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Chapter 6

CONCLUSIONS AND FUTURE DIRECTIONS

In summary, the general ability of fast, non-delayed reciprocal inhibition to syn-

chronize bursting cells has been discovered. This synchronizing property is independent

from the type of the individual bursting cell and the model of the fast non-delayed inhi-

bition, be it the instantaneous FTM coupling or a dynamical synapse with the synaptic

constants comparable with the duration of the presynaptic spike. The exact synergetic

features that make stable in-phase synchronization possible are (i) the ability of fast

inhibition to switch its impact from desynchronizing to synchronizing when the spikes

cross the synaptic threshold, and (ii) the presence of spikes in bursts. It is customary in

biophysics to use relaxation oscillators as simplified models of bursting cells where the

spikes are smoothed over and ignored.

Reciprocally coupled relaxation oscillators with fast non-delayed inhibition, however,

are impossible to synchronize [19, 31]. In light of this, the finding that the addition of

spikes to the individual cell model can reverse the role of fast inhibition from desynchro-

nization to synchronization is imperative for biophysical modeling of neuronal networks.

It stresses the importance of full-scale detailed models of bursting cells versus simplified

models such as relaxation oscillators. The two-cell networks that are studied are the fun-

damental building elements of large realistic inhibitory networks. The results show that

such complex networks with fast inhibitory connections also possess the hidden prop-

erty to produce the in-phase synchronized rhythm, provided that the individual cells are

bursters not spikers. A consequence is the enhanced multistability of complex neuronal

networks resulting in richer dynamical information capacity and spatiotemporal neuronal

integration.

Moreover, fast non-delayed inhibitory HCOs composed of two endogenously burst-

ing neurons can generate multiple co-existent phase-locked states, in addition to stable

anti-phase and in-phase bursting. This is an extension of the previous result that fast
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non-delayed reciprocal inhibition synchronizes HCOs, which contrasts with the custom-

ary view that reciprocal inhibition has to be slow or time-delayed to establish in-phase

bursting. The study shows that the multistability of the HCOs is due to spike interactions

and independent of specific choice of models for endogenous square-wave bursters and

fast non-delayed synapses. Fast tonic spiking and fast inhibition are the two necessary

conditions for multistable bursting to exist in such HCOs.

Bursting HCOs with spikes contrast plateau-like bursting HCOs in their capacity

for spike interactions. Plateau-like bursts have slow frequency and smoothed spiking

magnitude relative to the plausible range of the synaptic threshold levels, leading to in-

significant spike interactions in the HCOs. The number and temporal characteristics of

spikes are found to determine the number of co-existing phase-locked states in weakly

coupled HCOs. Besides, spikes are also attributed to be the necessary component for

dynamically establishing the bi-stability in strongly coupled HCOs, where robust anti-

phase bursting co-exists with less robust in-phase bursting. This study emphasizes the

importance of detailed Hodgkin-Huxley models for credible modeling of larger CPG net-

works, as opposed to employing relaxation oscillators, which might give rise to simplistic

cooperative properties.

The study of multiple phase locking in the HCOs and co-existing dynamical rhythms

can help one better understand the origin of multistability and the nature of switching

mechanisms between various neuronal rhythms that a multi-functional CPG can generate

in response to changes in sensory inputs and external perturbation. Recent experimental

studies [24, 37, 42] suggest that leech crawling and swimming can be generated by the

same multifunctional CPG, capable of switching between the two locomotor patterns

with no change in the types or strengths of connections among the coupled neurons. At

the neuronal level, crawling is governed by the command neurons firing in synchrony,

whereas the CPG switches to the swimming rhythm when the neurons switch to anti-

phase bursting. The duty cycle of in-phase bursting, generating the crawling rhythm, is

7-10 times longer than that of the swimming rhythm [24].

The duty cycle is conjectured to be the main control parameter that determines

the rhythms and can trigger the switching between the rhythms [55]. The study of the
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spike interactions, whose number and frequency are controlled by the duty cycle, together

with previous studies of duty-cycle induced phase locking in larger inhibitory networks

[56, 64, 72], promise to shed light on the genesis of switching mechanisms for emergent

bursting patterns in real multifunctional CPGs and their realistic models. Investigation

of the mechanism that causes particular phase-locked states in the four-neuron CPG

and the exploration of parametric regime for sensitivity, and emergence of additional

phase-locking in the system would broaden the current understanding of multifunctional

CPGs.

