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STATISTICAL EVALUATION OF CONTINUOUS-SCALE DIAGNOSTIC TESTS

WITH MISSING DATA

by

BINHUAN WANG

Under the Direction of Dr. Gengsheng Qin

ABSTRACT

The receiver operating characteristic (ROC) curve methodology is the statistical

methodology for assessment of the accuracy of diagnostics tests or bio-markers. Currently

most widely used statistical methods for the inferences of ROC curves are complete-data

based parametric, semi-parametric or nonparametric methods. However, these methods

cannot be used in diagnostic applications with missing data. In practical situations, missing

diagnostic data occur more commonly due to various reasons such as medical tests being too



expensive, too time consuming or too invasive. This dissertation aims to develop new non-

parametric statistical methods for evaluating the accuracy of diagnostic tests or biomarkers

in the presence of missing data. Specifically, novel nonparametric statistical methods will be

developed with different types of missing data for (i) the inference of the area under the ROC

curve (AUC, which is a summary index for the diagnostic accuracy of the test) and (ii) the

joint inference of the sensitivity and the specificity of a continuous-scale diagnostic test. In

this dissertation, we will provide a general framework that combines the empirical likelihood

and general estimation equations with nuisance parameters for the joint inferences of sensi-

tivity and specificity with missing diagnostic data. The proposed methods will have sound

theoretical properties. The theoretical development is challenging because the proposed pro-

file log-empirical likelihood ratio statistics are not the standard sum of independent random

variables. The new methods have the power of likelihood based approaches and jackknife

method in ROC studies. Therefore, they are expected to be more robust, more accurate

and less computationally intensive than existing methods in the evaluation of competing

diagnostic tests.

INDEX WORDS: AUC, Bootstrap, Diagnostic tests, Empirical likelihood, Estimating
equations, Imputation, Jackknife, Missing data, ROC curve, Sensitiv-
ity, Specificity, Verification bias
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CHAPTER 1

INTRODUCTION

1.1 Receiver Operating Characteristic Curve

In medical studies, diagnostic tests are widely used to detect the occurrence of a disease,

and to monitor the disease progression. The sensitivity and specificity are common measures

used to evaluate the performance of a diagnostic test. For a continuous-scale test, the

diagnosis is dependent upon whether the test result is above or below a specified cut-off

point. Let X and Y be results of a continuous-scale test for a non-diseased and a diseased

subject, and we assume that F and G are cumulative distribution functions of X and Y ,

respectively. For a given cut-off level τ , the sensitivity (true positive rate), denoted by θ,

and the specificity (true negative rate), denoted by η, of the test are defined by

θ(τ) = P (Y > τ) = 1 −G(τ), and η(τ) = P (X ≤ τ) = F (τ). (1.1)

Alternatively, if we use a common notation T as the test result for both diseased and non-

diseased groups, and let D be the disease indicator with 1 as a diseased subject and 0 as a

non-diseased subject, then the sensitivity and the specificity can be written as follows:

θ(τ) = P (T > τ |D = 1), and η(τ) = P (T ≤ τ |D = 0). (1.2)

When the cut-off level τ varies throughout the entire real line, the resulting plot of sensitivity

against 1-specificity is called the Receiver Operating Characteristic (ROC) curve. In practice,

we are always interested in a test which has a higher sensitivity at a fixed level of specificity.

When a specificity of the test is p (0 < p < 1), the corresponding sensitivity of the test is

R(p) = 1 −G(F−1(p)), (1.3)
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where F−1 is the inverse function of F . The plot {(1− p,R(p)) : 0 < p < 1} is also the ROC

curve.

The area under the curve (AUC), defined as δ =
∫ 1

0
R(p)dp, is a commonly used sum-

mary measure of the ROC curve. AUC has been frequently used to assess the ability of a

diagnostic test to discriminate between individuals with and without a disease. Bamber [1]

showed that the AUC, δ = P (Y ≥ X), which can be interpreted as the probability that in a

randomly selected pair of diseased and non-diseased subjects, the test value of the diseased

subject is higher than or equal to that of the non-diseased subject. In a more general context,

Wolfe and Hogg [2] recommended the use of this index as a general measure for the difference

between two distributions. One important problem for the inference on the AUC is how to

construct a confidence interval for δ. Let X1, . . . , Xm be test results of a random sample of

non-diseased subjects and Y1, . . . , Yn be test results of a random sample of diseased subjects.

Traditionally, the classical Wilcoxon-Mann-Whitney (WMW) [3] two-sample rank statistic,

defined by

δm,n =
1

mn

m∑
i=1

n∑
j=1

I(Yj ≥ Xi), (1.4)

is employed as a nonparametric estimator of the AUC. Based on the asymptotic normality

of the WMW statistic, we can construct a confidence interval (hereafter WMW interval) for

the AUC. Although the WMW estimator of the AUC is known to be unbiased, the normal

approximation-based WMW interval suffers from low coverage accuracy for high values of

the AUC (e.g., 0.90 to 0.95, which are of most interest in diagnostic tests) when sample sizes

of diseased and non-diseased subjects are small and unequal.

Recently, Adimari and Chiogna [4] considered joint inferences on both the (specificity,

cut-off level) and the (sensitivity, cut-off level). Joint confidence regions depict the asso-

ciation of sensitivity, specificity and cut-off level for a continuous-scale test. By visually

inspecting confidence regions, one can select a reasonable cut-off level τ in order to obtain

a desirable sensitivity θ(τ) and an acceptable specificity η(τ) simultaneously, because it is
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well known that there is a trade-off between the sensitivity and the specificity. Moreover,

by constructing joint confidence regions, one can investigate the within-pair relationship of

(θ, τ) or (η, τ), respectively. In a diagnostic study, the AUC is a widely used summary index

of the diagnostic accuracy. However it can not be used to select a cut-off level because the

AUC masks the effect of cut-off level.

Extensive studies have been done in literature on estimating the ROC curve in cases

of complete data. For more details of the ROC curve, we refer readers to Metz [5], Swets

and Pickett [6], Pepe [7], and Metz, Herman and Shen [8]. Linnet [9] proposed both para-

metric and non-parametric methods for constructing confidence intervals for the sensitivity

of a test at a fixed value of specificity. Hsieh and Turnbull [10] estimated the ROC curve

by replacing F and G by their corresponding empirical distribution. Zou et al. [11] and

Lloyd [12] suggested smoothing kernel estimators for R(p). Pepe [13] and Zhou et al. [14] re-

viewed many statistical methods for the evaluation of diagnostic tests. Currently most widely

used statistical methods for inferences of ROC curves are parametric, semi-parametric, or

nonparametric methods with complete data. However, these methods cannot be used in

diagnostic applications with missing data directly.

1.2 Missing Data

In making statistical inferences, samples are usually assumed to be complete. However,

due to various reasons, missing data instead of complete data occur commonly in practical

situations. Rubin [15] and Little and Rubin [16] classified missing data into three categories

based on missing mechanisms: missing completely at random (MCAR), missing at random

(MAR) and missing not at random (MNAR). MCAR and MAR are considered more often

in literature.

MCAR means the missing mechanism is independent of both observable variables and

unobservable variables. For example, patients involved in a regular blood or urine test in

a medical diagnosis would quit the research because they move to other districts, or miss

visits to hospitals due to bad weather or schedule conflicts. Regarding these situations, these
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kinds of missingness are unrelated to any patients’ characteristics. This class of missingness

could be assumed to be MCAR.

MAR means missing mechanism only depends on observed data. In medical diagnos-

tics, we hope, based on screening test results, the true disease status for every subject can

be verified by applying a gold standard evaluation, which assesses the disease status with

certainty. However, in many situations, not all subjects that are given their screening test

results ultimately have their true disease statuses verified. There are various reasons that

account for this occurrence. For example, gold standard tests may be too expensive, too

time consuming, or too invasive. In these situations, subjects with positive test results are

more likely to take a gold standard evaluation than the subjects with negative test results.

Thus, estimates of accuracy, like the sensitivity and the specificity, can be biased in studies

with such designs because the decision of whether or not to verify the subject’s true disease

status depends on their test results. This bias is called verification bias [17] or work-up bias

[18]. In fact, verification biased data could be assumed to be one type of MAR data, i.e.

the probability that a subject has the disease status verified only depends on the test result

and the subject’s observed characteristics. Direct application of complete data inference

procedures to MAR problems may produce biased estimation and lose efficiency.

Various methods [16], including imputation-based methods, have been proposed in order

to handle problems caused by missing data. Zhou ([19], [20]), Hunink et al. [21], and

Rodenberg and Zhou [22] proposed bias-corrected methods for binary and ordinal tests.

Geert et al. [23] evaluated five different methods in dealing with missing values in the

empirical data from a study among patients suspected of pulmonary embolism, and they

found that imputation is relatively better than others.

To correct verification bias, Alonzo and Pepe [24] broadened Begg and Greenes (BG)

method [17] from binary test cases to continuous test cases. In addition, Alonzo and Pepe [24]

proposed several imputation and reweighting bias-corrected methods (reviewed by Carroll

et al. [25]), including the inverse probability weighting (IPW) estimator, the full imputation

(FI) method, the mean score imputation (MSI) method, and the semi-parametric efficient
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estimator (SPE) of the sensitivity and the specificity as well as the AUC. But there is

no closed-form expression for the variance of the AUC estimator based on their methods.

Therefore, resampling methods are needed for inference. Rotnitzky et al. [26] proposed a

doubly robust estimator of the AUC under both MAR and MNAR assumptions. Later, He

et al. [27] provided a direct estimate of the AUC in the presence of verification bias, and

Fluss et al. [28] investigated the properties of the doubly robust method for estimating the

ROC curve under verification bias. Liu and Zhou [29] proposed a semi-parametric estimation

method for covariate-specific ROC curves with a partial missing gold standard. Long et al.

[30] developed robust statistical methods for estimating the AUC, and the proposed methods

used information from auxiliary variables that are potentially predictive of the missingness

of the biomarkers or the missing biomarker values.

1.3 Methodology

Missing diagnostic data bring challenges to inferences of the ROC curve. The first

challenge is how to estimate the ROC curve and the AUC with missing data. The second

challenge is how to construct confidence intervals/regions for the ROC curve and its related

quantities like sensitivity, specificity and AUC with missing data. To solve these problems,

the proposed new methodologies will involve some modern statistical techniques such as

empirical likelihood method, jackknife and bootstrap methods.

1.3.1 Empirical Likelihood Method and Its Application to the ROC curve

and Estimating Equations

Empirical likelihood (EL, see [31], [32], [33]) is a nonparametric method traditionally

used for providing confidence intervals or regions for the mean, without assuming distribu-

tions of underlying populations. Empirical likelihood-based statistical methods have many

good properties, such as good small sample performance, automatically data determined

confidence regions for unknown parameters of interest. When diagnostic data are complete,

empirical likelihood could be applied to construct confidence intervals/regions for the ROC
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curve and its related quantities. Claesken et al. [34] developed the smoothed empirical

likelihood (SEL) method for R(p). By using jackknife technique, Gong, Peng and Qi [42]

proposed the smoothed jackknife empirical likelihood method for the ROC curve. Due to

the difficulty of bandwidth selection, Qin, Davis and Jing [36] proposed the hybrid empirical

likelihood intervals (HBEL) for R(p), which does not involve in the selection of bandwidth.

Chen and Van Keilegom [37] provided a general review on empirical likelihood method for

regressions. Based on the consideration of computation, Zhou and Qin [38], and Horváth et

al. [39] proposed bootstrap intervals for the ROC curve.

For the inference on the AUC with the empirical likelihood method, following research

has been done. Based on the mean-like form of WMW estimator, Qin and Zhou [40] proposed

an EL approach for the inference on the AUC, which was shown to have good small sample

performance. Motivated by the asymptotic independence of pseudo-values from the jackknife

technique, Jing, Yuan and Zhou [41] introduced the jackknife empirical likelihood (JEL)

method for U-statistics, and used the AUC as an example to illustrate their method because

the WMW estimator is a two-sample U-statistics.

Empirical likelihood method has also been applied to estimating equations. Qin and

Lawless [43] linked estimating equations and empirical likelihood, and developed methods

of combining information about parameters. Hjort et al. [44] extended the scope of general

empirical likelihood methodology by introducing plug-in estimates of nuisance parameters in

estimating equations. But there are no explicit asymptotic results on the empirical likelihood

defined by general estimation equations with nuisance parameters, which are estimated by

another set of estimating equations. Li et al. [45] proposed a jackknife EL method to con-

struct confidence regions for interesting parameters in the presence of nuisance parameters

being simply replaced by some estimators under general estimating equation framework.

With jackknife pseudo samples generated, the resulting jackknife EL method retains the

attractive chi-square limiting distribution. In order to reduce the computation in the jack-

knife empirical likelihood method when explicit estimators of nuisance parameters are not

available, Peng [46] proposed an approximate jackknife empirical likelihood method.
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However, current empirical likelihood framework cannot be directly used with missing

diagnostic data. Various methods [16], including imputation-based methods, have been pro-

posed in order to handle problems caused by missing data. Wang and Rao [47] developed

EL-based confidence intervals for the mean of the response variable using kernel regression

imputation, and Wang and Rao [48] also constructed intervals for the mean of the response

variable in a linear model with missing data. Liang and Zhou [49] developed smoothed em-

pirical likelihood-based confidence intervals for ROC curves when samples are censored and

generated from semi-parametric models. Qin and Qian [50] constructed confidence intervals

for the differences of quantiles with missing data. Wang and Chen [51] applied empirical

likelihood to estimating equations with missing data based on a nonparametric imputation of

missing values from a kernel estimator of the conditional distribution of the missing variable

given always observable variables. Qin et al. [52] proposed a unified empirical likelihood

approach to missing data problems and explored the use of empirical likelihood to effectively

combine unbiased estimating equations when the number of estimating equations is greater

than the number of unknown parameters.

1.3.2 Random Hot Deck Imputation

In this part, we will review the random hot deck imputation method.

Let (X1, δX1), . . . , (Xm, δXm) and (Y1, δY1), . . . , (Yn, δYn) be simple random sample se-

quences of incomplete data associated with the populations (X, δX) and (Y, δY ) respectively,

where

X ∼ F, δXi
=

 0, if Xi is missing

1, if Xi is observed
, i = 1, . . . ,m,

and

Y ∼ G, δYj =

 0, if Yj is missing

1, if Yj is observed
, j = 1, . . . , n.
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We assume both F and G are absolutely continuous for mathematical consideration.

We assume X and Y are MCAR, i.e.,

P (δX = 1|X) = π1 and P (δY = 1|Y ) = π2,

where both π1 and π2 are constants belonging to (0, 1).

