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STATISTICAL INFERENCES FOR THE YOUDEN INDEX

by

HAOCHUAN ZHOU

Under the Direction of Dr. Gengsheng Qin

ABSTRACT

In diagnostic test studies, one crucial task is to evaluate the diagnostic accuracy of a test.

Currently, most studies focus on the Receiver Operating Characteristics Curve and the Area Under

the Curve. On the other hand, the Youden index, widely applied in practice, is another comprehen-

sive measurement for the performance of a diagnostic test. For a continuous-scale test classifying

diseased and non-diseased groups, finding the Youden index of the test is equivalent to maximize

the sum of sensitivity and specificity for all the possible values of the cut-point. This dissertation

concentrates on statistical inferences for the Youden index. First, an auxiliary tool for the Youden

index, called the diagnostic curve, is defined and used to evaluate the diagnostic test. Second, in

the paired-design study to assess the diagnostic accuracy of two biomarkers, the difference in paired

Youden indices frequently acts as an evaluation standard. We propose an exact confidence interval

for the difference in paired Youden indices based on generalized pivotal quantities. A maximum

likelihood estimate-based interval and a bootstrap-based interval are also included in the study.

Third, for certain diseases, an intermediate level exists between diseased and non-diseased status.

With such concern, we define the Youden index for three ordinal groups, propose the empirical esti-

mate of the Youden index, study the asymptotic properties of the empirical Youden index estimate,

and construct parametric and nonparametric confidence intervals for the Youden index. Finally,

since covariates often affect the accuracy of a diagnostic test, therefore, we propose estimates for



the Youden index with a covariate adjustment under heteroscedastic regression models for the test

results. Asymptotic properties of the covariate-adjusted Youden index estimators are investigated

under normal error and non-normal error assumptions.

INDEX WORDS: Diagnostic test, Sensitivity, Specificity, ROC, AUC, Youden
index, Optimal cut-off point, Paired design, Generalized piv-
otal quantity, Exact confidence interval, Covariates adjustment,
Three ordinal group, Diagnostic curve, Empirical estimate



STATISTICAL INFERENCES FOR THE YOUDEN INDEX

by

HAOCHUAN ZHOU

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2011



Copyright by
Haochuan Zhou

2011



STATISTICAL INFERENCES FOR THE YOUDEN INDEX

by

HAOCHUAN ZHOU

Committee Chair: Dr. Gengsheng Qin

Committee: Dr. Xu Zhang

Dr. Ruiyan Luo

Dr. Yi Zhao

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2011



iv

DEDICATION

To my parents, adviser, and girl friend.



v

ACKNOWLEDGEMENTS

In my Ph.D. studying, myriad of genial assistances have been obtained from substantive people

who are my mentors, instructors, classmates, and friends. Endless gratitude to give voice to by

names; however, I would love to record my truly respects to the following persons.

The paramountly inexpressible gratitude to my adviser, Dr. Gengsheng Qin, for all his en-

lightening, indoctrinating, supporting, comprehending, and patient assistances. Dr. Qin scarified a

lot of his efforts to assist me into the academic disquisitions step by step, without his companying,

there is no chance I could wipe off all the brambles on the way to this researches. Rather than

studying guidance, Dr. Qin also affectionately offered me valuable suggestions for my future career

based on his insightful understanding of my characteristics and personalities. My appreciations to

Dr. Qin are ceaseless.

With this opportunity, I would like to present my gratitude to my dissertation committee

members, Dr. Xu Zhang, Dr. Ruiyan Luo and Dr. Yi Zhao, for spending their precious time on

reading this dissertation and suggesting critical comments to assist improving this dissertation.

Also, numerous thanks to all the other faculties and staffs in the Department of Mathematics

and Statistics at Georgia State University for their teaching and helping. Without their generosity

and support, I would not achieve the requirements for Ph.D. Degree. Specially, I would love to

appreciate Dr. Yu-Sheng Hsu, Dr. Yixin Fang, Dr. Xu Zhang, and Dr. Guantao Chen.

Acknowledgements to my esteemed friends, Meng Zhao, Xin Huang, Yitao Wang, Ruyang

Cui, Binhuan Wang, Haci M. Akcin, Qian Chen, Yingge Qu and others, for those critical, wisdom

suggestions regarding to this dissertation, for those discussions about the truth of life and mostly

for their continuing support and encouragements from all aspects. They are my brothers and sisters

without consanguinity and my treasures for this life.

My special gratitude delivers to Michael Fost for helping me improving the writing of this

dissertation.

The unspeakable thanks are to my parents, Longhua Zhou, Weigang Zhao, and my girl friend,

Jing Yang. Their loves are my greatest forces. I would love to devote my rest life to return more

than the love that they contributed to me.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . xii

Chapter 1 INTRODUCTION . . . . . . . . . . . . . . . . . 1

1.1 Diagnostic Tests and Their Evaluations . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Estimation for a Youden Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Comparison Between Two Diagnostic Tests . . . . . . . . . . . . . . . . . . . . . 6

1.4 Evaluation of the Diagnostic Test Classifying Three Ordinal Groups . . . . . . . 6

1.5 Covatiates Adjustment for ROC Related Indices . . . . . . . . . . . . . . . . . . 8

Chapter 2 DIAGNOSTIC CURVE AND INFERENCES FOR A YOUDEN

INDEX . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Diagnostic Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Point-wise Confidence Intervals for the Diagnostic Curve . . . . . . . . . 11

2.2.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Existing Methods for Inferences of a Youden Index . . . . . . . . . . . . . . . . 14

2.3.1 Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Confidence Intervals for the Youden index . . . . . . . . . . . . . . . . . 17

2.3.3 Practical Implications of Existing Methods . . . . . . . . . . . . . . . . . 19



vii

Chapter 3 INFERENCES FOR THEDIFFERENCE OF TWOYOUDEN IN-

DICES . . . . . . . . . . . . . . . . . . . . . 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Bootstrap and Maximum Likelihood Based Intervals . . . . . . . . . . . . . . . . 20

3.3 Exact Confidence Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 A Real Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 4 INFERENCES FOR YOUDEN INDEX OF THREE ORDINAL

GROUPS . . . . . . . . . . . . . . . . . . . . 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 New Definition of The Youden Index for Three Ordinal Groups . . . . . . . . . 32

4.3 Estimations of Youden index for Three Ordinal Groups . . . . . . . . . . . . . . 34

4.3.1 Parametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Nonparametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Asymptotic Properties for the Parametric and Nonparametric Estimators . . . . 36

4.5 Confidence Intervals for the Youden index of Three Ordinal Groups . . . . . . . 37

4.6 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 5 NONPARAMETRIC COVARIATES ADJUSTMENT FOR Y-

OUDEN INDEX . . . . . . . . . . . . . . . . . . 44

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Model and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Heteroscedastic Regression Models for the Test Results . . . . . . . . . . 44

5.2.2 Covariate-adjusted Youden Index under Normal Error Assumption . . . . 45

5.2.3 Covariate-adjusted Youden Index without Normal Error Assumption . . 47

5.3 Asymptotic Properties of the Covariate-adjusted Estimators for the Youden Index 48
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Chapter 1

INTRODUCTION

1.1 Diagnostic Tests and Their Evaluations

Medical diagnosis is a commendable technology of modern medicine services. The progresses

of medical science and technology provide new avenues for earlier and more accurate diagnosis

of diseases. Screening tests offer the opportunity to identify hazardous or abnormal individuals.

Accordingly, physicians could assign preventative therapies to cure the disease, to reduce the loss

in social wealth and individual wealth, and to improve personal life qualities. Before new testing

procedures become ”golden” standards, diagnostic and/or screening procedures have to undergo

rigorous evaluations. A reliable diagnostic method must recognize disease status of patients as

early as possible to admit treatments without inadvertently categorizing healthy individuals. The

discriminating capability of a test to correctly diagnose health and diseased individuals would be

referred to as test performance, or test accuracy.

For diagnostic tests with binary outcomes, each person is identified as either non-diseased or

diseased. A perfectly accurate diagnostic process would identify all truly disordered individuals as

diseased and all healthy individuals as non-diseased. In modern medical practice and research, it

is paramount for physicians, or biological scientists to identify biomarkers or body symptoms to

build a better diagnostic procedure that could determine the disease status of individuals much

earlier, and more accurately. However, we are not yet close to approaching ”perfection”. Instead,

diagnostic errors are common. There are two types of errors: classifying a diseased individual as

non-diseased, refereed as the false negative (FN) error, and classifying a non-diseased individual as

abnormal, known as the false positive (FP) error. Since inaccuracies exist, it is an essential role for

statisticians to evaluate the accuracy of diagnostic tests.

Test outcomes could either be categorical, discrete, or continuous. In this dissertation, we

focus on continuous test results since the majority of diagnostic procedure outcomes are continuous

(Shapiro [52]). For instance, in diabetes diagnoses, the oral glucose tolerance test (OGTT) results
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are the measure of glucose levels in human blood, a continuous outcome. In prostate cancer studies,

after the confirmation of prostate cancer, the next concern for the patient is whether the cancer has

spread to the neighboring lymph nodes. The detection of the spread of cancer is particularly crucial

in patient management because a complete cure is often likely for patients in the early stages of

prostate cancer. A new method with extremely small risk is used to detect the spread of the cancer

by testing the ”acid phosphatase level in blood serum”, and this outcome is continuous (Aoki et al.

[3]).

In recent decades, researchers have developed numerous statistical methodologies to evalu-

ate the performance of diagnostic tests. Common measurements in literature for the accuracy of

diagnostic tests are:

• Sensitivity and Specificity.

• Receiver Operating Characteristic (ROC) curve.

• The area under the ROC curve (AUC).

• Youden index (YI).

For convenience, without loss of generality, we assume that higher test values indicate higher

probability of the disorder throughout this dissertation. The sensitivity, known as the true positive

rate (TPR), is defined as the probability that the diseased subject test result is larger than a

threshold or cut-off point c. The relative error rate or false negative rate (FNR) is defined as

FNR = 1 − TPR. The specificity, known as the true negative rate (TNR), is defined as the

probability that the non-diseased subject test result is smaller than c. The corresponding error

rate is false positive rate (FPR), and FPR = 1− TNR. Often, sensitivity and specificity are used

to evaluate the test’s capabilities of classifying diseased and non-diseased individuals at a given

threshold. One valuable feature of sensitivity and specificity is that they are independent of the

disease prevalence. For different diseases with different prevalence, sensitivities and specificities

can be utilized. However, evaluating sensitivity and/or specificity at a given threshold value yields

information only at that threshold, so only partial information of the performance power can be

assessed.
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In recent decades, the ROC curve has been given extensive attention in studies of assessments

for diagnostic tests, practically and academically. The ROC curve is the plot of the sensitivity

versus 1-specificity for all possible thresholds. It comprehensively describes the intrinsic diagnostic

capability and provides a visual demonstration of the concession between TPR and FPR. The AUC

is a summary measure for the ROC curve. It evaluates the overall discriminative power of a test.

In general, the larger AUC (when ROC curve is closer to the upper-left corner) is, the higher

the distinguishing power of the test is. Nonetheless, AUC only measures the overall accuracy of

the test and explains nothing regarding individual parameters, such as sensitivity and specificity.

Furthermore, AUC analysis does not provide relevant information concerning the optimal threshold

or optimal cut-off point, another crucial issue in practice.

When evaluating diagnostic tests, it is essential to inform physicians how accurate those tests

are. Equally important, information about the optimal threshold should also be supplied for the

implementation of tests. According to Schisterman and Perkins [48], the optimal threshold for the

positive test result of a disease would be the threshold leading to the maximum sum of TPR and

TNR. The cut-off point determined by this maximizing procedure is equivalent to minimization of

the misclassification likelihoods, the sum of FNR and FPR. Obtaining the cut-off point by such

efforts certainly has the clinically desirable property of maximizing the total correct diagnosis rate

and minimizing the overall misdiagnosis rate (Kim [27]).

Youden [66] introduced the following index:

J = max
c

{sensitivity(c) + specificity(c)− 1}, (1.1)

= sensitivity(co) + specificity(co)− 1, (1.2)

where co is the optimal cut-point of test results. This index is also an important numerical summary

for the ROC curve. Youden mentioned that the index has several attractive features. For instances,

the possible range of the Youden index value is between zero and one, inclusive. A value of zero

indicates a totally useless test, and value of one indicates a perfect diagnostic test. The index is

independent of the relative sizes of the diseased and non-diseased groups. It is also independent of

the absolute sizes of the two groups. All the tests that share the same Youden index value make the

same misclassification rates. In a ROC graph, the Youden indx is the maximum vertical distance
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between the ROC curve and the diagonal chance line, and it is a comprehensive measurement of

the optimal diagnostic capability.

Both AUC and the Youden index are valuable summaries of the performance of diagnostic

procedures. However, the Youden index dose not receive equal attention to AUC in literature.

Notwithstanding, in medical and biological sciences literature, numerous evaluations for new de-

veloped biomarkers and diagnostic procedures build up on the assessing of the Youden index. For

instance, Demir et al. [10] applied it to identify the most reliable indices in differentiation between

thalassemia trait and iron deficiency anemia. Schisterman and Perkins [48] calculated the Youden

index to evaluate the performance of the Coronary Calcium Score, a biomarker for atherosclerosis.

Also, Youden indices (YIs) could be found to compare the accuracy of different diagnostic proce-

dures. For example, Hawass [19] used the Youden indices to compare the abilities of diagnostic tests.

Castle et al. [6] applied Youden indices to contrast prototype hybrid capture 3 and hybrid capture 2

human papilloma-virus DNA assays for diagnosing high-grade cervical intra-epithelial neoplasia and

cancer. Yerli et al. [65] used Youden indices to compare the two methods for diagnosing common

parotid tumors: magnetic resonance imaging including diffusion-weighted imaging and fine-needle

aspiration cytology.

Evidently, the Youden index has meritorious significance in practice. Therefore, the topics

related to the Youden index need further and insightful studies. Evaluations of diagnostic tests via

the Youden index could be based on either the point estimate or the confidence interval estimate.

Practically, the confidence interval estimate, which offers a confidence range of the true parameter,

is more valuable than a point estimate. Here, we mainly focus on the confidence interval estimation

of the Youden index and its related topics.

1.2 Estimation for a Youden Index

The Youden index is a function of sensitivity and specificity that depends on the underlying

distributions of the diseased and non-diseased populations. When the underlying distributions

belong to a particular parametric family such as binormal distributions, Fluss et al. [14] provided

parametric point estimate for the Youden index. Schisterman and Perkins [48] provided parametric

confidence interval estimate for the index based on Delta method (Shao [51]) for the index and
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offered nonparametric approaches. Most recently, Lai et al. [28] constructed the exact confidence

interval (ECI) for the Youden index via generalized pivotal quantities (GPQs, see Weerahandi [60])

based on normal assumptions. Without parametric assumptions for the underlying distributions,

Hsieh and Turnbull [22] studied the nonparametric point estimates for the index based on the

empirical and the kernel estimates for the underlying distributions. They provided asymptotic

properties of the two estimates; nonetheless, the asymptotic variance for the empirical estimate of

the Youden index is still mysterious, thus confidence intervals for the Youden index can not be

directly constructed. A few studies (e.g., Faraggi [13]) have considered constructing non-parametric

confidence intervals for the Youden index and the corresponding cutoff point. Zhou and Qin [67]

focused on construction of non-parametric confidence intervals for the Youden index and proposed

two new non-parametric intervals for the index based on Agresti and Coull’s [1] adjusted estimate

(AC adjustment) for a binomial proportion. One interval, was constructed based on the asymptotic

normality assumption of the adjusted estimate for the Youden index (ACNA interval), and the

other interval was a bootstrap percentile interval based on AC adjustment estimate for the Youden

index (BPac interval).

The parametric confidence intervals may be sensitive to departures from the distributional

assumptions and can only provide a limited range of distributional forms. The nonparametric

intervals may perform worse than parametric methods regarding to average coverage probability

and average interval length, although they are robust.

Considering the concession between performance and robustness, in chapter 2, we introduce the

diagnostic curve (DC), a supplementary device for the Youden index, as a summary of diagnostic

accuracy. The value of sensitivity(c) + specificity(c) − 1 represents the total correctly classified

rate (TCCR) at given threshold c. The diagnostic curve plots total correctly classified rate vs.

the corresponding threshold. The methods introduced to analyze the diagnostic curve are robust

and can be easily implemented. Some simulation studies are conducted to compare the proposed

nonparametric methods. In chapter 2, we also summarize the existing inferential methods for the

Youden index as the preliminaries for chapters 3, 4, and 5.
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1.3 Comparison Between Two Diagnostic Tests

Rather than merely independently evaluate different biomarkers, comparison of the accuracies

of different biomarkers is one of the major targets in diagnostic experiments. Clinical studies

frequently apply matched-pair design to evaluate two diagnostic tests in the same subjects, based

on the goal of reducing variation between subjects. Commonly used measurements for the contrast

of diagnostic tests are specificity, sensitivity, effectiveness, and AUC. For instances, Wieand et al.

[61] proposed to compare paired test outcomes based on sensitivity/specificity at a fixed level of

specificity/sensitivity. Qin et al. [47] constructed new confidence intervals for the difference between

two sensitivities at fixed specificities. Hsueh et al. [23] and Liu et al. [34] proposed methods to

evaluate the difference in effectiveness. Tang et al. [55] proposed methodologies to assess the ratio

of proportions of correct diagnosis. Li et al. [30] applied the difference in paired AUCs to investigate

the contrast of two diagnostic tests.

Meanwhile, difference between Youden indices for two diagnostic procedures can also be applied

to compare diagnostic tests’ accuracy. However, to the author’s knowledge, this topic has not

been sufficiently explored. In chapter 3, we shall focus on constructing confidence intervals for

the difference between paired Youden indices. According to the previous research, we construct

two parametric intervals, which are the exact confidence interval and the normal approximation

based interval. For comparison, we also introduce a nonparametric bootstrap interval. Abundant

simulation studies are conducted to evaluate the performances of the proposed methods. Finally,

we apply the proposed methods to analyze a real data.

1.4 Evaluation of the Diagnostic Test Classifying Three Ordinal Groups

With highly developed medical technologies, for some diseases, a transitional stage, could be

detected and defined. For instance, the ”famous” Alzheimer’s Disease (AD), commonly existed in

senior human population, is a serious brain function disordered malum and increases broad social

burden. After years of pathological and clinical researches (in Braak and Braak [4], and Mckeel

et al. [35]), an intermediate stage, the mild cognitive impairment (MCI) stage, can be detected.

For any disease, regardless of its irreversible or reversible attribute, it is necessary to recognize the

intermediate stage if exists, to gain the optimal timing window for medical interventions. Through



7

such timely treatments, we can reduce the loss of social wealth and the spending on the disease,

and improve the life qualities of the patients. Therefore, diagnostic tests, which can identify the

three stages (non-diseased/intermediate/diseased), is valuable, and the evaluating methodologies

for such tests are necessary.

To classify subjects into three groups, two thresholds, saying c1 and c2 (c2 ≥ c1), are necessary.

Under this situation, redefine the sensitivity (TPR) to be the probability of the test results is larger

than c2 for disease subjects, and redefine specificity (TNR) to be the probability of the test results

is smaller than c1 for non-disease subjects. For the intermediate subjects, we could define the true

transitional rate (TTR) as the probability that the test results is between c1 and c2.

Mossman [38], first defined a polyhedral ROC surface for discrete outcomes and introduced

the volume under the ROC surface (VUS) as a measurement of the diagnostic accuracy in the

three groups setting. More recently, Xiong et al. [62] proposed the ROC surface for continuous

test results, and suggested using the full VUS under the surface to be the global summary for

the accuracy of the test. Under parametric assumptions, they developed the maximum likelihood

estimate (MLE) for the VUS.

Few literatures discussed the extension of the Youden index to three diagnostic groups case.

Nakas et al. [39] extended the Youden index for three ordinal groups and defined it to be the

maximum of TPR+ TNR + TTR. They proposed parametric and nonparametric point estimates

for Youden index and mainly focused on evaluating the precision and accuracy of the point estimates.

But they did not introduce confidence interval for the Youden index. In chapter 4, we shall focus

on making inferences for the Youden index under three ordinal groups. We alternatively define the

Youden index to be the maximum of 1
2
(TNR+TPR+TTR−1). This definition is a nature extension

of the original Youden index. We fulfill this topic via proposing parametric and non-parametric

point estimates, exploring the nonparametric asymptotic properties, and building the confidence

intervals. Some simulation studies are conducted to evaluate the performances of proposed interval

estimates.
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1.5 Covatiates Adjustment for ROC Related Indices

In plenty situations, covariates information is available and could affect the accuracy of the

tests. For example, a medical screening may be a potent detecting device of a disease, but patient

characteristics, such as age, gender, or race, often impact test results. It may be that the definition

of testing positive (or negative) should depend on covariates, or it may be that the accuracy of

the test is less than optimal in certain settings (see Pepe [44]). Covariate-adjustment for the sum-

mary measures of the ROC curve has thus become indispensable in many diagnostic applications.

Tosteson and Begg [59] and Toledano and Gatsonis [58] used a latent variable ordinal regression to

model the distribution of the test results in the diseased and non-diseased populations. Thompson

and Zucchini [57] and Obuchowski [40] calculated the ROC curve and AUC for a number of dis-

tinct combinations of covariates and then applied a general regression model. Pepe [41], [43], Dodd

and Pepe [11] proposed a general regression framework and semi-parametric methods to model the

dependence of the ROC curve and AUC on the covariates. Zhou et al. [68] and Pepe [44] gave

a delightful introduction to why and how to adjust for covariate effects for ROC curves and a

comprehensive review of the existing methods in estimating a covariate-specific ROC curve.