In the future, there are number of avenues that may be explored. Brain functions

of vertebrate animals are thought to result from neuronal networks similar to CPGs

[74]. In addition to inhibitory, excitatory synaptic coupling with various time scales,

and networks with direct electrical connections through gap junctions, neuromodulatory

effects resulting in synaptic plasticity is common in the mammalian brains. Hence, it is

important to incorporate cellular and population level plasticity in the future theoretical

investigations of neuron networks [36, 75]. In addition, the CPG models may be enhanced

by including extra interneurons of other types, by introducing heterogeneity in network

connections, and by increasing physiological fine details that are currently neglected.
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Appendix A

PARAMETERS

Table A.1. Time scales, capacitance, maximal conductances and reversal potentials for
leech heart interneuron

τNa = 0.0405 sec ḡNa = 200 nS ENa = 0.045 V
τK2 = 0.25 sec ḡK2 = 30 nS EK = −0.070 V
C = 0.5 nF ḡL = 8 nS EL = −0.046 V

Table A.2. Boltzmann functions with parameters for leech heart interneuron
n∞(V ) = [1 + exp(−150(V + 0.0305))]−1

h∞(V ) = [1 + exp(500(V + 0.0333))]−1

m∞(V ) = [1 + exp (−83(V + 0.018 + Vshift
K2 ))]−1

Table A.3. Time scales, capacitance, maximal conductances and reversal potentials for
Sherman’s pancreatic β-cells

τ = 0.02 sec ḡCa = 3.6 nS ECa = 0.025 V
τs = 5 sec ḡK = 10 nS EK = −0.075 V
λ = 1 ḡs = 4 nS
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Table A.4. Boltzmann functions with parameters for Sherman’s pancreatic β-cells
m∞(V ) = [1 + exp(−83.34(V + 0.02))]−1

n∞(V ) = [1 + exp(−178.57(V + 0.016))]−1

s∞(V ) = [1 + exp (−100(V + 0.035245))]−1

Table A.5. Maximal conductances and reversal potentials for Purkinje neurons
ḡNa = 152 nS ENa = 50 mV
ḡK = 10 nS EK = −75 mV
ḡCa = 1 nS ECa = 125 mV
ḡM = 0.75 nS EM = −95 mV
gL = 2 nS EL = −70 mV

Table A.6. Voltage dependent time scales for Purkinje neurons
τn = 0.25 + 4.35 exp(−0.1|V + 10|)
τh = 0.15 + 1.15[1 + exp(0.0667(V + 33.5))]−1

τc = [αCa + βCa]
−1, τM = [αM + βM]

−1

Table A.7. Voltage dependent time scales for Purkinje neurons: auxiliary function
αCa = 1.6/(1 + exp(−0.072(V − 5)))
βCa = 0.02(V + 8.9)/(−1 + exp(0.2(V + 8.9)))
αM = 0.02/(1 + exp(−0.2(V + 20)))
βM = 0.01 exp(−0.0556(V + 43))

Table A.8. Boltzmann functions with parameters for Purkinje neurons
n∞(V ) = [1 + exp(−0.1(V + 29.5))]−1

m∞(V ) = [1 + exp(−0.1(V + 34.5))]−1

h∞(V ) = [1 + exp(0.0935(V + 59.4))]−1

c∞(V ) = αCaτc, M∞(V ) = αMτM

Table A.9. Parameters for Fitzhugh-Rinzel model
I = 0.3125 a = 0.7
δ = 0.08 b = 0.8
µ = 0.002 c = −0.7
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Appendix B

PSEUDO CODES

To calculate the Lyapunov exponents, following steps are followed by Govorukhin

[69]. The code is available from Matlab central [70]. There are two functions files: the

first function file defines the synchronous trajectory along with variational equations, the

second function file integrates the equations provided in the first function file in order to

calculate the Lyapunov exponent. The pseudo code for the first function follows:

1. Populate A to integrate x′ = Ax numerically.

2. Assign first n entries of A with ODEs corresponding to single neuron.

3. Set V1 = V2 = V in the synaptic component to ensure evaluation on the synchronous

manifold.

4. Allocate n+ 1 to n+ n2 entries of A for the coefficients of variational equations.

5. Obtain n coefficients of each variational from every variational equation.

6. Assign coefficients of the linear part in the variational equations to A(n + 1) ...

A(n+ n2).

The second function calculates the Lyapunov exponents by finding evolution of unit

vectors under the linear transformation given by the variational equations evaluated on

the synchronous manifold. The total time is divided into smaller time steps to prevent

build up of error. Gram-Schimdt process of orthonormalization resets the unit vectors

after every time step. Natural logarithm of the norms of the orthogonalized vectors give

the Lyapunov exponents, when averaged over elapsed time. The pseudo code for the

second function follows:

1. Assign x(1), x(2)..x(n) with initial condition from the synchronous manifold.
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2. Assign x(n+ 1 : n+ n) = (1, 0, ..0), x(2n+ 1 : 2n+ n) = [0, 1, 0..0], and so on such

that each n-tuple have orthogonal unit vector.