For convenience, some standard notations are needed. Let rX =
∑m

i=1 δXi
, rY =∑n

j=1 δYj , mX = m − rX and mY = n − rY . Denote the sets of observed data with re-

spect to X and Y as SrX and SrY respectively, and the sets of missing data with respect to

X and Y as SmX
and SmY

respectively. Then the means of the observed data with respect

to X and Y are denoted as X̄r = 1
rX

∑
i∈SrX

Xi and Ȳr = 1
rY

∑
j∈SrY

Yj, respectively. Fur-

thermore, let X∗
i and Y ∗

j be the imputed values for the missing data with respect to X and

Y , respectively.

Imputation methods are useful in dealing with missing data. With MCAR type of data,

we prefer the random hot deck imputation method to impute missing values rather than

the deterministic imputation, because the latter one is not appropriate in making inference

of distribution functions [53]. The idea of random hot deck imputation [54] is natural.

From SrX , the random hot deck imputation draws a simple random sample of size mX with

replacement, and then let X∗
i = Xk for some k ∈ SrX . Therefore, a sample of so-called

“complete data” after imputation can be obtained as

X̃i = δXi
Xi + (1 − δXi

)X∗
i , i = 1, . . . ,m.

Similarly, the imputed “complete data” from SrY could be obtained as

Ỹj = δYjYj + (1 − δYj)Y
∗
j , j = 1, . . . , n.
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1.3.3 Bias-corrected ROC Curve

In this part, we review current bias-correction methods in the presence of verification

bias. Let Ti denote the continuous test result from a screening test, and let Di denote the

binary disease status without measurement error, i = 1, . . . , n, where Di = 1 indicates the

ith patient is diseased and Di = 0 indicates the ith patient is free of disease. Due to various

causes, such as cost limits and privacy security, only a subset of patients have their disease

statuses verified; let Vi denote the binary verification status of the ith patients, with Vi = 1

if the ith patient has the true disease status verified, and Vi = 0 if otherwise. In practice,

some covariate information, other than the results from the screening test, can be obtained.

Let Ai be a vector of observed covariates for the ith patient that may be associated with

both Di and Vi.

When all patients are verified, i.e., Vi = 1, i = 1, . . . , n, a complete data set is obtained.

In this case, for any cut-off level τ , the sensitivity θ(τ), and the specificity η(τ) can be

estimated by

θ̂Full(τ) =

∑n
i=1 I(Ti > τ)Di∑n

i=1Di

, η̂Full(τ) =

∑n
i=1 I(Ti ≤ τ)(1 −Di)∑n

i=1(1 −Di)
. (1.5)

Obviously, θ̂Full(τ) and η̂Full(τ) are unbiased estimators for θ and η respectively.

Many current studies center on the MAR assumption because it is manageable in prac-

tice. Under this assumption, whether one subject has his or her disease status verified is

conditionally independent of the true disease status given the test result and the observed

covariates, i.e., V ⊥ D|T,A or P (V |D,T,A) = P (V |T,A) or P (D|V, T,A) = P (D|T,A). In

other words, the decision to verify the patient’s true disease status only depends on T and

A regardless of the true disease status D.

Alonzo and Pepe [24] extended the method proposed by Begg and Greenes [17] on

discrete data and saturated model to the bias-corrected ROC problem with continuous data

T and A. They used full imputation (FI) over the distribution P (D|T,A) to estimate the
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prevalence of disease. The corresponding FI estimators of θ(τ) and η(τ) are given as

θ̂FI(τ) =

∑n
i=1 I(Ti > τ)ρ̂i∑n

i=1 ρ̂i
, η̂FI(τ) =

∑n
i=1 I(Ti ≤ τ)(1 − ρ̂i)∑n

i=1(1 − ρ̂i)
, (1.6)

where ρ̂i is an estimator of ρi = P (Di = 1|Ti, Ai) that is obtained by using, for example,

probit models only on the data from verified patients.

Based on the recognition that the study with verification-biased sampling could be

thought of as the study with a two-phase or double-sampling design ([55], [56]), Alonzon et

al. [57] proposed the mean score imputation (MSI) approach for estimating the prevalence

of disease. Compared with the FI method, the MSI method estimates P (Di|Ti, Ai) by using

Di from verified subjects, the same as that in the FI method, then only imputes Di for those

who are not in the verification sample. The resulting estimators of θ(τ) and η(τ) are defined

as follows:

θ̂MSI(τ) =

∑n
i=1 I(Ti > τ)(ViDi + (1 − Vi)ρ̂i)∑n

i=1(ViDi + (1 − Vi)ρ̂i)
,

η̂MSI(τ) =

∑n
i=1 I(Ti ≤ τ)(Vi(1 −Di) + (1 − Vi)(1 − ρ̂i))∑n

i=1(Vi(1 −Di) + (1 − Vi)(1 − ρ̂i))
,

(1.7)

where ρ̂i is defined as that in the FI method.

An inverse probability weighting (IPW) estimator weighs each observation in the verified

sample by the inverse of the verification probability to correct selection bias. This estimator

provides another approach that is used to estimate the prevalence of disease in a two-phase

design. Let πi = P (Vi = 1|Ti, Ai). By given the estimated weight π̂−1
i to each verified

subject, the inverse of the estimated probability that the subject was verified, the estimators

of θ(τ) and η(τ) are defined as follows:

θ̂IPW (τ) =

∑n
i=1 I(Ti > τ)ViDiπ̂

−1
i∑n

i=1 ViDiπ̂
−1
i

, η̂IPW (τ) =

∑n
i=1 I(Ti ≤ τ)Vi(1 −Di)π̂

−1
i∑n

i=1 Vi(1 −Di)π̂
−1
i

, (1.8)

where π̂i is an estimator of P (Vi = 1|Ti, Ai) that is obtained by using, for example, logistic

regression from all patients in the sample.
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Gao et al. [58] and Alonzo et al. [57] independently derived the following semiparametric

efficient estimator (SPE) of the prevalence of disease in two-phase studies, which deserves

the so-called “double robustness” property in the sense that it is consistent if either πi or ρi

is estimated consistently:

P̂ (D = 1) =
1

n

n∑
i=1

(
ViDi

π̂i
− (Vi − π̂i)ρ̂i

π̂i

)
,

where π̂i and ρ̂i are the same as those defined previously. Following this approach, Alonzo

and Pepe [24] proposed the following SPE estimators for θ(τ) and η(τ):

θ̂SPE(τ) =

∑n
i=1 I(Ti > τ)[ViDi − (Vi − π̂i)ρ̂i]π̂

−1
i∑n

i=1[ViDi − (Vi − π̂i)ρ̂i]π̂
−1
i

,

η̂SPE(τ) =

∑n
i=1 I(Ti ≤ τ)[Vi(1 −Di) − (Vi − π̂i)(1 − ρ̂i)]π̂

−1
i∑n

i=1[Vi(1 −Di) − (Vi − π̂i)(1 − ρ̂i)]π̂
−1
i

.

(1.9)

When τ varies throughout the real line, each of above methods provides an empirical

bias-corrected ROC curve by using the pair (1− η̂, θ̂). Alonzo et al. [57] proposed a common

estimating equation framework to derive consistency and asymptotic normality results for

two-phase disease prevalence estimators that accounts for the uncertainty in estimating nui-

sance parameters corresponding to the estimation of P (D = 1|T,A) and/or P (V = 1|T,A).

1.4 Aims of the Dissertation

Based on all reviews above, to our knowledge, not much study has been done on the

evaluation of continuous-scale diagnostic tests with missing Data. In this dissertation, we

consider the inference of ROC curves with two types of missing data, MCAR data and data

in the presence of verification under the MAR assumption. We aim to develop new non-

parametric statistical methods for evaluating the accuracy of diagnostic tests or biomarkers

in the presence of missing data. Specifically, novel nonparametric statistical methods will

be developed with different types of missing data for (i) the inference of the area under the

ROC curve and (ii) the joint inference of sensitivity and specificity of a continuous-scale
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diagnostic test.

With MCAR data, we propose to use the random hot deck imputation [54] method to

impute missing values. The idea of random hot deck imputation method is natural: drawing

a simple random sample with replacement from the observed data to impute missing data,

and then applying empirical likelihood method to the imputed “complete data”. Based on

the imputed “complete data”, inference on ROC curves with the empirical likelihood method

could be made.

With MAR data, we will provide a general framework that combines empirical likeli-

hood and general estimation equations with nuisance parameters for joint inferences of the

sensitivity and the specificity. We propose to rewrite the empirical estimates of sensitivity,

specificity and AUC as the solutions of empirical estimating functions with nuisance pa-

rameter. Here verification (or missing) probability and the prevalence of disease are treated

as nuisance parameters, but these parameters can be consistently estimated by employing

parametric models such as logistic regressions or probit models. Then we can define pro-

file empirical likelihoods for sensitivity and specificity as well as AUC. The resulting profile

log-empirical likelihood ratio statistics can be given explicitly. We show that asymptotic

distributions of these profile empirical log-likelihood ratio statistics are weighted sums of

independent chi-squared distributions. If either disease models or verification models are

miss-specified, one of the proposed bias-corrected empirical likelihood methods still per-

forms well with moderate sample size cases (n ≥ 400). Therefore, the profile empirical

log-likelihood ratio statistics can be used as pivotals to construct confidence intervals for

the AUC and joint confidence regions for sensitivity and specificity. Furthermore, in or-

der to reduce computation burden of estimating weights of the asymptotic distributions of

profile empirical log-likelihood ratio statistics, jackknife technique is applied to construct

pseudo samples, and standard chi-squared distributions are retained for jackknife empirical

likelihood ratio statistics, which are easier to apply in practice.

The proposed empirical likelihood-based joint confidence regions provide a graphical tool

to select a cut-off level which yields the desirable sensitivity and/or specificity by plotting
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joint confidence regions for (θ, τ) and (η, τ) in the same graph. Reasonable cut-off levels

could be directly identified from the overlapping part of the two regions. Such visual tool

is straightforward and easy to implement in practice. It is necessary to point out that the

proposed confidence regions preserve many good properties of empirical likelihood method,

such as good small sample performance, data determined confidence regions and range-

respecting, which could be a problem for normal-approximation based confidence regions.

Simulation studies are conducted to evaluate the finite sample performance of all pro-

posed methods. Additionally, all new methods will also be applied to some real data sets in

medical diagnostics to show their practical meanings.

1.5 Significance

In this dissertation, various bias-corrected empirical likelihood confidence intervals for

the sensitivity of ROC curves, the AUC and joint confidence regions for the sensitivity

and the specificity with missing data are proposed. These confidence regions could provide

a good solution to the problem of selecting a reasonable cut-off point for a continuous-

scale diagnostic test. The research will make significant contributions to medical diagnostic

tests, and will greatly extend the scope of the applications of empirical likelihood methods.

The efficacy of the proposed inference procedures will be demonstrated via simulations and

empirical applications. The results should be very useful in assessing diagnostic tests because

the costs of diagnostic tests can be very high. To select more accurate diagnostic tests for

wider use, it is important to develop appropriate statistical methods for evaluating the

diagnostic accuracy of competing tests. The use of attractive statistical methods like these

proposed in this dissertation for the ROC curve analysis will help diagnostic test users

make informed choices of the most reliable diagnostic tests. This dissertation will certainly

contribute to the reduction of health care costs in the long run.
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1.6 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2 and 3, we

present imputation-based empirical likelihood intervals for the sensitivity and the AUC with

MCAR data, respectively. Chapter 4 shows imputation-based bivariate empirical likelihood

confidence regions with MCAR data. Empirical likelihood confidence regions for the eval-

uation of continuous-scale diagnostics test in the presence of verification bias are shown in

Chapter 5. In Chapter 6, the jackknife technique is applied to the problem in Chapter 5 in

order to simplify the calculation. A brief discussion is provided in Chapter 7.
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CHAPTER 2

EMPIRICAL LIKELIHOOD-BASED CONFIDENCE INTERVALS FOR THE

SENSITIVITY OF A CONTINUOUS-SCALE DIAGNOSTIC TEST WITH

MISSING COMPLETELY AT RANDOM DATA

2.1 Introduction

In this chapter, an imputation-based profile empirical likelihood (IPEL) and an

imputation-based hybrid empirical likelihood (IHBEL) are proposed to construct confidence

intervals for the sensitivity with missing data. The proposed methods preserve the advantage

of the method in Qin, Davis and Jing [36], which is free of bandwidth selection, and the ad-

vantage of the random hot deck imputation method [54], which preserves the distribution of

item values whereas the deterministic imputation methods like the ratio imputation and the

regression imputation do not have this appealing property. Both IPEL and IHBEL intervals

are easy to apply in practice.

The remainder of this chapter is organized as follows. Section 2.2 presents the

imputation-based empirical likelihood method to construct confidence intervals for sensitivity

with missing data. In section 2.3, we conduct simulation studies to assess the performance of

the proposed methods. In section 2.4, we illustrate the proposed imputation-based empirical

likelihood intervals with a real example. All proofs are deferred until the Appendix A.

2.2 Imputation-based Empirical Likelihood for the Sensitivity with MCAR

Data

In this section, we aim to construct empirical likelihood-based confidence intervals for

R(p) with missing data. We firstly impute the missing data by the random hot deck impu-

tation technique, and then review the profile empirical likelihood method proposed by Qin,

Davis and Jing [36]. Finally we develop the imputation-based empirical likelihood method
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for R(p).

2.2.1 Missing Data

Let (X1, δX1), . . . , (Xm, δXm) and (Y1, δY1), . . . , (Yn, δYn) be simple random sample se-

quences of incomplete data associated with the populations (X, δX) and (Y, δY ) respectively,

where

X ∼ F, δXi
=

 0, if Xi is missing

1, if Xi is observed
, i = 1, . . . ,m,

and

Y ∼ G, δYj =

 0, if Yj is missing

1, if Yj is observed
, j = 1, . . . , n.

We assume both F and G are absolutely continuous for mathematical consideration.

Throughout this chapter, we assume X and Y are MCAR, i.e.,

P (δX = 1|X) = π1 and P (δY = 1|Y ) = π2,

where both π1 and π2 are constants belonging to (0, 1).

For convenience, some standard notations are needed. Let rX =
∑m

i=1 δXi
, rY =∑n

j=1 δYj , mX = m − rX and mY = n − rY . Denote the sets of observed data with re-

spect to X and Y as SrX and SrY respectively, and the sets of missing data with respect to

X and Y as SmX
and SmY

respectively. Then the means of the observed data with respect

to X and Y are denoted as X̄r = 1
rX

∑
i∈SrX

Xi and Ȳr = 1
rY

∑
j∈SrY

Yj, respectively. Fur-

thermore, let X∗
i and Y ∗

j be the imputed values for the missing data with respect to X and

Y , respectively.

