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A.  
 

B.  
 
Figure 3.3.8 Different side chain orientation of same residue in two different space 
groups (P21212 and P212121) for PRV82A/SQV complexes.  
Positions in P212121 is colored in black while those of P21212 in grey. 
A. Residues around Lys55. 
B. Residues around Glu21’. 
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Discussion 

These new atomic resolution structures have revealed details of the PR-saquinavir 

interactions and the structural changes in the presence of mutations or between different 

space groups. The PR interactions with saquinavir, the first FDA-approved anti-HIV 

drug, can be compared to those with peptide analogs or more recent clinical inhibitors.   

There were only seven direct and two water-mediated hydrogen bonds between 

saquinavir and PR, and they were focused at the P3-P2 end of saquinavir. The van der 

Waals interactions appeared to be the major contribution to the PR affinity for saquinavir. 

The binding affinity is determined by the Gibbs energy equation, so it depends on the 

enthalpy (∆H) and entropy (∆S) changes. Either making ∆H more negative or ∆S more 

positive will improve the PR-inhibitor binding affinity.  Saquinavir binding to HIV-1 PR 

is enthalpically unfavorable and is driven by the large favorable entropy change 

(Velazquez-Campoy et al. 2000). The big rigid hydrophobic groups of saquinavir tend to 

maximize the gain in desolvation entropy with a small loss in conformational entropy due 

to the burial of these hydrophobic groups. Recent antiviral PR inhibitors, such as UIC-

94017, were designed to enhance the strong and favorable hydrogen bonds with the main 

chain atoms of the PR. UIC-94017 shows an enthalpically favorable binding to PR with 

less dependence on the entropy. This design may also improve the specificity and provide 

better water solubility.  Ideally, the inhibitor design should combine the two approaches, 

maintaining good hydrogen bonds with main chain atoms and improving the van der 

Waals contacts in the PR subsites, in order to provide tight binding and more effective 

inhibitors. In agreement with (Velazquez-Campoy et al. 2000), balancing the 
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enthalpically favorable polar interactions and desolvation entropy induced by 

hydrophobic groups will optimize the PR-inhibitor binding affinity and specificity.  

Comparison of the complexes of saquinavir with the mutants has helped to 

understand drug resistance. Shifts of 0.3 and 0.5 Å on the alpha carbon atom of the 

mutated residue were observed for PRI84V and PRV82A, respectively, compared to the 

position in wild type PR. These changes did not significantly alter the PR-saquinavir 

interactions. The major difference at the active site was that the hydroxyl group on 

saquinavir was located more asymmetrically between the side chains of catalytic Asp25 

and 25’ in the mutant complexes. The observed minor structural changes in saquinavir 

complexes were consistent with the closely similar inhibition constants of mutants and 

PR. In contrast, other inhibitors have shown reduced inhibition and interactions with 

mutant compared to wild type PR. In these saquinavir complexes, the mutation from 

bigger to smaller amino acids allows more space to accommodate the bigger side chain at 

P1’ of saquinavir.  

The P1’ decahydroisoquinoline group of saquinavir is very big for the S1’ binding 

site. Compared to PR/UIC-94017, residues 79-82 have moved away from the active site 

while the residues 79’-82’ have adopted two conformations in order to accommodate the 

big groups of saquinavir. The analysis further reveals that the 80s loop is intrinsically 

flexible. The flexibility of 80s loop was observed in all three structures, PR, PRV82A and 

PRI84V, which suggested that the structure of the 80s loop was more dependent on the 

specific inhibitor than on the mutations. Moreover, shifts of the 80s loop were observed 

for structures in both the P21212 and P212121 space groups, suggesting that these 
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structural movements were evidence of the flexible nature of the PR rather than a 

consequence of crystal lattice packing effects.  Similar flexibility was described for the 

9X mutant structure (Munshi et al. 2000).  Other flexible areas in the protease have been 

suggested, such as the residues 15-21, the flap region  and both termini (Rose et al. 1998; 

Swairjo et al. 1998; Ishima et al. 1999; Zoete et al. 2002). The flexibility of the PR 

structure may play an important role in its function in viral replication (Piana et al. 2002a; 

Piana et al. 2002b). Analysis of the non-active-site mutations, for example, mutations in 

the flap or dimer interface, has shown that altering these flexible regions of HIV-1 PR 

can influence the binding of inhibitors or substrates (Olsen et al. 1999; Liu et al. 2005). 

The sub-atomic resolution structure of PRV82A/SQV has provided greater 

structural detail and more accurate atomic positions to understand the subtle structural 

changes induced by one single mutation. The results presented here will help better 

understand the molecular mechanisms of drug resistance and will be useful in developing 

more potent PR inhibitors. 
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3.4 Object-oriented protein structure database integrated with analysis functions 

About 240 HIV-1 protease structures are now available in PDB. In our lab, 50 or 

more high-resolution crystal structures have been finished and more are still in progress.  

It will be beneficial to design a powerful program to help organize these data as well as 

automate the detailed structural analysis. Thus, an object-oriented HIV-1 protease 

structure database was designed and tested. The 50 structures solved by our lab are the 

primary data source for the database, although there is no limitation to cover other data. 