3. Set number of iteration: total time,T , divided by time step, dt.

4. Integrate for first time step.

5. Obtain solution xout.

6. Reset x(1), x(2)...x(n) equal to xout(1), xout(2)...xout(n) for integration in next iter-

ation.

7. Apply Gram-Schimdt process to the remaining output by treating each n-tuple as

vectors.

8. Get L2 norm for each vectors, which give total n scalar values z(1)...z(n).

9. Reset x(n+1 : n+n), x(2n+1 : 2n+n)... with Gram-Schimdt orthonormal vectors.

10. Lyapunov exponents,λ1...n, after first time step equals log(z(1))
dt

... log(z(n))
dt

.

11. Repeat steps 6 to 11 for the next time step.

12. Lyapunov exponents after this time step equals
∑

log(z(1))∑
dt

...
∑

log(z(n))∑
dt

.

13. Continue the process until
∑

dt = T , obtain n Lyapunov exponents, λ1...n, after

every time step.

An alternate method is also used to calculate the Lyapunov exponents. The linear

transformation is used to transform the basis of unit vectors for precisely one period.

Then the Floquet multipliers are calculated from the matrix formed by the transformed

unit vectors. Natural logarithm of Floquet multipliers, averaged over the period, gives

the Lyapunov exponents. The pseudo code follows:

1. Set dt = T , in the step 4 of second function above, where T is precisely the burst

period.
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2. Obtain the output xout, and construct the transformed unit matrix, S, from each

n-tuple numbers from x(n+ 1) to x(n+ n2).

3. Find the Floquet multipliers, which are the eigenvalues,ρ1...n, of the matrix S.

4. Apply log, divide the result by the period to get Lyapunov exponents: λ1...n =

log(ρ1...n)/T

The process for computing phase differences between a pair of neurons records the

time at which either neuron crosses a voltage threshold given by the Poincaré section.

Subtraction of subsequent times recorded for the same neuron gives the period, while that

between different neurons give the time delay, which is scaled by the period to obtain the

phase differences. The pseudo code follows:

1. Choose one of the neurons as the reference neuron, label its membrane potential as

V1.

2. Integrate the system of ODEs representing the network, record the times when

V1...n crosses an auxiliary threshold, Θth, such that V ′
1...n > 0.

3. Suppose {t(n)} is the time sequence obtained for the reference neuron, while {s(n)}

is that of another neuron.

4. Obtain T (n) = t(n+1) − t(n).

5. Set ∆ϕ(n) = min {|t(n) − s(n−1)|, |t(n) − s(n)|, |t(n) − s(n+1)|}/T (n).

6. Obtain {∆ϕ
(n)
1k } for every non-reference neuron k.

The process for setting initial phase differences uses points from a reference trajectory

that are equally spaced in time. Exactly one cycle of burst is chosen from the last cycle

of 100s of simulation to avoid the transience. The phases are defined by scaling the time

steps within the cycle by the total time of the cycle. The pseudo code follows:

1. Run the full system of ODEs for 100s.

2. Find the times of last two minima in V for the reference neuron.
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3. Use the time difference in step 2 as the period, set of variable values for the second

minimum for the simulation in step 4.

4. Simulate for exactly one period, obtain variable values at equal time steps, dt =

0.0001s.

5. Obtain sequential indices of the points that are sampled at regular intervals by the

above step.

6. Set ϕ = i/L, where i is a specific index and L is the total number of indices.

7. Set ϕref closest to 0.5, assign corresponding state variables as the initial condition

for the reference neuron.

8. Select ϕnon−ref at regular intervals between 0 and 0.5, assign the corresponding

state variables as the initial condition for the non-reference neurons.

9. Initial ∆ϕ = ϕref − ϕnon−ref .

The process for toroidal resetting corrects the values of ∆ϕ whenever it falls outside of

the interval [0, 1]. This resetting causes an effect such that the graphs of those trajectories

{∆ϕ(n)} appear to end at one boundary and emerge from the opposite boundary. The

pseudo code follows:

1. If ∆ϕ < 0 add +1 until 0 < ∆ϕ < 1. For example, ∆ϕ = −δ becomes ∆ϕ = 1− δ,

for δ > 0.

2. If ∆ϕ > 1 and −1 until 0 < ∆ϕ < 1.