Imputation methods are useful in dealing with missing data. With MCAR type of data,

we prefer the random hot deck imputation method to impute missing values rather than
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the deterministic imputation, because the latter one is not appropriate in making inference

of distribution functions [53]. The idea of random hot deck imputation [54] is natural.

From SrX , the random hot deck imputation draws a simple random sample of size mX with

replacement, and then let X∗
i = Xk for some k ∈ SrX . Therefore, a sample of so-called

“complete data” after imputation can be obtained as

X̃i = δXi
Xi + (1 − δXi

)X∗
i , i = 1, . . . ,m.

Similarly, the imputed “complete data” from SrY could be obtained as

Ỹj = δYjYj + (1 − δYj)Y
∗
j , j = 1, . . . , n.

We could prove that based on the imputed data X̃i’s and Ỹj’s, the empirical distributions

F̃ (x) =
1

m

m∑
i=1

I(X̃i ≤ x) (2.1)

and

G̃(y) =
1

n

n∑
j=1

I(Ỹj ≤ y) (2.2)

are still consistent and asymptotically normal.

Proposition 1 F̃ (x) and G̃(y) defined above are uniformly consistent estimates for F (x)

and G(y) respectively. Furthermore, they are asymptotically normal, i.e.,

√
m(F̃ (x) − F (x))

d→ N (0, σ2
X) (2.3)

where σ2
X = (1 − π1 + π−1

1 )F (x)(1 − F (x)), and

√
n(G̃(y) −G(y))

d→ N (0, σ2
Y ) (2.4)
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where σ2
Y = (1 − π2 + π−1

2 )G(y)(1 −G(y)).

If we only use complete observations without applying the random hot deck imputation,

we could obtain following results. Define

F̃ ∗(x) =
1

rX

∑
i∈SrX

I(Xi ≤ x) and G̃∗(y) =
1

rY

∑
j∈SrY

I(Yj ≤ y).

Corollary 1 F̃ ∗(x) and G̃∗(y) defined above are uniformly consistent estimates for F (x)

and G(y) respectively. Furthermore, they are asymptotically normal, i.e.,

√
m(F̃ ∗(x) − F (x))

d→ N (0, σ∗2
X ) (2.5)

where σ∗2
X = π−1

1 F (x)(1 − F (x)), and

√
n(G̃∗(y) −G(y))

d→ N (0, σ∗2
Y ) (2.6)

where σ∗2
Y = π−1

2 G(y)(1 −G(y)).

The results from Corollary 1 and Proposition 1 are slightly different. Without the

random hot deck imputation, some terms in Proposition 1 are absent in Corollary 1. Actually,

it is equivalent to disregard missing data and apply methods based on complete data to

observed data only. For comparison purpose, we will list results based on observed data only

in simulation studies.

2.2.2 Profile Empirical Likelihood for the Sensitivity

The sensitivity corresponding to a given specificity p is R(p) = P (Y ≥ F−1(p)), thus it

could be estimated by

R̂(p) =

∑n
j=1 I(Yj ≥ F−1

m (p))

n
, (2.7)
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where Fm is the empirical distribution function based on Xi’s, i.e., Fm(x) = 1
m

∑m
i=1 I(Xi ≤

x). Denote the empirical distribution function of G by Gn(y) = 1
n

∑n
i=1 I(Yj ≤ y). Then,

R̂(p) = 1 −Gn(F−1
m (p)). (2.8)

Gastwirth [59], and Chakraborti and Mukerjee [60] showed that for a fixed p, 0 < p < 1,

√
n(Gn(F−1

m (p)) −G(F−1(p)))
d→ N (0, σ2

0(p)), (2.9)

where σ2
0(p) = R(p)(1 − R(p)) + κp(1 − p) g

2(F−1(p))
f2(F−1(p))

, and κ = limm,n→∞
n
m

, a fixed quantity,

with f and g denoting the density functions of F and G.

By substituting unknown quantities in (2.9) by their corresponding sample estimates, a

(1−α)100% normal approximation-based confidence interval could be constructed. However,

this confidence interval could be greatly affected by poor density and quantile estimation,

mentioned by Platt, Hanley and Yang [61].

In order to obtain better confidence intervals for R(p), Qin, Davis and Jing [36] proposed

a profile empirical likelihood for the sensitivity. Their method is easy to be applied in practice

because it does not involve in the selection of bandwidth, which is crucial in the smoothed

empirical likelihood based method (SEL), proposed by Claeskens et al. [34]. The selection

of an optimal bandwidth is always problematic in practical situations and is still an open

problem.

For a given test value Y from a diseased subject, let U = 1−F (Y ). The value U can be

interpreted as the proportion of the non-diseased population with test values greater than

Y . It is easy to obtain the following equality:

E(I(U ≤ 1 − p)) = P (F (Y ) ≥ p) = P (Y ≥ F−1(p)) = R(p).

The introduction of U converts the original problem into a mean-based problem. That is,

the estimation of the sensitivity R(p) is equivalent to the estimation of the expectation of an
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indicator function of U . Based on this relationship between R(p) and the placement value U ,

an empirical likelihood procedure for the inference of the sensitivity has been derived [36].

Let p = (p1, p2, . . . , pn) be a probability vector, i.e.,
∑n

j=1 pj = 1 and pj ≥ 0 for all j. The

empirical likelihood for R(p) is defined as follows:

L(R(p)) = sup

{
n∏
j=1

pj :
n∑
j=1

pj = 1,
n∑
j=1

pjWj(p) = 0

}
,

where Wj(p) = I(Uj ≤ 1 − p) −R(p) with Uj = 1 − F (Yj), j = 1, 2, . . . , n. L(R(p)) can not

be found because it involves in an unknown nuisance parameter F that is the distribution

function of the non-diseased population. After plugging-in the empirical estimate Fm for F

in L(R(p)), a profile empirical likelihood (PEL) for R(p) can be obtained:

L̂(R(p)) = sup

{
n∏
j=1

pj :
n∑
j=1

pj = 1,
n∑
j=1

pjŴj(p) = 0

}
, (2.10)

where Ŵj(p) = I(Ûj ≤ 1− p)−R(p) with Ûj = 1−Fm(Yj), j = 1, 2, . . . , n. By the standard

procedure of empirical likelihood method, the empirical likelihood ratio for R(p) could be

defined as follows:

r̂(R(p)) =
n∏
j=1

{
1 + λ̂Ŵj(p)

}−1

,

where λ̂ is the solution of

1

n

n∑
j=1

Ŵj(p)

1 + λ̂Ŵj(p)
= 0. (2.11)

Then the corresponding log-EL ratio is

l̂(R(p)) ≡ −2 log r̂(R(p)) = 2
n∑
j=1

log
{

1 + λ̂Ŵj(p)
}
. (2.12)

Qin, Davis and Jing [36] proved that the limiting distribution of l(R(p)) is a scaled chi-
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square distribution. They proposed a hybrid bootstrap empirical likelihood (HBEL) interval

for R(p) based on the limiting distribution.

2.2.3 Imputation-based Empirical Likelihood Intervals for the Sensitivity

with MCAR Data

Based on the imputed data X̃i’s and Ỹj’s, we can substitute all complete data Xi’s and

Yj’s in the previous section and obtain the similar log-EL ratio for R(p) as follows:

l̃(R(p)) = 2
n∑
j=1

log
{

1 + λ̃W̃j(p)
}
. (2.13)

where W̃j(p) = I(Ũj ≤ 1 − p) − R(p) with Ũj = 1 − F̃ (Ỹj), j = 1, 2, . . . , n, and λ̃ is the

solution of

1

n

n∑
j=1

W̃j(p)

1 + λ̃W̃j(p)
= 0. (2.14)

In order to present the asymptotic distribution of the log-EL ratio for sensitivity with

missing data, some modifications of previous results are needed. (2.9) is based on complete

data, but it could be extended to the missing data situation based on the random hot deck

imputation. The result is stated in the following proposition.

Proposition 2 The random variable
√
n(G̃(F̃−1(p)) − G(F−1(p))) is asymptotically nor-

mally distributed:

√
n(G̃(F̃−1(p)) −G(F−1(p)))

d→ N (0, σ2
1(p)), (2.15)

where F̃ and G̃ are defined by (2.1) and (2.2) respectively, σ2
1(p) = R(p)(1 −R(p))(1− π2 +

π−1
2 ) + κp(1 − p) g

2(F−1(p))
f2(F−1(p))

(1 − π1 + π−1
1 ), and κ = limm,n→∞

n
m
< ∞, with f and g denoting

the density functions of F and G.

Based on all the previous work, the following theorem establishes the asymptotic dis-

tribution of the log-EL ratio for the sensitivity with missing data.
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Theorem 1 Assume that the distribution functions F and G are both continuous with den-

sity functions f and g respectively. If limm,n→∞
n
m

= κ <∞, and 0 < R(p) < 1 for 0 < p < 1,

then the asymptotic distribution of l̃(R(p)), defined by (2.13), is a scaled χ2 distribution with

degree of freedom one:

c(p)l̃(R(p))
d→ χ2

1, (2.16)

where the scale constant c(p) is c(p) = σ2(p)

σ2
1(p)

with

σ2(p) = R(p)(1 −R(p)),

σ2
1(p) = σ2(p)(1 − π2 + π−1

2 ) + κp(1 − p)
g2(F−1(p))

f 2(F−1(p))
(1 − π1 + π−1

1 ).

The confidence interval for R(p) could be constructed based on Theorem 1 by plugging

in consistent estimates of all unknown quantities. Let

σ̃2(p) = R̃(p)(1 − R̃(p)),

σ̃2
1(p) = σ̃2(p)(1 − π̂2 + π̂−1

2 ) + κ̂p(1 − p)
g̃2(F̃−1(p))

f̃ 2(F̃−1(p))
(1 − π̂1 + π̂−1

1 ),

where R̃(p) = 1 − G̃(F̃−1(p)), κ̂ = n
m

, π̂1 = rX
m

, π̂2 = rY
n

, F̃−1(p) is the p -th sample

quantile of X̃i’s, f̃ and g̃ are kernel density estimates of f and g, respectively. Here the

kernel density estimation method provided by the R package KS [62] is employed to obtain

f̃ and g̃. The R package KS implements diagonal and unconstrained data-driven bandwidth

matrices for kernel density estimation. Therefore, a (1 − α)100% imputation-based profile

empirical likelihood confidence interval for R(p), denoted by IPEL interval, is defined as

follows:

CI1,α(R(p)) = {R(p) : c̃(p)l̃(R(p)) ≤ χ2
1(1 − α)}, (2.17)
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where c̃(p) = σ̃2(p)

σ̃2
1(p)

.

It is clear that the performance of the IPEL interval depends on the density estimates

f̃ and g̃. If the sample size is not large enough or the missing probability is high, the

performance of density estimation may not be good, especially for high specificity case.

In order to solve this problem, the bootstrap method, which is powerful in small sample

case, could be employed to construct an imputation-based hybrid bootstrap and empirical

likelihood (IHBEL) ratio confidence interval for R(p). From Proposition 2, σ2
1(p) is the

asymptotic variance of
√
n(R̃(p) − R(p)). Motivated by this observation, σ2

1(p) could be

estimated by the bootstrap method.

The key point of the bootstrap is resampling from the sample. The ordinary bootstrap

method draws samples from the observations equally with replacement. However, it may

not be appropriate to apply the ordinary bootstrap method to the imputed data, because

the original method treats the imputed values as if they were true observations. This would

result in an under-estimation of the variance, discussed by Shao and Sitter [63]. Therefore,

instead, the bootstrap data set should also be imputed in the same way as the original data

set was imputed. In this paper, the bootstrap method for imputed data proposed by Shao

and Sitter [63] is used to obtain the variance estimate. We summarize the procedure for

computing the bootstrap variance as follows:

1. Draw a resample of size n, denoted by (Ỹ ∗
j , δỸ ∗

j
)’s, with replacement from the imputed

diseased sample (Ỹj, δYj)’s, and a separate resample of size m, denoted by (X̃∗
i , δX̃∗

i
)’s,

with replacement from the imputed non-diseased sample (X̃i, δXi
)’s.

2. Let S∗
rY

and S∗
mY

denote the sets of observed data with δỸ ∗
j

= 1, and imputed data with

δỸ ∗
j

= 0, with respect to bootstrap resample Ỹ ∗
j of the diseased group, respectively.

Similarly, let S∗
rX

and S∗
mX

denote the sets of observed data with δX̃∗
i

= 1, and imputed

data with δX̃∗
i

= 0, with respect to bootstrap resample X̃∗
i of the non-diseased group,

respectively.

3. Apply the same random hot deck imputation procedure used in constructing Ỹj’s and
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X̃i’s to impute the bootstrap analog Ỹ ∗
j and X̃∗

i belonging to S∗
mY

and S∗
mX

respectively.

4. Calculate the bootstrap version of R̃(p) by

R̃∗
b(p) =

∑n
j=1 I(Ỹ ∗

j ≥ F̃−1∗(p))

n
,

where F̃−1∗(p) is the p -th sample quantile based on the bootstrap resample X̃∗
i ’s.

5. Repeat the first four steps B times (In this paper, we use B = 600) to obtain the set

of bootstrap replicates {R̃∗
b(p) : b = 1, . . . , B}. Thus, the bootstrap estimate σ∗2

1 (p) of

σ2
1(p) is calculated as

σ∗2
1 (p) =

n

B − 1

B∑
b=1

(
R̃∗
b(p) − R̄∗(p)

)2
,

where R̄∗(p) = 1
B

∑B
b=1 R̃

∗
b(p).

Then an IHBEL confidence interval for R(p) can be defined as follows:

CI2,α =
{
R(p) : c∗(p)l(R(p)) ≤ χ2

1(1 − α)
}
, (2.18)

where c∗(p) = R̄∗(p)(1−R̄∗(p))
σ∗2
1 (p)

.

2.3 Simulation Studies

In this section simulation studies are conducted to evaluate the finite-sample perfor-

mance of the proposed intervals (IPEL and IHBEL) for R(p) at a given specificity p in terms

of coverage probability. Here two typical settings of distributions are considered, one for

symmetric distribution and one for asymmetric distribution:

(1) X ∼ N (0, 1) and Y ∼ N (1, 1);

(2) X ∼ exp(1) and Y ∼ exp(2).

For each setting, 2000 random samples of incomplete data (Xi, δXi
), i = 1, . . . ,m and
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(Yj, δYj), j = 1, . . . , n are generated from the underlying non-diseased distribution F and

diseased distribution G, respectively. The sample size ranges from 50 to 150 with both

m = n and m ̸= n two cases for the two settings. We also consider different observation

rates: (π1, π2) = 90% (high), 80% or 70% (moderate), and 60% (low) with π1 = π2 and

π1 ̸= π2. The full observation case with (π1, π2) = (1, 1) is also included in studies as a

comparison basis.