While extensive studies focused on covariates adjustment for the ROC curve and the AUC can

be found in literature, not much effort focused on the Youden index. Faraggi [13] and Schisterman

et al. [50] used regression models under normal assumption to adjust the AUC and Youden index

for covariates. Yao et al. [64] generalized the approaches of Faraggi [13] and Schisterman et al.

[50] to establish a covariate-adjusted Mann-Whitney estimator for the AUC. They also mentioned

that the methods can be extended to other measures related to ROC curves, but they did not

provide details. In chapter 5, under the heteroscedastic regression models for the test results, we

study the asymptotic properties for the Youden index at given covariates value with and without

normal error assumptions. Comprehensive simulation studies are conducted to assess the proposed

methodologies. Lastly, we utilize the proposed methods on a real data.
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Chapter 2

DIAGNOSTIC CURVE AND INFERENCES FOR A YOUDEN INDEX

2.1 Introduction

For a diagnostic test only identifying diseased and non-diseased groups, let X and Y be the test

results of a continuous-scale diagnostic test for health and diseased subjects, respectively. Without

loss of generality, assume that X and Y are independent. Denote X1, X2, . . . , Xn− be a random

sample from non-diseased people, and Y1, Y2, . . . , Yn+
be a random sample from diseased patients.

Let F− and F+ be the cumulative distribution functions (c.d.f.), and f− and f+ be the corresponding

probability density functions (p.d.f.) for the non-diseased and diseased populations, respectively.

The Youden index can be expressed as:

J = max
c

{F−(c)− F+(c)} (2.1)

= F−(co)− F+(co), (2.2)

where co stands for the optimal threshold and its uniqueness depends on F− and F+ .

As mentioned in section 1.2, the point estimate and interval estimate for J can be determined

via parametric or nonparametric approaches. Parametric methods performs well; however, they

struggle with the validation of parametric distribution assumptions. Nonparametric methods are

robust. However, without the information of the underlying distributions, the finite sample perfor-

mance may be worse than parametric methods. One of the main difficulties of the nonparametric

approaches is that the asymptotic variance of the nonparametric estimator for J is still unknown

due to the lack of a closed form of the optimal threshold. Creating a balance between performance

and robustness, and avoiding the estimation of the optimal threshold, we introduce the concept of

the diagnostic curve to evaluate diagnostic tests.
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2.2 Diagnostic Curve

2.2.1 Definition

The Youden index represents the maximum total correctly classified rate, which is achieved at

the optimal threshold, of a diagnostic test. Ignoring the maximization procedure in the definition

(1.1), we could define the diagnostic curve (DC) as follows:

J(c) = sensitivity(c) + specificity(c)− 1 (2.3)

= F−(c)− F+(c). (2.4)

J(c) measures the diagnostic accuracy of the test at any given cut-off value c. The diagnostic curve

displays the relationship between the accuracy of a test and its cut-off point. The figure below is a

plot for diagnostic curve. This diagnostic curve is generated from normal distributions for the non-

diseased and diseased population with equal standard deviations 1. The means of the non-diseased

and diseased are selected to be 0 and 2.563104, respectively, to achieve the maximum of the curve

is 0.8. From this graph, we can view the overall trend of the variation in the accuracy depends on
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Figure 2.1. Diagnostic Curve Example

the cut-off values. The maximum of this curve represents the maximum accuracy that the test can



11

achieve, and it is equivalent to the Youden index. Thus, the diagnostic curve plays an analogous

role as the Youden index.

Notice that, at a given c, (2.4) is the difference between two binomial proportions. Re-express

(2.4) for convenience as:

J(c) = pX(c)− pY (c), (2.5)

where pX(c) denotes the true negative rate (TNR), and pY (c) denotes the false negative rate (FNR),

let qX(c) = 1−pX(c) and qY (c) = 1−pY (c) stand for the false positive rate (FPR) and true positive

rate (TPR) at given c, respectively.

2.2.2 Point-wise Confidence Intervals for the Diagnostic Curve

Without assuming any parametric form for the underlying distributions of the test results,

we offer an ultimately nonparametric evaluation for the test. For a given cut-off c, we have the

empirical estimate of J(c)

ĴE(c) = p̂X(c)− p̂Y (c), (2.6)

where p̂X(c) = 1
n−

∑n−

i=1 I(Xi ≤ c) and p̂Y (c) = 1
n+

∑n+

j=1 I(Yj ≤ c) , and I(·) is the indicator

function. Since J(c) is the difference between two proportions, we can apply some existing methods

to construct the point-wise confidence intervals for J(c).

Zhou et al. [70] developed two new confidence intervals for the difference between two binomial

proportions, via adjusting the skewness based on an Edgeworth expansion directly and indirectly.

Based on their simulation study, we decide to choose the confidence interval constructed in the

indirect way, called the TT interval. To introduce this interval, we list the equations for the
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following quantities at given threshold below.

δ(c) =

(
n− + n+

n−

)2

pX(c)qX(c)(1− 2pX(c))−
(
n− + n+

n+

)2

pY (c)qY (c)(1− 2pY (c)) (2.7)

σ(c) =

(
n− + n+

n−

pX(c)qX(c) +
n− + n+

n+

pY (c)qY (c)

)1/2

, o(c) =
δ(c)

6σ2(c)
,

s(c) =
(n− + n+)(1− 2pX(c))

2n−

− o(c).

Then the (1 − α)100% TT confidence interval for J(c) at a given c, denoted by (LTT (c), UTT (c)),

can be expressed as:

LTT (c) = ĴE(c)−
(
p̂X(c)q̂X(c)

n−
+

p̂Y (c)q̂Y (c)

n+

)1/2

g−1(z1−α/2), (2.8)

UTT (c) = ĴE(c)−
(
p̂X(c)q̂X(c)

n−
+

p̂Y (c)q̂Y (c)

n+

)1/2

g−1(zα/2),

where g−1(t) = (m+n)1/2(ŝ(c)σ̂(c))−1{(1+ 3(ŝ(c)σ̂(c))((m+ n)−1/2t− (m+n)−1ô(c)σ̂(c)))1/3 − 1}.
z1−α/2 and zα/2 are normal quantiles.

The second interval, denoted by (LAC(c), UAC(c)), is the AC interval proposed by Agresti and

Caffo [2]. It is easy to implement and is one of best intervals for the difference of two binomial

proportions (Zhou et al. [70]). Let p̂ represents the original sample proportion for a single binomial

proportion p, namely, p̂ =(number of success)/(sample size). The original Agresti and Coull-

adjusted (AC-adjusted) sample proportion for one sample case (Agresti and Coull [1]), p̃o, can be

obtained by adding two success and two failure to the original sample, namely p̃o =(number of

success+2)/(sample size+4). According to this modification, p̃o shrink the sample proportion to

0.5, and of course when sample size increases, this shrinkage is much less influential. They also

showed that p̃o is equivalent to the Bayesian estimate for the binomial proportion with a Beta

prior distribution having both shape parameters 2. Furthermore, the adjusted sample proportion

has a smaller mean square error (MSE) than the original sample proportion. The AC-adjusted

confidence interval for one binomial proportion has the same form as the classical Wald interval;

however, p̂ is replaced by p̃o in the formula and the updated size is used. Agresti and Coull [1]

showed that the AC-adjusted interval for one binomial proportion p has outstanding performances.

Later, Agresti and Caffo [2] pointed out that the strategy of adding 1 success and 1 failure to
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each of the independent original samples works well when compare two binomial proportions from

two independent samples. Based on this, we state the AC confidence interval at a given c for the

diagnostic curve below:

LAC(c) = J̃E(c)− z1−α/2

√
p̃X(c)q̃X(c)/(n− + 2) + p̃Y (c)q̃Y (c)/(n+ + 2), (2.9)

UAC(c) = J̃E(c) + z1−α/2

√
p̃X(c)q̃X(c)/(n− + 2) + p̃Y (c)q̃Y (c)/(n+ + 2),

where p̃X(c) = (
∑n−

i=1 I(Xi ≤ c) + 1)/(n− +2) and q̃X(c) = 1− p̃X(c). p̃Y (c) and q̃Y (c) are similarly

defined, and J̃E(c) = p̃X(c)− p̃Y (c).

Lastly, we apply the traditional Wald type confidence interval for comparison. At a fixed c,

the Wald interval is (LWald(c), UWald(c)), where

Lwald(c) = ĴE(c)− z1−α/2

√
p̂X(c)q̂X(c)/n− + p̂Y (c)q̂Y (c)/n+, (2.10)

Uwald(c) = ĴE(c) + z1−α/2

√
p̂X(c)q̂X(c)/n− + p̂Y (c)q̂Y (c)/n+.

2.2.3 Simulation Studies

To evaluate the performances of the TT, AC and Wald intervals for J(c), we simulate two

scenarios. In scenario 1, the underlying distributions for the non-diseased and diseased populations

are both normal. In scenario 2, the underlying distribution for the non-diseased population is

normal, but the distribution for the diseased is the student-t distribution with degree of freedom 4.

Without loss of generality, we specify the mean and standard deviation for the healthy population

as 0 and 1, respectively. We allow the maximum values of diagnostic curve to be 0.6, 0.8, 0.9, and

0.95 for each scenario. Sample sizes are selected to be (50, 50) in these simulation studies. Finally,

a reasonable range for the possible cut-off points is determined to be from the 20-th percentile of

F− to the 80-th percentile of F+ for both scenarios.

From the simulation results presented in Appendix A, we conclude that the classical Wald

interval does not perform as well as the TT and the AC intervals. Some interesting observations

from the simulation studies should be pointed out. When the maximum of the curve is 0.9, which

means, in the neighborhood of the optimal threshold, the true negative rate is close to 1 and the

false negative rate is close to 0, the TT confidence intervals will lose the power of capturing the true
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parameter. Moreover, when the maximum of the curve is 0.95, which indicates, in the neighborhood

of the optimal threshold, the true negative rate is extremely close to 1 and the false negative rate is

also extremely close to 0, the TT interval would over capture the true parameter, and the average

coverage probability exceed the nominal level. These facts of the performance for the TT confidence

interval are congruent to the simulation results showed in Zhou et al. [70] (page 109, Figure 4) and

indicate that the TT interval is sensitive to true value of the difference between two binomial

proportions. The performance of the AC point-wise confidence interval is more stable. Looking

at the average interval length, in the neighborhood of the the maximum point on the diagnostic

curve, the AC confidence interval requires a longer length to capture the true difference between

two binomial proportions than the TT confidence interval does.

In summary, we would recommend to apply either the TT point-wise confidence interval or

the AC point-wise confidence interval for the diagnostic curve when the maximum of the diagnostic

curve is not close to 1. Otherwise, the AC point-wise confidence interval is preferred.

2.3 Existing Methods for Inferences of a Youden Index

Now, we summarize existing methods for inferences of the Youden index as preliminaries for

later chapters.

2.3.1 Point Estimation

The point estimate for the Youden index would either be based on parametric or nonparametric

assumptions.

The major parametric point estimate for J and co is from Schisterman and Perkins [48], in

which they applied normality assumptions for X and Y :

Xi ∼ N(µx, σ
2
x), i = 1, 2, . . . , n−; Yj ∼ N(µy, σ

2
y), j = 1, 2, . . . , n+.

With this assumption, we can obtain the closed form of the optimal cut-off point:

co =
µx(b

2 − 1)− a+ b
√

a2 + (b2 − 1)σxln(b2)

(b2 − 1)
, (2.11)



15

where a = µy − µx and b = σy/σx. When the two populations have equal standard deviations, the

optimal cut-point will be the average of the two population means, namely, co =
µx+µy

2
. The point

estimate for the Youden index under normal assumption is:

J = Φ

(
µy − co

σy

)
+ Φ

(
co − µx

σx

)
− 1, (2.12)

where Φ(·) is the cumulative normal distribution function. To estimate the J and co, simply plug

the maximum likelihood estimates (MLEs), µ̂x, µ̂y, σ̂x, and σ̂y, of µx, µy, σx, and σy into (2.11) and

(2.12) to obtain ĉoML and ĴML, the MLE for co and J . ĉoML and ĴML can be expressed as:

ĉoML =
µ̂x(̂b

2 − 1)− â + b̂

√
â2 + (̂b2 − 1)σ̂xln(̂b2)

(̂b2 − 1)
, (2.13)

where the maximum likelihood estimator µ̂x = 1
n−

∑n−

i=1Xi, σ̂x =
√

1
n−

∑n−

i=1(Xi − µ̂x)2, and µ̂y and

σ̂y are similarly defined. Furthermore, a = µ̂y − µ̂x and b = σ̂y/σ̂x, when the two populations have

equal standard deviations, co =
µ̂x+µ̂y

2
. Then,

ĴML = Φ

(
µ̂y − ĉoML

σ̂y

)
+ Φ

(
ĉoML − µ̂x

σ̂x

)
− 1. (2.14)

When the underlying distributions are other parametric distributions, the parametric MLEs for co

and J can still be derived. For instance, Schisterman and Perkins [48] assumed that the distributions

for the test results are both Gamma distributions. Although there is no closed form for co and J ,

the MLEs still can be found via numerical algorithms, such as Newton-Raphson algorithm.

On the other hand, two main nonparametric point estimates (Hsieh and Turnbull [22]) for J

have been developed. One method is based on the empirical distributions F̂−(c) and F̂+ for F− and

F+, where

F̂−(c) =
1

n−

n−∑

i=1

I(Xi ≤ c), and F̂+(c) =
1

n+

n+∑

j=1

I(Yj ≤ c). (2.15)

Another method is based on the kernel smoothed estimates for the underlying distributions of

the test results. Let f̃− and f̃+ represent the kernel smoothed density estimates for f− and f+,
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respectively. f̃− and f̃+ are defined as follows:

f̃−(c) =
1

n−

n−∑

i=1

1

hn−

k(
c−Xi

hn−

), (2.16)

f̃+(c) =
1

n+

n+∑

j=1

1

hn+

k(
c− Yj

hn+

), (2.17)

where k(·) is a well defined kernel function, and hn− and hn+
are the bandwidths selected for f̃−

and f̃+, respectively. Chose some appropriate constant r, we can determine hn− = rn
−1/(2v−1)
− for

some v > 2, and similar for hn+
. Let F̃−(c) and F̃+ be the kernel smoothed c.d.f. estimates for F−

and F+, respectively. F̃−(c) and F̃+ are given as:

F̃−(c) =
1

n−

n−∑

i=1

K(
c−Xi

hn−

), F̃+(c) =
1

n+

n+∑

j=1

K(
c− Yj

hn+

). (2.18)

K(·) represents the kernel distribution and is defined as K(t) =
∫ t

−∞
k(x)dx.

We have the empirical estimate for J

ĴE = max
c

{F̂−(c)− F̂+(c)} (2.19)

= F̂−(ĉoE)− F̂+(ĉoE), (2.20)

where ĉoE is the empirical estimate for co. Hsieh and Turnbull [22] defined ĉoE as:

ĉoE = median{t0|F̂−(t0)− F̂+(t0) = max
t

(
F̂−(t)− F̂+(t)

)
}. (2.21)

The kernel smoothed estimate for J can be expressed as:

ĴK = max
c

{F̃−(c)− F̃+(c)} (2.22)

= F̃−(ĉoK)− F̃+(ĉoK), (2.23)
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where ĉoK represents the kernel smoothed estimate for the optimal threshold. Under some regula-

tions, Hsieh and Turnbull [22] defined ĉoK as:

ĉoK = median{t0|t0 ∈ (il, iu), andf̃−(t0) = f̃+(t0)}, (2.24)

where the interval (il, iu) was assumed to be a sub-interval in the intersection of the supports of F−

and F+.

Hsieh and Turnbull [22] studied the nonparametric estimates for J and co. Under some mild

conditions, they proved the strong consistence of ĴE , ĴK , ĉoE, and ĉoK . Further, if n−/n+ → λ2 > 0,

they proved that
√
n−(ĴE−J) converges in distribution to a linear combination of two independent

Brownian bridges, which is λ−1B1(F−(co)) − B2(F+(co)), where B(·) stands for Brownian bridges

on interval [0, 1]. They also stated that ĴK has a smaller mean square error (MSE) than dose ĴE .

2.3.2 Confidence Intervals for the Youden index

Confidence intervals for the Youden index are of particular interest in this dissertation. In the

literature, a few studies focused on constructing confidence intervals for the Youden index, utilizing

both parametric and nonparametric methods.

With normality assumptions for the distribution of X and Y , Lai et al. [28] constructed the

exact confidence interval (ECI) via generalized pivotal quantities (GPQs) for J and co. Detailed

introductions to GPQ can be found in Weerahandi [60] and Hanning et al. [18]. We cite the

definition of GPQ from Li et al. [30] as follows:

”Let S be a random variable with distribution Fs(θ; η), where θ is a parameter of interest and

η is a vector of nuisance parameters. Let s be an observed value of S and Q = Q(S; s; θ; η) be a

function of (S; s; θ; η). The random quantity Q is said to be a GPQ if it satisfies the following two

conditions:

(a) The distribution of Q does not depend on any unknown parameters.

(b) The observed value of Q, say q = Q(s; s; θ; η), is free of the nuisance parameter vector η.”

Under similar parametric assumptions, Schisterman and Perkins [48] provided Delta confidence

intervals for J and co. The (1−α)100% Delta confidence interval for J is ĴML±z1−α/2

√
V̂ ar(ĴML),

where V̂ ar(ĴML) is the estimate for V ar(ĴML) via plugging in the MLEs of populations means and
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standard deviations. V ar(ĴML) can be derived by the Delta method and can be expressed as follow:

V ar(ĴML) ≈ (
∂J

∂µx
)2V ar(µ̂x) + (

∂J

∂σx
)2V ar(σ̂x) + (2.25)

(
∂J

∂µy
)2V ar(µ̂y) + (

∂J

∂σx
)2V ar(σ̂y),

where ∂ represents the partial differential operating. It is well known that V ar(µ̂x) = σ2
x

n−
and

V ar(µ̂y) =
σ2
y

n+
. Schisterman and Perkins [48] stated the approximate estimate for V ar(σ̂x) and

V ar(σ̂y) to be σ2
x

2(n−−1)
and

σ2
y

2(n+−1)
, respectively. Similarly, the Delta interval can be constructed for

co. It should be pointed out that the derivation of the approximate variance via Delta method is

complex. Alternatively, the parametric bootstrap procedure can be used to estimate the variance of

the proposed MLE, and the resulting bootstrap based confidence interval is much easier to construct

than the Delta interval.

In a nonparametric setting, Schisterman and Perkins [48] introduced the Bias Corrected and

accelerated (BCa) and the Bootstrap Percentile (BP) intervals for J and co. They have specifically

explained the procedure for constructing BP interval. The construction of the BCa interval are

referred to Carpenter and Bithell [5] or Yang et al. [63].

Inspired by Agresti and Coull’s [1] adjusted estimate for a binomial proportion, Zhou and Qin

[67] proposed using the AC-adjusted confidence interval for J . Although the Youden index can be

interpreted as the difference between two binomial proportions; these two binomial proportions in

the Youden index are dependent since the estimation of the optimal threshold is involved. Unlike

the application of Agresti and Caffo [2] for the point-wise confidence interval to the diagnostic curve,

we use the original AC-adjusted binomial proportions for the Youden index. Define the AC-adjusted

empirical estimate for J to be

ĴAC = max
c

{ 1

n− + 4
(

n−∑

i=1

I(Xi ≤ c) + 2)− 1

n+ + 4
(

n+∑

j=1

I(Yj ≤ c) + 2)}. (2.26)

By Theorem 3.1 in Hsieh and Turnbull [22], ĴAC is asymptotically normal at given c. However,

the asymptotic variance of ĴAC is still unknown. Therefore, a bootstrap is needed to estimate

the variance of ĴAC . Re-sampling the original observations B times, we can obtain B bootstrap

replications {Ĵ∗b
AC : b = 1, 2, . . . , B}. Then, the Agresti and Coull normal approximation (ACNA)
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interval is defined as follows

(
J̄∗
AC − z1−α/2

√
V ar(Ĵ∗

AC), J̄∗
AC + z1−α/2

√
V ar(Ĵ∗

AC)

)
,

where J̄∗
AC = 1

B

∑B
b=1 Ĵ

∗b
AC , and V ar(Ĵ∗

AC) =
1

B−1

∑B
b=1(Ĵ

∗b
AC − J̄∗

AC)
2.

2.3.3 Practical Implications of Existing Methods

Based on the simulation studies in the papers mentioned, we make the following conclusions

concerning choice of methodologies.

In practice, for the point estimate of J or co, if the parametric assumptions are believed to

be valid, we would recommend efficient and accurate parametric approach. Otherwise, we prefer

the empirical estimate rather than kernel smoothed estimate because the selection of the kernel

function and optimal bandwidth is sometimes questionable.

Considering the confidence interval estimation, armed with normal assumptions, the exact

confidence interval outperforms all other methods, especially when the sample size is extremely

small. Nonetheless, as long as the parametric MLEs of J or co can be found, the Delta interval can

be applied. If the underlying distributions are unknown, we highly favor the nonparametric ACNA

interval.
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Chapter 3

INFERENCES FOR THE DIFFERENCE OF TWO YOUDEN INDICES

3.1 Introduction

In this chapter we focus on constructing the confidence intervals for the difference between two

Youden indices in paired study design. Under the normality assumption for the distributions of

continuous test results for diseased and non-diseased populations, based on the asymptotic property

of the maximum likelihood estimate (MLE), confidence interval for the differences of paired Youden

indices can be constructed via the asymptotic normality property of the MLE, and the corresponding

variance estimation can be implemented by Delta method. However, this MLE-based confidence

interval suffers from obtaining the complicated expression for the asymptotic variance via Delta

method, due to the correlations between the paired tests on the same individual. Recently, the exact

confidence regions for the parameter vector containing nuisance parameters based on generalized

pivotal quantities (GPQs, see Weerahandi [60]) presented exceptionally small sample performances

in terms of coverage probability. Substantial applications of GPQs can be found, for instances, in the

bioequivalence research (McNally et al. [36]), the inter-laboratory trials research (Iyer et al. [25]),

the construction of tolerance intervals (Liao and Iyer [31] and Liao et al. [32]), and the multivariate

analysis of variance (Gamage et al. [16]). In diagnostic studies, Li et al. [30] established the ECI

for the difference in paired AUCs via GPQs. Lai et al. [28] proposed GPQ based exact confidence

interval (ECI) for one Youden index. Motivated by these research works, the primary goal in this

chapter is to develop a GPQ-based ECI for the difference in paired Youden indices. Further, we

propose an MLE and bootstrap hybrid based confidence interval and a nonparametric BP interval

as a comparison.