The whole design is aimed to provide variant basic functions of structural analysis with a 

powerful and flexible computing architecture.  

 

Data format and syntax 

HIV-1 protease structure data can be fully expressed by PDB format (PDB 2002). 

Beside the general data available in PDB file, we extracted a few important items of 

information to store in a relational table and designed a search engine based on the 

combination:  

a. Category: Each structure file will contain one protein component. It will be a 

particular kind of protein, for example, HIV-1 protease.  

b. Protein: For each kind of protein, it can be either wild type or different mutant. 

c. Inhibitor: For this test set of HIV-1 protease structures, the inhibitor is a substrate 

analog peptide with 7-11 amino acids or a synthesized small compound.  Currently, 

there are 16 different inhibitors. 
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d. Space group: As some protein/inhibitor complexes can crystallize in different 

space groups, this information is added to identify them. 

e. PDB ID: Each protein structure deposited to the Protein Data bank is assigned a 

unique four-digit ID code. The ID is unique so it can be used as a primary key to 

search the database. However, the ID code itself does not provide any information 

about the kind of protein or inhibitor involved and some structures which have not 

gone through this stage will not have an ID. 

f. Year: Similar to space group, different research groups may have solved the 

structure for the same complex, or later on, a better resolution structure may be solved 

and updated for the same complex. The year was added to help distinguish them.  

Each PDB file is saved in database with above information in a row (called a 

record). In order to make the design concise, each record for one structure was named by 

the defined naming syntax. Each available property described above was presented by 

one unique key and they are: C for category, P for protein, I for inhibitor, K for PDB ID, 

S for space group and Y for the year of publication. The value for each key is enclosed by 

a parenthesis and directly follows the key. A double mutant is indicated by two mutations 

separated by underscore. For instance, a sample string of one record is given as 

C(HIVPR)-P(D25N_V82A)-I(SQV)-K(1MTB). By the name, it tells that this is a HIV-1 

protease double mutant D25N and V82A in complex with inhibitor saquinavir, which is 

coded as 1MTB in PDB. 
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Data searching, synchronization, storage and view 

The search engine is used to narrow down the targets to be analyzed. Combined 

search criteria are provided to filter out needed files. If no criterion is given, all files will 

be selected. Once potential targets are defined, the system will automatically synchronize 

the target data between backend database and the client. There will be a folder in client 

program package which contains all the PDB files synchronized from the database. The 

PDB files are named by the syntax described above according to the database 

information. For the convenience of analysis, each PDB file will be parsed and 

represented by a PDB object, and all the PDB objects will be saved into a vector for 

future use. The PDB object reflects the construction of PDB file and was stored as a tree 

structure, as shown in Figure 3.4.1. The PDB, chain, residue and atom are all defined 

objects. The upper layer object has at least one lower layer object, and in most cases, it 

contains a series of lower layer objects. In other word, upper layer object can be 

considered as a container for lower layer objects. Therefore, they embody a parent-child 

relationship. The Model-Control-View (MCV) strategy was adapted to display the HIV-1 

protease structure data in this program. All the data are saved in a vector of PDB objects.  

After all the target files been stored in local computer and parsed as objects, they 

are arranged and displayed also as a tree on user’s interface. Generally, each structural 

data runs across 6 levels or less in a tree and the last 4 level of nodes/leaves correspond to 

objects PDB, chain, residue and atom. The root lists all available kinds of view mode 

which can be used to display the tree and the arrangement of the second layer is 

determined once a view mode is chosen. Three view modes are set up in the system; and  
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Figure 3.4.1 Hierarchical object composition. 
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they are View by Category, View by Proteins and View by Inhibitors. The mode of View 

by Category will divide all target structure files into different kinds of protein. This 

function is not fully developed and not applied now since only HIV-1 protease structures 

are stored. The mode of View by Proteins will classify all structures according to HIV-1 

protease/mutant type, while the mode of View by Inhibitors will display file names by 

inhibitor type. 

 

Analysis functions integrated within database 

1. Data display and manipulation 

Each PDB object will appear in the third layer of display tree with a link to text or 

graphic display choice. User can select to open the whole PDB text file to gather the 

detailed information needed, such as the structural factors, or open it with Rasmol (Sayle 

et al. 1995) to view the 3D structure and use the command lines for further manipulation. 

 

2. Distance calculation 

a) Calculation among different levels of objects 

As mentioned in the Methods, the interactions between protease and inhibitor are 

generally characterized by the distances between atoms.  Two atoms with separation of 

about 4 Å are considered to form good van der Waals interactions, while those of 2.6 to 

3.2 Å in distance and between a hydrogen bond donor atom and a hydrogen bond 

acceptor atom are hydrogen bonds. The designed program employs the domain 

knowledge and applies the polymorphism to the calculation. Regularly only two atom 
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objects can be taken into the distance calculation. To make this function more efficient, 

different layers of objects are allowed to be selected, such as a residue and a few atoms. 