In Table 2.1-2.4, we present coverage probabilities of 90% and 95% confidence intervals

for R(p) when the specificities are fixed at p = 0.7, 0.8 and 0.9 based on the two proposed

imputation-based empirical likelihood methods IPEL and IHBEL.

Simulation results in these tables suggest that the proposed methods work well generally,

and to some extent, they are complementary to each other. The proposed methods under

various missing settings could generate similar results with complete data case. Coverage

probabilities of IPEL intervals are below the nominal levels when p = 0.8, 0.9 and sample

sizes are small, but they are comparable to those with complete data cases. The performance

of IPEL intervals is stable for all cases considered here. IHBEL works well except some cases

with low observation rate (π1, π2) = (60%, 60%). Both IPEL and IHBEL work well in

moderate and large sample size (n,m ≥ 100) even in high missing rate setting.

Therefore, based on above observations, we suggest that: (i) when the sample size is

large enough regardless of the missing rate, the IPEL is preferred because of its simplicity

in calculation; (ii) when the sample size is small and missing rate is moderate, the IHBEL

is preferred because it has better coverage probability, although the computation is a little

extensive; (iii) when the sample size is small and the missing rate is high, the IPEL could

be applied with a better density estimation method.

Also, coverage probabilities of 90% and 95% confidence intervals for R(p) under the same

model settings with observed data only are presented in Table 2.5-2.6. When sample sizes are

moderate or large (m,n ≥ 100), the proposed methods perform similarly with the methods

with observed data only. Therefore, results for small sample sizes (m,n = 50, 80) with

observed data only are presented in these two tables. Compared with results in Table 2.1-
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2.4, we could find that with observed data only, coverage probabilities are slightly unstable

and tend to be conservative. These observations make sense because missingness results in

even smaller sample sizes. The proposed methods benefit from the imputation.

2.4 An Illustrate Example

In this section, we evaluate the diagnostic accuracy of the proposed methods by applying

them to the data set of carbohydrate antigenic determinant CA19-9 in the detection of

pancreatic cancer. For the purpose of comparison, we apply the proposed methods to the

data set used in Qin, Davis and Jing [36], because the proposed methods will reduce to their

methods when the data set is complete.

Pancreatic cancer is a disease in which the cancer cells progress in the tissues of pancreas.

It is hard to diagnose the pancreatic cancer because this organ is hidden behind other organs.

Furthermore, its early detection is poor or almost impossible. Therefore, the death rate of

pancreatic cancer patients is extremely high. By the end of 2010 in the United States, it

was estimated about 43,140 individuals would be diagnosed with this condition, and 36,800

would die from the disease.

The CA19-9 is a pancreatic cancer marker measured through a blood test. Based on

the test result for CA19-9, the patient’s status is classified into several levels: a high CA19-9

level indicates a progression of the disease; a low or stable CA19-9 level means improved

prognosis [64]. Therefore, it is extremely important to estimate the sensitivity of CA19-9

and find its range at a fixed specificity of interest.

We apply the proposed IPEL and IHBEL methods to the data set studied by Wieand

et al. [65] on the diagnostic accuracy of CA19-9 in detecting pancreatic cancer. The data

set consists of 51 patients in the control group and 90 with pancreatic cancer. We estimated

sensitivities as well as IPEL and IHBEL intervals for R(p) with specificity p = 0.70, 0.80,

0.90, which are usually used. We simulated the missing mechanism MCAR to obtain missing

data with different observation rates of (π1, π2), because the original data set is complete.

The results are presented in Table 2.7. These intervals indicate that CA19-9 has moderate
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to high sensitivity when the specificity is fixed at p = 0.70, 0.80, 0.90, respectively. Under

different observation rates, R̃(p) is close to those with complete data, and all confidence

intervals contain R̃(p) based on complete data.
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Table 2.1 Model setting (1): Coverage probabilities of IPEL and IHBEL for R(p) with
nominal confidence level 90%

Observation rate (π1, π2)
(m,n, p) Methods (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
(50,50,0.9) IPEL 0.8583 0.8560 0.8613 0.8553 0.8713 0.8717

IHBEL 0.8965 0.8985 0.8900 0.8860 0.8865 0.8680
(50,50,0.8) IPEL 0.8847 0.8747 0.8807 0.8807 0.8837 0.8890

IHBEL 0.9055 0.9000 0.9030 0.8980 0.8885 0.8665
(50,50,0.7) IPEL 0.9050 0.9070 0.9070 0.8990 0.9000 0.9007

IHBEL 0.9095 0.8915 0.9095 0.9005 0.8955 0.8845
(80,50,0.9) IPEL 0.8677 0.8713 0.8773 0.8800 0.8817 0.8813

IHBEL 0.8885 0.8905 0.8920 0.8885 0.8785 0.8800
(80,50,0.8) IPEL 0.8973 0.9023 0.9103 0.9093 0.9040 0.8987

IHBEL 0.8965 0.8990 0.9045 0.9075 0.8970 0.8790
(80,50,0.7) IPEL 0.8963 0.8940 0.9003 0.9043 0.9000 0.9040

IHBEL 0.9220 0.9075 0.9040 0.9060 0.8975 0.8690
(80,80,0.9) IPEL 0.8530 0.8627 0.8727 0.8627 0.8707 0.8717

IHBEL 0.8815 0.8930 0.8915 0.8850 0.8880 0.8660
(80,80,0.8) IPEL 0.8880 0.8853 0.8933 0.8857 0.8890 0.8910

IHBEL 0.8995 0.9015 0.8990 0.8890 0.8815 0.8675
(80,80,0.7) IPEL 0.8980 0.8890 0.8993 0.8977 0.9043 0.9007

IHBEL 0.9015 0.9000 0.8995 0.8905 0.8870 0.8735
(100,100,0.9) IPEL 0.8705 0.8685 0.8625 0.8580 0.8665 0.8685

IHBEL 0.9005 0.8975 0.9040 0.8925 0.8920 0.8650
(100,100,0.8) IPEL 0.8890 0.8805 0.8900 0.8830 0.8810 0.8710

IHBEL 0.8975 0.8945 0.8970 0.8895 0.8780 0.8550
(100,100,0.7) IPEL 0.8910 0.8990 0.9005 0.8990 0.9010 0.8930

IHBEL 0.8950 0.9065 0.8995 0.8950 0.8950 0.8620
(150,100,0.9) IPEL 0.8810 0.8955 0.8930 0.8885 0.8970 0.8740

IHBEL 0.8950 0.8990 0.9020 0.8965 0.8945 0.8620
(150,100,0.8) IPEL 0.8985 0.9005 0.9000 0.9075 0.9060 0.8945

IHBEL 0.8985 0.8990 0.8895 0.8875 0.8880 0.8670
(150,100,0.7) IPEL 0.8945 0.8935 0.9010 0.8925 0.8915 0.8900

IHBEL 0.8990 0.8965 0.8985 0.8935 0.8825 0.8660
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Table 2.2 Model setting (1): Coverage probabilities of IPEL and IHBEL for R(p) with
nominal confidence level 95%

Observation rate (π1, π2)
(m,n, p) Methods (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
(50,50,0.9) IPEL 0.9095 0.9140 0.9165 0.9095 0.9205 0.9150

IHBEL 0.9450 0.9455 0.9460 0.9375 0.9380 0.9305
(50,50,0.8) IPEL 0.9365 0.9370 0.9335 0.9335 0.9380 0.9345

IHBEL 0.9505 0.9465 0.9485 0.9425 0.9380 0.9225
(50,50,0.7) IPEL 0.9475 0.9415 0.9460 0.9430 0.9495 0.9585

IHBEL 0.9530 0.9595 0.9530 0.9505 0.9455 0.9335
(80,50,0.9) IPEL 0.9200 0.9235 0.9255 0.9325 0.9340 0.9230

IHBEL 0.9475 0.9465 0.9490 0.9510 0.9440 0.9425
(80,50,0.8) IPEL 0.9425 0.9490 0.9520 0.9535 0.9565 0.9470

IHBEL 0.9515 0.9515 0.9605 0.9600 0.9510 0.9390
(80,50,0.7) IPEL 0.9565 0.9560 0.9560 0.9630 0.9640 0.9535

IHBEL 0.9510 0.9590 0.9505 0.9540 0.9455 0.9290
(80,80,0.9) IPEL 0.9160 0.9190 0.9260 0.9235 0.9310 0.9155

IHBEL 0.9400 0.9405 0.9510 0.9455 0.9430 0.9325
(80,80,0.8) IPEL 0.9425 0.9380 0.9385 0.9350 0.9415 0.9390

IHBEL 0.9470 0.9455 0.9460 0.9415 0.9460 0.9310
(80,80,0.7) IPEL 0.9585 0.9530 0.9535 0.9490 0.9505 0.9490

IHBEL 0.9455 0.9505 0.9545 0.9525 0.9470 0.9330
(100,100,0.9) IPEL 0.9205 0.9210 0.9255 0.9245 0.9265 0.9220

IHBEL 0.9440 0.9550 0.9525 0.9445 0.9405 0.9325
(100,100,0.8) IPEL 0.9430 0.9420 0.9450 0.9430 0.9435 0.9410

IHBEL 0.9470 0.9425 0.9490 0.9380 0.9355 0.9220
(100,100,0.7) IPEL 0.9445 0.9480 0.9520 0.9495 0.9565 0.9440

IHBEL 0.9480 0.9470 0.9480 0.9470 0.9420 0.9265
(150,100,0.9) IPEL 0.9395 0.9400 0.9425 0.9475 0.9445 0.9395

IHBEL 0.9510 0.9480 0.9435 0.9440 0.9460 0.9240
(150,100,0.8) IPEL 0.9490 0.9520 0.9595 0.9545 0.9540 0.9395

IHBEL 0.9575 0.9525 0.9555 0.9560 0.9505 0.9200
(150,100,0.7) IPEL 0.9505 0.9460 0.9470 0.9435 0.9535 0.9470

IHBEL 0.9540 0.9510 0.9480 0.9450 0.9370 0.9205
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Table 2.3 Model setting (2): Coverage probabilities of IPEL and IHBEL for R(p) with
nominal confidence level 90%

Observation rate (π1, π2)
(m,n, p) Methods (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
(50,50,0.9) IPEL 0.8600 0.8515 0.8635 0.8490 0.8485 0.8405

IHBEL 0.8900 0.8825 0.8860 0.8795 0.8820 0.8605
(50,50,0.8) IPEL 0.8830 0.8855 0.8865 0.8715 0.8790 0.8785

IHBEL 0.9015 0.8905 0.8940 0.8850 0.8835 0.8775
(50,50,0.7) IPEL 0.8865 0.8875 0.8820 0.8785 0.8880 0.8660

IHBEL 0.9070 0.9010 0.9070 0.8995 0.8890 0.8695
(80,50,0.9) IPEL 0.8790 0.8840 0.8800 0.8730 0.8735 0.8655

IHBEL 0.8970 0.9005 0.8975 0.8905 0.8975 0.8775
(80,50,0.8) IPEL 0.8805 0.8890 0.8855 0.8820 0.8910 0.8810

IHBEL 0.9105 0.9025 0.8995 0.8880 0.8920 0.8725
(80,50,0.7) IPEL 0.8840 0.8925 0.8810 0.8785 0.8870 0.8880

IHBEL 0.8925 0.8950 0.8900 0.8940 0.8885 0.8775
(80,80,0.9) IPEL 0.8650 0.8775 0.8845 0.8635 0.8690 0.8540

IHBEL 0.9030 0.9045 0.8895 0.9000 0.8945 0.8595
(80,80,0.8) IPEL 0.8830 0.8925 0.8895 0.8760 0.8870 0.8665

IHBEL 0.9020 0.9040 0.8920 0.8930 0.8855 0.8610
(80,80,0.7) IPEL 0.8880 0.8935 0.8925 0.8940 0.8890 0.8820

IHBEL 0.8920 0.8965 0.8975 0.8955 0.8815 0.8635
(100,100,0.9) IPEL 0.8755 0.8705 0.8705 0.8640 0.8705 0.8575

IHBEL 0.8955 0.9020 0.8925 0.8800 0.8845 0.8590
(100,100,0.8) IPEL 0.8885 0.8950 0.9050 0.8910 0.8960 0.8890

IHBEL 0.9080 0.9015 0.9045 0.8945 0.8975 0.8565
(100,100,0.7) IPEL 0.8885 0.8925 0.9030 0.8990 0.9010 0.8760

IHBEL 0.8915 0.8960 0.9020 0.9020 0.8980 0.8500
(150,100,0.9) IPEL 0.8920 0.8860 0.8975 0.8935 0.8830 0.8785

IHBEL 0.8995 0.8925 0.8900 0.8860 0.8765 0.8565
(150,100,0.8) IPEL 0.8915 0.8880 0.8955 0.8875 0.8970 0.8940

IHBEL 0.8930 0.8930 0.8935 0.8885 0.8795 0.8515
(150,100,0.7) IPEL 0.8940 0.9040 0.8985 0.8895 0.9055 0.9025

IHBEL 0.8990 0.8965 0.8880 0.8795 0.8825 0.8635
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Table 2.4 Model setting (2): Coverage probabilities of IPEL and IHBEL for R(p) with
nominal confidence level 95%

Observation rate (π1, π2)
(m,n, p) Methods (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
(50,50,0.9) IPEL 0.9105 0.9180 0.9165 0.9070 0.9140 0.8975

