, Eq.(2.2.3), will be 

non-zero only if the value of  is even (parity selection rule) and (triangular 

condition), so all terms with even s vanish in Eq.(2.2.8) (because this makes the argument of the 

Γ function in the denominator a negative integer). As a result, the leading term of (2.2.8) is 

determined by s=1 and is .  

'L l l− − 'L l l− − ≤ 0

( ' 4) ,  for ql lq− + + →∞

Similarly, for high energy photoionization case the radial part of the continuum wave 'klR  can be 

expressed as 

' '( ) ~ ( )kl k lR r N j kr    

with normalization factor .  2 1/ 2[2 / ]kN mk π= =



 12

For our case, atomic photoionization, the dipole matrix element is given by              

2
'

0

( ) ( )kl nlM R r R r r dr
∞

= ∇∫ . 

Since i P∇ =
=

,  

2
'

0

2
'

0

2 1/ 2 2
'

0

2 1/ 2 1 2
' 0 1

0

1/ 2 2
'

0

( ) ( )

( )( ) ( )

~ [2 / ] ( )( ) ( )

~ [2 / ] ( )( )( ...)

~ [ ( ) ]

kl nl

kl nl

l nl

l l
l

l s
l

M R r R r r dr

iR r P R r r dr

mk j kr P R r r dr

mk j kr P b r b r r dr

O Pk j kr r dr

π

π

∞

∞

∞

∞
+

∞
+ +

= ∇

=

+ +

∫

∫

∫

∫

∫

=

=

=

 

  1/ 2 ( 3)

(Where 0,1, 2,3.... and play the same role as in (2.7))
1 1~ [ ( ( ' 2 1)) / ( ( ' 2 1))]  .
2 2

l s

s

O Pk k l l s l l s− + +

=

Γ + + + + Γ − − − +
   (2.2.9) 

Again, since the argument of gamma function in dominator can’t be negative integer or zero, and 

we note that for the case of dipole transition 'l l 1− = ± , so the lowest s must be 1. Which ends up 

that the matrix element .  1/ 2 ( 4) ( 7 / 2)~ [ ] ~ [ ]l lM O Pk k O Pk− + − +

As a result, the cross section is  

2

2
( 7 / 2) 2

( 7 / 2)

1~ | |

~

~   .

l

l

M
E

P k
E

E

σ

− + ⋅

− +

∆

∆
 (2.2.10) 
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We can cancel out with  because P is the momentum of photon and its square is 

proportional to the energy transferred. We emphasize that is the asymptotic high energy 

dependence of dipole photoionization using single particle wave functions. 

2P E∆

 

2.3 Changes in high energy behavior induced by interchannel coupling 

   As mentioned above, atomic wave functions can be accurately represented by linear 

combinations of single particle wave functions, both in the discrete and in the continuum. The 

above asymptotic result derived with single-particle wave functions is partially wrong, and we 

must include multi-configuration and interchannel coupling effects in order to correctly predict 

nature of the high energy asymptotic form. The effect of interchannel coupling on high-energy 

atomic photoionization cross section was derived several years ago [2]. For this derivation, it 

turns out to be most convenient to transform the problem into momentum space. The idea is the 

same as the derivation of previous section, but now we work in momentum space.  

The effect of interchannel coupling can be treated in second order perturbation theory in the 

calculation of the dipole matrix element. The transition can be represented by Feynman diagrams 

as follows: 
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The first order term (Diagram (a)) is the single-particle dipole matrix element . 

The second order term is 

| |ifd f d i=< >

 (2)

0 , ' '

( | d | ')[( ' | | ) ( ' | | )]( ) limif
j F f F j f

j f f i V fj f i V jfD
iδ

ω
ε ε ω δ→

≤ >

−
∆ =

− + +∑   , (2.3.1) 

where V is the coulomb potential between electrons andω  is the photon energy (for which we 

use E to represent in previous section). j, f ’, f, i represent the states as labeled in above diagrams, 

'j fε ε−  is the energy difference between these two states. To illustrate, we consider 

np kε→ photoionization. 