Once an object is selected, the program will automatically go to the lower level until the 

leaf of atom object and take all the atoms within that object. Distances will be measured 

between every pair of atoms out of all the atoms within two chosen objects. As shown in 

Table 3.4.1, the system can support 9 kinds of combination of objects. The calculated 

results will be filtered before being displayed on the screen. The filter is set up by two 

numbers: minimum and maximum distances which are specified by the user. Afterwards, 

the user can choose to store the results in excel format with user-defined file name for 

future use. 

b) Group calculation 

As we are studying the subtle changes induced by different mutant or inhibitor, 

sometimes it will be interesting to compare the interaction between the same two atoms 

from different complexes, for example, to examine the geometry of two catalytic Asps 

25/25’.  

Since all the HIV-1 protease structure files from our lab have the same kind of 

construction, it is possible to simplify this process. A group calculation is designed to 

allow user to input two atom objects within one PDB first, and then put a collection of 

selected PDBs that the user is interested in into the group. The system will retrieve the 

types and structure positions of two input atoms and apply the calculation to the structural 

equivalent atoms for all input PDBs. Again, the results can be saved as an excel file.  
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Table 3.4.1 Calculation among different levels of objects. 
 

 Object1 Object2 Definition 
1 Atom Atom  
2 Atom Residue  
3 Atom Chain  
4 Atom PDB  
5 Residue Residue  
6 Residue Chain  
7 Residue PDB  
8 Chain Chain  
9 Chain PDB  
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An example of distances between OD1 of Asp25 and OD1 of Asp25’ in selected 

complexes is shown in Table 3.4.2. 

 

3. Structure superimposing and visualization 

Two structures can be compared by superimposing their main chain atoms using 

program FUD. The system provides the superimpose function by calling FUD program. 

A maximum of 8 HIV-1 protease structures can be selected to superimpose on one same 

reference file at the same time. For each pair of calculation, one statistics file and one 

superimposed PDB file will be generated and stored. For comparison convenience, these 

results can be visualized in one graph generated by result files. In this graph, the RMS 

deviations on Cα will be plotted against each residue. The global RMS deviation for each 

pair of superimposed structures will be shown at the top corner of the graph (Figure 

3.4.2).  User can also choose to display individual statistics file in text.  

 

Application and future approaches 

 This database has been applied to the analysis of UIC-94017 complexes and 

saquinavir complexes discussed in 3.2 and 3.3. It provides an efficient tool to 

superimpose and calculate interactions, as well as to present more complete and 

quantified data to combine with the 3D structure visual program for analysis of detailed 

structural differences.  For future development, more analytical tools can easily be 

incorporated into the database, such as a 3D structure visual program O or a more general 

superimposition program. In that case, the superimposing will no longer be limited to the  
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Table 3.4.2 Distances between OD1 of Asp25 and OD1 of Asp25’ in selected 
complexes.  
 