IHBEL 0.9435 0.9395 0.9455 0.9415 0.9395 0.9375
(50,50,0.8) IPEL 0.9335 0.9365 0.9345 0.9310 0.9335 0.9265

IHBEL 0.9515 0.9475 0.9450 0.9395 0.9430 0.9450
(50,50,0.7) IPEL 0.9355 0.9365 0.9435 0.9370 0.9300 0.9305

IHBEL 0.9535 0.9495 0.9430 0.9465 0.9445 0.9455
(80,50,0.9) IPEL 0.9320 0.9330 0.9355 0.9320 0.9310 0.9270

IHBEL 0.9525 0.9550 0.9470 0.9455 0.9415 0.9500
(80,50,0.8) IPEL 0.9360 0.9360 0.9345 0.9320 0.9425 0.9335

IHBEL 0.9520 0.9500 0.9495 0.9480 0.9455 0.9430
(80,50,0.7) IPEL 0.9390 0.9380 0.9370 0.9370 0.9310 0.9360

IHBEL 0.9435 0.9445 0.9415 0.9415 0.9410 0.9305
(80,80,0.9) IPEL 0.9320 0.9345 0.9290 0.9180 0.9230 0.9150

IHBEL 0.9505 0.9535 0.9435 0.9475 0.9460 0.9385
(80,80,0.8) IPEL 0.9340 0.9485 0.9455 0.9330 0.9385 0.9275

IHBEL 0.9440 0.9500 0.9445 0.9435 0.9485 0.9335
(80,80,0.7) IPEL 0.9490 0.9435 0.9435 0.9435 0.9405 0.9265

IHBEL 0.9500 0.9530 0.9460 0.9480 0.9410 0.9235
(100,100,0.9) IPEL 0.9260 0.9265 0.9360 0.9180 0.9320 0.9055

IHBEL 0.9495 0.9475 0.9510 0.9385 0.9485 0.9305
(100,100,0.8) IPEL 0.9420 0.9385 0.9440 0.9435 0.9450 0.9360

IHBEL 0.9520 0.9505 0.9510 0.9505 0.9465 0.9265
(100,100,0.7) IPEL 0.9355 0.9435 0.9490 0.9450 0.9475 0.9350

IHBEL 0.9445 0.9465 0.9495 0.9480 0.9425 0.9340
(150,100,0.9) IPEL 0.9465 0.9395 0.9435 0.9440 0.9430 0.9320

IHBEL 0.9465 0.9495 0.9490 0.9450 0.9360 0.9240
(150,100,0.8) IPEL 0.9470 0.9510 0.9460 0.9475 0.9500 0.9450

IHBEL 0.9460 0.9460 0.9440 0.9475 0.9330 0.9215
(150,100,0.7) IPEL 0.9490 0.9520 0.9440 0.9480 0.9490 0.9495

IHBEL 0.9490 0.9470 0.9430 0.9425 0.9335 0.9260
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Table 2.5 Model setting (1) with observed data only: Coverage probabilities of IPEL and
IHBEL for R(p) with nominal confidence level 90% and 95%

(π1, π2), 90% (π1, π2), 95%
(m,n, p) Methods (0.8, 0.7) (0.6, 0.6) (0.8, 0.7) (0.6, 0.6)
(50,50,0.9) IPEL 0.8795 0.8715 0.9295 0.9245

IHBEL 0.9250 0.9110 0.9580 0.9520
(50,50,0.8) IPEL 0.8940 0.8870 0.9455 0.9345

IHBEL 0.9145 0.9145 0.9595 0.9505
(50,50,0.7) IPEL 0.8980 0.9000 0.9515 0.9565

IHBEL 0.9125 0.9135 0.9660 0.9610
(80,50,0.9) IPEL 0.8715 0.8825 0.9325 0.9350

IHBEL 0.9145 0.9085 0.9560 0.9535
(80,50,0.8) IPEL 0.8980 0.9020 0.9550 0.9530

IHBEL 0.9245 0.9135 0.9620 0.9650
(80,50,0.7) IPEL 0.9150 0.9100 0.9560 0.9615

IHBEL 0.9260 0.9130 0.9650 0.9630
(80,80,0.9) IPEL 0.8670 0.8540 0.9260 0.9190

IHBEL 0.9170 0.9010 0.9555 0.9460
(80,80,0.8) IPEL 0.8950 0.8960 0.9395 0.9435

IHBEL 0.9200 0.9035 0.9560 0.9515
(80,80,0.7) IPEL 0.9090 0.9050 0.9525 0.9485

IHBEL 0.9180 0.9050 0.9645 0.9505
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Table 2.6 Model setting (2) with observed data only: Coverage probabilities of IPEL and
IHBEL for R(p) with nominal confidence level 90% and 95%

(π1, π2), 90% (π1, π2), 95%
(m,n, p) Methods (0.8, 0.7) (0.6, 0.6) (0.8, 0.7) (0.6, 0.6)
(50,50,0.9) IPEL 0.8580 0.8640 0.9190 0.9205

IHBEL 0.9105 0.9145 0.9580 0.9585
(50,50,0.8) IPEL 0.8835 0.8785 0.9340 0.9300

IHBEL 0.9165 0.9095 0.9615 0.9580
(50,50,0.7) IPEL 0.8930 0.8895 0.9450 0.9420

IHBEL 0.9170 0.9110 0.9590 0.9620
(80,50,0.9) IPEL 0.8845 0.8920 0.9395 0.9390

IHBEL 0.9170 0.9205 0.9590 0.9600
(80,50,0.8) IPEL 0.8810 0.8875 0.9345 0.9435

IHBEL 0.9045 0.9100 0.9535 0.9560
(80,50,0.7) IPEL 0.8860 0.8870 0.9370 0.9350

IHBEL 0.9110 0.9055 0.9500 0.9495
(80,80,0.9) IPEL 0.8810 0.8830 0.9330 0.9280

IHBEL 0.9190 0.9160 0.9605 0.9505
(80,80,0.8) IPEL 0.8895 0.8840 0.9420 0.9390

IHBEL 0.9100 0.9030 0.9560 0.9530
(80,80,0.7) IPEL 0.8885 0.8845 0.9435 0.9360

IHBEL 0.9135 0.9045 0.9560 0.9505

Table 2.7 A real example: 95% IPEL and IHBEL confidence intervals for R(p) of CA19-9 at
different levels of specificities with various observation rates.

p = 0.70 p = 0.80 p = 0.90

(π1, π2) Methods R̃(p) C.I. R̃(p) C.I. R̃(p) C.I.
(1.0,1.0) IHBEL 0.822 (0.698, 0.897) 0.783 (0.667, 0.867) 0.740 (0.636, 0.853)

IPEL 0.811 (0.722, 0.883) 0.778 (0.684, 0.856) 0.756 (0.660, 0.837)
(0.9,0.9) IHBEL 0.797 (0.680, 0.892) 0.751 (0.629, 0.858) 0.700 (0.603, 0.841)

IPEL 0.800 (0.698, 0.881) 0.756 (0.648, 0.845) 0.733 (0.624, 0.826)
(0.9,0.8) IHBEL 0.805 (0.642, 0.882) 0.756 (0.599, 0.844) 0.708 (0.578, 0.841)

IPEL 0.778 (0.662, 0.870) 0.733 (0.612, 0.835) 0.722 (0.600, 0.825)
(0.8,0.8) IHBEL 0.837 (0.685, 0.905) 0.800 (0.688, 0.903) 0.743 (0.620, 0.880)

IPEL 0.811 (0.702, 0.895) 0.811 (0.701, 0.896) 0.767 (0.652, 0.860)
(0.8,0.7) IHBEL 0.688 (0.560, 0.836) 0.688 (0.560, 0.836) 0.688 (0.560, 0.836)

IPEL 0.711 (0.569, 0.830) 0.711 (0.569, 0.830) 0.711 (0.569, 0.830)
(0.6,0.6) IHBEL 0.778 (0.644, 0.911) 0.725 (0.562, 0.851) 0.677 (0.538, 0.817)

IPEL 0.800 (0.655, 0.906) 0.722 (0.567, 0.848) 0.689 (0.532, 0.821)
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CHAPTER 3

IMPUTATION-BASED EMPIRICAL LIKELIHOOD INFERENCE FOR THE

AREA UNDER THE ROC CURVE WITH MISSING COMPLETELY AT

RANDOM DATA

3.1 Introduction

In this chapter, we propose an imputation-based empirical likelihood method to con-

struct confidence intervals for the AUC with missing completely at random (MCAR) type of

data, which has not been considered in literature. The proposed method preserves the ad-

vantage of the method in Qin and Zhou [40], which has good small sample performance, and

the advantage of the random hot deck imputation method, which preserves the distribution

of item values whereas the deterministic imputation methods like the ratio imputation and

the regression imputation do not have this appealing property [54].

The remainder of this chapter is organized as follows. Section 3.2 presents the

imputation-based empirical likelihood method to construct confidence intervals for the AUC

with missing data. In Section 3.3, we conduct simulation studies to evaluate the performance

of the proposed method. In Section 3.4, we apply the new imputation-based empirical like-

lihood interval to a real example. All proofs are deferred until the Appendix B.

3.2 Imputation-based Empirical Likelihood for the AUC

In this section, we aim to construct empirical likelihood-based confidence intervals for

the AUC with missing data. We first impute the missing data by the hot deck imputation

technique, and then apply the empirical likelihood method to obtain confidence intervals for

the AUC based on the imputed data. Finally we extend the proposed method to stratified

random samples with missing data.

Proposition 1 in Chapter 2 has proved that based on the imputed data X̃i’s and Ỹj’s,
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the empirical distributions F̃ (x) = 1
m

∑m
i=1 I(X̃i ≤ x), and G̃(y) = 1

n

∑n
j=1 I(Ỹj ≤ y) are still

consistent and asymptotically normal.

We define the imputed version of WMW estimator for the AUC as follows:

δ̃ =
1

mn

m∑
i=1

n∑
j=1

I(Ỹj ≥ X̃i). (3.1)

3.2.1 Empirical Likelihood for the AUC

In order to obtain better confidence intervals for the AUC, Qin and Zhou [40] proposed

an empirical likelihood-based interval for the AUC. This interval has a good coverage accu-

racy for high values of the AUC when sample sizes for diseased and non-diseased subjects

are small and unequal.

For a given test value Y from a diseased subject, let U = 1−F (Y ). The value U can be

interpreted as the proportion of the non-diseased population with test values greater than

Y [66]. It is easy to obtain the following equality:

E(1 − U) = E(F (Y )) = P (Y ≥ X) = δ.

Based on the relationship between δ and U , an empirical likelihood procedure for the

inference of the AUC was derived by Qin and Zhou [40]. Let p = (p1, p2, . . . , pn) be a

probability vector, i.e.,
∑n

j=1 pj = 1 and pj ≥ 0 for all j. The empirical likelihood for the

AUC, evaluated at the true value δ0 of δ, is defined as follows:

L(δ0) = sup

{
n∏
j=1

pj :
n∑
j=1

pj = 1,
n∑
j=1

pjWj(δ0) = 0

}
,

where Wj(δ0) = 1 − Uj − δ0 with Uj = 1 − F (Yj), j = 1, 2, . . . , n. Since the unknown

distribution function F of the non-diseased population can be replaced by its empirical

distribution Fm(x) = 1
m

∑m
i=1 I(Xi ≤ x), then a profile empirical likelihood (PEL) for δ0 can
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be given by

L̂(δ0) = sup

{
n∏
j=1

pj :
n∑
j=1

pj = 1,
n∑
j=1

pjŴj(δ0) = 0

}
,

where Ŵj(δ0) = 1− Ûj−δ0 with Ûj = 1−Fm(Yj), j = 1, 2, . . . , n. By the standard procedure

of empirical likelihood method, the empirical likelihood ratio for δ0 can be defined as follows:

R(δ0) =
n∏
j=1

(npj) =
n∏
j=1

{
1 + λ̂Ŵj(δ0)

}−1

,

where λ̂ is the solution of

1

n

n∑
j=1

Ŵj(δ0)

1 + λ̂Ŵj(δ0)
= 0. (3.2)

Then the corresponding log-EL ratio is

l̂(δ0) ≡ −2 logR(δ0) = 2
n∑
j=1

log
{

1 + λ̂Ŵj(δ0)
}
. (3.3)

Qin and Zhou [40] proved that the limiting distribution of l̂(δ0) is a scaled chi-square

distribution.

3.2.2 Imputation-based Empirical Likelihood Interval for the AUC

Based on the imputed data X̃i’s and Ỹj’s, we could substitute all complete data Xi’s

and Yj’s in the previous part and obtain the similar log-EL ratio for δ0 as follows:

l̃(δ0) = 2
n∑
j=1

log
{

1 + λ̃W̃j(δ0)
}
. (3.4)
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where W̃j(δ0) = 1 − Ũj − δ0 with Ũj = 1 − F̃ (Ỹj), j = 1, 2, . . . , n, and λ̃ is the solution of

1

n

n∑
j=1

W̃j(δ0)

1 + λ̃W̃j(δ0)
= 0. (3.5)

The following theorem establishes the asymptotic distribution of the imputation-based

empirical log-likelihood ratio for the AUC.

Theorem 2 Let δ0 be the true value of the AUC. If limm,n→∞
n
m

= κ <∞, a fixed quantity,

then the asymptotic distribution of l̃(δ0), defined by (3.4), is a scaled χ2 distribution with

degree of freedom one, i.e.,

r(δ0)l̃(δ0)
d→ χ2

1, (3.6)

where the scale constant r(δ0) is

r(δ0) =
m

m+ n

∑n
j=1 W̃

2
j (δ0)

nS2

with

S2 =
m(1 − π2 + π−1

2 )S2
01 + n(1 − π1 + π−1

1 )S2
10

m+ n
,

S2
10 =

1

(m− 1)n2

[
m∑
i=1

(Ri − i)2 −m

(
R̄− m+ 1

2

)2
]
,

S2
01 =

1

(n− 1)m2

[
n∑
j=1

(Sj − j)2 − n

(
S̄ − n+ 1

2

)2
]
,

R̄ =
1

m

m∑
i=1

Ri, and S̄ =
1

n

n∑
j=1

Sj.

Here Ri is the rank of X̃(i) (the i-th ordered value among X̃i’s) in the combined sample of

X̃i’s and Ỹj’s, and Sj is the rank of Ỹ(j) (the j-th ordered value among Ỹj’s) in the combined

sample of X̃i’s and Ỹj’s.

If only complete observations are used without applying the random hot deck impu-
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tation, asymptotic distributions of empirical distributions with observed data only were

obtained in Corollary 1. Define

F̃ ∗(x) =
1

rX

∑
i∈SrX

I(Xi ≤ x)

G̃∗(y) =
1

rY

∑
j∈SrY

I(Yj ≤ y).

Then we have that

√
m(F̃ ∗(x) − F (x))

d→ N (0, σ∗2
X )

where σ∗2
X = π−1

1 F (x)(1 − F (x)), and

√
n(G̃∗(y) −G(y))

d→ N (0, σ∗2
Y )

where σ∗2
Y = π−1

2 G(y)(1 −G(y)).

The above results for F̃ ∗(x) and G̃∗(y) are slightly different from Corollary 1. With-

out the random hot deck imputation, some terms in Corollary 1 are absent. Actually, it

is equivalent to disregard missing data and apply the method based on complete data to

the observed data only. When sample sizes are small and missing proportion is high, the

performances of the method with observed data only may be unstable because missingness

results in even smaller sample size. However, the proposed method will benefit from the

imputation. Similar results were observed in simulation studies in Chapter 2.