The first order, i.e. dipole matrix element is, 

, | | (( ) (npnp kd np ie k O e kε ε φ=< ⋅∇ >= ⋅G
G GG G � ))k  (in momentum space).  (2.3.2) 

For a single-particle matrix element [4], we know that the cross section obtained from the dipole 

matrix element in Eq.(2.3.2) is of order 9/ 2

1
ω

. Now, we estimate those terms in second order 

which have the same or bigger contribution asymptotically than first order. Note that in case (c), 

due to the smallness of ( ' | | )f i V jf , the second order matrix element falls off much faster with 

increasing k than first order. The physical reason is that the large energy transfer to the 
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intermediate states is not likely to happen. However, in case (b) the energy transfer is not big and 

the contribution to the matrix element needs to be included. To evaluate case (b), we separate the 

matrix element into real and imaginary parts. In momentum space, the real part and imaginary 

parts are 

(2) ( ' )'
2 2, 2

( ') 4 'Re ( ) ( ') ( ' | | )
' (| ' |

i k k rn s
np k

k dkD e k n s e np
k k k kε

φ πω 32 )π
− ⋅∆ =℘ ⋅

− −∫
G G G

G

G�GG G G ,  (2.3.3) 

(2) ( ' ) 2 2
' 3, 2

4 'Im ( ) ( ') ( ') ( ' | | ) ( ' )
2 (| ' |

i k k r
n snp k

dkD e k k n s e np k k
k k kε

π πω φ δ
2 )π

− ⋅∆ = ⋅ −
−∫

G G G
G

GGG � G G . (2.3.4) 

In these expressions the plane waves have been normalized to unit amplitude, is the 

Fourier transform of wave function in momentum space, 

' ( ')n s kφ�

℘ is the principal value. Also, in the 

sum over j we only retain the term j=n’s, because, as discussed previously, the value of matrix 

element in form of <n’l’|exp(iqr)|nl> is proportion to E-(9/2+l), so the s state will be the dominant 

term. 

   Due to the form 
( ' )

2| '

i k k re
k k

− ⋅

−

G G G

G G
|

 in the integral of (2.3.3), only when  will there be a 

significant contribution. Then we can expand (2.3.3) in powers of 

'k k
G G
∼

'k k
G G
∼  and retain the lowest 

order. We consider Eq.(2.3.3) as a function ( ')f k , and ( ') ( ) ( ' ) '( ) ...f k f k k k f k= + − + , where 

we ignore the higher order terms because 'k k
G G
∼ . The first term ( )f k  vanishes, and the second 

term becomes 
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     (2.3.5) 

where , and the term is of order since for an “s” state, l=0. Thus 'q k k≡ −
G G

' ( ')n s kφ� 0k ' ( ')n s k
k

φ� is 

of order 1/k, which is in the same order as  in Eq.(2.3.2). Therefore, the final result is that 

Eq.(2.3.5) has the same asymptotic energy, leading to a non-vanishing correction to the single 

particle amplitude in the limit of

( )np kφ�

ω →∞ . For the imaginary part, since Eq.(2.3.4) has an extra 

factor of / 2kπ , the value will be smaller by a factor of 1/k compare to the real part (Eq.(2.3.3)) 

and can be neglected as . It is important to note that the asymptotic energy dependence 

of the second order contribution to the dipole matrix element is independent of the outgoing 

electron. Thus for photoionization of an nl electron with l>1, the term will dominate the dipole 

matrix element asymptotically. 

k →∞

   The conclusion is that for initial state l=0, the cross section will behave like  as 

predicted by Fano & Rau’s formula; but for all l>0 it will behave as due to the 

7 / 2ω−

9/ 2ω−
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interchannel coupling. 

 

2.4 Changes induced by initial state configuration interaction 

From the previous discussion, we have obtained a general formula for dipole matrix element 

which accounts for the effects of interchannel coupling in the high energy limit. However, there 

is still one thing haven’t been included so far; correlation in the initial discrete state which can be 

taken in account via configuration interaction. The effect of this initial state correlation in 

nonrelativistic atomic photoionization in high energy limit is the main result of this thesis. The 

correction due to initial state configuration interaction will be derived theoretically in the section. 

Examples calculated numerically will be presented in the later section. 