ATOM1 ATOM2 DISTANCE
P(I84V)-I(SQV)-S(P21212).ent: 
A:ASP:25:OD1:1.0 

P(I84V)-I(SQV)-S(P21212).ent: 
B:ASP:25:OD1:1.0 2.66

P(I84V)-I(SQV)-S(P212121).ent: 
A:ASP:25:OD1:1.0 

P(I84V)-I(SQV)-S(P212121).ent: 
B:ASP:25:OD1:1.0 2.85

P(V82A)-I(SQV)-S(P21212).ent: 
A:ASP:25:OD1:1.0 

P(V82A)-I(SQV)-S(P21212).ent: 
B:ASP:25:OD1:1.0 2.82

P(V82A)-I(SQV)-S(P212121).ent: 
A:ASP:25:OD1:0.55 

P(V82A)-I(SQV)-S(P212121).ent: 
B:ASP:25:OD1:0.55 2.78

P(V82A)-I(SQV)-S(P212121).ent: 
A:ASP:25:OD1:0.45 

P(V82A)-I(SQV)-S(P212121).ent: 
B:ASP:25:OD1:0.45 2.86

P(WT)-I(SQV)-S(P212121).ent: 
A:ASP:25:OD1:1.0 

P(WT)-I(SQV)-S(P212121).ent: 
B:ASP:25:OD1:1.0 2.91

P(I50V)-I(SQV).ent: 
A:ASP:25:OD1:1.0 

P(I50V)-I(SQV).ent: 
B:ASP:25:OD1:1.0 2.87

P(L90M)-I(IDV)-K(1SDU).pdb: 
A:ASP:25:OD1:1.0 

P(L90M)-I(IDV)-K(1SDU).pdb: 
B:ASP:25:OD1:1.0 2.79

P(V82A)-I(IDV)-K(1SDV).pdb: 
A:ASP:25:OD1:1.0 

P(V82A)-I(IDV)-K(1SDV).pdb: 
B:ASP:25:OD1:1.0 2.67

P(WT)-I(IDV)-K(1SDT).pdb: 
A:ASP:25:OD1:1.0 

P(WT)-I(IDV)-K(1SDT).pdb: 
B:ASP:25:OD1:1.0 2.64

P(G86A)-I(TMC114).pdb: 
A:ASP:25:OD1:1.0 

P(G86A)-I(TMC114).pdb: 
B:ASP:25:OD1:1.0 2.49

P(G86S)-I(TMC114).pdb: 
A:ASP:25:OD1:1.0 

P(G86S)-I(TMC114).pdb: 
B:ASP:25:OD1:1.0 2.58

P(D30N)-I(TMC114).pdb: 
A:ASP:25:OD1:1.0 

P(D30N)-I(TMC114).pdb: 
B:ASP:25:OD1:1.0 2.64

P(I50V)-I(TMC114).pdb: 
A:ASP:25:OD1:1.0 

P(I50V)-I(TMC114).pdb: 
B:ASP:25:OD1:1.0 2.79

P(I84V)-I(TMC114)-K(1S6S).pdb: 
A:ASP:25:OD1:1.0 

P(I84V)-I(TMC114)-K(1S6S).pdb: 
B:ASP:25:OD1:1.0 2.59

P(V82A)-I(TMC114)-K(1S65).pdb: 
A:ASP:25:OD1:1.0 

P(V82A)-I(TMC114)-
K(1S65).pdb:B:ASP:25:OD1:1.0 2.87

P(WT)-I(TMC114)-K(1S6G).pdb: 
A:ASP:25:OD1:1.0 

P(WT)-I(TMC114)-K(1S6G).pdb: 
B:ASP:25:OD1:1.0 2.85
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Figure 3.4.2 An example superimposing result for saquinavir complexes. 



141 

 

same kind/length of protein but based more on the structural similarity. A summary table 

of certain information may be generated for selected PDBs. Furthermore, it can be 

applied to proteins other than HIV-1 protease, for example, a large number of caspase 

structures are being studied in our lab. 
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4. General summary 

HIV-1 PR is the most widely studied enzyme in the history of protein 

crystallography.  The valuable structural information was used to guide the development 

of protease inhibitors; and indeed, these efforts have illustrated the enormous potential 

and utility of the rational structure-based drug design strategy. However, drug resistance 

is still a big obstacle in treating AIDS and its mechanism is not fully understood. To 

better understand the molecular basis for the altered enzymatic properties and the 

resistant phenotype and design more effective PIs to combat drug resistance, 

crystallographic and kinetic studies were applied to three series of complexes:  

I. wild-type HIV-1 protease (PR) and drug-resistant mutants, PRV82A, and PRI84V, in 

complex with substrate analogs of five natural cleavage sites (CA-p2, p2-NC, p6pol-

PR, p1-p6 and NC-p1);  

II. PR, PRV82A, and PRI84V with current drug saquinavir;  

III. PR, PRV82A, PRI84V, PRD30N and PRI50V, with latest antiviral inhibitor design UIC-

94017 (TMC-114). 

The drug-resistant mutations V82A, I84V, D30N and I50V are all involved in forming 

the substrate-binding site. A total of eighteen crystal structures have been refined at 

resolutions of 0.97-1.60 Å. Observed structural changes were mostly consistent with the 

relative inhibition data.  
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Comparison of different inhibitors 

For the first series, eight crystal structures of PR, PRV82A and PRI84V were 

determined with reduced peptide analogs that represent the CA-p2, p2-NC, p6pol-PR, p1-

p6 and NC-p1 cleavage sites to provide details of the PR interaction with reaction 

intermediates and better understanding of the substrate specificity. Substrate analogs 

bound to PR through amino acid positions P4 to P4’ (P5 to P5’ for longer analogs p6pol-

PR and p1-p6). Differences in the PR-analog interactions depended on the peptide 

sequence and were consistent with the relative inhibition. Analog p6pol-PR formed more 

hydrogen bonds of P2Asn with PR and fewer van der Waals contacts at P1’Pro compared 

to those formed by CA-p2 or p2-NC in PR complexes. The P3Gly in p1-p6 provided 

fewer van der Waals contacts and hydrogen bonds at P2/P3 and more water-mediated 

interactions. The structures suggested that the binding affinity for mutants was modulated 

by the conformational flexibility of P1 and P1’ side chains in the substrate analogs.  

Unlike the longer substrate analogs which have more extended interactions within 

PR subsites S4 to S4’, the clinical inhibitors maximize the contacts within S2 to S2’. The 

UIC-94017 is a potential next generation drug in clinical trial while saquinavir, indinavir 

and amprenavir have been used clinically for many years.  All four inhibitors (UIC-

94017, saquinavir, indinavir and amprenavir) have the same central hydroxyl group 

which formed strong hydrogen bonds with all four carboxylate oxygens of catalytic 

Asp25 and Asp25’. Besides these four contacts, seven direct hydrogen bonds were 

established between PR and UIC-94017, whilst three direct hydrogen bonds and three 

water-mediated interactions (except the one water between the PR flaps and the inhibitor) 
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for PR and indinavir. Three direct hydrogen bonds and one water-mediated interaction 

were observed between PR and only one end of saquinavir, and nevertheless, only two 

direct hydrogen bonds were observed for PR and amprenavir. The comparison showed 

that although UIC-94017 was smaller than the substrate analogs, it more closely mimics 

many of the natural substrates in the interactions with the PR main chain atoms than 

observed for the other clinical inhibitors, especially the additional polar interactions with 

the main chain atoms of Asp 29 and Asp 30.  These interactions resembled those of the 