The confidence interval for the AUC could be constructed based on Theorem 2. Intu-

itively, by plugging in the consistent estimates of all unknown quantities, we could get the

plug-in form confidence interval. Let π̃1 = rX
m

, π̃2 = rY
n

, and

S̃2 =
m(1 − π̃2 + π̃−1

2 )S2
01 + n(1 − π̃1 + π̃−1

1 )S2
10

m+ n
,

r(δ̃) =
m

m+ n

∑n
j=1 W̃j(δ̃)

nS̃2
.
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where δ̃ is defined by (3.1). Then a (1−α)100% imputation-based profile empirical likelihood

confidence interval for δ0, denoted by IPEL interval, can be defined as follows:

Rα(δ) = {δ : r(δ̃)l̃(δ) ≤ χ2
1(1 − α)}, (3.7)

where χ2
1(1 − α) is the (1 − α)100% quantile of the chi-square distribution with degree of

freedom one.

3.2.3 Imputation-based EL Intervals for the AUC with Stratified Samples

In this section, we extend the IPEL method in the previous section to stratified samples.

Suppose L institutions participate in a ROC study of continuous-scale diagnostic test, which

are indexed by l. Let Xl and Yl be the results of a continuous-scale test for a non-diseased and

a diseased subject in the lth institution, and Fl and Gl be the corresponding distribution

functions, respectively. Let Xl1, . . . , Xlml
be the test results of a random sample of non-

diseased patients, Yl1, . . . , Ylnl
be results of a random sample of diseased subjects in the l-th

institution, and the observation rate pairs of each institution be (πl1, πl2), 1 ≤ l ≤ L. Based

on the MCAR assumption and the random hot deck imputation technique, the imputed data

X̃l1, . . . , X̃lml
and Ỹl1, . . . , Ỹlnl

could be obtained for each institution.

Similar with Qin and Zhou [40], we do not assume that Fl’s and Gl’s are homogeneous

institutions. Instead, we only assume δ1 = . . . = δl = δ, where δl denotes the AUC for the

l-th institution.

Let pl = (pl1, . . . , plnl
) be a probability vector for l = 1, . . . , L. Similarly, the profile

empirical likelihood for the common AUC, evaluated at the true value δ, is defined as follows:

L̃(δ) = sup

{
L∏
l=1

nl∏
j=1

plj :

nl∑
j=1

plj = 1,

nl∑
j=1

pljW̃lj(δ) = 0, l = 1, . . . , L

}
,

where W̃lj(δ) = 1 − Ũlj − δ with Ũlj = 1 − F̃l(Ỹlj), l = 1, . . . ,  L, j = 1, 2, . . . , nl, and the

F̃l is the imputation-based empirical distribution of Fl. Then, the corresponding empirical
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log-likelihood ratio is

l̃(δ) = 2
L∑
l=1

nl∑
j=1

log
{

1 + λ̃lW̃lj(δ)
}
, (3.8)

where λ̃l is the solution of

1

nl

nl∑
j=1

W̃lj(δ)

1 + λ̃lW̃lj(δ)
= 0, l = 1, . . . , L. (3.9)

The following theorem establishes the asymptotic distribution of the imputation-based

empirical log-likelihood ratio for the AUC with stratified samples.

Theorem 3 Let δ0 be the true value of the common AUC. If limml,nl→∞
nl

ml
= κl < ∞, a

fixed quantity, for l = 1, . . . , L, then the asymptotic distribution of l̃(δ0), defined by (3.8), is

a weighted summation of independent χ2 distribution with degree of freedom one, i.e.,

l̃(δ0)
d→ w1χ

2
1,1 + . . .+ wLχ

2
1,L, (3.10)

where χ2
1,l, l = 1, . . . , L are L independent chi-squared distributions with degree of freedom 1,

and the weights wl = limml,nl→∞ w̃l(δ0), 1 ≤ l ≤ L, with

w̃l(δ0) =
ml + nl
ml

nlS
2
l∑nl

j=1 W̃
2
lj(δ0)

S2
l =

ml(1 − πl2 + π−1
l2 )S01(l)

2 + nl(1 − πl1 + π−1
l1 )S2

10(l)

ml + nl
,

S2
10(l) =

1

(ml − 1)n2
l

[
ml∑
i=1

(Ri(l) − i)2 −ml

(
R̄l −

ml + 1

2

)2
]
,

S01(l)
2 =

1

(nl − 1)m2
l

[
nl∑
j=1

(Sj(l) − j)2 − nl

(
S̄l −

nl + 1

2

)2
]
,

R̄l =
1

ml

ml∑
i=1

Ri(l), and S̄l =
1

nl

nl∑
j=1

Sj(l).

Here Ri(l) is the rank of X̃l(i) (the i-th ordered value among X̃li’s) in the combined sample
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of X̃li’s and Ỹlj’s, and Sj(l) is the rank of Ỹl(j) (the j-th ordered value among Ỹlj’s) in the

combined sample of X̃li’s and Ỹlj’s.

Then the EL-based confidence interval for the common AUC can be constructed as

follows:

Rα(δ) =
{
δ : l̃(δ) ≤ c1−α

}
, (3.11)

where c1−α is the (1 − α)100%th quantile of the weighted chi-square distribution w1χ
2
1,1 +

. . . + wLχ
2
1,L. The quantile c1−α could be calculated using a simple Monte Carlo simulation

by plugging in consistent estimates of all unknown quantities. Therefore, Rα(δ) defined by

(3.11) offers an approximate confidence interval for the common AUC with asymptotically

correct coverage probability 1 − α.

3.3 Simulation Studies

In this section simulation studies are conducted to evaluate the finite-sample perfor-

mance of the proposed IPEL intervals for the AUC in terms of coverage probability when

the AUC is taken to be 0.8 (moderate accuracy), 0.9, and 0.95 (high accuracy). For sim-

plicity, we take L = 1 in simulation studies. Here two typical settings of distribution are

considered, one for symmetric distribution and the other for asymmetric distribution:

(1) X ∼ N (0, 1) and Y ∼ N (
√

5Φ−1(δ), 22);

(2) X ∼ exp(1) and Y ∼ exp( δ
1−δ ).

Note that in the first simulation setting, δ is related to the mean and the standard

deviation by the following relationship:

δ = Φ

(
µ− µ0√
σ2 + σ2

0

)
,

where Φ(·) is the cumulative distribution function of a standard normal distribution, if
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X ∼ N (µ0, σ
2
0) and Y ∼ N (µ, σ2). Meanwhile, if X ∼ exp(θ1) and Y ∼ exp(θ2), then

δ =
θ2

θ1 + θ2
.

For each setting, 2000 random samples of incomplete data (Xi, δXi
), i = 1, . . . ,m and

(Yj, δYj), j = 1, . . . , n are generated from the underlying non-diseased distribution F and

diseased distribution G, respectively. The sample size ranges from 50 to 200 with both

m = n and m ̸= n two cases for the two settings. We also consider different observation

rate: (π1, π2) = 90% (high), 80% or 70% (moderate), and 60% (low) with π1 = π2 and

π1 ̸= π2. For comparison, the full observation case is also included in the study. Note that

when π1 = π2 = 1, the proposed method will be reduced to the method developed by Qin

and Zhou [40], which has been shown to have good finite sample performance.

In Table 3.1-3.4, we present the coverage probabilities of 90% and 95% IPEL intervals

for various values of the AUC based on the proposed imputation-based empirical likelihood

method under two model settings. The simulation results in these tables indicate that the

proposed method works well in moderate accuracy cases even with small sample sizes (i.e.,

m = n = 50). In high accuracy cases, the proposed method seems to be conservative in small

sample size case, and the performance improves as the sample size increases. Reasonably,

the proposed method works better in symmetric distribution case. Also, the performance of

the proposed method under missing data cases is comparable with that under the complete

data cases in terms of coverage probability.

3.4 A Real Example

In this section, we evaluate the diagnostic accuracy of the proposed method by applying

it to the data set of carbohydrate antigenic determinant CA19-9 in the detection of pancreatic

cancer. This data set has already been introduced and analyzed in Chapter 2. In this chapter,

we focus on the inference of the AUC.

We apply the newly proposed IPEL method to the data set studied by Wieand et al. [65]
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on the diagnostic accuracy of CA19-9 in detecting pancreatic cancer. The data set consists

of 51 patients in the control group and 90 patients with pancreatic cancer. We simulated

the missing mechanism MCAR to obtain missing data with different observation rates of

(π1, π2), because the original data set is complete. The WMW estimates and IPEL intervals

for the AUC are calculated. The results are presented in Table 3.5. These intervals indicate

that CA19-9 has moderate to high level of diagnostic accuracy in detecting patients with

the pancreatic cancer. Under different observation rates, δ̃ is close to the one with complete

data, and all confidence intervals contain δ̃ based on complete data.
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Table 3.1 Model setting (1): Coverage probabilities of the IPEL interval for the AUC with
nominal confidence level 90% and various observation rates (π1, π2)

Observation rates (π1, π2)
AUC (m,n) (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
0.80 (50,50) 0.9159 0.9101 0.9050 0.9085 0.9078 0.9189

(50,80) 0.9060 0.9084 0.9049 0.9003 0.9018 0.9120
(80,80) 0.9040 0.9115 0.9090 0.9035 0.8958 0.9111
(80,100) 0.8955 0.8960 0.8945 0.8985 0.8989 0.9068
(100,100) 0.8955 0.8920 0.8955 0.8984 0.8965 0.8968
(100,150) 0.9065 0.8925 0.9010 0.9000 0.9045 0.9010
(200,200) 0.8890 0.8940 0.8980 0.9030 0.8939 0.9025

0.90 (50,50) 0.9315 0.9410 0.9367 0.9344 0.9319 0.9467
(50,80) 0.9153 0.9252 0.9209 0.9229 0.9253 0.9432
(80,80) 0.9061 0.9160 0.9148 0.9196 0.9201 0.9276
(80,100) 0.8974 0.9022 0.8970 0.9048 0.9179 0.9152
(100,100) 0.9018 0.9030 0.8995 0.9000 0.9056 0.9052
(100,150) 0.9020 0.8933 0.9009 0.9009 0.9058 0.9091
(200,200) 0.8904 0.8939 0.8979 0.8955 0.8958 0.9013

0.95 (50,50) 0.9498 0.9589 0.9521 0.9478 0.9463 0.9543
(50,80) 0.9346 0.9455 0.9456 0.9465 0.9462 0.9617
(80,80) 0.9256 0.9419 0.9479 0.9475 0.9479 0.9548
(80,100) 0.9240 0.9333 0.9327 0.9297 0.9507 0.9459
(100,100) 0.9072 0.9163 0.9299 0.9297 0.9354 0.9369
(100,150) 0.9019 0.8951 0.9113 0.9140 0.9267 0.9333
(200,200) 0.8882 0.9012 0.9003 0.9012 0.9065 0.9075
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Table 3.2 Model setting (1): Coverage probabilities of the IPEL interval for the AUC with
nominal confidence level 95% and various observation rates (π1, π2)

Observation rates (π1, π2)
AUC (m,n) (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
0.80 (50,50) 0.9600 0.9603 0.9593 0.9582 0.9620 0.9742

(50,80) 0.9510 0.9545 0.9494 0.9559 0.9544 0.9608
(80,80) 0.9500 0.9550 0.9575 0.9640 0.9544 0.9623
(80,100) 0.9490 0.9485 0.9560 0.9550 0.9540 0.9494
(100,100) 0.9510 0.9515 0.9510 0.9530 0.9560 0.9464
(100,150) 0.9535 0.9485 0.9530 0.9530 0.9585 0.9525
(200,200) 0.9480 0.9445 0.9515 0.9525 0.9490 0.9490

0.90 (50,50) 0.9760 0.9754 0.9743 0.9747 0.9751 0.9739
(50,80) 0.9617 0.9641 0.9660 0.9686 0.9675 0.9734
(80,80) 0.9553 0.9572 0.9662 0.9611 0.9608 0.9704
(80,100) 0.9540 0.9518 0.9543 0.9597 0.9650 0.9619
(100,100) 0.9509 0.9515 0.9523 0.9533 0.9609 0.9577
(100,150) 0.9505 0.9469 0.9530 0.9575 0.9579 0.9568
(200,200) 0.9485 0.9460 0.9515 0.9545 0.9479 0.9519

0.95 (50,50) 0.9833 0.9757 0.9760 0.9712 0.9697 0.9729
(50,80) 0.9761 0.9823 0.9733 0.9717 0.9763 0.9787
(80,80) 0.9762 0.9751 0.9748 0.9748 0.9721 0.9761
(80,100) 0.9640 0.9721 0.9723 0.9733 0.9748 0.9711
(100,100) 0.9592 0.9635 0.9668 0.9672 0.9711 0.9642
(100,150) 0.9527 0.9544 0.9661 0.9654 0.9680 0.9698
(200,200) 0.9429 0.9531 0.9607 0.9567 0.9573 0.9673
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Table 3.3 Model setting (2): Coverage probabilities of the IPEL interval for the AUC with
nominal confidence level 90% and various observation rates (π1, π2)

Observation rates (π1, π2)
AUC (m,n) (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
0.80 (50,50) 0.9137 0.9189 0.9296 0.9260 0.9319 0.9368

(50,80) 0.9100 0.9058 0.9087 0.9147 0.9177 0.9078
(80,80) 0.9065 0.9043 0.9094 0.9125 0.9129 0.9177
(80,100) 0.9080 0.8974 0.9034 0.9014 0.9040 0.9134
(100,100) 0.9085 0.9070 0.9130 0.9119 0.9209 0.9013
(100,150) 0.9000 0.9080 0.9105 0.9140 0.9174 0.9199
(200,200) 0.8950 0.8940 0.8990 0.9045 0.8995 0.8949

0.90 (50,50) 0.9260 0.9340 0.9366 0.9387 0.9455 0.9499
(50,80) 0.9091 0.9181 0.9110 0.9214 0.9342 0.9318
(80,80) 0.9008 0.9125 0.9102 0.9126 0.9234 0.9394
(80,100) 0.9042 0.9031 0.9100 0.9093 0.9170 0.9256
(100,100) 0.8998 0.9045 0.9134 0.9144 0.9177 0.9240
(100,150) 0.9035 0.9084 0.9124 0.9194 0.9197 0.9323
(200,200) 0.8940 0.8890 0.8984 0.8993 0.9018 0.8959

0.95 (50,50) 0.9434 0.9460 0.9494 0.9494 0.9489 0.9519
(50,80) 0.9326 0.9361 0.9398 0.9436 0.9448 0.9559
(80,80) 0.9204 0.9400 0.9435 0.9396 0.9530 0.9554
(80,100) 0.9206 0.9267 0.9241 0.9295 0.9403 0.9494
(100,100) 0.9109 0.9285 0.9350 0.9320 0.9450 0.9497
(100,150) 0.9076 0.9109 0.9129 0.9184 0.9274 0.9414
(200,200) 0.8954 0.8951 0.9060 0.9051 0.9059 0.9145
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Table 3.4 Model setting (2): Coverage probabilities of the IPEL interval for the AUC with
nominal confidence level 95% and various observation rates (π1, π2)

Observation rates (π1, π2)
AUC (m,n) (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
0.80 (50,50) 0.9579 0.9657 0.9666 0.9645 0.9716 0.9771

(50,80) 0.9565 0.9564 0.9549 0.9584 0.9634 0.9627
(80,80) 0.9510 0.9564 0.9617 0.9568 0.9622 0.9687
(80,100) 0.9560 0.9485 0.9509 0.9464 0.9530 0.9597
(100,100) 0.9505 0.9565 0.9600 0.9585 0.9599 0.9592
(100,150) 0.9565 0.9610 0.9530 0.9615 0.9635 0.9625
(200,200) 0.9475 0.9520 0.9470 0.9455 0.9480 0.9460

0.90 (50,50) 0.9655 0.9714 0.9804 0.9748 0.9787 0.9791
(50,80) 0.9593 0.9631 0.9670 0.9742 0.9750 0.9754
(80,80) 0.9567 0.9631 0.9665 0.9660 0.9739 0.9759
(80,100) 0.9534 0.9573 0.9527 0.9582 0.9651 0.9740
(100,100) 0.9494 0.9568 0.9627 0.9678 0.9652 0.9709
(100,150) 0.9550 0.9630 0.9604 0.9609 0.9679 0.9649
(200,200) 0.9520 0.9485 0.9465 0.9454 0.9464 0.9527

0.95 (50,50) 0.9754 0.9727 0.9760 0.9710 0.9702 0.9727
(50,80) 0.9717 0.9742 0.9720 0.9754 0.9737 0.9779
(80,80) 0.9702 0.9752 0.9767 0.9761 0.9791 0.9800
(80,100) 0.9674 0.9698 0.9711 0.9715 0.9725 0.9747
(100,100) 0.9618 0.9722 0.9794 0.9758 0.9827 0.9809
(100,150) 0.9593 0.9587 0.9676 0.9696 0.9739 0.9815
(200,200) 0.9445 0.9478 0.9527 0.9548 0.9562 0.9624

Table 3.5 A real example: 95% IPEL confidence intervals for the AUC of CA19-9 with various
observation rates.