 The effect of initial state correlation can best be demonstrated by an example. Consider the 

outer (3p)6 ground state of the Ar atom. Including initial state correlation with the 3p44s2 1S 

configuration leads to a wave function of the form 

|i> = α|3p6> + β|3p44s2>,                     (2.4.1) 

where the expansion coefficient α is close to unity, and β << α. From this initial state, 

photoionizing transitions to the final states 

|f1> = |3p5 εs>, |f2> = |3p5 εd>, |f3> = |3p44s εp>                (2.4.2a,b,c) 
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can occur. The cross section for leaving the Ar+ in the |3p5> state, i.e., the single-particle 

transition, is then (in the dipole-length formulation) simply  

σ(3p5) = |α|2(hν)K[|<i|Σri|f1>|2 + |<i|Σri|f2>|2] = |α|2(hν)KQ[|<3p|r| εs >|2 + |<3p|r| εd >|2], (2.4.3) 

where hν is the photon energy, K is a universal constant, ri is the position vector for the i-th 

target electron, and Q (of order unity) is the product of the overlap integrals of inactive electrons 

reflecting the fact that the orbitals differ somewhat in initial and final states. Except for the 

factors of Q and |α|2, both of order unity, Eq. (2.4.3) is identical to the single-particle expression 

for the photoionization of the (3p)6 subshell. From the discussion of the previous paragraph then, 

it is clear that this cross section behaves asymptotically as E-9/2. Similarly, the cross section for 

leaving the Ar+ in the excited |3p44s> state is  

σ(3p44s) = |β|2[|<i|Σri|f3>|2 ] = |β|2(hν)KQ’[|<4s|r| εp >|2],              (2.4.4) 

where Q’ is the overlap factor (also of order unity) in this case. This cross section to the excited 

state differs from the cross section to the ground state in two important respects: First, the factor 

of |β|2 is very much smaller than unity; second, and more important, is that except for the factors 

Q’ and |β|2, Eq. (2.4.4) is the expression for the single-particle cross section for photoionizing a 

4s electron from a 3p44s initial state. Thus, the discussion of the previous paragraph 

demonstrates that the asymptotic high energy behavior for this photoionization plus excitation 
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(satellite) cross section is E-7/2. At low energy, where the dipole matrix element for both 

transitions are of the same order, σ(3p44s) << σ(3p5) by a factor of order |β|2 which, as discussed 

is very much smaller than unity, i.e., the inclusion of initial state correlation shows that 

photoionization plus excitation is very much less probable than the single particle 

photoionization process, as expected. However, no matter how small |β|2 is, in the limit of 

asymptotically high energy, σ(3p44s), which falls off more slowly than σ(3p5) by a factor of E, 

must dominate. This leads to two dramatic consequences: The high energy limit of the 

photoabsorption cross section of the (3p)6 subshell behaves as E-7/2, not E-9/2 as predicted on the 

basis of interchannel coupling [3]. In addition, in the limit of high energy, the two-electron 

photoionization plus excitation (satellite) cross section dominates over single-particle 

photoionization (main line) cross section. Both of these conclusions differ strikingly from the 

conventional wisdom. 

It is of importance to point out the generality of these effects. From the example of the 

photoionization of the Ar (3p)6 subshell, it is evident that the only condition required for this 

effect to be present for a particular subshell is that there exist configuration interaction of the 

configuration of the subshell with a configuration containing at least one ns electron. This is 

clearly possible for any closed subshell; (nl)4l+2 can always be mixed with (nl)4l(n’s)2. 
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Furthermore, most open-shell configurations can also be mixed.  For example, (np)2 1S can be 

mixed with (n’s)2, (np)2 1D can be mixed with (ndn’s) 1D, etc. As a matter of fact, among the 

(np)q configurations, which yield 12 individual multiplets, only np, (np)2 3P, and (np)3 4S cannot 

be mixed with configurations containing an ns electron. Similar considerations apply to (nd)q 

and (nf)q configurations, along with systems with more than one open shell. Thus, the 

conclusions of the previous paragraph apply to almost all subshells of both ground and excited 

states of all of the atoms of the periodic system. In other words, the new high-energy 

phenomenology detailed above applies to all but a handful cases. 
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3. Method of Calculation 

 

   In the previous section the asymptotic form of the dipole photoionization cross section at 

high energy was derived. It is useful to demonstrate the effects described by explicit calculation. 

In this section we present the background and methodology for the calculations which employ 

Hartree-Fock and multi-configuration Hartree-Fock formulations.     

  

3.1 Discrete state Hartree-Fock 

   The basic idea of the Hartree-Fock theory stems from the variational principle that says that 

the energy functional | H |φ φ< >will have local minimum in the vicinity of the eigenvalues of 

H, subject to the constraint thatφ  is normalized.  