P2’ Gln or Glu side chain of peptide analogs and have been proposed to be critical for the 

potency of this compound against multiple PI resistant HIV isolates.  On the other hand, 

hydrophobic interactions were the major force for saquinavir binding. 10% more van der 

Waals interactions were observed for PR/SQV complex than in PR/UIC-94017.  In brief, 

the design of early protease inhibitors, such as saquinavir, and the latest compound, UIC-

94017 has different approaches. The earlier inhibitors are more similar to nature 

substrates. They mimic the hydrophobic side chains of substrate and tend to maximize the 

gain in desolvation entropy with a small loss in conformational entropy due to the burial 

of these big hydrophobic groups when they binds to protease.  The latter approach of 

producing an enthalpically favorable process with less dependence on the entropy by 

introducing polar groups at inhibitor positions to form strong hydrogen bonds with the 

main chain of protease may improve the specificity, be less susceptible by the mutations 

and provide better water solubility.  Ideally, the inhibitor design should combine both 

approaches, balancing the enthalpically favorable polar interactions and desalvation 
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entropy induced by hydrophobic groups, in order to provide tighter binding and more 

effective inhibitors. 

 The comparison of structures with saquinavir to those of UIC-94017 also showed 

an adjustment of the 80s loop (residues 79-82), which helped protease to accommodate 

the large groups of saquinavir. Analysis suggested that this 80s loop was intrinsically 

flexible and its conformation depended more on the nature of the inhibitor rather than the 

mutations in this loop.   

 

Comparison of different mutant 

Structural and kinetic studies have suggested that mutation V82A, which is 

common in drug resistant clinical isolates, had least effect on the inhibition of substrate 

analogs, saquinavir and UIC-94017. The reason is that PRV82A was able to compensate 

for the loss of interactions with inhibitor caused by mutation by the shifts of the backbone 

of Ala82/82’. Furthermore, the complexes of PRV82A/substrate analogs showed smaller 

shifts relative to PR, but more movement of the peptide analogs, compared to complexes 

with clinical inhibitors. Another common drug-resistant mutation I84V had only the 

minor effect on the inhibition of substrate analogs, saquinavir and UIC-94017. There 

were less movement observed for PRI84V structures except for the saquinavir complex 

(0.3 Å for the alpha carbon of Val84), so PRI84V simply lost favorable van der Waals 

interactions with inhibitor compared to PR. The structural comparison of these two 

mutant complexes suggested that substrate analogs have more flexibility than the drugs to 

accommodate the structural changes caused by mutation, which may explain how HIV 
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can develop drug resistance while retaining the ability of PR to hydrolyze natural 

substrates. Moreover, in saquinavir structures, the mutation from bigger to smaller amino 

acids allowed more space to accommodate the larger group at P1’ of saquinavir rather 

than alter the protease-inhibitor interactions as seen in other inhibitors complexes. 

In PRI50V, the UIC-94017 lost favorable hydrophobic interactions with the side 

chain of Val50, while partial compensating conformational change had been observed on 

Val50’ main chain. Similarly, in PRD30N the inhibitor had a water-mediated interaction 

with the side chain of Asn30/30’ rather than the direct interaction observed in PR. In 

addition, the kinetic measurements had shown that PRD30N was only 10% as active as the 

wild type protease on the fluorescent substrate, while PRI50V was 40% as active; and the 

potency of UIC-94017 was reduced by about 30 and 9-fold, respectively, for PRD30N and 

PRI50V.  Both structural and kinetic studies implied that the mutations PRI50V and 

especially PRD30N might be selected by the virus for resistance to UIC-94017.  

Consequently, UIC-94017 is not expected to be a good salvage therapy candidate for the 

patients who have failed nelfinavir treatment due to the existence of the viral strains that 

already contain the D30N mutation in the protease.  

In summary, the development of drug-resistance to PR inhibitors is complicated 

and can arise by more than one mechanism. No direct relationship was observed between 

relative catalytic activity, inhibition, and structural stability of the different PR mutants.  

Changes in any one of these parameters may cause drug resistance. Selected 

compensatory mutations may be developed in virus after the initial mutation which 

lowers the affinity for the inhibitor or the catalytic activity or dimer stability, to restore 
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the optimal polyprotein processing and replication capacity in the presence of PR 

inhibitor.  

 

Advantage of atomic resolution data 

With the high resolution crystal structures, the atom positions were more 

accurately defined. Three shells of water molecules, solvent ions (such as sodium ion) 

and molecules (such as glycerol and DMSO) were resolved. The 0.97 Å resolution data 

for the PRV82A/SQV complex had shown more residues with alternative conformations 

than seen before, especially the two conformations were observed for the active site 

residues 24-26 and 24’-26’ and they were correlated with the alternate conformations of 

saquinavir. The hydroxyl group on the saquinavir had similar arrangement and distances 

to catalytic Asp25/25’ in both conformations.  These precise positions of the active site 

residues may have not been correctly modeled before in other structures with alternate 

conformations of inhibitor.  Thus, the sub-atomic resolution data has helped to describe 

the detailed geometry of the enzyme active site.  