(π1, π2) δ̃ Confidence Interval rX rY
(1.0,1.0) 0.862 (0.793, 0.913) 51 90
(0.9,0.9) 0.874 (0.803, 0.924) 46 86
(0.9,0.8) 0.873 (0.787, 0.931) 47 68
(0.8,0.8) 0.876 (0.793, 0.931) 42 72
(0.8,0.7) 0.811 (0.704, 0.891) 39 56
(0.6,0.6) 0.835 (0.717, 0.916) 27 48
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CHAPTER 4

JOINT EMPIRICAL LIKELIHOOD CONFIDENCE REGIONS FOR THE

EVALUATION OF CONTINUOUS-SCALE DIAGNOSTIC TESTS WITH

MISSING COMPLETELY AT RANDOM DATA

4.1 Introduction

Recently, based on the empirical likelihood method, Adimari and Chiogna [4] considered

joint inferences on both the (specificity, cut-off level) and the (sensitivity, cut-off level).

Joint confidence regions depict the association of sensitivity, specificity and cut-off level for

a continuous-scale test. By visually inspecting confidence regions, one can select a reasonable

cut-off level τ in order to obtain a desirable sensitivity θ(τ) and an acceptable specificity

η(τ) simultaneously, because it is well known that there is a trade-off between the sensitivity

and the specificity. Moreover, by constructing joint confidence regions, one can investigate

the within-pair relationship of (θ, τ) or (η, τ), respectively. In diagnostic study, the AUC is

a widely used summary index of diagnostic accuracy. However it can not be used to select

a cut-off level because the AUC masks the effect of cut-off level.

The proposed empirical likelihood-based joint confidence regions provide a graphical tool

to select a cut-off level which yields the desirable sensitivity and/or specificity by plotting

joint confidence regions for (θ, τ) and (η, τ) in the same graph. Reasonable cut-off levels

could be directly identified from the overlapping part of the two regions. Such visual tool

is straightforward and easy to implement in practice. It is necessary to point out that the

proposed confidence regions preserve many good properties of empirical likelihood method,

such as good small sample performance, data determined confidence regions and range-

respecting, which could be a problem for normal-approximation based confidence regions.

In this chapter, motivated by the work of Adimari and Chiogna [4] and the missing

data problem in practice, we extend the unified framework of building bivariate confidence
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regions for the pair (cut-off level, sensitivity) at a fixed value of specificity, the pair (cut-

off level, specificity) at a fixed value of sensitivity or the pair (specificity, sensitivity) at a

fixed cut-off value by applying the empirical likelihood method, to the missing data case,

especially when data are missing completely at random (MCAR). The new confidence regions

preserve the good small sample performance of the empirical likelihood method, and they

are computationally simple and easy to implement in practice.

This chapter is organized as follows. Section 4.2 develops imputation-based bivariate

empirical likelihood confidence regions with MCAR data. Some simulation studies are pre-

sented in Section 4.3 to illustrate the finite sample performance of the proposed methods.

The proof is deferred in the Appendix C.

4.2 Imputation-based Bivariate Empirical Likelihood Confidence Regions with

MCAR Data

In this section, we extend the bivariate empirical likelihood confidence regions developed

by Adimari and Chiogna [4] to MCAR data case by using the random hot deck imputation

technique, and we obtain imputation-based bivariate empirical likelihood confidence regions

with MCAR data.

4.2.1 Bivariate Nonparametric Confidence Regions with Complete Data

In order to obtain bivariate nonparametric confidence regions for the evaluation of

continuous-scale diagnostic tests, Adimari and Ciogna [4] have proposed empirical likelihood-

based confidence regions for any two quantities of the sensitivity, the specificity and the cut-

off value. The proposed method works under very weak assumptions and easy to implement.

Also, it has been shown to deserve good performance when the sample size is moderate or

high.

Let X1, . . . , Xm be a random sample from X with a distribution function F (x), i.e., the

test results from m non-diseased patients, and be Y1, . . . , Yn a random sample from Y with

a distribution function G(y), i.e., the test results from n diseased patients. Moreover, let



50

Fm(x) = 1
m

∑m
i=1 I(Xi ≤ x) denote the empirical distribution function based on X1, . . . , Xm,

and let Gn(y) = 1
n

∑n
j=1 I(Yj ≤ y) denote the empirical distribution function based on

Y1, . . . , Yn.

Consider the empirical likelihood function based on the two independent samples

X1, . . . , Xm and Y1, . . . , Yn, i.e.,

L(p,q) =
m∏
i=1

pi

n∏
j=1

qj,

where, p = (p1, . . . , pm) and q = (q1, . . . , qn) are probability vectors, ie.e,
∑m

i=1 pi = 1, pi ≥ 0

and
∑n

j=1 qj = 1, qj ≥ 0, representing multinomial distributions on X1, . . . , Xm and

Y1, . . . , Yn, respectively.

Then, one could maximize L(p,q) subject to the constraints

m∑
i=1

piI(Xi ≤ τ) = η,

n∑
j=1

qjI(Yj ≤ τ) = 1 − θ.

The constrained maximum is given by the product

(
sup

p:
∑m

i=1 piI(Xi≤τ)=η

m∏
i=1

pi

)
×

(
sup

q:
∑n

j=1 qjI(Yj≤τ)=1−θ

n∏
j=1

qj

)
. (4.1)

By applying the Lagrange multiplier method and the regular method of empirical like-

lihood, it follows that the empirical likelihood ratio statistic (i.e., minus twice the maximum

empirical log-likelihood ratio) corresponding to the maximization of L(p,q) subject to con-

strains reduces to

l(θ, η, τ) = 2m

{
Fm(τ) log

Fm(τ)

η
+ [1 − Fm(τ)] log

1 − Fm(τ)

1 − η

}
+ 2n

{
Gn(τ) log

Gn(τ)

1 − θ
+ [1 −Gn(τ)] log

1 −Gn(τ)

θ

}
, (4.2)

for η ∈ (0, 1), θ ∈ (0, 1), τ ∈ T , where T = [x(1), x(m)) ∩ [y(1), y(n)).

Adimari and Chiogna [4] have proved that the asymptotic distribution of l(θ, η, τ) eval-
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uated at the true values (θ0, η0, τ0) is a chi-squared distribution with 2 degrees of freedom.

4.2.2 Imputation-based Bivariate Empirical Likelihood Confidence Regions

Based on the imputed data X̃i’s and Ỹj’s from the random hot deck imputation method

[54], we could substitute all complete data Xi’s and Yj’s in the previous part and obtain the

similar log-EL ratio for (θ0, η0, τ0) as follows:

l̃(θ, η, τ) = 2m

{
F̃ (τ) log

F̃ (τ)

η
+ [1 − F̃ (τ)] log

1 − F̃ (τ)

1 − η

}

+ 2n

{
G̃(τ) log

G̃(τ)

1 − θ
+ [1 − G̃(τ)] log

1 − G̃(τ)

θ

}
, (4.3)

for θ ∈ (0, 1), η ∈ (0, 1), τ ∈ T , where T = [X(1), X(m))∩ [Y(1), Y(n)), and F̃ (x) and G̃(y) are

defined by (2.1) and (2.2).

Then the following result holds.

Theorem 4 Let F (x) and G(y) be continuous and strictly increasing in a neighborhood of

true cut-off value τ0. Let θ0 = 1−G(τ0) and η0 = F (τ0) be the true sensitivity and the speci-

ficity levels corresponding to the threshold τ0. Then, when min{m,n} → +∞, the asymptotic

distribution of l̃(θ0, η0, τ0) is a weighted summation of independent χ2 distributions with de-

gree of freedom 1, i.e.

l̃(θ0, η0, τ0)
d→ (1 − π1 + π−1

1 )χ2
1,1 + (1 − π2 + π−1

2 )χ2
1,2, (4.4)

where χ2
1,1 and χ2

1,2 are two independent chi-squared distributions with degree of freedom 1.

Theorem 4 provides l̃(θ, η, τ) as an asymptotic pivotal with MCAR data for the inference

of the parameter pairs (θ0, τ0), (η0, τ0) or (θ0, η0), given a fixed value of the third remaining

parameter. But π1 and π2 are still unknown. Intuitively, by plugging in the consistent

estimates of the two unknown quantities, we could get the plug-in form confidence interval.

Let π̃1 = rX
m

, π̃2 = rY
n

. Then three (1−α)100% imputation-based profile empirical likelihood

confidence regions for different pairs could be defined as follows:
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• R1
α,MCAR(θ, τ) = {(θ, τ) : l̃(θ, η0, τ) ≤ cα,MCAR};

• R2
α,MCAR(η, τ) = {(η, τ) : l̃(θ0, η, τ) ≤ cα,MCAR};

• R3
α,MCAR(θ, η) = {(θ, η) : l̃(θ, η, τ0) ≤ cα,MCAR};

where α ∈ (0, 1) and cα,MCAR is the upper α quantile of the weighted chi-square distribution

(1−π̃1+π̃−1
1 )χ2

1,1+(1−π̃2+π̃−1
2 )χ2

1,2, i.e. P
(
(1 − π̃1 + π̃−1

1 )χ2
1,1 + (1 − π̃2 + π̃−1

2 )χ2
1,2 > cα,MCAR

)
=

α, which could be obtained by the Monte Carlo method. Also, bootstrap method could be

employed to find quantiles.

4.3 Simulation Studies

In this section, simulation studies are conducted to evaluate the finite-sample perfor-

mance of proposed confidence regions for every parameter pair with MCAR data in terms

of coverage probability. For the purpose of comparison, similar settings of distribution with

those in Adimari and Chiogna [4] are considered, one for symmetric distribution and one for

asymmetric distribution:

(1) Gaussian models N (µ, σ): X ∼ N (0, 1) and Y ∼ N (µ, 1/2);

(2) Exponential models Exp(γ): X ∼ Exp(1) and Y ∼ Exp(γ).

The unknown values of µ in scenario (1) and γ in scenario (2) as well as the cut-off

value τ depend on the choice of reference values (θ0, η0) for the true pair of (Sensitivity,

Specificity). The relationship has been illustrated by Adimari and Chiogna [4].

For each scenario, 4000 random samples of incomplete data (Xi, δXi
), i = 1, . . . ,m and

(Yj, δYj), j = 1, . . . , n are generated from the underlying non-diseased distribution F and

diseased distribution G, respectively. The sample size ranges from 20 to 100 with both

m = n and m ̸= n two cases for the two settings. We also consider different observation

rate: (π1, π2) = 90% (high), 80% or 70% (moderate), and 60% (low) with π1 = π2 and

π1 ̸= π2. The full observation case with (π1, π2) = (1, 1) is also included in studies as a

comparison basis. Note that when π1 = π2 = 1, the proposed method will reduce to the
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method developed by Adimari and Chiogna [4], which has been shown to have good finite

sample performance.

In Table 4.1-4.4, we present the coverage probabilities of 90% and 95% confidence re-

gions for various values of the pair (θ, η) at different cut-off levels τ based on the proposed

imputation-based empirical likelihood method under two model settings. Simulation results

in these tables indicate that the proposed method works well in moderate accuracy cases

even with small sample sizes (i.e., m = n = 30). In high accuracy cases, the proposed

method seems to be conservative in small sample size cases, and the performance improves

as the sample size increases. Reasonably, the proposed method works better in symmetric

distribution case. Also, the performance of the proposed method under missing data cases

is comparable with under complete data cases in terms of coverage probability.
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Table 4.1 Model setting (1): Coverage probabilities of the confidence regions obtained by
the empirical likelihood statistic l̃(θ, η, τ) with nominal confidence level 90% at various ob-
servation rates (π1, π2) in the presence of the MCAR data.