We use this idea to calculate the electron wave functions of a many electron atom. First, we write 

down the Hamiltonian of the whole system. 

 
2

0( )
i j ij

eH H
r≠

= +∑  ,  
2 2

0 (
2

i

i i

p )ZeH
m r

= −∑ .  (3.1.1)   

The trial function is given as 
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1 1 2

1 1

1

(1) (1) (1) .... (1)
(2) (2) ....1

:!
( )

ns s s

s s

s

N
n

φ φ φ φ
φ φ

φ

↑ ↓ ↑

↑ ↓

↑

Φ =    

which is a Slater determinant. Substituting the Slater determinant in (3.1.1), <H> yields 

 
2

0| | | |
i i j ij

eH H
r<

< >= < Φ Φ >+ < Φ Φ >∑ ∑     

      ,  0 2 , 2( ( )) ( ) ( )ii ij ij ij ji
i i j i j

H i H H
< <

= + −∑ ∑ ∑ ,

2

2( )
ij

e H
r
≡

H

 

To obtain the wave functions of each orbital, we vary < >  with Lagrange multipliers to 

include the constraint of orthogonally,             

1 1 ,2 , '( 1 |1 ... | 1 | 2 ... | ' ) 0s nl s s nl n lH s s nl nl s s nl n lδ λ λ λ λ< > + < > + + < > + < > + + < > =  

After varying <H> with respect to each orbital and perform the angular integrations specifically, 

we get the Hartree-Fock equations, which are a set of equations and each equation represents a 

particular sub-shell. The general form is 

 
2

, ' '2 2
'

( 1) 2 2 2[ ( ) ] ( ) ( ) ( )nl nl nl n l n l
n

d l l Z D E P r X P r
dr r r r r

λ+
− + − − − =∑  (3.1.2) 

where D and X are the direct and exchange terms respectively, 

 D= , , ' '
' '

( ) ( ' ', ' '; )k
nl n l

n l k
y k Y n l n l∑∑ r

 X= , ' ' '
' '

( ) ( , ' '; ) ( )k
nl n l n l

n l k
x k Y nl n l r P r∑∑ , 

, ' ' , ' ' , nl n l nl n ly x  are coefficients resulting from angular integrals. And  
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 ' '
' ' ' '1 1

120 0

( ') ( ')1 1( , ' '; ) ( ) ( ') ' ( ') ' '
'

r
k k nl n l

nl n l nl n lk k
r

P r P rY nl n l r P P dr P r r P r dr r dr
r r r

∞ ∞

+ += = +∫ ∫ ∫k . 

   To solve the Hartree-Fock equations, we start with a trial function with hydrogenic orbits and 

iterate until all the orbitals converge. This calculation is done numerically. This form of 

differential equation is guaranteed to have a unique solution by a mathematical theory called the 

contract mapping principle.  

3.2 Discrete state Multi-configuration Hartree-Fock 

   The result obtained above is the single configuration Hartree-Fock wave function. In many 

case the single configuration result is quite good. However, owing to the variantional principle, 

the result of the single configuration Hartree-Fock method can always be improved upon by 

using a multi-configuration wave function. Thus we take a wave function of the form i icφΦ =∑ , 

where each of the iφ  are Slater determinants as defined above. Then, with the constraint that 

 to insure normalization, the variation principle invoked leading to the 

multi-configuration Hartree-Fock equation. 

2| | 1ic =∑

 

3.3 Continuum Hartree-Fock 

Since we are dealing with photoionization problem, in addition to discrete state, we need the 

wave function of the outgoing electron also. One can immediately infer that the way of getting 
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the wave function of outgoing electron is just the same as discrete case, because Hartree-Fock 

method doesn’t specify or limited to which types of wave functions should be used. In equation 

(3.1.2), by replacing  with continue wavenlP lPε  we can still solve the wave function. However, 

there is one problem- the normalization. The continuum is a non-normalizable wave functions; it 

is normalize on a δ-function scale. In order to get the continue wave normalized, another 

theoretical approach must be employed. Defining the deviation  from the coulomb field in 

the Hartree-Fock equation for a continuum electron,

( )u r

lPε ,  

    (3.3.1) '' ( ) ( ) ( ) 0l lP r A r P rε ε+ =

where 2

2 (( ) ( ) l lA r u r
r r

ε +
= + + −

1) , 

with limits on u(r), 

 
,  ( ) 0.