3.2 Bootstrap and Maximum Likelihood Based Intervals

Matched-pair design is frequently applied to evaluate two diagnostic tests in the same subjects

for the purpose of reducing variation between subjects. Suppose we have two continuous-scale
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diagnostic procedures Test 1 and Test 2. Let X = (X1, X2) and Y = (Y1, Y2) be two numerical

vectors representing the test results for the non-diseased and diseased populations, respectively. We

also assume that X and Y are independent. Let F−1, F−2, F+1 and F+2 are the respective marginal

distributions of X1, X2, Y1 and Y2. Then, the Youden index of test Test-i is

Ji = max
c

{P (Yi ≥ c) + P (Xi ≤ c)− 1}

= F−i(coi)− F+i(coi), for i = 1, 2, (3.1)

where coi is the optimal cut-off point for the i-th test (i = 1, 2). The target parameter, D = J1−J2,

is the difference between two Youden indices from two paired diagnostic tests.

Let Xik be the result of Test i from the non-diseased population for k = 1 · · ·n−, and Yik′ be

the result of Test i from the diseased population for k′ = 1 · · ·n+. Without specification of the

underlying distributions for the non-diseased and diseased populations, the empirical estimate for

Ji is

ĴiE =

∑n−

k=1 I(Xik ≤ ĉEoi)

n−
+

∑n+

k′=1 I(Yik′ ≥ ĉEoi)

n+
− 1

=

∑n−

k=1 I(Xik ≤ ĉEoi)

n−

−
∑n+

k′=1 I(Yik′ < ĉEoi)

n+

, i = 1, 2, (3.2)

where I (·) is the indicator function, and ĉEoi is the empirical estimate for the optimal cut-off point

of Test i, which could follow the definition (2.21). Then, the empirical estimate for D is

D̂E = Ĵ1E − Ĵ2E. (3.3)

The exact distribution of D̂E cannot be obtained. Further, the asymptotic distribution of D̂E is

still unknown in literature when F− and F+ are not specified. Therefore, some ad hoc methods,

like bootstrap technology, are necessary to construct confidence intervals for D. For example, we

can construct a bootstrap percentile interval for D by using the following bootstrap procedures:

1. Draw a bootstrap re-sample of size n−, X
∗
ik’s, with replacement from the non-diseased sample

Xik’s and a separate re-sample of size n+, Y
∗
ik′’s, with replacement from the diseased sample

Yik′’s, for i = 1, 2.
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2. Calculate the bootstrap version D̂∗
E of D̂E by using the bootstrap samples.

3. Repeat the first two steps B (it is suggested that B ≥ 200) times to obtain the set of bootstrap

replications {D̂∗b
E : b = 1, 2, . . . , B}.

Then, the (1− α)100% level BP confidence interval for D is:

(
D̂∗

Eα/2
, D̂∗

E1−α/2

)
, (3.4)

where D̂∗
Eα/2

is the α/2×100-th percentile of {D̂∗b
E : b = 1, 2, . . . , B}, and D̂∗

E1−α/2
is the (1−α/2)×

100-th percentile of {D̂∗b
E : b = 1, 2, . . . , B}.

The nonparametric BP interval is easy to implement but it could have serious under-coverage

problem for the difference between two Youden indices. To obtain more accurate confidence interval

for D, we further assume that

X =


X1

X2


 ∼ N2(µx,Σx),

and

Y =


Y1

Y2


 ∼ N2(µy,Σy),

where µx =


µx1

µx2


, Σx =


 σ2

x1 σx12

σx12 σ2
x2


, µy =


µy1

µy2


, Σx =


 σ2

y1 σy12

σy12 σ2
y2


.

Under above normal distributional assumptions, the Youden indices for the two diagnostic tests

can be explicitly expressed as

Ji = Φ

(
µyi − coi

σyi

)
+ Φ

(
coi − µxi

σxi

)
− 1, i = 1, 2, (3.5)

where Φ (·) denotes the standard normal c.d.f., and coi is the optimal cut-off point for test i. If

assuming that the mean test result in the diseased population is greater that in the non-diseased

population, i.e., µyi > µxi for i = 1, 2, then coi has the following closed form expression:

coi =
µxi(b

2
i − 1)− ai + bi

√
a2i + (b2i − 1)σxiln(b2i )

(b2i − 1)
,
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where ai = µyi − µxi and bi = σyi/σxi, i = 1, 2. Particularly, if σyi = σxi, then

coi =
µxi + µyi

2
.

Therefore, the difference D between the two Youden indices is a function of parameters µx1, µx2,

σx1, σx2, µy1, µy2, σy1, and σy2. To estimate D, firstly, we find the MLEs of all the parameters,

namely, µ̂x1, µ̂x2, σ̂x1, σ̂x2, µ̂y1, µ̂y2, σ̂y1, and σ̂y2. Then, for the i-th i = 1, 2 test, we plug in these

MLEs into (2.11) to obtain the MLEs of co1 and co2, denoted by ĉo1ML and ĉo2ML, respectively.

According to (2.14), we can obtain the MLEs for J1 and J2 for Test 1 and Test 2, denoted by Ĵ1ML

and Ĵ2ML, respectively. Hence, the MLE of D is:

D̂ML = Ĵ1ML − Ĵ2ML. (3.6)

D̂ML inherits the asymptotic normality from parametric estimators in normal distribution-

s. After finding the asymptotic variance of the estimate via Delta Method (Shao [51]), we could

construct a confidence interval for D. However, we do not recommend the Delta method here

because the estimation of the asymptotic variance V ar(D̂ML) of D̂ML involves in complicated cal-

culation and estimation of too many unknown parameters. In stead, we propose to utilize the

bootstrap procedures mentioned above to obtain the bootstrap replications of D̂ML, denoted as

{D̂∗b
ML : b = 1, 2, . . . , B}. Then, we can calculate the bootstrap variance estimate V ar(D̂∗

ML) of

V ar(D̂ML). A (1 − α)100% hybrid bootstrap and maximum likelihood based confidence interval

(hereafter called HBML confidence interval) for D is proposed as follows:

(
D̂ML − z1−α/2

√
V ar(D̂∗

ML), D̂ML + z1−α/2

√
V ar(D̂∗

ML)

)
, (3.7)

where V ar(D̂∗
ML) =

1
B−1

∑B
b=1(D̂

∗b
ML − 1

B

∑B
b=1 D̂

∗b
ML)

2.
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3.3 Exact Confidence Interval

Since lots of sensational GPQ applications have been reported in literature, in this section, we

focus on developing GPQ-based exact confidence interval for the difference between two Youden

indices with paired data.

We can modify the results (Li et al. [30]) for the difference in paired AUCs to derive the GPQ

for the difference in paired Youden indices. Under the normal distribution assumption for the test

results, the parameter of interest, D, is a function of parameters µx, µy, σx1, σx2, σy1, and σy2. The

functions of parameters of interest are

(
µx, µy, βx, βy, σ

2
x2|1, σ

2
y2|1

)
≡
(
µx, µy,

σx12

σ2
x

,
σy12

σ2
y

, σ2
x2 −

σ2
x12

σ2
x1

, σ2
y2 −

σ2
y12

σ2
y1

)
. (3.8)

Notice that
(
βx, βy, σ

2
x2|1, σ

2
y2|1

)
are nuisance parameters for D.

Let X1, · · · ,Xn− and Y1, · · · ,Yn+
be random samples from N2(µx,Σx) and N2(µy,Σy),

respectively. Then the sufficient estimators for (µx,Σx) and (µy,Σy) are

(
µ̂x, Σ̂x

)
=




X̄1

X̄2


 ,

1

n− − 1


SSX1 SSX12

SSX12 SSX2




 ,

and
(
µ̂y, Σ̂y

)
=




Ȳ1

Ȳ2


 ,

1

n+ − 1


SSY1 SSY12

SSY12 SSY2




 ,

where, X̄i =
1
n−

∑
k Xik, SSXi =

∑
k

(
Xik − X̄i

)2
, SSX12 =

∑
k

(
X1k − X̄1

) (
X2k − X̄2

)
, and Ȳi’s,

SSYi’s and SSY12 are similarly defined based on the sample Yi’s.

Using these sufficient estimators, the parameters listed in (3.8) can be estimated by

(
Mx,My, Bx, By, SSX2|1, SSY2|1

)
= (3.9)

(
µ̂x, µ̂y,

SSX12

SSX1
,
SSY12

SSY1
, SSX2 −

SSX2
12

SSX1
, SSY2 −

SSY 2
12

SSY1

)
.
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Let UX1, UY 1, UX2|1, UY 2|1, ZBX , ZBY , ZMX , and ZMY be the quantities defined as follows:

UX1 =
SSX1

σ2
x1

∼ χ2
n−−1, UY 1 =

SSY1

σ2
y1

∼ χ2
n+−1 (3.10)

UX2|1 =
SSX2|1

σ2
x2|1

∼ χ2
n−−2, UY 2|1 =

SSY2|1

σ2
y2|1

∼ χ2
n+−2 (3.11)

ZBX = (Bx − βx)

√
SSX1

σ2
x2|1

∼ N(0, 1), ZBY = (By − βy)

√
SSY1

σ2
y2|1

∼ N(0, 1) (3.12)

ZMX =

(
Σx

n−

)−1/2

(Mx − µx) ∼ N2(0, I) (3.13)

ZMY =

(
Σy

n+

)−1/2

(My − µy) ∼ N2(0, I). (3.14)

It is easy to verify that these quantities satisfy conditions (a) and (b) in the definition of GPQ (in

section 2.3.2). Hence they are the pivotal quantities corresponding to estimators in (3.9).

Let mx = (mx1, mx2)
T , my = (my1, my2)

T , bx, by, ssx2|1, ssx1, ssy2|1, and ssy1 be the observed

values of Mx, My, Bx, By, SSX2|1, SSX1, SSY2|1, and SSY1, respectively. By the mutual indepen-

dence among (Mx, Σ̂x) and (My, Σ̂y) as well as the mutual independence among (Bx, SSX2|1, SSX1)

and (By, SSY2|1, SSY1), we can find the following GPQs for (σ2
x1, σ

2
x2|1, βx) and (σ2

y1, σ
2
y2|1, βy):

(
Qσ2

x1
, Qσ2

x2|1
, Qβx

)
=

(
ssx1

UX1

,
ssx2|1

UX2|1

, bx − ZBX

√
1

UX2|1

ssx2|1

ssx1

)
, (3.15)

(
Qσ2

y1
, Qσ2

y2|1
, Qβy

)
=

(
ssy1
UY 1

,
ssy2|1
UY 2|1

, by − ZBY

√
1

UY 2|1

ssy2|1
ssy1

)
. (3.16)

Similarly, the GPQs for (σ2
x2, σx12) and (σ2

y2, σy12) can be obtained as follows:

(
Qσ2

x2
, Qσx12

)
=

(
Q2

βx
Qσ2

x1
+Qσ2

x2|1
, QβxRσ2

x1

)
, (3.17)

(
Qσ2

y2
, Qσy12

)
=

(
Q2

βy
Qσ2

y1
+Qσ2

y2|1
, QβyRσ2

y1

)
. (3.18)
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Therefore, QΣX
=


Qσ2

x1
Qσx12

Qσx12 Qσ2
x2


 and QΣY

=


Qσ2

y1
Qσy12

Qσy12 Qσ2
y2


 are the GPQs for ΣX and ΣY ,

respectively. The GPQs for µx and µy are given by

Qµx =


Qµx1

Qµx2


 = mx −

(
QΣx

n−

)1/2

ZMX , (3.19)

Qµy =


Qµy1

Qµy2


 = my −

(
QΣy

n+

)1/2

ZMY . (3.20)

From (3.5), we can see that the Youden indices Ji’s are functions of µxi, µyi, σxi, σyi and coi

(i = 1, 2). From equations (3.15)-(3.20), Qσxi
=
√

Qσ2
xi

and Qσyi
=
√

Qσ2
yi
, we get the GPQs for

coi’s:

Qcoi =
Qµxi

(Q2
bi
− 1)−Qai +Qbi

√
Q2

ai
+ (Q2

bi
− 1)Qσxi

ln(Q2
bi
)

(R2
bi
− 1)

(3.21)

where Qai = Qµyi
−Qµxi

, and Qbi = Qσyi
/Qσxi

, for i = 1, 2. If σyi = σxi, then

Qcoi =
Qµxi

+Qµyi

2
. (3.22)

Therefore,

QD = QJ1 −QJ2, (3.23)

is the GPQ for the difference in paired Youden indices, where

QJi = Φ

(
Qµyi

−Qcoi

Qσyi

)
+ Φ

(
Qcoi −Qµxi

Qσxi

)
− 1, i = 1, 2. (3.24)

For the given non-diseased test results (x1, · · · ,xn−) from N2(µx,Σx) and the diseased test

results (y1, · · · ,yn+
) from N2(µy,Σy), to construct the GPQ-based confidence interval, we propose

the following Monte-Carlo algorithm:
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1. Compute the sample mean and sample covariance matrix using the diseased and the non-

diseased test results respectively.

2. Use (3.10)-(3.14) to generate UX1, UY 1, UX2|1 and UY 2|1 from the corresponding chi-squared

distributions and generate ZBX , ZBY , ZMX , and ZMY from the corresponding normal distri-

butions.

3. Calculate Qµxi
, Qµyi

, Qσxi
, Qσyi

and Qcoi by using (3.15)-(3.22).

4. Calculate QD by using (3.23) and (3.24).

5. Repeat step 2 to step 4 H times (here we recommend H=10000) to obtain H repetitions of

QD: {QD1
, QD2

, · · · , QDH
}.

Consequently, the 100(1−α)% GPQ-based exact confidence interval for the difference between

the paired Youden indices is defined as follows:

(
QDα/2

, QD1−α/2

)
, (3.25)

where QDα/2
is the α/2×100-th percentile of QDh

’s and QD1−α/2
is the (1−α/2)×100-th percentile

of QDh
’s.

3.4 Simulation Studies

In this section, we implement two simulation studies to evaluate the finite sample performance

of the proposed confidence intervals, namely, the exact confidence interval based on GPQs, the

HBML interval and the nonparametric BP interval.

In the first simulation study, the underlying non-diseased distribution and diseased dis-

tribution are N2(µx,Σx) and N2(µy,Σy) respectively. Without loss of generality, we choose

(µx1, µx2) = (0, 0), and (σx1, σx2) = (σy1, σy2) = (1, 1). The sample sizes are chosen to be

n−, n+ = 10, 20, 50, 100 with n− ≤ n+. Three scenarios have been considered. In scenario 1,

(µy1, µy2) is fixed at (3.289708, 2.563104) such that D = J1 − J2 = 0.9 − 0.8 = 0.1; both T1 and

T2 have high Youden index values, but the difference between the two Youden indices is small. In

scenario 2, (µy1, µy2) is fixed at (3.289708, 1.6832426) such that D = J1 − J2 = 0.9 − 0.6 = 0.3;
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in this case, T1 has high Youden index value, but T2 has lower Youden index value than T1, and

the difference between the two Youden indices is big. In scenario 3, (µy1, µy2) is chosen to be

(1.6832426, 1.3489795) such that D = J1 − J2 = 0.6 − 0.5 = 0.1; both T1 and T2 have low Youden

index values, but the difference between the two Youden indices is small. Finally, we set σx12 and

σy12 to be 0.1 (low), 0.5 (medium) and 0.9 (high) which represent different levels of correlation

between two diagnostic tests. Under each parameter setting, we simulate 5000 random samples

from the underlying normal distributions. In the bootstrap procedure, we draw B = 500 bootstrap

re-samples. The coverage probabilities and average interval lengths of the ECI, HBML and BP

intervals are calculated based on the simulated samples. The results of the simulation study are

reported in Table B.1 to Table B.6.

From Table B.1 to Table B.6, we make the following observations:

• Among all the proposed methods, the ECI interval outperforms the HBML and BP intervals

in terms of coverage probability and average interval length in most simulation settings. How-

ever, when sample size is small (n−, n+) ≤ (20, 20), the ECI interval sacrifices the interval

length to achieve the coverage probability’s closure to nominal level. Expect small sample

size situations, namely (n−, n+) ≤ (50, 50), the HBML method provides acceptable coverage

accuracy.

• Comparing the HBML and BP methods, we observe that the HBML interval is more stable

than the BP interval in three scenarios considered here. The performance pattern of the HBML

method is as expected. As the sample size increases, its performance enhanced constantly.

However, the performance of the BP interval varies a lot, and it performs worse when sample

sizes are unequal.

• An interesting observation is the good performance of the BP method in scenario 3 in which

the BP interval performs far better than in scenarios 1 and 2. In scenarios 1 and 2, (J1, J2) =

(0.9, 0.8), (0.9, 0.6), respectively. In both cases, J1 = 0.9, which requires the corresponding

sensitivity and specificity values being at least 0.9 (a proportion close to the boundary 1). In

fact, (Ji) is the difference between two proportions. Its nonparametric estimate (ĴiE) may

be a poor estimate for the difference between two proportions when one of the proportions is

close to 1, which may explain the poor performance of the BP interval in scenarios 1 and 2.
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However, in scenario 3, the true Youden indices are 0.6 and 0.5. Both values are not close to

the boundary, and the BP method doesn’t suffer from such boundary effect and thus performs

significantly better.

In the second simulation study, we explore the robustness of the proposed GPQ-based ECI

interval. For this purpose, we generate diseased and non-diseased samples from mixed normal

distributions, i.e., X ∼ pxN2(µx,Σx) + (1 − px)N2(µmix,Σmix) and Y ∼ pyN2(µy,Σy) + (1 −
py)N2(µmix,Σmix), where (µx,Σx) and (µy,Σy) are the same as those used in the first simulation

study, px = py = 0.9, Σmix =


 2 1.6

1.6 2


, and µmix = µy/2. We apply the µy values in above

three scenarios to explore the performance of ECI interval when the underlying distributions are

misspecified. The simulation results are reported in Table B.7. From Table B.7, we can observe

that the performance of the ECI interval with misspecified underlying distributions is not as good

as when the underline distributions are exactly normal as expected. However, its performance is

still acceptable.

3.5 A Real Application

The pancreatic cancer data discussed by Wieand et al. [61] is re-analyzed here. The dataset

was from a case-control study, in which, 51 controls and 90 cases involved. In that study, for

each subject, the outcomes of laboratory tests on biomarker CA-125 and biomarker CA-19-9 were

measured separately for the purpose of identifying the disease status. Both of the test results are

positive values. We are interesting in the comparison of the accuracy of the two biomarkers in

detecting pancreatic cancer. The original test results from the two populations are not normally

distributed. After taking log transformation to the CA19-9 test results and Box-Cox transformation

with the power parameter ϕ = −0.425 to the CA-125 test results, the transformed data would

follow the normal distribution. The point estimate for the difference between Youden indices of two

biomarkers is D = 0.4110 by the parametric method. By applying the non-parametric method to

the original data, the estimated D is 0.2745. In addition, the 95 percent confidence intervals for D

are (0.2369, 0.5850) and (0.0745, 0.4451) by HBML and BP methods, respectively. The 95 percent

ECI interval for D is (0.2557, 0.5660), which is the shortest one among the three intervals. All these

confidence intervals do not include 0. Therefore, we can conclude that the accuracy of CA-125 is
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significantly higher than that of CA-19-9 at 95 percent significant level and recommend biomarker

CA-125 for pancreatic cancer detection in this example.
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Chapter 4

INFERENCES FOR YOUDEN INDEX OF THREE ORDINAL GROUPS

4.1 Introduction

As highlighted in section 1.4, it is necessary to extend the original Youden index to be a suitable

measure of accuracy for diagnostic tests with three ordinal groups. Let W denote the continuous

test result from the intermediate population. Denote W1,W2, . . . ,Wn0
be a random sample from

intermediate patients. Let F0 and f0 be the c.d.f. and p.d.f. for W , respectively. Also, assume X ,

W , and Y are independent without loss of generality.

Following the definitions of sensitivity, specificity, and the true transitional rate in section 1.4,

for given thresholds c1 and c2, they can be expressed as:

Sen(c2) = P (Y ≥ c2) = 1− F+(c2), (4.1)

Spe(c1) = P (X ≤ c1) = F−(c1), (4.2)

and

Sin(c1, c2) = P (c1 ≤ W ≤ c2) (4.3)

= F0(c2)− F0(c1),

respectively. The quantity Sin(c1, c2) represents the probability that a randomly selected transi-

tional patient’s test result falls in the interval [c1, c2].
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Nakas et al. [39] extended the Youden index for three ordinal groups via defining the Youden

index as a maximum value of summation of Sen, Spe, and Sin, namely,

J3Nakas(co1, co2) = max
c1,c2

{Sen+ Spe+ Sin} (4.4)

= max
c1,c2

{F−(c1) + F0(c2)− F0(c1)− F+(c2) + 1}

= F−(co1) + F0(co2)− F0(co1)− F+(co2) + 1,

where (co1, co2) are the pair of optimal cut-off points. They also generalized this definition to be a

weighted summation of Sen, Spe, and Sin, and expressed as

J∗
3Nakas(co1, co2) = max

c1,c2
{ω1Sen + ω2Spe+ ω3Sin}. (4.5)

where the three weights, ω1, ω2 and ω3 could be understood as the prevalence of the three classes in

the whole population. Under such circumstance, the J∗
3Nakas is equivalent to the ratio of maximum

correctness criterion and maximum expected utility (He and Frey [20]). Such Youden index has

possible values between 1 and 3. J3Nakas = 1 indicates that the test results’ distributions of three

groups fully overlap, therefore, the test is a pointless test procedure. If the three distributions

are perfectly discriminated to each other, then J3Nakas = 3, which indicate the test is a perfect

diagnostic procedure. Since the original Youden index’s range is between 0 and 1, this definition is

not a nature extension of the original Youden index.