Furthermore, the 1.10 Å crystal structure of PRV82A with one orientation of UIC-

94017 showed an unusual distribution of electron density for the catalytic aspartate 

residues, which may be related to the reaction mechanism. A streak of positive density 

was observed between the hydroxyl group of the inhibitor and the inner and closest OD1 

of Asp 25’ (2.5 Å separation of OH and OD1), which might indicate a hydrogen atom.   

However, the observation can hardly be proved only by the extra electron density. 

Further analysis of the data by charge density analysis or quantum calculations will be 
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necessary to understand the distribution of electrons at the active site. Yet, the difference 

densities suggested a more complex mechanism than protonation of a carboxylate 

oxygen. 

 

Advantage of the database incorporated with analysis programs 

For proteins that serve as drug-design targets, it is important to study protease-

inhibitor interactions accurately, completely and in as many complexes as possible. 

Careful analysis of the wild-type as well as drug-resistant mutants of HIV PR may also 

help in creating new drugs that would overcome the problem of resistance. The HIV-1 

protease structure database offers an easy way to organize data and provides specialized 

tools to automate the superimposing and distance calculation. The presence of such tools 

and the ability for future development will help in better understanding the structural 

phenomena related to HIV PR. 

 

Other designed inhibitors under development 

 With the goal to design more effective protease inhibitors to combat drug 

resistance, a series of similar compounds based on the structure of UIC-94017 had been 

synthesized by Dr. Arun Ghosh’s lab and used for kinetic and crystallographic studies (as 

listed in Appendix I) with HIV-1 PR.  The data for UIC-98065 and UIC-00072 has been 

completed. The detailed structural information would help evaluate the design goal and 

provide valuable reference for further drug development. 
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Overall, the large amount of kinetic and crystallographic studies has increased the 

knowledge of enzyme function, structure, and catalytic mechanism and led to a better 

understanding of how these drug-resistance mutations exert their effects at a molecular 

level. These insights are valuable for the design of new drugs and therapeutic strategies to 

combat drug resistance to AIDS. 
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APPENDIX I. List of all HIV-1 protease structures I have studied. 

Inhibitor PR Reso. (Å) Rwork Rfree Occu. Of 
Inh. Collected at Crystal Solved 

by Code   

CA-p2 V82A 1.54 0.12 0.19 0.65/0.35 ANL-1202     2AOE   
p2-NC WT 1.40 0.15 0.19 1.0 ANL-1003 # # 2AOD $ 

  I84V 1.30 0.12 0.16 1.0 BNL-1102   # 2AOC   
  V82A 1.10 0.13 0.17 1.0 ANL-0903     2AOG   

p6-PR WT 1.60 0.15 0.23 0.6/0.4 ANL-0703     2AOJ   
  V82A 1.42 0.18 0.23 0.8/0.2 BNL-1102   # 2AOH   

p1-p6 WT 1.38 0.16 0.21 0.6/0.4 ANL-0702     2AOI   
  V82A 1.32 0.13 0.18 0.6/0.4 BNL-0602     2AOF   

UIC-94017 WT 1.30 0.13 0.17 0.55/0.45 BNL-1102 # # 1S6G $ 
  I84V 1.53 0.13 0.20 0.69/0.31 ANL-1202 # # 1S6S $ 
  V82A 1.10 0.12 0.15 partial ANL-0702     1S65   
  I50V 1.22 0.15 0.22 0.6/0.4 ANL-1003 #   2F8G   
  D30N 1.45 0.13 0.19 0.52/0.48 ANL-1004 # * 2F80   
  G86A 1.60 0.19 0.26 0.67/0.33 ANL-0705         
  G86S 1.80 0.22 0.25 0.6/0.4 ANL-0305         

DMP G86A 1.80 0.22 0.29 1.0 ANL-1104         
SQV WT 1.16 0.13 0.18 0.51/0.49 ANL-1104         

  I84V 1.25 0.15 0.19 0.69/0.31 ANL-0305         
  I84V 1.20 0.15 0.20 1.0 ANL-0305         
  V82A 1.10 0.15 0.18 0.66/0.34 ANL-1104         



 

168 

  V82A 0.97 0.12 0.14 0.48/0.52 ANL-1104         
UIC98065 V82A 1.11 0.13 0.16 1.0 ANL-0703   #     

  I50V 1.28 0.16 0.20 0.57/0.43 ANL-1003   #     
UIC00122 WT 1.29 0.14 0.17 1.0 BNL-1102   #     

  I84V 1.40     1.0 ANL-0703   #     
  I50V 1.25     1.0 ANL-1003   #     

UIC00072 WT 1.37 0.13 0.18 1.0 BNL-1102         
  V82A 1.25 0.16 0.20   ANL-1105       %

UIC02070 WT 1.40 0.12 0.18 0.81/0.19 ANL-0303         
UIC02029 WT 1.45 0.13 0.19 0.61/0.39 ANL-0303         
UIC02059 WT 1.10 0.16 0.19 1.0 ANL-1003       %
UIC02038 WT 1.15 0.14 0.19 0.51/0.49 ANL-0704 #       

 
#: Done by other labmates; $: analyzed only; *: partial contribution; %: further refinement needed
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APPENDIX II. Structure prediction of BLV PR 

Introduction 

All replication competent retroviruses, including bovine leukemia virus (BLV), 

code for an aspartic protease (PR). The function of the mature PR is critical for virion 

replication (Oroszlan et al. 1990). As discussed above, the HIV-1 PR has proved to be the 

most effective target of antiviral therapy; however, the application of PR inhibitors was 

largely limited by rapidly development of drug resistance variants (Tamalet et al. 2000). 