2( 1)0,  ( ) .

r u r
Zr u r
r

→∞ →
−

→ →
 

Equation (3.3.1) has normalized solution: 

 
1/ 2( ) ( ) sin ( )

  '( )
lP r x r

where x r
ε π θ

θ

−=
=

  (3.3.2) 

Substituting (3.3.2) into (3.3.1), we get: 

2
2 1/ 2 1/ 2

2 2

3 ' 1 ''( ) ( ) ( )
4 2

d xx A r x x A r
dr x x

−= + = + −
x  

For 0ε > , and large enough r, 1/ 2 1/ 2,  and ,A x rε ε θ ε δ= = = +  

So that  1/ 2
1/ 2 1/ 4

1( ) sin( )l rP r rε ε δ
π ε→∞⎯⎯⎯→ +   (3.3.3) 
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For 0ε = , and large enough r: 2 ,   2 / ,   8A x r r
r

θ δ= = = +  

So that  
1/ 4

0 1/ 2 1/ 4 sin( 8 )
2l r

rP r δ
π→∞⎯⎯⎯→ +    (3.3.4) 

From (3.3.3) and (3.3.4), we have the asymptotic wave function for the continuum state. So 

suppose ( )lP rε is the un-normalized continuum wave obtained from the numerical solution of the 

Hartree-Fock equation; we can calculate the normalization constant C via dividing the numerical 

function by the analytic function (above) in the asymptotic region, 

      ( ) / ( )l lP r P r Cε ε = . 

 

3.4 Length and Velocity Formulations 

Now we have all the wave functions we need, the next step is to calculate the matrix element. 

The dipole matrix is given by 

ˆ | |

ˆ       | |   .

ba b a

b a

M
i P

ε

ε

= ⋅ < Φ ∇ Φ >

= ⋅ < Φ Φ >
G

=
  (3.4.1) 

Using the fact that 

[ , ] r iH r i P
t m

∂
= − = −

∂

G G=G =  

So that [ , ]imP H=
G G

=
r . 

Substituting into (3.4.1) gives 
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2

2

ˆ | [ , ] |

ˆ       ( ) | |

ˆ       | |   .

ba b a

b a b a

ba
b a

mM H r

m E E r

m r

ε

ε

ω ε

= − ⋅ < Φ Φ >

= − ⋅ − < Φ Φ >

= − ⋅ < Φ Φ >

G
=

G
=

G
=

           (3.4.2) 

The term  can be calculated by another way. From equation (3.4.1) and middle 

line of (3.4.2) 

| |b ar< Φ Φ >
G

2

ˆ | |

ˆ      ( ) | |  ,

ba b a

b a b a

iM P

m E E r

ε

ε

= ⋅ < Φ Φ >

= − ⋅ − < Φ Φ >

G
=

G
=

 

1  | | | | | |b a b a b a
b a ba

i ir P
E E m mω
− P∴ <Φ Φ >= < Φ Φ >= − < Φ Φ
−

>
G G=G . (3.4.3) 

Normally we use  to representbar | |b ar< Φ Φ >
G , and  to represent .  is 

the so called dipole length matrix element, and  is the dipole velocity matrix element. The 

two formulations must give exactly the same result if the wave functions are exact. In numerical 

calculations, using approximate wave functions and comparing these two formulations’ results 

give us an idea as to the accuracy of the calculation.  

baP | |b aP< Φ Φ >
G

bar

baP
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4. Calculated Results 

 

In order to verify the general derivation, we have performed calculations on the 

photoionization of Ge 4p2 1P and Sn 5p2 1P. We have used the mchf (multiconfiguration 

Hartree-Fock) code developed by Charlotte Froese Fisher[6] to generate the initial states and 

ionic core wave functions for the cases of intends. Then we used our own photoionization code 

to calculate the continuum wave function and cross section. In each case we have considered the 

initial np2 state configuration interaction with an (n+1)s2 configuration, 5s2 for Ge and 6s2 for Sn. 

These cases were chosen because the coefficients of the (n+1)s2 configuration, in each case are 

significant, 0.069 for Ge and 0.066 for Sn. Calculations were performed for photoionization to 

the 4p and 5s states of Ge+, and the 5p and 6s states of Sn+. The calculations were performed up 

to an energy of 90,000 Ryd in both length and velocity formulations.  