4.2 New Definition of The Youden Index for Three Ordinal Groups

In this chapter, we alternatively define the Youden index for three groups as follows:

J3(co1, co2) =
1

2
max
c1,c2

{Sen + Spe+ Sin− 1} (4.6)

=
1

2
max
c1,c2

{F−(c1)− F0(c1) + F0(c2)− F+(c2)} (4.7)

Assume that,
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(A4.1) there exist a pair of values c1o and c2o such that f−(c1o) = f0(c1o), f−(t) ≤ f0(t) if

t ≤ c1o, and f−(t) ≥ f0(t) if t ≥ c1o; f0(c2o) = f+(c2o), f0(t) ≤ f+(t) if t ≤ c2o, and f0(t) ≥ f+(t) if

t ≥ c2o.

This assumption indicates that stochastically, X is less than W , and W is less than Y , i.e.,

F+(t) ≤ F0(t) ≤ F−(t) for all t. It also indicates that there is a unique pair of optimal thresholds,

which are co1 and co2. Furthermore, based on this assumption, we have

J3(co1, co2) =
1

2

[
max
c1

{F−(c1)− F0(c1)}+max
c2

{F0(c2)− F+(c2)}
]

(4.8)

=
1

2
{[F−(co1)− F0(co1)] + [F0(co2)− F+(co2)]}. (4.9)

Notice that, the first half in (4.8) is the Youden index for measuring the capacity of the

diagnostic procedure in discriminating the health group and the intermediate group; and the second

half is the Youden index for measuring the capability of the diagnostic procedure in discriminating

the intermediate group and the diseased group. Thus, the J3 defined in this way could be interpreted

as the average discriminative accuracy of the test in identifying X and W , and W and Y .

Denote J−0 = maxc1{F−(c1)− F0(c1)}, J0+ = maxc2{F0(c2)− F+(c2)}, and J3 for J3(co1, co2).

Then, we have J3 = 1
2
(J−0 + J0+). J3 inherits the desire features from the original Youden index

and offers superb conveniences, computationally and theoretically:

• The possible range of its value is from zero to one inclusive. A value zero states a totally

useless test and the value one indicates an ideal diagnostic test.

• The index is independent of the relative sizes of the non-diseased, intermediate, and diseased

groups. It is also independent of the absolute sizes of the three groups.

• All the tests that have the same index value make the same total number of misclassifications

per hundred patients.

• The procedure to calculate J3 can be simplified to calculate the average of the two Youden

indices for the two pairs of groups.
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In this chapter, we would focus on deriving the asymptotic property of the empirical estimate

for J3. Chernoff [7] studied the asymptotic properties for the empirical estimate of mode. He ob-

tained the limiting distribution of the estimate and proved that the convergence rate is Op(n
−1/3).

Later, Kim and Pollard [26] generalized the Chernoff’s results to a higher dimension via a mod-

ified empirical process method and obtained the similar conclusion as in Chernoff [7]. Hsieh and

Turnbull [22] applied those theoretical results to the nonparametric estimate for Youden index and

developed the asymptotic distributions of the estimators for Youden index and its optimal cut-off

point under two ordinal groups case. Here, we first extend Hsieh and Turnbull’s [22] work to obtain

the asymptotic distribution for the empirical estimate of J3. Then, we propose several confidence

intervals for J3 and its optimal cut-off points.

4.3 Estimations of Youden index for Three Ordinal Groups

4.3.1 Parametric Estimation

In this section, we assume that

X ∼ N(µx, σ
2
x), W ∼ N(µw, σ

2
w), and Y ∼ N(µy, σ

2
y). (4.10)

Under these assumptions, the optimal cut-off points have the following closed forms:

co1 =
µx(b

2
1 − 1)− a1 + b1

√
a21 + (b21 − 1)σ−ln(b21)

(b21 − 1)
, (4.11)

co2 =
µw(b

2
2 − 1)− a2 + b2

√
a22 + (b22 − 1)σ0ln(b22)

(b22 − 1)
, (4.12)

where a1 = µw − µx, b1 = σw/σx, a2 = µy − µw, and b2 = σy/σw. Similarly, in the presence of equal

group standard deviations between X and W or/and between W and Y , the optimal cut-off points

would be co1 =
µx+µw

2
, c02 =

µw+µy

2
. Therefore,

J3 =
1

2
{Φ
(
co1 − µx

σx

)
− Φ

(
co1 − µw

σw

)
+ Φ

(
co2 − µw

σw

)
− Φ

(
co2 − µy

σy

)
}. (4.13)

We obtain the MLEs for co1, co2, and J3 via plugging in the MLEs, µ̂x, µ̂w, µ̂y, σ̂x, σ̂w, and σ̂y,

of µx, µw, µy, σx, σw, and σy into (4.11), (4.12), and (4.13). ĉo1ML, ĉ02ML, and Ĵ3ML are given as
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follows:

ĉo1ML =
µ̂x(̂b

2
1 − 1)− â1 + b̂1

√
â21 + (̂b21 − 1)σ̂−ln(̂b21)

(̂b21 − 1)
,

ĉo2ML =
µ̂w(̂b

2
2 − 1)− â2 + b̂2

√
â22 + (̂b22 − 1)σ̂0ln(̂b

2
2)

(̂b22 − 1)
,

Ĵ3ML =
1

2
{Φ
(
ĉo1ML − µ̂x

σ̂x

)
− Φ

(
ĉo1ML − µ̂w

σ̂w

)
+ Φ

(
ĉo2ML − µ̂w

σ̂w

)
− Φ

(
ĉo2ML − µ̂y

σ̂y

)
},

where â1 = µ̂w − µ̂x, b̂1 = σ̂w/σ̂x, â2 = µ̂y − µ̂w, and b̂2 = σ̂y/σ̂w. When b̂1 = 0 and/or b̂2 = 0,

ĉo1ML = µ̂x+µ̂w

2
and/or ĉo2ML = µ̂w+µ̂y

2
.

4.3.2 Nonparametric Estimation

When the underlying distributions for the test results are unknown, nonparametric estimates

for Youden index and its associated optimal cut-off point are necessary.

A simple nonparametric estimate for J3 can be obtained by substituting the c.d.f. F−, F0, and

F+ in (4.8) by their corresponding empirical distribution functions. The empirical estimate for J3

is

Ĵ3E =
1

2

[
max
c1

{F̂−(c1)− F̂0(c1)}+max
c2

{F̂0(c2)− F̂+(c2)}
]
, (4.14)

where

F̂−(c) =

∑n−

i−=1 I(Xi− ≤ c)

n−
(4.15)

F̂0(c) =

∑n0

i0=1 I(Wi0 ≤ c)

n0

F̂+(c) =

∑n+

i+=1 I(Yi+ ≤ c)

n+
.

(4.16)
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If let ĉo1E and ĉo2E be the empirical estimate for co1 and co2 which maximize (4.14), then (4.14)

could be expressed as:

Ĵ3E =
1

2

[(
F̂−(ĉo1E)− F̂0(ĉo1E)

)
+
(
F̂0(ĉo2E)− F̂+(ĉo2E)

)]
. (4.17)

Without specific assumption of the underlying distribution for the test results, there are no

closed forms for ĉo1E and ĉo2E . The estimates can only be found via numerical search. It is probable

that there may be multiple pairs of ĉo1E and ĉo2E which could maximize (4.14). Here, we define the

empirical estimates for the pair of optimal cut-off points as follows:

ĉo1E = median{t0|F̂−(t0)− F̂0(t0) = max
t

(
F̂−(t)− F̂0(t)

)
},

ĉo2E = median{t0|F̂0(t0)− F̂+(t0) = max
t

(
F̂0(t)− F̂+(t)

)
}. (4.18)

4.4 Asymptotic Properties for the Parametric and Nonparametric Estimators

The asymptotic properties for the proposed parametric and nonparametric estimators are es-

sential in inferential analysis. For instance, we might construct the confidence intervals for the

Youden index and its optimal cut-off point based on their asymptotic distributions.

When the underlying distributions are normal, asymptotic properties for Ĵ3ML could be derived

by the Delta method (see Schisterman and Perkins [48]). Then, we can apply the asymptotic

normality for Ĵ3ML to construct confidence interval for J3.

We focus on the asymptotic properties for the empirical estimator. Since no specific assump-

tions are made for Fg, g = −, 0,+, further assumptions are necessary to develop the main results

in this section. Similar to the assumptions made in Hsieh and Turnbull [22] for the original Youden

index, a slightly weaker version of A4.1 is assumed to restrict the uniqueness of the optimal cut-off

points. That is:

(A4.2) For any δ1 ≥ 0, there exists ǫ1 (≥ 0), such that

sup
|x−co1|≥δ1

[F−(x)− F0(x)] ≤ F−(co1)− F0(co1)− ǫ1,
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and for any δ2 ≥ 0, there exists ǫ2 (≥ 0), such that

sup
|x−co2|≥δ2

[F0(x)− F+(x)] ≤ F0(co2)− F+(co2)− ǫ2.

Now let C(d)(S) denote the class of functions with continuous k-th derivative in the support S,
S ⊂ ℜ. Further assume that

(A4.3) Fg, g = −, 0,+ are in C(2)(l, u). co1 ∈ (l1, u1) and co2 ∈ (l2, u2) with u1 ≤ l2, and the

interval (l1, u2) is a subset of (l, u). Further, assume that the domains of F− and F0 overlap, and the

intersection of their domains contains (l1, u1). Also assume that the domains of F0 and F+ overlap,

and the intersection of their domains contains (l2, u2).

(A4.4) |f ′

−(co1)− f
′

0(co1)| = d1 > 0, and |f ′

0(co2)− f
′

+(co2)| = d2 > 0.

Based results in Kim and Pollard [26], and Hsieh and Turnbull [22], we can obtain the following

theorem,

Theorem 4.1. Let Fg, g = −, 0,+ satisfied (A4.2), (A4.3), and (A4.4). If n−/n0 → λ2
1 and

n0/n+ → λ2
2 for some positive finite λ1 and λ2, then

Ĵ3E converges to J3 almost surely, and
√
4n0

(
Ĵ3E − J3

)
converges in distribution to

[
λ−1
1 B1(F−(co1))− B2(F0(co1)) +B2(F0(co2))− λ2B3(F+(co2))

]
, where B1, B2, and B3 are indepen-

dent Brownian bridges on [0, 1].

Its proof can be found in Appendix D.

4.5 Confidence Intervals for the Youden index of Three Ordinal Groups

In this section, we propose parametric and nonparametric confidence intervals for J3.

Under assumption (4.10), we first propose the GPQs based exact confidence interval (ECI) for

J3. Notice that J3 is a function of parameters µx, µw, µy, σx, σw, and σy. And the functions of

parameters of interest are

(
µx, µw, µy, σ

2
x, σ

2
w, σ

2
y

)
. (4.19)
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Then the sufficient estimators for (µx, σ
2
x), (µw, σ

2
w), and

(
µy, σ

2
y

)
are

(
µ̂x, σ̂

2
xs

)
=

(
X̄,

1

n− − 1
SSX

)
,

(
µ̂w, σ̂

2
ws

)
=

(
W̄ ,

1

n0 − 1
SSW

)
,

and
(
µ̂y, σ̂

2
ys

)
=

(
Ȳ ,

1

n+ − 1
SSY

)
,

respectively, where,X̄ = 1
n−

∑n−

i=1Xi, SSX =
∑n−

i=1

(
Xi − X̄

)2
, and Ȳ , SSY , W̄ , and SSW are

similarly defined.

Let UX , UW , UY , ZX , ZW and ZY be the quantities defined as follows:

UX =
SSX

σ2
x

∼ χ2
n−−1, (4.20)

UW =
SSW

σ2
w

∼ χ2
n0−1, (4.21)

UY =
SSY

σ2
y

∼ χ2
n+−1, (4.22)

ZX =

(
σx

n−

)−1/2

(X̄ − µx) ∼ N(0, 1), (4.23)

ZW =

(
σw

n0

)−1/2

(W̄ − µw) ∼ N(0, 1), (4.24)

ZY =

(
σy

n+

)−1/2

(Ȳ − µy) ∼ N(0, 1). (4.25)

It is easy to verify that these quantities satisfy conditions (a) and (b) in the definition of GPQs.

Denote µ̂x, µ̂w, µ̂y, ssx, ssw, and ssy be the observed values of X̄ , W̄ , Ȳ , SSX , SSW , and SSY ,

respectively. We can construct the GPQs for σ2
x, σ

2
w, and σ2

y as follows:

Qσ2
x
=

ssx

UX
, Qσ2

w
=

ssw

UW
, and Qσ2

y
=

ssy

UY
. (4.26)

Then, the GPQs for σx, σw, σy are

Qσx =
√
Qσ2

x
, Qσw =

√
Qσ2

w
, and Qσy =

√
Qσ2

y
. (4.27)
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The GPQs for µx, µw, and µy are defended as follows:

Qµx = µ̂x −
Qσx√
n−

ZX , (4.28)

Qµw = µ̂w − Qσw√
n0

ZW , (4.29)

Qµy = µ̂y −
Rσy√
n+

ZY . (4.30)

Based on these GPQs, the GPQs Qco1 and Qco2 for co1 and co2 are respectively given as:

Qco1 =
Qµx(Q

2
b1
− 1)−Qa1 +Qb1

√
Q2

a1
+ (Q2

b1
− 1)Qσxln(Q

2
b1
)

(R2
b1
− 1)

(4.31)

where Qa1 = Qµw −Qµx , and Qb1 = Qσw/Qσx . If σw = σx, then

Qco1 =
Qµx +Qµw

2
. (4.32)

Qco2 =
Qµw(Q

2
b2
− 1)−Qa2 +Qb2

√
Q2

a2
+ (Q2

b2
− 1)Qσw ln(Q

2
b2
)

(R2
b2
− 1)

(4.33)

where Qa2 = Qµy −Qµw , and Qb2 = Qσy/Qσw . If σy = σw, then

Qco2 =
Qµw +Qµy

2
. (4.34)

Therefore, the GPQ QJ3 for J3 is given as:

QJ3 =
1

2
{Φ
(
Qco1 −Qµx

Qσx

)
− Φ

(
Qco1 −Qµw

Qσw

)
+ (4.35)

Φ

(
Qco2 −Qµw

Qσw

)
− Φ

(
Qco2 −Qµy

Qσy

)
}. (4.36)

Follow the similar Monte-Carlo algorithm in Chapter 3, simulate the quantity QJ3 H times to

obtain {Qh
J3 : h = 1, 2, . . . , H}. Then, the 100(1−α)% GPQ-based ECI for J3 is defined as follows:

(
QJ3α/2

, QJ31−α/2

)
, (4.37)
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where QJ3α/2
and QJ31−α/2

are the α/2 × 100-th and the (1 − α/2) × 100-th percentiles of Qh
J3’s.

The exact confidence intervals can be similarly constructed for co1 and co2.

The second parametric confidence interval for J3 is based on the asymptotic normality of Ĵ3ML.

Instead of derive the asymptotic variance for J3ML via Delta method, we apply the bootstrap proce-

dures mentioned in chapter 3 to calculate the bootstrap variance estimate V ar(Ĵ∗
3ML) of V ar(Ĵ3ML).

Let {Ĵ∗b
3ML : b = 1, 2, . . . , B} be the bootstrap replications of Ĵ3ML. The bootstrap variance can

be calculated as V ar(Ĵ∗
3ML) =

1
B−1

∑B
b=1

(
Ĵ∗b
3ML − 1

B

∑B
b=1 Ĵ

∗b
3ML

)2
. Then, the (1 − α)100% hybrid

bootstrap and maximum likelihood (HBML) based confidence interval for J3 is defined as follow:

(
Ĵ3ML − z1−α/2

√
V ar(Ĵ∗

3ML), Ĵ3ML + z1−α/2

√
V ar(Ĵ∗

3ML)

)
. (4.38)

We can similarly construct the (1− α)100% HBML based confidence interval for co1 and co2.

Inspired by the successful application of the AC adjusted normal approximation (ACNA) con-

fidence interval for the original Youden index, we also propose this confidence interval for J3. Define

the AC adjusted empirical estimate for J3 to be

Ĵ3AC =
1

2
max
c1

{
∑n−

i−=1 I(Xi− ≤ c1) + 2

n− + 4
−
∑n0

i0=1 I(Wi0 ≤ c1) + 2

n0 + 4
}+ (4.39)

1

2
max
c2

{
∑n0

i0=1 I(Wi0 ≤ c2) + 2

n0 + 4
−
∑n+

i+=1 I(Yi+ ≤ c2) + 2

n+ + 4
}.

According to Theorem 4.1, Ĵ3AC has the asymptotic normality at given cut-off points c1 and c2;

however, we face the same difficulty that the asymptotic variance for Ĵ3AC is unknown. Again,

we apply the bootstrap procedure to estimate the V ar(Ĵ3AC). After obtaining the B bootstrap

replications of Ĵ3AC : {Ĵ∗b
3AC : b = 1, 2, . . . , B}, the (1 − α)100% ACNA confidence interval for J3 is

defined as follows:

(
J̄∗
3AC − z1−α/2

√
V ar(Ĵ∗

3AC), J̄∗
3AC + z1−α/2

√
V ar(Ĵ∗

3AC)

)
, (4.40)

where J̄∗
3AC = 1

B

∑B
b=1 Ĵ

∗b
3AC and V ar(Ĵ∗

3AC) =
1

B−1

∑B
b=1(Ĵ

∗b
3AC − J̄∗

3AC)
2 is the variance of bootstrap

replications.
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Additionally, we apply the Bias Corrected and accelerated (BCa) method to construct another

nonparametric confidence interval for J3 as a comparison to the ACNA confidence interval for J3.

To construct the BCa interval, first we need to apply bootstrap technology to obtain B bootstrap

replications of Ĵ3E , denoted by Ĵ∗b
3E : b = 1, 2, . . . , B. Let Ĵ

(∗1)
3E , Ĵ

(∗2)
3E , . . . , Ĵ

(∗B)
3E be the ordered Ĵ∗b

3E .

The BCa confidence interval is defined as follow:

(
Ĵ
(∗[(B+1)θ1])
3E , Ĵ

(∗[(B+1)θ2 ])
3E

)
, (4.41)

where θ1 = Φ(ζ2 +
ζ2+zα/2

1−ζ1(ζ2+zα/2)
), and θ2 = Φ(ζ2 +

ζ2+z1−α/2

1−ζ1(ζ2+z1−α/2)
). Let N = n− + n0 + n+, then the

two quantities ζ1 and ζ2 can be found by the following equations:

ζ1 =

N∑

i=1

ϑ3
i /(6(

N∑

i=1

ϑ2
i )

3/2), and ζ2 = Φ−1(
1

B

B∑

b=1

(Ĵ∗b
3E < Ĵ3E)). (4.42)

ϑi is defined as: ϑi = Ĵ
(·)
3E− Ĵ−i

3E , where Ĵ
−i
3E is calculated by delete the i-th observation in the original

samples, and Ĵ
(·)
3E =

∑N
i=1

Ĵ−i
3E

N
. In (4.41), [(B + 1)θ1] represent the integer part of (B + 1)θ1, and

Ĵ
(∗[(B+1)θ1 ])
3E represent the [(B + 1)θ1]-th bootstrap replication in Ĵ

(∗1)
3E , Ĵ

(∗2)
3E , . . . , Ĵ

(∗B)
3E . The upper

bound Ĵ
(∗[(B+1)θ2])
3E is similarly defined.

The nonparametric confidence intervals for the optimal thresholds are the bootstrap percentile

(BP) based intervals.

4.6 Simulation Studies

Since the ECI and HBML methods rely on the normal assumption, we generate test results for

the three groups from the normal distribution. Without loss of generality, we fix µ− = 1, σ− = 1

and σ+ = 1.2. The other parameters are selected based on the following considerations:

• To evaluate the performance of the three methods comprehensively, the true values of J3 are

selected as 0.55, 0.65, 0.75, and 0.85. These values indicate that the diagnostic accuracy of

the test is at the acceptable, good, very good, or excellent levels, respectively.
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• Since J3 can be interpreted as the average accuracy of the test in discriminating the two pairs

of groups, i.e., J3 is the average of J−0 and J0+. So, the values of µ0, σ0, co1, and co2 are

determined to achieve specified values of J−0 and J0+ such that J3 =
1
2
(J−0 + J0+).

The parameter settings are listed in the table below.

Table 4.1. Parameter Setting for Chapter 4

J3 µ0 σ0 µ+ co1 co2 J−0 J0+

0.55 2.8670 1.2358 4.5095 1.9730 3.6738 0.6 0.5
0.55 2.3627 1.0205 4.2229 1.6896 3.3233 0.5 0.6
0.65 3.1259 1.0518 5.0152 2.0611 4.0959 0.7 0.6
0.65 2.5817 0.8843 4.7189 1.7710 3.6368 0.6 0.7
0.75 6.8108 4.1214 11.5606 2.9286 9.5174 0.8 0.7
0.75 4.8503 3.2713 10.2040 2.6769 8.1232 0.7 0.8
0.85 8.5329 3.9086 14.5146 3.1501 12.3324 0.9 0.8
0.85 5.6948 2.9612 12.3094 2.7733 9.9487 0.8 0.9

In above settings, under the same J3 value, we have two scenarios, let I be the label for the case

that the J−0 is larger than the J0+, II be the label for the case that the J−0 is less than the J0+. Here

the sample sizes n−, n0, and n+ are determined to be (50, 50, 50), (80, 80, 80), (100, 100, 100), and

(100, 50, 80). Let the label for the four sample size settings above be S1, S2, S3, and S4, respectively.