The residues observed in HIV-1 PR drug resistant frequently can be found in structurally 

equivalent positions in other wild type proteases, as indicated for BLV PR in Figure 5.1. 

Comparison of various retroviral proteases will reveal the common features of their 

specificity; and furthermore, help the design of new antiviral inhibitors that are efficient 

against several different retroviral proteases. 

The amino acid sequences of different retroviral proteases have been determined 

(Oroszlan et al. 1990). The 3-D structures of seven proteases from HIV-1, HIV-2, SIV, 

RSV, FIV, EIAV and HTLV-1 are also available (Wlodawer et al. 2000; Li et al. 2005). 

The alignment of the primary and secondary structures of all retroviral proteases 

suggested a single domain of the cellular aspartic proteases. Comparison of the predicted 

PR structures of HIV-1, FIV and EIAV proteases with their latest crystal structures 

proved that the models were basically correct in prediction of the substrate binding sites 

(Weber 1991; Wlodawer et al. 1995; Gustchina et al. 1996). Therefore, the molecular 

modeling of proteases can serve as an important tool in the absence of crystal structures. 
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         --a--     ---b---         ---c----    -d--    
                  S2/4  
         1          10               20                    40   
HIV1     PQITLW..QRPLVTIRIG.......GQLKEALLDTGADDTVLEE.MNL.PGKWK 
BLV      LSIPLA.RSRPSVAVYLSGPWLQPSQNQALMLVDTGAENTVLPQNWLVRDYPRI 
HTLV1    PVIPLDPARRPVIKAQVDTQT..SHPKTIEALLDTGADMTVLPIALFSSNTPLK 
         1        10        20          30        40        50  
 
 
 
 
         --a'-          ---b'----        ---c'----    -d'- ---h--- --q— 
    S2/3/4 S2          S1/3  
                            60          70                    90         
HIV1     PKMIGGIGGFI..KVRQY.DQIPVEICGH..KAIG.TVLVG.PTPVNIIGRNLLTQIGCTLNF 
BLV      PAAVLGAGGVSRNRYNWLQGPLTLALKPEGPFITIPKILVDTFDKWQILGRDVLSRLQASISIPEEVRPPMVG 
HTLV1    NTSVLGAGGQTQDHFKLTSLPVLIRLPFRTTPIVLTSCLVDTKNNWAIIGRDALQQCQGVLYLPEAKGPPVIL 
                60        70        80        90        100       110       120    
 
 
Figure 5.1 Sequence comparison of BLV, HTLV-1 and HIV-1 proteases.  
Residues in BLV PR which appear in HIV-1 drug resistance at the equivalent position in HIV-1 PR are underlined (analyzed based 
on hivdb.stanford.edu). 
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Method 

 The sequence alignment of the BLV PR, HIV-1 PR and RSV PR was shown in 

Figure 5.1. The crystal structure of the HTLV-1 PR with a substrate-based statine 

inhibitor (Li et al. 2005) was the basis for the model for BLV PR. The BLV dimer was 

modeled with the peptide substrates TKVL-VVQP using the program AMMP (Harrison 

1993), as described previously for HTLV PR (Tozser et al. 2000). A conserved water 

molecule was included between the flaps and the peptide and a proton was used to 

stabilize the charged oxygen atoms of the two catalytic Asp residues. The positions for all 

new atoms were generated with the sp4 potential set using 15 cycles of the Kohonen 

algorithm (Harrison et al. 1999), followed by minimization of the non-bonded and 

geometrical terms using 320 steps of conjugate gradients. Finally, the entire PR-substrate 

complex was minimized using 10 cycles of total ~ 4000 steps of conjugate gradients. 

Structural models were examined using the molecular graphic programs Sybyl (Tripos Inc.) 

run on Silicon Graphics workstations, ’O’ (Jones et al. 1991) or RasMol (Sayle et al. 1995) 

run on Linux PCs. 

 

Results 

Modeled structure of the BLV protease and comparison with the structures of 

HTLV-1 and HIV-1 proteases. 

 In the absence of a crystal structure for the BLV PR, a model was built with a 

peptide substrate in order to understand the molecular basis for the specificity. The amino 

acid sequence of BLV PR was aligned with the sequences of HIV-1 PR and HTLV-1 PR, 
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the structures of which are known, to find the best starting structure for building the model, 

as shown in Figure 5.1. The lengths of the BLV, HTLV-1 and HIV-1 proteases are 

different. The HIV-1 PR is the shortest one with 99 residues, followed by the HTLV-1 

PR (125 residues), while BLV PR has 126 residues. Since BLV PR and HTLV-1 PR have 

comparable length and higher similarity, HTLV-1 PR was chosen as the initial model. 