The results of our calculation for Ge going to Ge+ 4p and 5s in the energy range up to 1,000 

Ryd are shown in FIGs. 1 and 2. For the photoionization to Ge+ 4p, final states 4 p sε  and 

4 p dε  were considered, while for transitions to Ge+5s, only the 5s pε  final state was necessary. 

Two points emerge from these results. First, over the energy range shown, the single-particle 
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transition to Ge+4p has a much larger cross section than that of the two-particle transition to 

Ge+5s. Second, we also note that, while generally good agreement between dipole-length and 

dipole-velocity results is seen for both cross sections, at the higher energies the length results 

start to oscillate. This is a numerical difficulty owing to the fact that the dipole-length 

formulation emphasizes the large-r region where the wave functions at high energy are less 

accurate than the intermediate-r region which is important for the dipole-velocity formulation. 

As a consequence, for still higher energies, we consider only the dipole-velocity form of the 

matrix element.  

The calculated results going to 90,000 Ryd are shown for photoionization to Ge+4p and 

Ge+5s in FIGs. 3 and 4 respectives. Only dipole-velocity results are shown for reasons discussed 

above. The note-worthy point about these results is that, at the higher energies, 4 pσ  is no longer 

much larger than 5sσ - in fact they become comparable. This is in agreement with the derivation 

presented above that showed the 4 pσ  decreases with increasing energy more rapidly than 5sσ . 

This can be seen more clearly in the ratio, 5 4/s pσ σ , shown in FIG.5. Here, at the higher 

energies, it is seen that the ratio increases linearly, as E. This shows that 4 pσ  falls off more 

quickly than 5sσ  by just one power of E; exactly as our derivation predicted. As a matter of fact, 

at the highest energy considered, the ratio is more than 2, indicating that we have reached the 
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point where 5sσ  dominates; the two-electron transition dominates the single-electron transition. 

To show that the case of Ge 4p2 photoionization is not an isolated one, analogous results are 

also presented for Sn 5p2 photoionization, leaving Sn+ in the 5p an 6s states in FIG.6-10. 

Looking at these cross sections and ratios confirms entirely what was learned from the Ge case. 
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FIG.1    Photoionization cross section of Ge 4p2 1S leaving Ge+ in the 4p state in length 

and velocity formulation. 
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FIG.2    Photoionization cross section of Ge 4p2 1S leaving Ge+ in the 5s state in length 

and velocity formulation. 
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FIG.3    Photoionization cross section of Ge 4p2 1S leaving Ge+ in the 4p state in 

velocity formulation. 
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FIG.4    Photoionization cross section of Ge 4p2 1S leaving Ge+ in the 5s state in 

velocity formulation. 
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FIG.5    Ratio of photoionization cross section for Ge+ 5s production to Ge+ 4p 

production. 



 35

0 200 400 600 800 1000
1E-6

1E-5

1E-4

1E-3

0.01

      Sn
 Length
 Velocity

σ 5
p(M

b)

Energy (Rydbergs)

 

 

 

 

 

 

 

FIG.6    Photoionization cross section of Sn 5p2 1S leaving Sn+ in the 5p state in length 

and velocity formulation. 
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FIG.7    Photoionization cross section of Sn 4p2 1S leaving Ge+ in the 6s state in length 

and velocity formulation. 
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FIG.8    Photoionization cross section of Sn 5p2 1S leaving Sn+ in the 5p state in 

velocity formulation. 
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FIG.9    Photoionization cross section of Sn 5p2 1S leaving Sn+ in the 6s state in 

velocity formulation. 
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FIG.10    Ratio of photoionization cross section for Sn+ 6s production to Sn+ 5p 

production. 
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5. Conclusions 

   In this work we have derived the definitive result for the asymptotic high-energy dipole 

photoionization cross section/ oscillator strength, a problem that was thought to be solved in the 

1930’s. We have found that for almost all cases, the high-energy behavior is E-7/2. Further, the 

dominant transition, at high energy, in almost all cases, is a satellite two-electron transition, 

photoionization plus excitation. Our theoretical predictions have been verified by direct 

calculation for Ge 4p2 and Sn 5p2 photoionization up to an energy of 90,000 Ryd. This is 

expected to be a general phenomenon over the entire periodic table. 
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