For each simulation setting, we generate 1000 random samples from the underlying distributions to

calculate the empirical average coverage probability and average interval length. In each run, we

apply the re-sampling procedure B = 500 times.

The simulated results, summarized in Appendix C, lead to the following conclusions. Under

normal assumptions for the underlying distribution, the GPQ based ECI for J3 outperforms all other

intervals. The performance of the HBML based confidence interval for J3 is adept at the selected

sample sizes. The ACNA confidence interval for J3 generally has an acceptable performance and

performs better than the BCa interval. However, its performance is poor when J3 = 0.55. The

reason is that the Ĵ3AC tends to be much larger than the true J3 = 0.55, further, when sample

sizes increase, the estimated variance for Ĵ3AC decreases. This causes the increment of the lower

bound error of this interval resulting that the average coverage probability decreases as sample sizes

increase.
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The ECI and HBML based confidence interval for optimal cut-off points perform as good as

expected. However, the BP interval for the optimal thresholds consistently over estimate, whose

coverage probability almost exceeds the confidence level, and the average interval lengths are much

wider than the parametric methods.

In practice, if the normal distribution assumptions are valid for the test results, we recommend

the ECI for J3, otherwise, the ACNA interval should be applied.
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Chapter 5

NONPARAMETRIC COVARIATES ADJUSTMENT FOR YOUDEN INDEX

5.1 Introduction

In the studies of exploring covariate effects on the accuracy of diagnostic test, the milestone

would be the paper of Pepe [42], in which, Pepe introduced three approaches to model the covariates

effects on diagnostic accuracy. The first approach is directly setting up a regression model for the

test result on the covariates. The second one is to model the AUC on the covariates. And the

last one is to directly model the ROC curve on the covariate information. Table 2 in Pepe [42]

comprehensively summarized the advantages and disadvantages for the three approaches. Later,

numerous literatures discussed the covariates adjustment for the performance of diagnostic test as

introduced in Chapter 1. If concerning individual parameters, like the cut-off point, Yao et al. [64]

indicated that the last two approaches lose the connection with the cut-off value and does not allow

the prediction of the sensitivity and specificity at a given cut-off conditional on covariates. Under

this consideration, the first approach is more interesting. Faraggi [13] employed the first approach

by using simple linear regression models with normal error, and then proposed the corresponding

adjusted estimate for AUC and Youden index. Nonetheless, the linear model for the test results is

limited to linear form and the homoscedasticity error assumption. Yao et al. [64] extended Faraggi’s

[13] work by using a non-parametric heteroscedastic regression models. Here, we utilize the same

models as in Yao et al. [64] to establish inferences of covariats adjustment for the Youden index.

5.2 Model and Methods

5.2.1 Heteroscedastic Regression Models for the Test Results

Assume the following non-parametric models for X and Y :

X|(Z = z) = µx(z) +
√

νx(z)ǫx, (5.1)

Y |(Z = z) = µy(z) +
√
νy(z)ǫy, (5.2)
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where Z represents the covariates, the standard errors ǫ1 and ǫ2 are independent of each other and

have mean zero and standard deviation one, the range of the variance functions ν1(z) and ν2(z) is

restricted in ℜ+ and finite for all z ∈ ℜ. In addition, let F−Z and F+Z denote the c.d.f. of X and

Y at given Z respectively, f−Z and f+Z denote the p.d.f. of X and Y at given Z respectively, F ∗
−(·)

and F ∗
+(·) denote the c.d.f. of ǫ1 and ǫ2 respectively, and f ∗

−(·) and f ∗
+(·) denote the p.d.f. of ǫ1 and

ǫ2 respectively. Here, the error distributions F ∗
− and F ∗

+ are assumed to be independent of Z.

5.2.2 Covariate-adjusted Youden Index under Normal Error Assumption

With the covariates Z, both the Youden index and the optimal cut-off point actually are

dependent on Z. Let C(z) = {c : maxc [P (Y ≥ c|Z = z)) + P (X ≤ c|Z = z)− 1]} represent the

collection of possible optimal cut-off points at Z = z, co,1(z) = infc C(z), and co,2(z) = maxc C(z).

The Youden index at given Z = z is

J(z) = max
c

{P (Y ≥ c|Z = z)) + P (X ≤ c|Z = z)− 1}

= P (Y ≥ co(z)|Z = z) + P (X ≤ co(z)|Z = z)− 1

= P (X ≤ co(z)|Z = z)− P (Y ≤ co(z)|Z = z)

= F−Z(co(z))− F+Z(co(z)), (5.3)

where co(z) = co,1(z), or co,2(z). If the errors ǫ1 and ǫ2 are assumed to be normally distributed in

models (5.1) and (5.2), the Youden index at Z = z can be expressed as

JN(z) = Φ

(
µy(z)− co(z)√

νy(z)

)
− Φ

(
µx(z)− co(z)√

νx(z)

)
, (5.4)

where JN(z) stands for J(z) under normal error. With normality and the assumption that µy(z) >

µx(z), co(z) has the following closed form:

co(z) =
µx(z)(b

2 − 1)− a + b
√

a2 + (b2 − 1)νx(z)ln(b2)

(b2 − 1)
, (5.5)

where a = µy(z)− µx(z), b =
√

νy(z)/
√

νx(z).
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Under models (5.1)- (5.2), the mean and variance functions µx, µy, νx, and νy can be consis-

tently estimated via nonparametric method, namely, the local polynomial regression technique. Let

µ̂x(z), µ̂y(z), ν̂x(z), and ν̂y(z) be the local polynomial estimates for µx, µy, νx, and νy by using local

polynomial method (Fan and Gijbels [12]). Let {(zi,x, xi) : i = 1 · · ·n−} and {(zj,y, yj) : j = 1 · · ·n+}
be random samples of “non-diseased” subjects and “diseased” subjects from models (5.1)- (5.2),

where zi,x and zj,y are the corresponding observed covariate values in the “non-diseased” and “dis-

eased” samples. Then, µ̂x(z) can be obtained by minimizing:

n−∑

i=1

{xi −
p∑

k=0

Bk(zi,x − z)k}2K(
zi,x − z

hµ,x
)/hµ,x, (5.6)

where K(·) is a well defined symmetric kernel density function, Bk’s are the regression coefficients

to be solved to minimize (5.6), hµ,x is the bandwidth selected for controlling the smoothing in the

regression, and p is the order selected of the polynomial function. Similarly, we could obtain µ̂y(z).

With µ̂x(z) and µ̂y(z), we can obtain the squared residuals νi,x and νj,y in models (5.1) and (5.2)

as follows:

νi,x = {xi − µ̂x(zi,x)}2, (5.7)

νj,y = {yj − µ̂y(zj,y)}2. (5.8)

With the observed squared residuals, we can obtain ν̂y(z) via minimizing

n−∑

i=1

{νi,x −
p∑

k=0

Bk(zi,x − z)k}2K(
zi,x − z

hν,x
)/hν,x, (5.9)

where, hν,x is the bandwidth selected for obtaining ν̂x(z). Similarly, we can obtain ν̂y(z). The

selection of the bandwidths for the mean and variance functions will be discussed in the simulation

section.

Let ĉo(z) be the plug-in estimate of co(z). Then, the covariate-adjusted estimator for the

Youden index at given z can be defined as follows:

ĴN(z) = Φ

(
µ̂y(z)− ĉo(z)√

ν̂y(z)

)
− Φ

(
µ̂x(z)− ĉo(z)√

ν̂x(z)

)
. (5.10)
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5.2.3 Covariate-adjusted Youden Index without Normal Error Assumption

The covariate-adjusted Youden index in section 5.2.2 is a semi-parametric estimate for the

Youden index based on regression models with normal error distribution assumption for test results.

However, this method may be sensitive to departures from the distributional assumption. Therefore,

it is necessary to provide a fully nonparametric covariate-adjustment for the Youden index.

In this section, ǫx and ǫy in models (5.1) - (5.2) are assumed to be distribution free, i.e., both

F ∗
−(·) and F ∗

+(·) are unknown distributions. Our goal is to estimate J(z) at given z based on these

samples.

To estimate J(z) at given z, we have to estimate test values at given Z = z since the mean

functions µx(z) and µy(z) and the variance functions νx(z) and νy(z) as well as the error distri-

butions F ∗
−(·) and F ∗

+(·) are unknown. Estimating the mean and variance functions can be easily

implemented by modern non-parametric methods (e.g., local polynomial method). However pro-

ducing a good estimate for the error distribution is a difficult task in nonparametric heteroscedastic

regression models. In stead of using the complex estimation of the error distributions, we employ

the following procedure which has been used in Yao et al. [64].

1. Find non-parametric estimates µ̂x, µ̂y, ν̂x, and ν̂y for µx, µy, νx, and νy by using local poly-

nomial method.

2. Find the standardized residuals:

ǫ̂i,x =
xi − µ̂x(zi,x)√

ν̂x(zi,x)
, ǫ̂j,y =

yj − µ̂y(zj,y)√
ν̂y(zj,y)

.

3. Estimate test values at given Z = z as follows:

x̂i,z = µ̂x(z) +
√

ν̂x(z)ǫ̂i,x, ŷj,z = µ̂y(z) +
√

ν̂y(z)ǫ̂j,y.

Then, the nonparametric covariate-adjusted estimator for the Youden index can be defined as

follows:
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ĴE(z) = max
c

[
n−1
−

n−∑

i=1

I(x̂i,z ≤ c)− n−1
+

n+∑

j=1

I(ŷj,z ≤ c)

]

= n−1
−

n−∑

i=1

I(x̂i,z ≤ ĉoE(z))− n−1
+

n+∑

j=1

I(ŷj,z ≤ ĉoE(z))

where I(·) is the indicator function, ĉoE(z) = ĉ
(1)
oE(z) or ĉ

(2)
oE(z) with

ĉ
(1)
oE(z) = inf

c

{
c : max

c

[
n−1
−

n−∑

i=1

I(x̂i,z ≤ c)− n−1
+

n+∑

j=1

I(ŷj,z ≤ c)

]}
, (5.11)

ĉ
(2)
oE(z) = max

c

{
c : max

c

[
n−1
−

n−∑

i=1

I(x̂i,z ≤ c)− n−1
+

n+∑

j=1

I(ŷj,z ≤ c)

]}
. (5.12)

ĉ
(i)
oE(z)’s are the empirical estimates for the optimal cut-off point. It is noted that ĉ

(1)
oE(z)

maximizes the empirical sensitivity and ĉ
(2)
oE(z) maximizes the empirical specificity. Choosing the

empirical estimate in such a way, rather than determining it be the median of possible solutions,

could reduce the computational burden in simulation.

5.3 Asymptotic Properties of the Covariate-adjusted Estimators for the Youden Index

We present the asymptotic properties of the covariate-adjusted estimators for the Youden

index in this section. Firstly, we explore the asymptotic properties of ĴN(z) under the normal error

assumption. Then we discuss the properties of ĴE(z) when the normality assumption for the error

distribution is released.
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5.3.1 Asymptotic Properties of ĴN(z)

Before presenting the asymptotic properties of ĴN(z), let us introduce some necessary notations.

Let

Ex(z) = E(ǫ3x|Z = z), Ey(z) = E(ǫ3y|Z = z),

Vx(z) = V ar(ǫ2x|Z = z), Vy(z) = V ar(ǫ2y|Z = z),

Mj(K) =

∫
µjK(µ)dµ, for all integer j ≥ 0,

R(K) =

∫
K2(µ) < ∞, Sp = (Mj+l(K))0≤j,l≤p

K∗(µ) = eT1 S
−1
p (1, µ, . . . , µp)TK(µ),

R(K∗, ρ) =

∫
K∗(µ)K∗(µ/ρ)dµ, for any 0 < ρ < ∞,

where ek is the (p + 1)× 1 vector with the k-th element being 1 and 0 others, and p is the chosen

order in local polynomial regression estimation.

Under some regularity assumptions, for a given z, the local polynomial estimators of the mean

and variance functions in model (5.1) and (5.2) are uniformly consistent with rates O(Rxn−) and

O(Ryn+
), respectively (see Yao et al. [64]),

sup
z∈D(Z)

|µ̂x(z)− µx(z)| = O(Rxn−) a.s., sup
z∈D(Z)

|ν̂x(z)− νx(z)| = O(Rxn−) a.s., (5.13)

sup
z∈D(Z)

|µ̂y(z)− µy(z)| = O(Ryn+
) a.s., sup

z∈D(Z)

|ν̂y(z)− νy(z)| = O(Ryn+
) a.s., (5.14)

where Rxn− = hp+1
µ,x +

√
log(1/hµ,x)/(n−hµ,x), Ryn+

= hp+1
µ,y +

√
log(1/hµ,y)/(n+hµ,y), hµ,x and hµ,y are

bandwidth for estimating µx(z) and µy(z), and D(Z) is the set of possible values of Z. Furthermore,

Yao et al. [64]) showed that they are asymptotic normal, namely

√
n−hµ,x (µ̂x(z)− µx(z), ν̂x(z)− νx(z))

T d−→ N(Bx(z),Σx(z)), (5.15)

√
n+hµ,y (µ̂y(z)− µy(z), ν̂y(z)− νy(z))

T d−→ N(By(z),Σy(z)), (5.16)
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where

Bx(z) = {bx1(z), bx2(z)}T , Σx(z) = σx,ij(z)1≤i,j≤2,

bx1 =
Mp+1K∗

(p+ 1)!
dxµ

p+1
x (z), bx2 =

Mp+1K∗

(p+ 1)!
dxρ

p+1
x νp+1

x (z),

σx,11(z) =
R(K∗)νx(z)

θ(z)
, σx,22(z) =

R(K∗)Vx(z)

θ(z)ρx
,

σx,12(z) = σx,21(z) =
R(K∗, ρx)Ex(z)

θ(z)ρx
, dx = lim

(
n−h

2p+3
µ,x

)1/2

By(z) = {by1(z), by2(z)}T , Σy(z) = σy,ij(z)1≤i,j≤2,

by1 =
Mp+1K∗

(p+ 1)!
dyµ

p+1
y (z), by2 =

Mp+1K∗

(p+ 1)!
dyρ

p+1
y νp+1

y (z),

σy,11(z) =
R(K∗)νy(z)

θ(z)
, σy,22(z) =

R(K∗)Vy(z)

θ(z)ρy
,

σy,12(z) = σy,21(z) =
R(K∗, ρy)Ey(z)

θ(z)ρy
, dy = lim

(
n+h

2p+3
µ,y

)1/2
,

ρi = limhνi/hµ,i, i = x, y, and hνi is the bandwidth for estimating νi,

and θ(z) represents the probability density function of Z, if the covariates are treated as a random

variable.

Based on above asymptotic properties, utilizing the Cramér-Wold device and Slutsky’s theorem,

we obtain the following theorems for ĴN(z).

Theorem 5.1. Under assumptions (E1)-(E5) stated in Appendix E, for a given Z = z, we have

that

(i) if n+

n−
→ ∞,

√
n−hµ,x(ĴN(z)− JN(z))

d−→ N(M1(z), V1(z)), where

M1(z) =
∂JN (z)

∂µx(z)
bx1(z) +

∂JN (z)

∂νx(z)
bx2(z),

V1(z) =

(
∂JN (z)

∂µx(z)

)2

σx,11(z) +

(
∂JN (z)

∂νx(z)

)2

σx,22(z)

+σx,12(z)

(
∂JN (z)

∂νx(z)

∂JN (z)

∂µx(z)
+

∂JN (z)

∂µx(z)

∂JN (z)

∂νx(z)

)
.
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(ii) if n+

n−
→ 0,

√
n+hµ,y(ĴN(z)− JN (z))

d−→ N(M2(z), V2(z)), where

M2(z) =
∂JN (z)

∂µy(z)
by1(z) +

∂JN (z)

∂νy(z)
by2(z),

V2(z) =

(
∂JN (z)

∂µy(z)

)2

σy,11(z) +

(
∂JN (z)

∂νy(z)

)2

σy,22(z)

+σy,12(z)

(
∂JN (z)

∂νy(z)

∂JN (z)

∂µy(z)
+

∂JN (z)

∂µy(z)

∂JN (z)

∂νy(z)

)
,

(iii) if n+

n−
→ λ, 0 < λ < ∞,

√
n−hµ,x(ĴN(z)− JN(z))

d−→ N(M3(z), V3(z)), where

M3(z) = M1(z) + CM2(z), V3(z) = V1(z) + C2V2(z),

and C = λ− p+1

2p+3 (dx
dy
)

1

2p+3 . The detail of the partial derivatives are listed in Appendix E.

Theorem 5.2. Under assumptions (E1†)-(E5†) and (E6)-(E8) stated in Appendix E, we have

sup
z∈D(Z)

|ĴN(z)− JN(z)| = O(Rxn− + Ryn+
). (5.17)

5.3.2 Asymptotic Properties of ĴE(z)

Now we explore the asymptotic properties of the empirical estimate ĴE(z) of J(z) without

normality assumption.

Let

ǫi,x =
xi − µx(zi,x)√

νx(zi,x)
, ǫj,y =

yj − µy(zj,y)√
νy(zj,y)

.

and

xi,z = µx(z) +
√

νx(z)ǫi,x, yj,z = µy(z) +
√
νy(z)ǫj,y.

J̃E(z) = max
c

[
n−1
−

n−∑

i=1

I(xi,z ≤ c)− n−1
+

n+∑

j=1

I(yj,z ≤ c)

]

= n−1
−

n−∑

i=1

I(xi,z ≤ c̃oE(z))− n−1
+

n+∑

j=1

I(yj,z ≤ c̃oE(z)),
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where c̃oE(z) = c̃
(1)
oE(z) or c̃

(2)
oE(z), and

c̃
(1)
oE(z) = inf

c

{
c : max

c

[
n−1
−

n−∑

i=1

I(xi,z ≤ c)− n−1
+

n+∑

j=1

I(yj,z ≤ c)

]}
, (5.18)

c̃
(2)
oE(z) = max

c

{
c : max

c

[
n−1
−

n−∑

i=1

I(xi,z ≤ c)− n−1
+

n+∑

j=1

I(yj,z ≤ c)

]}
. (5.19)

J̃E(z) can be treated as a “hypothetical” estimator for J(z) because the mean functions µx(z),

µy(z), νx(z), and νy(z) need to be estimated in practice. If these mean functions and variance

functions are known, ĴE(z) is an asymptotically unbiased estimator for J(z).

Theorem 5.3. If n+/n− → λ for some 0 < λ < ∞, then

E
[
J̃E(z)

]
−→ J(z), for a given z. (5.20)

Theorem 5.4. Under the same assumptions for Theorem 5.2 and (E9) stated in Appendix E, if

n+/n− → λ for some 0 < λ < ∞, then

E

[(
ĴE(z)− J̃E(z)

)2]
−→ 0, for a given z. (5.21)

The asymptotic unbiasness of ĴE(z) can be obtained from Theorem 5.3 and Theorem 5.4. But

the asymptotic normality of the empirical estimator ĴE(z) has eluded us so far. It should be the

future research for us.

5.4 Confidence Intervals for the Youden Index and Simulation Studies

5.4.1 Confidence Intervals for the Covariate-adjusted Youden Index

Under the normal error assumption for models (5.1) and (5.2), using the asymptotic distribution

(from Theorem 5.1) of ĴN(z), we can construct a normal approximation-based confidence interval

(NA interval) for the YI at given Z = z. However, it should be noticed that, from Appendix F,

the partial derivatives of JN(z) with respect to the mean and variance functions in Theorem 1
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involve too many unknown parameters, and the two quantities, dx = lim
(
n−h

2p+3
µ,x

)1/2
and dy =

lim
(
n+h

2p+3
µ,y

)1/2
, are unknown. To avoid those complex plugging-ins, we use the bootstrap method

to estimate the bias and variance of ĴN(z). At given Z = z, re-sample the original data B times to

obtain B bootstrap replications of ĴN(z), notated as {ĴN(z)
∗b : b = 1, 2, . . . , B}. Then, the bias of

b JN(z) can be estimated by:

M̂∗
3 (z) =

1

B

B∑

b=1

(ĴN(z)
∗b − ĴN (z)),

and the variance of JN(z) can be estimated by:

V̂ ∗
3 (z) =

1

B − 1

B∑

b=1

(ĴN(z)
∗b − ĴN(z))

2.

At a given z, the (1− α)100% normal approximation (NA) confidence interval for JN(z) is defined

as follows:

(
ĴN(z)− M̂∗

3 (z)− z1−α/2

√
V ∗
3 (z), ĴN(z)− M̂∗

3 (z) + z1−α/2

√
V ∗
3 (z)

)
, (5.22)

where z1−α/2 is the (1− α/2)-th quantile of the standard normal distribution.

Without the normal error assumption, the confidence interval for the Youden index at given

Z = z should be based on the nonparametric estimate ĴE(z). Since the asymptotic distribution of

ĴE(z) is still unknown, we propose a nonparametric interval for J(z) by using bootstrap method.

Let

ĴAC(z) =

∑n−

i=1 I(x̂i,z ≤ ĉoE(z)) + 2

n− + 4
−
∑n+

j=1 I(ŷj,z ≤ ĉoE(z)) + 2

n+ + 4
.

ĴAC(z) is inspired by Agresti and Coull’s [1] interval estimate for a binomial proportion which

has very good small sample performance. Since z1−α/2 is approximately equal to 2 when α = 0.05,

ĴAC(z) may be regarded as an adjusted estimate for the difference between two proportions (i.e.,

P (X ≤ co(z)|Z = z) and P (Y ≤ co(z)|Z = z)) by adding two successes and two failures to the

pseudo Bernoulli observations. We summarize the bootstrap procedure in the following steps:
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(i). Draw a re-sample of size m, x̂∗
i,z’s, with replacement from x̂i,z’s and a re-sample of size n,

ŷ∗j,z’s, with replacement from ŷj,z’s.