Regardless of the difference lengths, the modeled BLV PR structure shared a conserved 

core region with the crystal structures of HIV-1 and HTLV-1 proteases, including the 

substrate binding site and the dimer interface (Figure 5.2). As shown in Figure 5.2, BLV 

and HTLV-1 proteases formed longer loop structures on the surface of the proteins. 

Besides, the C-termini extended by 10 additional amino acid residues for BLV and 

HTLV proteases compared to the HIV-1 PR. The function of the C-terminal extension is 

still controversial. Based on previous studies, these residues are not required for activity 

(Precigoux et al. 1993; Herger et al. 2004), while other group suggested that five 

additional C-terminal residues (116-120) appeared to be important for HTLV-1 protease 

(Hayakawa et al. 1992). The final model of the BLV PR dimer with substrate had a RMS 

deviation of 0.79 Å for 223 pairs Cα atoms of compared to the crystal structure of HTLV-1 

PR and 1.72 Å for 175 pairs of Cα atoms of compared to the crystal structure of HIV-1 PR 

(PDP code 2AOD). These RMS deviation values are comparable to that of 1.25 Å 

observed for 194 pairs of Cα atoms in the dimers of RSV S9 PR and HIV-1 PR with 

inhibitor (Wu et al. 1998). Residues forming the substrate binding sites of BLV, HTLV-1 

and HIV-1 proteases are listed in Table 5.1 and a schematic representation with a HTLV-1 

capsid-nucleocapsid substrate is shown in Figure 5.3.
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Figure 5.2 Ribbon models of the BLV, HTLV-1 and HIV-1 PR structures. 
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Table 5.1 Residues predicted to form the subsites of BLV, HTLV and HIV proteases. 

_____________________________________________________________________________ 
Subsite  BLV/HTLV-1/HIV-1 Residuesa 
_____________________________________________________________________________ 
 
S4:  Glu37/Asp36/Asp29, Asn38/Met37/Asp30, Ala56/Ser55/Met46,    

Val57/Val56/Ile47, Leu58/Leu57/Gly48, Tyr68/Phe67/Val56, Trp70/Leu69/Gln58, 
Leu92/Leu91/Leu76 

 
S3:  Arg9'/Arg10'/Arg8', Leu31'/Leu30'/Leu23', Glu37/Asp36/Asp29,    
 Leu58/Leu57/Gly48,  -/-/Thr80’

b,  -/-/Pro81', Trp99'/Trp98'/Val82' 
 
S2:  (Gly35/Gly34/Gly27), Ala36/Ala35/Ala28, (Glu37/Asp36/Asp29), Asn38/Met37/Asp30, Val40/Val39/Val32, Val57/Val56/Ile47, 

Leu58/Leu57/Gly48,(Gly59/Gly58/Gly49),  Ala60'/Ala59'/Ile50',  Tyr68/Phe67/Val56, Leu92/Leu91/Leu76, Ile101/Ile100/Ile84  
 
S1:  Arg9'/Arg10'/Arg8', Leu31'/Leu30'/Leu23', (Asp33/Asp32/Asp25), (Asp33'/Asp32'/Asp25')  

(Gly35/Gly34/Gly27), (Gly59/Gly58/Gly49) Ala60/Ala59/Ile50, -/-/Thr80’
b, -/-/Pro81', Trp99'/Trp98'/Val82', Ile101'/Ile100'/Ile84'  

__________________________________________________________________________ 
 

aResidues that are different in all three proteases are indicated in bold, while residues differing in two proteases are indicated in 
italics. Amino acid residues in the second subunit are indicated by a prime. Only the residues forming the S4-S1 subsites are given. 
Primed binding sites (like S1') have the same composition as the nonprimed ones, but they are built from residues of the other 
subunit. Residues involved only in interactions with the main chain atoms of the peptide substrate are shown in parenthesis.  
bWhile Thr80’ and Pro81’ of HIV-1 PR participate in the formation of the binding sites, the corresponding residues of BLV and 
HTLV-1 proteases do not interact with ligand; their position is very different, due to an upstream loop insertion. 
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Figure 5.3 A schematic representation of the HTLV-1 capsid-nucleocapsid substrate 
in the S4-S3’ subsites of BLV, HTLV-1 and HIV-1 proteases. 
The relative size of each subsite is indicated approximately by the area enclosed by the 
curved line around each substrate side chain. PR residues forming the subsites are shown 
only for those that differ between at least two PRs as BLV/HTLV-1/HIV-1 residues. 
Residues of BLV PR that were mutated in this study are underlined. 
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 The specificity of the BLV PR was studied with a set of oligopeptides 

representing naturally occurring cleavage sites in various retroviruses by Dr. Tozser’s 

group. They have concluded that the BLV PR had a broad specificity, which is different 

from HTLV-1 PR but similar to HIV-1 PR, and a great sensitivity towards mutations as 

previously observed for the HTLV-1 PR. Furthermore, the BLV PR was more susceptible 

towards inhibitors designed against either HIV-1 PR or HTLV-1 PR compared to the 

susceptibility of the HTLV-1 PR (Sperka et al. 2006).   

 