(ii). Calculate the bootstrap version of ĴAC(z)

Ĵ∗
AC(z) =

∑n−

j=1 I(ŷ
∗
j,z ≤ ĉ∗oE(z)) + 2

n− + 4
−
∑n+

i=1 I(x̂
∗
i,z < ĉ∗oE(z)) + 2

n+ + 4
,

where ĉ∗oE(z) is the bootstrap version of ĉoE(z).

(iii). Repeat step (i) and step (ii) B times to obtain the set of bootstrap replications {Ĵ∗b
AC(z) :

b = 1, 2, . . . , B} (it is suggested that B ≥ 200).

Then, the bootstrap variance estimator V ar(Ĵ∗
AC(z)) is defined as

V ar(Ĵ∗
AC(z)) =

1

B − 1

B∑

b=1

(Ĵ∗b
AC(z)− J̄∗

AC(z))
2

where J̄∗
AC(z) =

1
B

∑B
b=1 Ĵ

∗b
AC(z).

Now the ACNA interval for J(z) is defined as follows:

(
J̄∗
AC(z)− z1−α/2

√
V ar(Ĵ∗

AC(z)), J̄∗
AC(z) + z1−α/2

√
V ar(Ĵ∗

AC(z))

)
.

5.4.2 Simulation Studies

In this section, we conduct simulation studies to examine the finite sample performances of the

proposed methods for estimating the Youden index with adjustment for covariates. In the study,

we utilize two sets of models to evaluate the efficiency of our methods.

In the first situation, we consider the following models for the healthy population and diseased

population:

X|Z = 6 + 1.5Z + 1.5 sin(Z) +
√
0.4 + Φ(2Z − 6)ǫx,

Y |Z = 7.2 + 1.5Z + 1.5 sin(Z) +
√
Z − 0.8 +

√
1.2 + Φ(2Z − 6)ǫy,

where both ǫx and ǫy follow the standard normal distribution, and Φ is the c.d.f. of standard

normal distribution. The simulated observations {xi, zi,x} and {yj, zj,y} for the two populations
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are generated by drawing Z values from Uniform(1, 5) independently and drawing the errors from

N(0, 1) independently, where i = 1, . . . , n− and j = 1, . . . , n+. We choose the sample sizes to be

n+ = n− = 50 and n+ = n− = 100 to compare performances of the methods at smaller sample size

and larger sample size.

In the second situation, we assume the models for the non-diseased and the diseased populations

as follows:

X|Z = 6 + 1.5Z + 1.5 sin(Z) +
√
0.4 + Φ(2Z − 6)ǫx,

Y |Z = 8 + 1.5Z + 1.5 sin(Z) +
√
Z − 0.5 +

√
1.5 + Φ(2Z − 6)ǫy,

where ǫx, ǫy follow heavy tail symmetric distribution, namely, the student t-distribution with degree

of freedom 4. The purpose of this setting is to evaluate the performances of the methods when the

underlying distributions are miss-specified.

In the simulation study, we fix the order in local polynomial regression to be 1, namely p = 1,

to implement the local linear approximations. For the bandwidth selection, Cleveland and Loader

[8] mentioned that we can either select fixed bandwidth for all observations in the domain or select

varied bandwidths as a function of the observations. Here, we follow the second method to select

varied bandwidths, and it is called the nearest-neighborhood bandwidth selection. If the sample size

is notated by n, we select a fixed number of observations, which is α×n and round it up to the nearest

integer kα, in the nearest-neighborhood of each observation to implement the local approximation,

where α (0 < α < 1), the smoothing parameter, stands for a fixed proportion of observations. Then,

at each observation, the corresponding half bandwidth is the distance from that observation to the

nearest kα-th observation. Accordingly, we can select varied bandwidths via selecting a fixed α.

Choosing the sequences of varied bandwidths, hµ,x, hµ,y hν,x and hν,y for estimating µx(z), µy(z),

νx(z), and νy(z) costs lots of the computing resource. It is an extremely heavy duty for us to use the

optimal varied bandwidths if we target at the Youden index. Alternatively, we selected a reasonable

path to access the “optimal” varied bandwidths by minimizing the true integrated squared errors.

We select varied hµ,x as the values which minimize
∫
[µ̂x(z; hµ,x)− µx(z)]

2dz, and choose hµ,y, hν,y,

and hν,y similarly.
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With the generated data, we evaluate the performances of the estimator ĴN(z) under normal

assumption and the nonparametric estimators ĴE(z) and ĴAC(z) by reporting the mean square error

(MSE) at given covariate values. We repeat the simulation for each setting 500 times to calculate

MSE at different value of z. From Figure F.1, we observe that ĴAC(z) has the smallest MSE among

the three estimators. When sample size increases, the MSE’s of all estimators decrease as expected,

shown in Figure F.1 (right). For the second model, which assumed the t-distribution for the errors,

as expected, the MSE of ĴN (z) is significantly larger than those of ĴE(z) and ĴAC(z) (see Figure

F.2).

We also examine the 95% level point-wise NA and ACNA confidence intervals for J(z). The

usual bootstrap percentile (BP) confidence interval based on the empirical estimator ĴE(z) is also

included in the comparison. In the simulation study, we calculate the average upper bounds and the

average lower bounds of these confidence intervals at given z from 500 Monte Carlo runs, in each

Monte Carlo run, we bootstrap the original sample 999 times to obtain more accurate estimate.

Figures F.3 and F.4 display the point-wise average confidence bands for J(z). From these figures,

we found that, even if the error distribution is correctly specified (in the first simulation setting),

the point-wise ACNA band is competitive to the NA band. If the error distribution is mis-specified,

the ACNA band outperforms the NA band.

5.5 A Real Application

In this section, we consider the Pima Indians Diabetes Study data originally discussed by Smith

et al. [53]. In the dataset, nine variables are recorded: Number of times pregnant (V1), Plasma glu-

cose concentration in an OGTT (V2), Diastolic blood pressure (mm Hg) (V3), Triceps skin fold thick-

ness (mm) (V4), 2-Hour serum insulin (mu U/ml) (V5), Body mass index (weightinkg/(heightinm)2)

(V6), Diabetes pedigree function (V7), Age (years) (V8), Class variable (0 or 1) (V9). There were

268 cases and 500 controls. Two individuals in the case group had OGTT value 0 and three indi-

viduals had OGTT value 0, we deleted these five observations in the data analysis. The OGTT is

a classical and standard diagnostic test for Diabetes. Smith and Thompson [54] considered the age

as a potential covariate which would influence the OGTT results.
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First, we consider the situation without covariate adjustment. The OGTT results from case

and control groups are not normally distributed based on the Pearson chi-square test for normality

(p-value = 0.001, 0.023 respectively). The empirical estimate for the Youden index is JE = 0.446.

This estimated Youden index value indicates that the ability of OGTT for distinguishing diabetes

is mediocre.
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Figure 5.1. The scatter plot of OGTT test vs. Age, left for cases, right for controls. Solid lines are
local polynomial estimates for the mean functions.

Now we consider the effect of age in estimating the Youden index. The scatter plots of the

OGTT results vs. age among non-diseased and diseased groups (see Figure 5.1) do not indicate a

strong linear relationship between OGTT and age. They also indicate variabilities of the OGTT

are huge at observed age points (from the scatter plot). Consequently, the linear regression models

employed in Faraggi [13] can not be directly applied here. However, the heteroscedastic regression
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models (5.1) and (5.2) could work for this data set. Here, we use the OGTT results of subjects

aged from 21 years to 66 years, and produce three covariate-adjusted estimates ĴN(z), ĴE(z) and

ĴAC(z) for the Youden index with 95% point-wise BP band and ACNA band. In this application, the

sequences of bandwidths for the mean and the variance functions of the two populations are selected

by standard leaving-one-out cross-validation method, targeting on minimizing the prediction errors.

We obtain the point-wise confidence intervals via bootstrap the original sample 999 times. From

Figure 5.2, it is obvious that the accuracy of diagnosing diabetes by testing the glucose level in

blood varies by age. The diagnostic accuracy of OGTT for younger individuals (age < 30 years)

could be more precise than that for individuals aged from 30 years to 35 years. There is a small

spike which shows a slightly increasing accuracy for 38 years to 40 years old individuals, and then

the accuracy decreases slowly to about 50 years. When testing individuals are getting older (age

> 50 years), the accuracy of OGTT increases. The confidence bands become wider when ages

getting larger, this probably is due to the sparseness of observations with age larger than 60. The

differences between the three proposed estimates are not obvious. However, we recommend the

nonparametric covariate-adjusted estimates for the Youden index to this data set because it is more

flexible and robust than the one with normal error assumption.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

The Youden index, a frequently used summary of the ROC curve, has been found in many

applications in different fields, such as medical informatics and bioinformatics. It provides a criterion

for evaluating the optimal threshold value of a test for which the summation of sensitivity and

specificity is maximized.

In Chapter 2, we introduced a new point of view, the diagnostic curve, to assess the accuracy

of medical tests. The proposed point-wise confidence intervals are easy to implement with satis-

fying performances in most settings, and they are purely nonparametric. In practice, we highly

recommend utilizing the diagnostic curve to evaluate the performances of diagnostic tests.

In Chapter 3, we proposed and compared three confidence intervals for the difference between

two Youden indices of paired diagnostic tests. When the underlying distributions are normal, the

GPQ-based exact confidence interval shows perfect performance even when sample size are extreme-

ly small (m,n ≤ 20). The hybrid bootstrap and maximum likelihood based confidence interval has

acceptable performance when sample sizes are large enough (m,n ≥ 50). While the application

of the GPQ-based exact interval depends on the underlying normal distribution assumption, our

simulation results show that it has some robust properties against the deviation from the normal dis-

tribution assumption. The proposed nonparametric BP interval generally does not have satisfactory

performance.

In Chapter 4, we defined the Youden index for three ordinal diagnostic groups and proposed

its estimates, examined the nonparametric asymptotic property, and proposed several confidence

interval estimations for the Youden index. According to the simulation outcomes, we recommend the

proposed parametric confidence intervals when the underlying distributions are normal. Although

the AC adjusted normal approximation confidence interval is sensitive to the true value of the

Youden index, it is robust and can offer acceptable performances for lots of cases.

In Chapter 5, we proposed nonparametric covariate-adjusted estimates for the Youden index.

The simulation study conducted here demonstrated the robustness and effectiveness of the proposed
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method, hereby, we suggest applying the nonparametric approach in real applications. Although

some asymptotic properties of the nonparametric covariate-adjusted estimator for the Youden index

have been obtained, its asymptotic distribution is still an open question.

With multiple tests, or high dimensional covariates, only the adjustment for the accuracy could

not fully satisfy the current medical questions. For example, what are the significant variables or

tests which play critical roles in helping detecting the diseases? To answer such questions, we

need to explore or establish appropriate methodologies to implement the model selection, which

is targeting on maximizing the accuracy of the diagnostic tests. Currently, relative researches

undergoing focused on the ROC curve (Lin et al. [33]), or AUC (Huang et al. [24]); however, few

of them focused on the Youden index. Perspectively, researches of covariates selection based on the

Youden index are of the primary interests.
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Appendix A

SIMULATION RESULTS FOR CHAPTER TWO

Notes:

• In each figure, ”Normal-Normal” means that the underlying distributions for non-diseased

and diseased populations are both normal distributions, respectively.

• In each figure, ”Normal-T” means that the underlying distributions for non-diseased and

diseased populations are normal distribution and t-distribution with degree of freedom 4,

respectively.

• In the left panel of each figure, the solid line is the true J(c). The dashed lines represent the

Wald point-wise interval. The dotdash lines represent the AC point-wise interval. The long

dash lines represent the TT point-wise interval.

• In the right panel of each figure, the solid line represents the the average coverage probability

of the Wald point-wise interval. The dotdash line represents the average coverage probability

of the AC point-wise interval. The long dash line represents the average coverage probability

of the TT point-wise interval.
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Figure A.1. Normal-Normal, Maximum of DC is 0.60. Left Panel: Point-wise C.I. for DC. Right
Panel: Coverage Probability.
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Figure A.2. Normal-Normal, Maximum of DC is 0.80. Left Panel: Point-wise C.I. for DC. Right
Panel: Coverage Probability.
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Figure A.3. Normal-Normal, Maximum of DC is 0.90. Left Panel: Point-wise C.I. for DC. Right
Panel: Coverage Probability.
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Figure A.4. Normal-Normal, Maximum of DC is 0.95. Left Panel: Point-wise C.I. for DC. Right
Panel: Coverage Probability.
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Figure A.5. Normal-T, Maximum of DC is 0.60. Left Panel: Point-wise C.I. for DC. Right Panel:
Coverage Probability.
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Figure A.6. Normal-T, Maximum of DC is 0.80. Left Panel: Point-wise C.I. for DC. Right Panel:
Coverage Probability.
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Figure A.7. Normal-T, Maximum of DC is 0.90. Left Panel: Point-wise C.I. for DC. Right Panel:
Coverage Probability.
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Figure A.8. Normal-T, Maximum of DC is 0.95. Left Panel: Point-wise C.I. for DC. Right Panel:
Coverage Probability.
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Appendix B

SIMULATION RESULTS FOR CHAPTER THREE

Notes:

• ECI stands for exact confidence interval.

• HBML stands for hybrid bootstrap and maximum likelihood based confidence interval.

• BP stands for bootstrap percentile confidence interval.
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Table B.1. The coverage probabilities and average interval lengths of 95% Confidence Intervals for
the difference in paired YIs: Scenario 1.

ECI HBML BP
n+ n− σx12 σy12 Cov. (Length) Cov. (Length) Cov. (Length)
10 10 0.1 0.1 0.9582 (0.5771) 0.8770 (0.3954) 0.7148 (0.2976)

0.5 0.9674 (0.5363) 0.8730 (0.3662) 0.7122 (0.2844)
0.9 0.9666 (0.4423) 0.8648 (0.3142) 0.7006 (0.2557)

0.5 0.5 0.9736 (0.4790) 0.8646 (0.3352) 0.6946 (0.2666)
0.9 0.9704 (0.3798) 0.8408 (0.2735) 0.6924 (0.2388)

0.9 0.9 0.9758 (0.2521) 0.8280 (0.1973) 0.6762 (0.1952)

20 0.1 0.1 0.9724 (0.4746) 0.8884 (0.3558) 0.8380 (0.2933)
0.5 0.9618 (0.4231) 0.8908 (0.3198) 0.8408 (0.2753)
0.9 0.9632 (0.3096) 0.8796 (0.2572) 0.8318 (0.2410)

0.5 0.5 0.9720 (0.4037) 0.8878 (0.2981) 0.8360 (0.2618)
0.9 0.9598 (0.2863) 0.8732 (0.2291) 0.8278 (0.2284)

0.9 0.9 0.9610 (0.2248) 0.8534 (0.1750) 0.8188 (0.1929)
50 0.1 0.1 0.9624 (0.4384) 0.8820 (0.3192) 0.8064 (0.2566)

0.5 0.9524 (0.3747) 0.8872 (0.2794) 0.8082 (0.2414)
0.9 0.9652 (0.2436) 0.8826 (0.2016) 0.8194 (0.2030)

0.5 0.5 0.9622 (0.3679) 0.8794 (0.2685) 0.8128 (0.2348)
0.9 0.9636 (0.2265) 0.8722 (0.1863) 0.8180 (0.1951)

0.9 0.9 0.9616 (0.2026) 0.8566 (0.1585) 0.8032 (0.1743)

100 0.1 0.1 0.9428 (0.4241) 0.8808 (0.3049) 0.7522 (0.2329)
0.5 0.9516 (0.3613) 0.8740 (0.2613) 0.7408 (0.2138)
0.9 0.9640 (0.2249) 0.8778 (0.1766) 0.7354 (0.1730)

0.5 0.5 0.9546 (0.3495) 0.8698 (0.2535) 0.7204 (0.2076)
0.9 0.9574 (0.2108) 0.8704 (0.1668) 0.7260 (0.1668)

0.9 0.9 0.9686 (0.1946) 0.8518 (0.1505) 0.7102 (0.1558)

20 20 0.1 0.1 0.9478 (0.3693) 0.9176 (0.3072) 0.9122 (0.2895)
0.5 0.9524 (0.3396) 0.9108 (0.2849) 0.9088 (0.2777)
0.9 0.9490 (0.2847) 0.9040 (0.2420) 0.9074 (0.2469)

0.5 0.5 0.9562 (0.3065) 0.9074 (0.2588) 0.9072 (0.2617)
0.9 0.9624 (0.2442) 0.9032 (0.2112) 0.9080 (0.2295)

0.9 0.9 0.9682 (0.1624) 0.8914 (0.1516) 0.9122 (0.1943)
50 0.1 0.1 0.9496 (0.3031) 0.9174 (0.2630) 0.9060 (0.2562)

0.5 0.9536 (0.2656) 0.9196 (0.2347) 0.9028 (0.2409)
0.9 0.9528 (0.2013) 0.9126 (0.1802) 0.9018 (0.2054)

0.5 0.5 0.9462 (0.2490) 0.9148 (0.2202) 0.8994 (0.2325)
0.9 0.9544 (0.1813) 0.9114 (0.1619) 0.9008 (0.1957)

0.9 0.9 0.9536 (0.1343) 0.8968 (0.1283) 0.8932 (0.1726)

100 0.1 0.1 0.9588 (0.2802) 0.9160 (0.2438) 0.8772 (0.2332)
0.5 0.9560 (0.2413) 0.9192 (0.2135) 0.8782 (0.2172)
0.9 0.9576 (0.1662) 0.9144 (0.1502) 0.8744 (0.1759)

0.5 0.5 0.9510 (0.2387) 0.9132 (0.2044) 0.8746 (0.2103)
0.9 0.9512 (0.1550) 0.9124 (0.1383) 0.8696 (0.1688)

0.9 0.9 0.9520 (0.1338) 0.8964 (0.1184) 0.8630 (0.1542)
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Table B.2. Table (B.1) Continue.
ECI HBML BP

n+ n− σx12 σy12 Cov. (Length) Cov. (Length) Cov. (Length)
50 50 0.1 0.1 0.9500 (0.2256) 0.9356 (0.2075) 0.9394 (0.2210)

0.5 0.9542 (0.2084) 0.9360 (0.1912) 0.9390 (0.2100)
0.9 0.9402 (0.1777) 0.9372 (0.1631) 0.9380 (0.1882)

0.5 0.5 0.9604 (0.1892) 0.9322 (0.1728) 0.9338 (0.1752)
0.9 0.9478 (0.1529) 0.9228 (0.1413) 0.9390 (0.1752)

0.9 0.9 0.9594 (0.1063) 0.9222 (0.1000) 0.9426 (0.1479)

100 0.1 0.1 0.9446 (0.1957) 0.9348 (0.1815) 0.9290 (0.1961)
0.5 0.9538 (0.1732) 0.9388 (0.1620) 0.9384 (0.1840)
0.9 0.9520 (0.1335) 0.9362 (0.1272) 0.9338 (0.1572)

0.5 0.5 0.9522 (0.1626) 0.9354 (0.1513) 0.9364 (0.1758)
0.9 0.9552 (0.1195) 0.9362 (0.1135) 0.9364 (0.1491)

0.9 0.9 0.9432 (0.0913) 0.9346 (0.0877) 0.9378 (0.1315)
100 100 0.1 0.1 0.9500 (0.1573) 0.9428 (0.1503) 0.9434 (0.1688)

0.5 0.9514 (0.1452) 0.9450 (0.1378) 0.9398 (0.1600)
0.9 0.9500 (0.1229) 0.9474 (0.1178) 0.9396 (0.1430)

0.5 0.5 0.9510 (0.1310) 0.9362 (0.1253) 0.9376 (0.1518)
0.9 0.9492 (0.1066) 0.9404 (0.1020) 0.9422 (0.1333)

0.9 0.9 0.9582 (0.0742) 0.9384 (0.0721) 0.9386 (0.1120)
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Table B.3. The coverage probabilities and average interval lengths of 95% Confidence Intervals for
the difference in paired YIs: Scenario 2.

ECI HBML BP
n+ n− σx12 σy12 Cov. (Length) Cov. (Length) Cov. (Length)
10 10 0.1 0.1 0.9716 (0.6756) 0.8706 (0.5357) 0.8778 (0.4742)

0.5 0.9620 (0.6275) 0.8740 (0.5030) 0.8704 (0.4585)
0.9 0.9602 (0.5484) 0.8740 (0.4570) 0.8748 (0.4341)

0.5 0.5 0.9642 (0.5703) 0.8642 (0.4689) 0.8680 (0.4434)
0.9 0.9730 (0.4907) 0.8682 (0.4185) 0.8700 (0.4211)

0.9 0.9 0.9658 (0.3831) 0.8772 (0.3596) 0.8822 (0.4043)

20 0.1 0.1 0.9726 (0.5772) 0.8976 (0.4785) 0.8682 (0.4405)
0.5 0.9614 (0.5142) 0.8944 (0.4393) 0.8588 (0.4203)
0.9 0.9606 (0.4193) 0.8936 (0.3814) 0.8566 (0.3963)

0.5 0.5 0.9658 (0.4895) 0.8880 (0.4174) 0.8574 (0.4094)
0.9 0.9706 (0.3797) 0.8876 (0.3538) 0.8512 (0.3838)

0.9 0.9 0.9728 (0.3318) 0.8866 (0.3149) 0.8546 (0.3700)
50 0.1 0.1 0.9634 (0.4383) 0.8876 (0.4291) 0.7946 (0.3856)

0.5 0.9518 (0.3747) 0.8878 (0.3868) 0.8000 (0.3672)
0.9 0.9662 (0.2436) 0.9000 (0.3137) 0.7974 (0.3372)

0.5 0.5 0.9630 (0.3779) 0.8772 (0.3723) 0.7860 (0.3572)
0.9 0.9654 (0.2365) 0.8966 (0.2993) 0.7950 (0.3304)

0.9 0.9 0.9622 (0.2050) 0.8952 (0.2803) 0.7938 (0.3235)

100 0.1 0.1 0.9436 (0.4241) 0.8882 (0.4087) 0.7714 (0.3570)
0.5 0.9510 (0.3683) 0.8780 (0.3629) 0.7672 (0.3375)
0.9 0.9648 (0.2239) 0.8902 (0.2854) 0.7770 (0.3072)

0.5 0.5 0.9542 (0.3565) 0.8794 (0.3558) 0.7604 (0.3317)
0.9 0.9592 (0.2128) 0.8890 (0.2789) 0.7716 (0.3041)

0.9 0.9 0.9704 (0.1966) 0.8808 (0.2657) 0.7574 (0.2976)

20 20 0.1 0.1 0.9470 (0.3733) 0.9192 (0.4062) 0.8954 (0.3978)
0.5 0.9520 (0.3486) 0.9138 (0.3799) 0.9040 (0.3838)
0.9 0.9486 (0.2947) 0.9100 (0.3427) 0.8916 (0.3633)

0.5 0.5 0.9556 (0.3165) 0.9102 (0.3535) 0.8904 (0.3698)
0.9 0.9616 (0.2542) 0.9090 (0.3101) 0.8954 (0.3495)

0.9 0.9 0.9704 (0.1724) 0.9236 (0.2627) 0.9018 (0.3310)
50 0.1 0.1 0.9494 (0.3131) 0.9168 (0.3445) 0.8700 (0.3434)

0.5 0.9546 (0.2756) 0.9178 (0.3135) 0.8702 (0.3274)
0.9 0.9522 (0.2043) 0.9246 (0.2638) 0.8770 (0.3037)

0.5 0.5 0.9456 (0.2590) 0.9152 (0.2990) 0.8688 (0.3181)
0.9 0.9560 (0.1825) 0.9258 (0.2463) 0.8694 (0.2947)

0.9 0.9 0.9550 (0.1434) 0.9178 (0.2192) 0.8622 (0.2820)

100 0.1 0.1 0.9576 (0.2902) 0.9188 (0.3213) 0.8782 (0.3173)
0.5 0.9552 (0.2513) 0.9198 (0.2862) 0.8678 (0.2992)
0.9 0.9580 (0.1662) 0.9282 (0.2281) 0.8728 (0.2711)

0.5 0.5 0.9520 (0.2407) 0.9184 (0.2772) 0.8804 (0.2941)
0.9 0.9518 (0.1550) 0.9226 (0.2182) 0.8612 (0.2655)

0.9 0.9 0.9526 (0.1338) 0.9284 (0.2033) 0.8634 (0.2587)
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Table B.4. Table (B.3) Continue.
ECI HBML BP

n+ n− σx12 σy12 Cov. (Length) Cov. (Length) Cov. (Length)
50 50 0.1 0.1 0.9500 (0.2256) 0.9394 (0.2683) 0.9024 (0.2842)

0.5 0.9564 (0.2084) 0.9344 (0.2510) 0.9010 (0.2734)
0.9 0.9366 (0.1777) 0.9278 (0.2240) 0.8900 (0.2578)

0.5 0.5 0.9618 (0.1892) 0.9318 (0.2322) 0.8958 (0.2624)
0.9 0.9474 (0.1529) 0.9326 (0.2025) 0.8872 (0.2454)

0.9 0.9 0.9600 (0.1063) 0.9346 (0.1680) 0.8818 (0.2286)

100 0.1 0.1 0.9454 (0.1957) 0.9384 (0.2334) 0.9168 (0.2510)
0.5 0.9530 (0.1732) 0.9418 (0.2130) 0.9128 (0.2383)
0.9 0.9524 (0.1337) 0.9370 (0.1805) 0.9082 (0.2202)

0.5 0.5 0.9526 (0.1626) 0.9394 (0.2020) 0.9080 (0.2309)
0.9 0.9546 (0.1195) 0.9348 (0.1669) 0.9104 (0.2120)

0.9 0.9 0.9434 (0.0913) 0.9406 (0.1457) 0.9036 (0.2008)
100 100 0.1 0.1 0.9582 (0.1974) 0.9480 (0.1926) 0.9252 (0.2132)

0.5 0.9572 (0.1839) 0.9420 (0.1795) 0.9238 (0.2041)
0.9 0.9580 (0.1638) 0.9442 (0.1601) 0.9168 (0.1921)

0.5 0.5 0.9620 (0.1696) 0.9414 (0.1662) 0.9222 (0.1954)
0.9 0.9592 (0.1464) 0.9436 (0.1445) 0.9196 (0.1829)

0.9 0.9 0.9506 (0.1201) 0.9454 (0.1194) 0.9158 (0.1695)
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Table B.5. The coverage probabilities and average interval lengths of 95% Confidence Intervals for
the difference in paired YIs: Scenario 3.

ECI HBML BP
n+ n− σx12 σy12 Cov. (Length) Cov. (Length) Cov. (Length)
10 10 0.1 0.1 0.9558 (0.7807) 0.8982 (0.7140) 0.9216 (0.6697)

0.5 0.9550 (0.7314) 0.9040 (0.6448) 0.9296 (0.6256)
0.9 0.9662 (0.6485) 0.9058 (0.5431) 0.9268 (0.5503)

0.5 0.5 0.9714 (0.6756) 0.9110 (0.4529) 0.9348 (0.5785)
0.9 0.9634 (0.5386) 0.9114 (0.4529) 0.9304 (0.4931)

0.9 0.9 0.9720 (0.3480) 0.9182 (0.2819) 0.9268 (0.3739)
20 0.1 0.1 0.9610 (0.7256) 0.9124 (0.6343) 0.9370 (0.6058)

0.5 0.9576 (0.6284) 0.9118 (0.5532) 0.9428 (0.5514)
0.9 0.9476 (0.4684) 0.9206 (0.4306) 0.9544 (0.4644)

0.5 0.5 0.9514 (0.5756) 0.9120 (0.5027) 0.9446 (0.5128)
0.9 0.9642 (0.4694) 0.9212 (0.3607) 0.9546 (0.4159)

0.9 0.9 0.9566 (0.2873) 0.9180 (0.2527) 0.9632 (0.3388)

50 0.1 0.1 0.9524 (0.6538) 0.9032 (0.5687) 0.9130 (0.5332)
0.5 0.9510 (0.5416) 0.9144 (0.4746) 0.9306 (0.4674)
0.9 0.9538 (0.3548) 0.9356 (0.3190) 0.9522 (0.3574)

0.5 0.5 0.9462 (0.5209) 0.9140 (0.4484) 0.9218 (0.4464)
0.9 0.9628 (0.3123) 0.9342 (0.2816) 0.9512 (0.3318)

0.9 0.9 0.9574 (0.2648) 0.9126 (0.2232) 0.9404 (0.2857)

100 0.1 0.1 0.9562 (0.6324) 0.8994 (0.5428) 0.9058 (0.5000)
0.5 0.9542 (0.5217) 0.9098 (0.4480) 0.9210 (0.4335)
0.9 0.9526 (0.3026) 0.9310 (0.2708) 0.9370 (0.3054)

0.5 0.5 0.9570 (0.4605) 0.8982 (0.4282) 0.9056 (0.4163)
0.9 0.9548 (0.2837) 0.9232 (0.2458) 0.9404 (0.2879)

0.9 0.9 0.9662 (0.2463) 0.9114 (0.2129) 0.9252 (0.2591)
20 20 0.1 0.1 0.9466 (0.5716) 0.9262 (0.5359) 0.9480 (0.5354)

0.5 0.9514 (0.5147) 0.9334 (0.4823) 0.9484 (0.4969)
0.9 0.9534 (0.4309) 0.9216 (0.4060) 0.9510 (0.4375)

0.5 0.5 0.9640 (0.4521) 0.9366 (0.4227) 0.9590 (0.4562)
0.9 0.9524 (0.3235) 0.9324 (0.3316) 0.9682 (0.3877)

0.9 0.9 0.9574 (0.2232) 0.9416 (0.2077) 0.9804 (0.3018)

50 0.1 0.1 0.9468 (0.4747) 0.9332 (0.4553) 0.9448 (0.4610)
0.5 0.9616 (0.4087) 0.9360 (0.3891) 0.9496 (0.4140)
0.9 0.9658 (0.3024) 0.9358 (0.2882) 0.9612 (0.3348)

0.5 0.5 0.9620 (0.3841) 0.9306 (0.3558) 0.9512 (0.3895)
0.9 0.9550 (0.2561) 0.9374 (0.2430) 0.9622 (0.3041)

0.9 0.9 0.9546 (0.1885) 0.9336 (0.1732) 0.9664 (0.2534)

100 0.1 0.1 0.9610 (0.4479) 0.9264 (0.4215) 0.9412 (0.4264)
0.5 0.9554 (0.3683) 0.9258 (0.3481) 0.9406 (0.3737)
0.9 0.9526 (0.2417) 0.9518 (0.2305) 0.9662 (0.2790)

0.5 0.5 0.9534 (0.3538) 0.9252 (0.3295) 0.9384 (0.3593)
0.9 0.9564 (0.2137) 0.9416 (0.2018) 0.9626 (0.2604)

0.9 0.9 0.9508 (0.1748) 0.9328 (0.1602) 0.9562 (0.2295)
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Table B.6. Table (B.5) Continue.
ECI HBML BP

n+ n− σx12 σy12 Cov. (Length) Cov. (Length) Cov. (Length)
50 50 0.1 0.1 0.9540 (0.3623) 0.9384 (0.3522) 9.9524 (0.3736)

0.5 0.9462 (0.3263) 0.9480 (0.3155) 0.9512 (0.3461)
0.9 0.9616 (0.2750) 0.9402 (0.2662) 0.9534 (0.3035)

0.5 0.5 0.9542 (0.2831) 0.9374 (0.2741) 0.9558 (0.3162)
0.9 0.9512 (0.2231) 0.9450 (0.2153) 0.9618 (0.2676)

0.9 0.9 0.9476 (0.1368) 0.9470 (0.1329) 0.9772 (0.2075)

100 0.1 0.1 0.9468 (0.3139) 0.9438 (0.3054) 0.9550 (0.3294)
0.5 0.9574 (0.2703) 0.9420 (0.2629) 0.9528 (0.2967)
0.9 0.9634 (0.2049) 0.9506 (0.2009) 0.9636 (0.2430)

0.5 0.5 0.9516 (0.2465) 0.9486 (0.2385) 0.9548 (0.2781)
0.9 0.9576 (0.1714) 0.9406 (0.1671) 0.9630 (0.2198)

0.9 0.9 0.9486 (0.1178) 0.9516 (0.1148) 0.9756 (0.1813)

100 100 0.1 0.1 0.9478 (0.2545) 0.9458 (0.2516) 0.9540 (0.2771)
0.5 0.9500 (0.2288) 0.9436 (0.2258) 0.9566 (0.2566)
0.9 0.9512 (0.1936) 0.9442 (0.1898) 0.9578 (0.2240)

0.5 0.5 0.9438 (0.1993) 0.9476 (0.1967) 0.9534 (0.2352)
0.9 0.9602 (0.1566) 0.9426 (0.1538) 0.9646 (0.1982)

0.9 0.9 0.9476 (0.0956) 0.9464 (0.0939) 0.9754 (0.1523)

Table B.7. The coverage probabilities and average interval lengths of 95% ECI for the difference in
paired YIs under mixture normal setting, for all scenarios.

Scen1 Scen2 Scen3
n+ n− σx12 σy12 Cov. (Length) Cov. (Length) Cov. (Length)
10 10 0.1 0.1 0.9770 (0.6234) 0.9682 (0.7031) 0.9824 (0.8182)

0.5 0.9742 (0.5751) 0.9738 (0.6464) 0.9692 (0.7547)
0.9 0.9654 (0.4939) 0.9746 (0.5805) 0.9622 (0.6533)

0.5 0.5 0.9732 (0.5214) 0.9752 (0.5961) 0.9742 (0.6689)
0.9 0.9644 (0.4249) 0.9438 (0.5065) 0.9636 (0.5444)

0.9 0.9 0.9500 (0.9072) 0.9482 (0.4108) 0.9584 (0.3775)
20 20 0.1 0.1 0.9676 (0.4173) 0.9614 (0.4753) 0.9614 (0.5638)

0.5 0.9722 (0.3822) 0.9636 (0.4396) 0.9716 (0.5065)
0.9 0.9642 (0.3293) 0.9600 (0.3895) 0.9710 (0.4383)

0.5 0.5 0.9580 (0.3422) 0.9548 (0.3976) 0.9546 (0.4455)
0.9 0.9552 (0.2805) 0.9324 (0.3410) 0.9524 (0.3617)

0.9 0.9 0.9156 (0.1985) 0.9168 (0.2702) 0.9416 (0.2464)
50 50 0.1 0.1 0.9632 (0.2585) 0.9484 (0.2947) 0.9566 (0.3506)

0.5 0.9586 (0.2365) 0.9500 (0.2720) 0.9490 (0.3152)
0.9 0.9416 (0.2011) 0.9188 (0.2400) 0.9380 (0.2702)

0.5 0.5 0.9524 (0.2091) 0.9356 (0.2458) 0.9468 (0.2756)
0.9 0.9310 (0.1708) 0.9064 (0.2107) 0.9618 (0.2224)

0.9 0.9 0.8826 (0.1210) 0.8628 (0.1666) 0.9460 (0.1496)
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Appendix C

SIMULATION RESULTS FOR CHAPTER FOUR

Notes:

• S1 represents (n−, n0, n+) = (50, 50, 50).

• S2 represents (n−, n0, n+) = (80, 80, 80).

• S3 represents (n−, n0, n+) = (100, 100, 100).

• S4 represents (n−, n0, n+) = (100, 50, 80).

• I represents J−0 > J0+.

• II represents J−0 < J0+.

• ECI stands for exact confidence interval.

• HBML stands for hybrid bootstrap and maximum likelihood based confidence interval.

• ACNA stands for the AC adjusted normal approximation confidence interval.

• BCa stands for the Bias Corrected and accelerated interval.

• BP stands for bootstrap percentile confidence interval.



84

Table C.1. The coverage probabilities and average interval lengths of 95% Confidence Intervals for
J3.

ECI HBML ACNA BCa
J3 Size Scen. Cov. (Length) Cov. (Length) Cov. (Length) Cov. (Length)
0.55 S1 I 0.945 (0.1513) 0.936 (0.1496) 0.894 (0.1639) 0.855 (0.1672)

II 0.953 (0.1604) 0.938 (0.1592) 0.868 (0.1680) 0.883 (0.1739)
S2 I 0.956 (0.1205) 0.945 (0.1194) 0.850 (0.1367) 0.864 (0.1361)

II 0.942 (0.1276) 0.939 (0.1269) 0.840 (0.1409) 0.865 (0.1412)
S3 I 0.951 (0.1079) 0.943 (0.1068) 0.838 (0.1251) 0.874 (0.1244)

II 0.950 (0.1143) 0.938 (0.1134) 0.846 (0.1288) 0.875 (0.1292)
S4 I 0.957 (0.1276) 0.933 (0.1275) 0.853 (0.1463) 0.856 (0.1739)

II 0.950 (0.1345) 0.941 (0.1332) 0.884 (0.1477) 0.890 (0.1490)
0.65 S1 I 0.949 (0.1539) 0.933 (0.1502) 0.935 (0.1543) 0.869 (0.1639)

II 0.945 (0.1577) 0.923 (0.1541) 0.917 (0.1571) 0.874 (0.1677)
S2 I 0.950 (0.1221) 0.960 (0.1201) 0.928 (0.1305) 0.869 (1.1351)

II 0.947 (0.1254) 0.942 (0.1233) 0.912 (0.1317) 0.879 (0.1374)
S3 I 0.956 (0.1090) 0.940 (0.1074) 0.903 (0.1189) 0.874 (0.1217)

II 0.942 (0.1122) 0.932 (0.1108) 0.896 (0.1208) 0.884 (0.1249)
S4 I 0.947 (0.1318) 0.934 (0.1298) 0.916 (0.1385) 0.886 (0.1439)

II 0.957 (0.1341) 0.943 (0.1308) 0.931 (0.1376) 0.860 (0.1425)
0.75 S1 I 0.941 (0.1039) 0.937 (0.1018) 0.927 (0.1289) 0.905 (0.1390)

II 0.947 (0.1084) 0.928 (0.1048) 0.956 (0.1299) 0.894 (0.1402)
S2 I 0.953 (0.0819) 0.949 (0.0806) 0.940 (0.1067) 0.907 (0.1114)

II 0.946 (0.0857) 0.937 (0.0842) 0.960 (0.1077) 0.916 (0.1124)
S3 I 0.958 (0.0732) 0.945 (0.0717) 0.946 (0.0969) 0.932 (0.1009)

II 0.951 (0.0765) 0.945 (0.0748) 0.947 (0.0979) 0.901 (0.1020)
S4 I 0.940 (0.0983) 0.933 (0.0958) 0.951 (0.1253) 0.912 (0.1358)

II 0.940 (0.1013) 0.924 (0.0986) 0.947 (0.1248) 0.907 (0.1356)
0.85 S1 I 0.950 (0.1023) 0.921 (0.0960) 0.864 (0.1072) 0.887 (0.1190)

II 0.942 (0.1042) 0.936 (0.0972) 0.900 (0.1060) 0.883 (0.1180)
S2 I 0.956 (0.0804) 0.940 (0.0774) 0.931 (0.0893) 0.920 (0.0972)

II 0.950 (0.0820) 0.930 (0.0789) 0.938 (0.0887) 0.909 (0.0966)
S3 I 0.961 (0.0717) 0.945 (0.0694) 0.947 (0.0821) 0.903 (0.0869)

II 0.944 (0.0730) 0.942 (0.0700) 0.949 (0.0814) 0.905 (0.0873)
S4 I 0.950 (0.0986) 0.927 (0.0931) 0.927 (0.1054) 0.913 (0.1174)

II 0.955 (0.0989) 0.919 (0.0938) 0.935 (0.1031) 0.893 (0.1149)
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Table C.2. The coverage probabilities and average interval lengths of 95% Confidence Intervals for
co1.

ECI HBML BP
J3 Sample Size Scenario Cov. (Length) Cov. (Length) Cov. (Length)
0.55 S1 I 0.961 (0.4666) 0.949 (0.4620) 0.970 (1.0251)

II 0.956 (0.4826) 0.940 (0.4563) 0.973 (1.0467)
S2 I 0.949 (0.3614) 0.948 (0.3546) 0.984 (0.9291)

II 0.962 (0.3745) 0.957 (0.3607) 0.980 (0.9374)
S3 I 0.939 (0.3214) 0.943 (0.3161) 0.976 (0.8620)

II 0.947 (0.3326) 0.940 (0.3227) 0.986 (0.8861)
S4 I 0.942 (0.3864) 0.929 (0.3787) 0.978 (0.9597)

II 0.949 (0.4117) 0.945 (0.3936) 0.977 (0.9783)
0.65 S1 I 0.946 (0.4136) 0.944 (0.4085) 0.970 (0.8858)

II 0.953 (0.3933) 0.949 (0.3811) 0.979 (0.8835)
S2 I 0.960 (0.3237) 0.957 (0.3214) 0.968 (0.7982)

II 0.950 (0.3060) 0.945 (0.2992) 0.981 (0.7829)
S3 I 0.952 (0.2866) 0.956 (0.2849) 0.978 (0.7425)

II 0.959 (0.2739) 0.961 (0.2692) 0.977 (0.7367)
S4 I 0.954 (0.3518) 0.947 (0.3498) 0.970 (0.8368)

II 0.945 (0.3435) 0.943 (0.3367) 0.969 (0.8360)
0.75 S1 I 0.935 (0.7558) 0.920 (0.7317) 0.981 (1.9014)

II 0.950 (0.6778) 0.930 (0.6526) 0.978 (1.5820)
S2 I 0.943 (0.5924) 0.927 (0.5803) 0.985 (1.6091)

II 0.956 (0.5310) 0.943 (0.5192) 0.987 (1.3701)
S3 I 0.940 (0.5299) 0.939 (0.5200) 0.983 (1.4854)

II 0.957 (0.4734) 0.950 (0.4607) 0.987 (1.2636)
S4 I 0.948 (0.5612) 0.942 (0.5516) 0.978 (1.7407)

II 0.946 (0.5049) 0.943 (0.4944) 0.979 (1.4269)
0.85 S1 I 0.960 (0.8305) 0.945 (0.8117) 0.958 (1.8705)

II 0.944 (0.6783) 0.933 (0.6567) 0.975 (1.4952)
S2 I 0.962 (0.6508) 0.957 (0.6436) 0.972 (1.5958)

II 0.943 (0.5333) 0.932 (0.5236) 0.977 (1.2938)
S3 I 0.940 (0.5817) 0.941 (0.5769) 0.975 (1.5057)

II 0.959 (0.4758) 0.952 (0.4675) 0.974 (1.1829)
S4 I 0.952 (0.6319) 0.953 (0.6315) 0.955 (1.7405)

II 0.949 (0.5130) 0.941 (0.5101) 0.974 (1.3903)
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Table C.3. The coverage probabilities and average interval lengths of 95% Confidence Intervals for
co2.

ECI HBML BP
J3 Sample Size Scenario Cov. (Length) Cov. (Length) Cov. (Length)
0.55 S1 I 0.948 (0.5849) 0.968 (0.5529) 0.967 (1.2373)

II 0.949 (0.4648) 0.977 (0.4493) 0.969 (1.0383)
S2 I 0.945 (0.4502) 0.967 (0.4342) 0.978 (1.1351)

II 0.948 (0.3616) 0.979 (0.3543) 0.980 (0.9374)
S3 I 0.953 (0.3994) 0.974 (0.3881) 0.979 (1.0618)

II 0.962 (0.3225) 0.979 (0.3176) 0.979 (0.8565)
S4 I 0.967 (0.3864) 0.975 (0.3787) 0.982 (1.2429)

II 0.945 (0.4211) 0.974 (0.4105) 0.980 (1.0007)
0.65 S1 I 0.965 (0.4718) 0.979 (0.4561) 0.980 (1.0460)

II 0.953 (0.4124) 0.973 (0.4073) 0.971 (0.8883)
S2 I 0.943 (0.3677) 0.976 (0.3608) 0.980 (0.9250)

II 0.947 (0.3239) 0.975 (0.3208) 0.980 (0.8009)
S3 I 0.952 (0.3255) 0.977 (0.3204) 0.980 (0.8692)

II 0.950 (0.2886) 0.979 (0.2864) 0.981 (0.7457)
S4 I 0.954 (0.4278) 0.979 (0.4166) 0.972 (1.0319)

II 0.959 (0.3817) 0.985 (0.3775) 0.972 (0.8720)
0.75 S1 I 0.950 (0.8215) 0.958 (0.7893) 0.983 (2.0064)

II 0.944 (0.7866) 0.949 (0.7675) 0.966 (1.7026)
S2 I 0.946 (0.6466) 0.953 (0.6302) 0.986 (1.6871)

II 0.964 (0.6224) 0.975 (0.6087) 0.982 (1.4536)
S3 I 0.950 (0.5774) 0.960 (0.5623) 0.979 (1.5660)

II 0.951 (0.5557) 0.966 (0.5468) 0.986 (1.3656)
S4 I 0.956 (0.6712) 0.962 (0.6526) 0.978 (1.8531)

II 0.954 (0.6543) 0.964 (0.6481) 0.972 (1.6259)
0.85 S1 I 0.952 (0.8399) 0.952 (0.8142) 0.961 (1.9056)

II 0.961 (0.8634) 0.971 (0.8539) 0.929 (1.5496)
S2 I 0.959 (0.6619) 0.969 (0.6512) 0.984 (1.6372)

II 0.948 (0.6776) 0.963 (0.6712) 0.950 (1.3958)
S3 I 0.952 (0.5880) 0.958 (0.5773) 0.984 (1.5124)

II 0.957 (0.6039) 0.973 (0.5970) 0.960 (1.2993)
S4 I 0.959 (0.6903) 0.976 (0.6790) 0.973 (1.7405)

II 0.952 (0.7274) 0.973 (0.7273) 0.940 (1.5607)
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Appendix D

PROOF FOR CHAPTER FOUR

D.1 Proof of Theorem 4.1

Notice that,

Ĵ3E =
1

2

[
max
c1

{Fn−(c1)− Fn0
(c1)}+max

c2
{Fn0

(c2)− Fn+
(c2)}

]
. (D.1)

The empirical maximum can be separately achieved via maximizing on c1 targeting on F̂−(c1) −
F̂0(c1) and maximizing on c2 targeting on F̂0(c2)− F̂+(c2). Then the almost surely convergence of

Ĵ3E , ĉo1E , and ĉo2E can be obtained by using lemma 2.1 (page 19) in Hsieh and Turnbull [21].

Now define functional G3 as

G3(F1, F2, F3, c1, c2, co1, co2) = (D.2)

[(F1(c1)− F2(c1))− (F1(co1)− F2(co1))] + [(F2(c2)− F3(c2))− (F2(co2)− F3(co2))] ,

and define functional G2 as

G2(F1, F2, c, co) = (F1(c)− F2(c))− (F1(co)− F2(co)). (D.3)

From Theorem 4.41 in Csörgö and Révész [9], it follows that

G3(F̂−, F̂0, F̂+, c1, c2, co1, co2)−G3(F−, F0, F+, c1, c2, co1, co2) = (D.4)

G2(F̂−, F̂0, c1, co1)−G2(F−, F0, c1, co1) +

G2(F̂0, F̂+, c2, co2)−G2(F0, F+, c2, co2) =

1√
n−

[B1(F−(c1))−B1(F−(co1))]−
1√
n0

[B2(F0(c1))− B2(F0(co1))] +

1√
n0

[B2(F0(c2))−B2(F0(co2))]−
1√
n+

[B3(F+(c2))− B3(F+(co2))] +

O(n−1
0 log(n0)), a.s.
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where B1(·), B2(·), and B3(·) are independent Brownian bridge processes on [0, 1].

According to Chernoff [7] and Hsieh and Turnbull [22], under (A4.3) and if c1 is close to co1,

the distribution of G2(F̂−, F̂0, c1, co1)−G2(F−, F0, c1, co1) is approximately

n
−1/2
0

[
λ−2
1 f−(co1) + f0(co1)

]1/2
Br1(c1 − co1), (D.5)

where Br1 is a two-sided standard Brownian motion on (−∞,∞).

Similarly, if c2 is close to co2, the distribution of G2(F̂0, F̂+, c2, co2) − G2(F0, F+, c2, co2) is ap-

proximately

n
−1/2
0

[
f0(co2) + λ2

2f+(co2)
]1/2

Br2(c2 − co2), (D.6)

where Br2 is also a two-sided standard Brownian motion on (−∞,∞).

By Taylor expansion, under (A4.3), we have that

G2(F−, F0, c1, co1) ≈
1

2
(f ′

−(co1)− f ′
0(co1))(c1 − co1)

2, (D.7)

and

G2(F0, F+, c2, co2) ≈
1

2
(f ′

0(co2)− f ′
+(co2))(c2 − co2)

2. (D.8)

Notice that

max
c1,c2

{G3(F̂−, F̂0, F̂+, c1, c2, co1, co2)} = (D.9)

max
c1

{G2(F̂−, F̂0, c1, co1)}+max
c2

{G2(F̂0, F̂+, c2, co2)}

Further, we have

max
c1

{G2(F̂−, F̂0, c1, co1)} = (D.10)

max
c1

{G2(F̂−, F̂0, c1, co1)−G2(F−, F0, c1, co1) +G2(F−, F0, c1, co1)},
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and

max
c2

{G2(F̂0, F̂+, c2, co2)} = (D.11)

max
c2

{G2(F̂0, F̂+, c2, co2)−G2(F0, F+, c2, co2) +G2(F0, F+, c2, co2)}.

From (D.5) - (D.8), and (A4.4), it follows that (D.10) converges to

max
c1

{n−1/2
0

[
λ−2
1 f−(co1) + f0(co1)

]1/2
Br1(c1 − co1)−

d1
2
(c1 − co1)

2} = (D.12)

R1n
− 2

3

0 max
t1

(Br(t1)− t21), (D.13)

and (D.11) converges to

max
c2

{n−1/2
0

[
f0(co2) + λ2

2f+(co2)
]1/2

Br2(c2 − co2)−
d2
2
(c2 − co2)

2} = (D.14)

R2n
− 2

3

0 max
t2

(Br(t2)− t22) (D.15)

in distribution, respectively. In which, t1 = (c1−co1)/χ1, χ1 = ( 4Λ1

n0d21
)1/3, Λ1 = (λ−2

1 f−(co1)+f0(co1)),

and R1 =
d1
2
(4Λ1

d2
1

)
2

3 ; t2 = (c2−co2)/χ2, χ2 = ( 4Λ2

n0d22
)1/3, Λ2 = (f0(co2)+λ2

2f+(co2)), and R2 =
d2
2
(4Λ2

d2
2

)
2

3 .

Therefore, we have that

√
4n0(Ĵ3E − J3) = (D.16)

√
n0

[
F̂−(co1)− F̂0(co1)− (F−(co1)− F0(co1))

]
+

√
n0

[
F̂0(co2)− F̂+(co2)− (F0(co2)− F+(co2))

]
+

max
c1,c2

{√n0G3(F̂−, F̂0, F̂+, c1, c2, co1, co2)} =

√
n0

[
F̂−(co1)− F̂0(co1)− (F−(co1)− F0(co1))

]
+ (D.17)

√
n0

[
F̂0(co2)− F̂+(co2)− (F0(co2)− F+(co2))

]
+

max
c1

{√n0G2(F̂−, F̂0, c1, co1)}+max
c2

{√n0G2(F̂0, F̂+, c2, co2)}

converges in distribution to the one stated in Theorem 4.1.
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Appendix E

PROOF FOR CHAPTER FIVE

Denote the neighborhood of z by N (z) for given Z = z. Here, we first list the assumptions

which are necessary for Theorems 4.1-4.4.

The assumptions E1-E5 are cited from Yao et al. [64] as belows:

” (E1) θ(·) is continuous in N (z) and θ(z) > 0.

(E2) νx(z) > 0, µ
(p+1)
x (·), ν(p+1)

x (·), Ex(·), and Vx(·) are continuous in N (z).

(E3) hµ,x → 0, n−hµ,x → ∞, n−h
2p+3
µ,x → d2x for some dx > 0, hν,x/hµ,x → ρx for some

0 < ρx < ∞, as n− → ∞.

(E4) νy(z) > 0, µ
(p+1)
y (·), ν(p+1)

y (·), Ey(·), and Vy(·) are continuous in N (z).

(E5) hµ,y → 0, n+hµ,y → ∞, n+h
2p+3
µ,y → d2y for some dy > 0, hν,y/hµ,y → ρy for some

0 < ρy < ∞, as n → ∞. ”

These five assumptions will lead us to the asymptotic normality of the local polynomial es-

timators, µ̂x, µ̂y, ν̂x, and ν̂y for the mean functions and variance functions in model (5.1) and

(5.2).

The following assumptions: (E6)-(E8), and (E1†)-(E5†) are also cited from Yao et al. [64] as:

” (E6) K∗ is uniform continuous, absolutely integrable with respect to Lebesgue measure on ℜ
and of bounded variation, K∗(µ) → 0 as |µ| → ∞,

∫
{|µlog(|µ|)|}1/2|dK∗(µ)| < ∞.

(E7) E(|X|s) < ∞, supz∈ℜZ

∫
|x|sP (Z,X)dy < ∞ for some s ≥ 2, where P (Z,X) is the joint

density of (Z,X).

(E8) E(|Y |s) < ∞, supz∈ℜZ

∫
|y|sP (Z, Y )dy < ∞ for some s ≥ 2, where P (Z, Y ) is the joint

density of (Z, Y ).

(E1†) θ(·) > 0 and θ(p+1)(·) is bounded and continuous on ℜZ .

(E2†) On the domain ℜZ , νx(·) > δx for some δx > 0 and is bounded, µx(·) is bounded, µ(p+1)
x (·),

ν
(p+1)
x (·), Ex(·) and Vx(·) are bounded and continuous.

(E3†) Σn−h
∆x
µ,x < ∞ for some ∆x > 0, n2ρx−1

− hµ,x → ∞ for some ρx < 1 − s−1, where s > 2

satisfies (E7).
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(E4†) On the domain ℜZ , νy(·) > δy for some δy > 0 and is bounded, µy(·) is bounded, µ(p+1)(·)
y ,

ν
(p+1)(·)
y , Ey(·) and Vy(·) are bounded and continuous.

(E5†) Σn+
h
∆y
µ,y < ∞ for some ∆y > 0, n

2ρy−1
+ hµ,y → ∞ for some ρy < 1 − s−1, where s > 2

satisfies (E8). ”

Notice that, (E6)-(E8) and (E1†)-(E5†) are necessary assumptions to derive the strong uni-

formly consistency of the local polynomial estimators, µ̂x, µ̂y, ν̂x, and ν̂y for the mean functions

and variance functions in model (5.1) and (5.2).

(E9) F ∗(·) and G∗(·) are continuous and monotone increasing on their domains.

E.1 Proof of Theorem 5.1

Assumptions (E1)-(E5) would lead us the asymptotic normality of the local polynomial esti-

mators, µ̂x, µ̂y, ν̂x, and ν̂y, for µx, µy, νx, and νy. Theorem 4.1 directly follows from lemma 1 in Yao

et al. [64] and a simple application of the Cramér-Wold device. The partial derivatives of JN(z)

with respect to the mean and variance functions in Theorem 1 are:

∂JN (z)

∂µx(z)
= − 1√

νx(z)
φ

(
co(z)− µx(z)√

νx(z)

)

+
∂co(z)

∂µx(z)

[
1√
νx(z)

φ

(
co(z)− µx(z)√

νx(z)

)
− 1√

νy(z)
φ

(
µy(z)− co(z)√

νy(z)

)]

∂JN (z)

∂µy(z)
=

1√
νy(z)

φ

(
µy(z)− co(z)√

νy(z)

)

+
∂co(z)

∂µy(z)

[
1√
νx(z)

φ

(
co(z)− µx(z)√

νx(z)

)
− 1√

νy(z)
φ

(
µy(z)− co(z)√

νy(z)

)]

∂JN (z)

∂νx(z)
= −1

2
(co(z)− µx(z))ν

−3/2
x φ

(
co(z)− µx(z)√

νx(z)

)

+
∂co(z)

∂νx(z)

[
1√
νx(z)

φ

(
co(z)− µx(z)√

νx(z)

)
− 1√

νy(z)
φ

(
µy(z)− co(z)√

νy(z)

)]

∂JN (z)

∂νy(z)
= −1

2
(µy(z)− co(z))ν

−3/2
y φ

(
µy(z)− co(z)√

νy(z)

)

+
∂co(z)

∂νy(z)

[
1√
νx(z)

φ

(
co(z)− µx(z)√

νx(z)

)
− 1√

νy(z)
φ

(
µy(z)− co(z)√

νy(z)

)]
,
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and the partial derivatives of co(z) with respect to the mean and variance functions are

∂co(z)

∂µx(z)
=

b2 ± ab(rad)−1/2(−1)

b2 − 1

∂co(z)

∂µy(z)
=

−1 ± ab(rad)−1/2

b2 − 1

∂co(z)

∂νx(z)
= −(µy(z)− µx(z))νy(z)

(νy(z)− νx(z))2
±




1
2
ν
1/2
y (z)ν

−1/2
x (z)rad1/2 + 1

2
(νxνy)

1/2rad−1/2
(
−ln νy(z)

νx(z)
− νy(z)

νx(z)
+ 1
)
(νy(z)− νx(z))

(νy(z)− νx(z))2

+
(νx(z)νy(z))rad

1/2

(νy(z)− νx(z))2

]

∂co(z)

∂νy(z)
=

(µy(z)− µx(z))νx(z)

(νy(z)− νx(z))2
±




1
2
ν
1/2
x (z)ν

−1/2
y (z)rad1/2 + 1

2
(νxνy)

1/2rad−1/2
(
−ln νy(z)

νx(z)
+ (νy(z)− νx(z)

1
νy(z)

)
)
(νy(z)− νx(z))

(νy(z)− νx(z))2

+
(νx(z)νy(z))rad

1/2

(νy(z)− νx(z))2

]
,

where rad = a2 + (b2 − 1)νx(z)ln(b
2), a and b are defined in section 2.2.

E.2 Proof of Theorem 5.2

Assumptions (E1†)-(E5†) and (E6)-(E8) would lead us to the strong uniform consistency of

the local polynomial estimators, µ̂x, µ̂y, ν̂x, and ν̂y, for µx, µy, νx, and νy. Then, theorem 4.2 follows

from Slutsky’s theorem and lemma 2 in Yao et al. [64].

E.3 Proof of Theorem 5.3

Let

J(c; z) = F−(X ≤ c|Z = z)− F+(Y ≤ c|Z = z) ≡ F−(c; z)− F+(c; z)

J̃E(c; z) = F̃−(c; z)− F̃+(c; z)

where F̃−(c; z) =
∑n−

i=1
I(xi,z≤c)

n−
, and F̃+(c; z) =

∑n+

j=1
I(yj,z≤c)

n+
.
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By the law of the iterated logarithm (LIL) for empirical process, we have that supc |F̃−(c; z)−
F−(c; z)| = O(

√
loglogn−/2n−) a.s., and supc |F̃+(c; z) − F+(c; z)| = O(

√
loglogn+/2n+) a.s.. If

n−/n+ → λ, then

sup
c

|J̃E(c; z)− J(c; z)| ≤ sup
c

|F̃−(c; z)− F−(c; z)|+ sup
c

|F̃+(c; z)− F+(c; z)|

= O(
√
log log n−/2n− +

√
log logn+/2n+), a.s.

which indicates the strong convergence of J̃E(c; z) to J(c; z) uniformly on c for a given z. Con-

sequently, for a given z, c̃oE(z) converges to co(z) almost surely. Straightforwardly, applying the

Lebesgue dominated convergence theorem, E[J̃E(z)] converges to J(z) for a given z.

E.4 Proof of Theorem 5.4

Let

ĴE(c; z) = F̂−(c; z)− F̂+(c; z),

where F̂−(c; z) =
∑n−

i=1
I(x̂i,z≤c)

n−
, and F̂+(c; z) =

∑n+

j=1
I(ŷj,z≤c)

n+
.

First of all we need to show the uniform consistency of Ĵ(c; z) on c for a given z. From the

strong uniform consistency of µ̂x(z), µ̂y(z), ν̂x(z), and ν̂y(z), it follows that for a given z,

I(x̂i,z ≤ c)− I(xi,z ≤ c) −→ 0, a.s.

I(ŷj,z ≤ c)− I(yj,z ≤ c) −→ 0, a.s.

uniformly on c for all i. Therefore, for a given z.

|ĴE(c; z)− J̃E(c; z)| ≤
∣∣∣∣∣n

−1
−

n−∑

i=1

(I(x̂i,z ≤ c)− I(xi,z ≤ c))

∣∣∣∣∣+
∣∣∣∣∣n

−1
+

n+∑

j=1

(I(ŷj,z ≤ c)− I(yj,z ≤ c))

∣∣∣∣∣
−→ 0, a.s.

uniformly on c. Hence, for given Z = z,

sup
c

|ĴE(c; z)− J(c; z)| ≤ sup
c

|ĴE(c; z)− J̃E(c; z)|+ sup
c

|J̃E(c; z)− J(c; z)| −→ 0, a.s.
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Consequently, for a given z, ĉoE(z) converges to co(z) almost surely.

Now define δ̂i,z = x̂i,z − ĉoE(z), δi,z = xi,z − c̃oE(z), ω̂j,z = ŷj,z − ĉoE(z), and ωj,z = yj,z − c̃oE(z).

We have

E[{ĴE(z)− J̃E(z)}2] = E

[
n−1
−

n−∑

i=1

(
I(δ̂i,z ≤ 0)− I(δi,z ≤ 0)

)

−n−1
+

n+∑

j=1

(I(ω̂j,z ≤ 0)− I(ωj,z ≤ 0))

]2

≤ 2
[
E(T 2

1 ) + E(T 2
2 )
]
,

where T1 = n−1
−

∑n−

i=1

(
I(δ̂i,z ≤ 0)− I(δi,z ≤ 0)

)
, and T2 = n−1

+

∑n+

j=1 (I(ω̂j,z ≤ 0)− I(ωj,z ≤ 0)).

Let us explore ET 2
1 first.

ET 2
1 =

1

n2
−

E

[
n−∑

i=1

(
I(δ̂i,z ≤ 0)− I(δi,z ≤ 0)

)2

+
∑

i 6=i′

(
I(δ̂i,z ≤ 0)I(δ̂i′ ,z ≤ 0) + I(δi,z ≤ 0)I(δi′ ,z ≤ 0)

−I(δ̂i,z ≤ 0)I(δi′ ,z ≤ 0)− I(δi,z ≤ 0)I(δ̂i′ ,z ≤ 0)
)]

≤ 1

n−
+

1

n2
−

∑

i 6=i′

[
P (δ̂i,z ≤ 0, δ̂i′ ,z ≤ 0) + P (δi,z ≤ 0, δi′ ,z ≤ 0)

−P (δ̂i,z ≤ 0, δi′ ,z ≤ 0)− P (δi,z ≤ 0, δ̂i′ ,z ≤ 0)
]

By the strong uniform consistency of µ̂x(z), µ̂y(z), ν̂x(z), and ν̂y(z) and the strong consistency of

ĉoE(z) and c̃oE(z), we have that for a given z,

δ̂i,z −→ xi,z − co(z) a.s., δi,z −→ xi,z − co(z) a.s., for all i.

So,

P (δ̂i,z ≤ 0, δ̂i′ ,z ≤ 0) + P (δi,z ≤ 0, δi′ ,z ≤ 0)− P (δ̂i,z ≤ 0, δi′ ,z ≤ 0)− P (δi,z ≤ 0, δ̂i′ ,z ≤ 0) −→ 0

for all i 6= i
′
. Therefore, ET 2

1 −→ 0 as n− −→ ∞. Similarly, we can show ET 2
2 −→ 0 as n+ −→ ∞.

Hence, E
[
ĴE(z)− J̃E(z)

]2
−→ 0.
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Appendix F

SIMULATION RESULTS FOR CHAPTER FIVE
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Figure F.1. The MSE’s of the estimators when ǫ1 and ǫ2 follow the standard normal distribution:
solid line for ĴN , dashed line for ĴE, and dotdash line for ĴAC .
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Figure F.2. The MSE’s of the estimators when ǫ1 and ǫ2 follow t-distribution with degree of
freedom 4: solid line for ĴN , dashed line for ĴE, and dotdash line for ĴAC .
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Figure F.3. ǫ1 and ǫ2 follow the standard normal distribution. The point-wise confidence bands for
J(z): NA band (dashed), BP band (dotted), and ACNA band (dotdash). Solid line is the curve for
the true values of J(z).
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Figure F.4. ǫ1 and ǫ2 follow t-distribution with degree of freedom 4. The point-wise confidence
bands for J(z): NA band (dashed), BP band (dotted), and ACNA band (dotdash). Solid line is
the curve for the true values of J(z).
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