Observation rates (π1, π2)
τ0 µ η0 θ0 m n (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
0.842 1.262 0.8 0.80 20 20 0.929 0.927 0.933 0.940 0.936 0.943

30 30 0.897 0.898 0.897 0.902 0.899 0.919
50 20 0.897 0.898 0.897 0.902 0.899 0.919
50 30 0.892 0.892 0.895 0.890 0.894 0.908
50 50 0.892 0.889 0.896 0.898 0.897 0.897
100 100 0.895 0.895 0.892 0.902 0.895 0.899

1.482 0.90 20 20 0.945 0.946 0.945 0.946 0.946 0.944
30 30 0.912 0.927 0.929 0.927 0.935 0.944
50 20 0.928 0.927 0.924 0.924 0.924 0.917
50 30 0.921 0.916 0.925 0.917 0.926 0.921
50 50 0.886 0.896 0.912 0.915 0.926 0.918
100 100 0.894 0.897 0.897 0.890 0.887 0.898

1.664 0.95 20 20 0.942 0.936 0.932 0.939 0.925 0.926
30 30 0.931 0.929 0.926 0.925 0.926 0.938
50 20 0.917 0.918 0.918 0.909 0.902 0.885
50 30 0.919 0.914 0.922 0.918 0.923 0.913
50 50 0.915 0.922 0.927 0.928 0.928 0.922
100 100 0.898 0.904 0.913 0.913 0.919 0.923

1.282 1.702 0.9 0.80 20 20 0.944 0.943 0.943 0.943 0.948 0.942
30 30 0.915 0.917 0.912 0.920 0.922 0.939
50 20 0.900 0.914 0.920 0.923 0.926 0.942
50 30 0.882 0.900 0.902 0.909 0.913 0.929
50 50 0.897 0.901 0.906 0.913 0.908 0.919
100 100 0.891 0.893 0.897 0.900 0.894 0.896

1.922 0.90 20 20 0.964 0.948 0.944 0.950 0.951 0.943
30 30 0.947 0.949 0.949 0.953 0.950 0.952
50 20 0.925 0.929 0.932 0.935 0.932 0.939
50 30 0.917 0.928 0.935 0.933 0.941 0.942
50 50 0.881 0.910 0.922 0.925 0.935 0.944
100 100 0.895 0.896 0.895 0.896 0.890 0.896

1.482 0.95 20 20 0.957 0.942 0.940 0.945 0.932 0.927
30 30 0.950 0.946 0.943 0.947 0.943 0.944
50 20 0.914 0.921 0.920 0.920 0.911 0.910
50 30 0.915 0.921 0.931 0.935 0.932 0.928
50 50 0.920 0.927 0.934 0.945 0.950 0.948
100 100 0.896 0.904 0.918 0.916 0.924 0.922
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Table 4.2 Model setting (1): Coverage probabilities of the confidence regions obtained by
the empirical likelihood statistic l̃(θ, η, τ) with nominal confidence level 95% at various ob-
servation rates (π1, π2) in the presence of the MCAR data.

Observation rates (π1, π2)
τ0 µ η0 θ0 m n (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
0.842 1.262 0.8 0.80 20 20 0.963 0.968 0.964 0.970 0.973 0.973

30 30 0.944 0.947 0.953 0.959 0.965 0.968
50 20 0.951 0.955 0.954 0.952 0.957 0.957
50 30 0.946 0.941 0.951 0.946 0.954 0.957
50 50 0.948 0.947 0.947 0.947 0.948 0.948
100 100 0.947 0.941 0.945 0.949 0.952 0.949

1.482 0.90 20 20 0.971 0.975 0.971 0.974 0.972 0.970
30 30 0.958 0.964 0.966 0.965 0.971 0.975
50 20 0.960 0.963 0.960 0.956 0.959 0.962
50 30 0.959 0.960 0.962 0.957 0.965 0.961
50 50 0.945 0.952 0.957 0.956 0.968 0.960
100 100 0.946 0.942 0.943 0.943 0.944 0.948

1.664 0.95 20 20 0.968 0.969 0.962 0.967 0.960 0.960
30 30 0.964 0.965 0.965 0.969 0.966 0.971
50 20 0.955 0.959 0.957 0.951 0.946 0.938
50 30 0.961 0.959 0.958 0.962 0.965 0.955
50 50 0.958 0.962 0.963 0.960 0.966 0.961
100 100 0.952 0.953 0.961 0.962 0.962 0.959

1.282 1.702 0.9 0.80 20 20 0.968 0.973 0.968 0.971 0.975 0.971
30 30 0.955 0.959 0.962 0.970 0.970 0.972
50 20 0.950 0.963 0.963 0.966 0.970 0.974
50 30 0.949 0.952 0.959 0.959 0.964 0.969
50 50 0.948 0.955 0.958 0.959 0.961 0.967
100 100 0.944 0.943 0.944 0.945 0.943 0.950

1.922 0.90 20 20 0.970 0.976 0.975 0.973 0.972 0.967
30 30 0.975 0.974 0.975 0.977 0.978 0.978
50 20 0.965 0.973 0.968 0.969 0.968 0.973
50 30 0.965 0.973 0.973 0.973 0.973 0.972
50 50 0.953 0.961 0.969 0.973 0.978 0.977
100 100 0.948 0.944 0.948 0.949 0.943 0.953

1.482 0.95 20 20 0.978 0.975 0.967 0.969 0.967 0.961
30 30 0.979 0.973 0.968 0.972 0.970 0.974
50 20 0.964 0.963 0.957 0.959 0.953 0.950
50 30 0.963 0.970 0.970 0.970 0.971 0.964
50 50 0.961 0.973 0.971 0.972 0.975 0.975
100 100 0.954 0.952 0.959 0.960 0.963 0.966
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Table 4.3 Model setting (2): Coverage probabilities of the confidence regions obtained by
the empirical likelihood statistic l̃(θ, η, τ) with nominal confidence level 90% at various ob-
servation rates (π1, π2) in the presence of the MCAR data.

Observation rates (π1, π2)
τ0 γ η0 θ0 m n (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
1.609 0.139 0.8 0.80 20 20 0.926 0.935 0.937 0.938 0.943 0.946

30 30 0.906 0.910 0.905 0.907 0.908 0.926
50 20 0.909 0.916 0.918 0.916 0.923 0.923
50 30 0.896 0.895 0.901 0.899 0.907 0.913
50 50 0.905 0.895 0.905 0.903 0.895 0.899
100 100 0.905 0.899 0.903 0.907 0.902 0.908

0.065 0.90 20 20 0.943 0.946 0.944 0.947 0.945 0.939
30 30 0.925 0.932 0.936 0.935 0.941 0.945
50 20 0.934 0.927 0.936 0.932 0.929 0.929
50 30 0.922 0.922 0.931 0.925 0.930 0.921
50 50 0.895 0.898 0.915 0.913 0.918 0.921
100 100 0.899 0.897 0.906 0.902 0.899 0.904

0.032 0.95 20 20 0.940 0.935 0.925 0.927 0.926 0.931
30 30 0.940 0.932 0.935 0.929 0.929 0.935
50 20 0.929 0.908 0.910 0.917 0.914 0.904
50 30 0.931 0.919 0.931 0.926 0.924 0.913
50 50 0.930 0.925 0.930 0.927 0.932 0.930
100 100 0.894 0.899 0.914 0.914 0.921 0.923

2.303 0.097 0.9 0.80 20 20 0.954 0.950 0.951 0.948 0.948 0.940
30 30 0.925 0.935 0.927 0.930 0.927 0.934
50 20 0.904 0.914 0.923 0.931 0.940 0.943
50 30 0.889 0.911 0.910 0.911 0.913 0.938
50 50 0.895 0.896 0.905 0.914 0.908 0.924
100 100 0.891 0.899 0.894 0.892 0.896 0.900

0.046 0.90 20 20 0.968 0.951 0.946 0.951 0.948 0.938
30 30 0.952 0.957 0.957 0.955 0.960 0.951
50 20 0.929 0.927 0.934 0.943 0.943 0.946
50 30 0.920 0.938 0.943 0.938 0.943 0.946
50 50 0.889 0.907 0.921 0.925 0.930 0.943
100 100 0.890 0.892 0.896 0.891 0.891 0.892

0.022 0.95 20 20 0.958 0.938 0.931 0.936 0.932 0.923
30 30 0.949 0.955 0.955 0.948 0.944 0.943
50 20 0.924 0.917 0.920 0.933 0.930 0.929
50 30 0.922 0.935 0.948 0.946 0.937 0.944
50 50 0.930 0.932 0.936 0.945 0.948 0.946
100 100 0.884 0.894 0.910 0.909 0.912 0.915
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Table 4.4 Model setting (2): Coverage probabilities of the confidence regions obtained by
the empirical likelihood statistic l̃(θ, η, τ) with nominal confidence level 95% at various ob-
servation rates (π1, π2) in the presence of the MCAR data.

Observation rates (π1, π2)
τ0 γ η0 θ0 m n (1, 1) (0.9, 0.9) (0.9, 0.8) (0.8, 0.8) (0.8, 0.7) (0.6, 0.6)
1.609 0.139 0.8 0.80 20 20 0.965 0.972 0.973 0.974 0.974 0.975

30 30 0.950 0.951 0.954 0.962 0.963 0.972
50 20 0.957 0.959 0.961 0.959 0.962 0.962
50 30 0.949 0.950 0.950 0.953 0.956 0.956
50 50 0.951 0.958 0.961 0.960 0.962 0.967
100 100 0.952 0.949 0.952 0.950 0.948 0.949

0.065 0.90 20 20 0.972 0.977 0.978 0.978 0.975 0.973
30 30 0.966 0.968 0.972 0.972 0.976 0.979
50 20 0.965 0.970 0.968 0.964 0.962 0.965
50 30 0.969 0.965 0.970 0.962 0.964 0.958
50 50 0.951 0.958 0.961 0.960 0.962 0.967
100 100 0.952 0.949 0.952 0.950 0.948 0.949

0.032 0.95 20 20 0.969 0.973 0.969 0.971 0.965 0.969
30 30 0.970 0.964 0.970 0.970 0.968 0.970
50 20 0.965 0.957 0.961 0.959 0.957 0.950
50 30 0.967 0.962 0.965 0.963 0.965 0.955
50 50 0.967 0.964 0.967 0.966 0.968 0.964
100 100 0.954 0.954 0.964 0.961 0.968 0.958

2.303 0.097 0.9 0.80 20 20 0.975 0.973 0.978 0.974 0.974 0.975
30 30 0.964 0.965 0.967 0.971 0.970 0.971
50 20 0.958 0.965 0.965 0.969 0.973 0.971
50 30 0.955 0.956 0.962 0.964 0.965 0.972
50 50 0.956 0.954 0.953 0.961 0.956 0.964
100 100 0.948 0.946 0.951 0.947 0.944 0.952

0.046 0.90 20 20 0.977 0.982 0.980 0.979 0.976 0.971
30 30 0.981 0.980 0.979 0.979 0.980 0.975
50 20 0.969 0.974 0.970 0.974 0.969 0.975
50 30 0.966 0.975 0.978 0.974 0.972 0.977
50 50 0.954 0.965 0.967 0.970 0.974 0.974
100 100 0.949 0.944 0.952 0.948 0.942 0.947

0.022 0.95 20 20 0.969 0.980 0.971 0.968 0.964 0.961
30 30 0.985 0.977 0.975 0.975 0.973 0.970
50 20 0.974 0.965 0.960 0.966 0.963 0.964
50 30 0.975 0.977 0.976 0.974 0.975 0.976
50 50 0.968 0.986 0.972 0.976 0.977 0.975
100 100 0.948 0.954 0.962 0.955 0.957 0.958
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CHAPTER 5

EMPIRICAL LIKELIHOOD CONFIDENCE REGIONS FOR THE

EVALUATION OF CONTINUOUS SCALE DIAGNOSTIC TEST IN THE

PRESENCE OF VERIFICATION BIAS

5.1 Introduction

In this chapter, based on the IPW, FI, MSI and SPE estimates for the sensitivity and

the specificity, we propose various bias-corrected joint empirical likelihood confidence regions

for the pairs of (sensitivity, cut-off level), (specificity, cut-off level), and (sensitivity, speci-

ficity). Furthermore, we provide a general framework that combines the empirical likelihood

and general estimation equations with nuisance parameters. Comparative studies are con-

ducted to evaluate these confidence regions and the normal approximation-based confidence

regions. Misspecified models are also employed to show the double robustness of the SPE

joint empirical likelihood confidence regions. The proposed empirical likelihood-based joint

confidence regions provide a graphical tool to select a cut-off level which yields the desirable

sensitivity and/or specificity by plotting joint confidence regions for (τ, θ) and (τ, η) in the

same graph. Reasonable cut-off levels could be directly identified from the overlapping part

of the two regions. Such visual tool is straightforward and easy to implement. The proposed

confidence regions preserve many good properties of empirical likelihood method, such as

good small sample performance, data determined confidence regions and range-respecting,

which could be a problem for normal-approximation based confidence regions.

This chapter is organized as follows. In Section 5.2, we propose various bias-corrected

joint confidence regions. Some simulation studies are presented in Section 5.3 to evaluate

the finite sample performance of the proposed methods as well as their robustness to model

misspecification. Real data analysis is used to compare proposed methods in Section 5.4.

Proofs are included in the Appendix D.
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5.2 Bias-corrected Empirical Likelihood Confidence Regions

In this section, we will develop joint empirical likelihood confidence regions in the pres-

ence of verification bias, which is assumed to be MAR.

5.2.1 Empirical Likelihood and General Estimation Equations with Nui-

sance Parameters

In order to develop joint empirical likelihood confidence regions in the presence of ver-

ification bias, a general framework combining empirical likelihood and general estimation

equations with nuisance parameters is needed for our research. Qin and Lawless [43] linked

estimating equations and empirical likelihood, and developed methods of combining infor-

mation about parameters. Wang and Chen [51] applied empirical likelihood to estimating

equations with missing data based on a nonparametric imputation of missing values from

a kernel estimator of the conditional distribution of the missing variable given the always

observable variables. Qin et al. [52] proposed a unified empirical likelihood approach to

missing data problems and explored the use of the empirical likelihood to effectively com-

bine unbiased estimating equations when the number of estimating equations is greater than

the number of unknown parameters. Hjort et al. [44] extended the scope of general em-

pirical likelihood methodology by introducing plug-in estimates of nuisance parameters in

estimating equations. But there are no explicit asymptotic results on empirical likelihood

defined by general estimation equations with nuisance parameters, which are estimated by

another set of estimating equations.

Motivated by the common estimating equation framework to derive asymptotic proper-

ties of the two-phase disease prevalence estimators proposed by Alonzo et al. [57], we combine

the empirical likelihood and generalized estimating equations (GEE) with nuisance param-

eters, and derive the asymptotic distribution of the empirical log-likelihood ratio statistic

for the inference of the main parameters. Our method is different from those developed by

Qin et al. [52] because their methods are under the regression model setting. Instead of
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obtaining the explicit empirical likelihood estimators, our methods focus on the confidence

interval/region estimation by using the limiting distribution of the empirical log-likelihood

ratio statistic.

Let W1, . . . ,Wn be an i.i.d. sample from a d-dimensional random vector W with an

unknown distribution function FW , and a p-dimensional parameter ψ of interest and a q-

dimensional nuisance parameter β are associated with FW . We assume that the information

about ψ and FW is available in the form of p functionally independent unbiased estimating

functions, i.e., uj(W,ψ, β), such that E[uj(W,ψ, β)] = 0, j = 1, . . . , p. By using vector

notation, we have

U(W,ψ, β) = (u1(W,ψ, β), . . . , up(W,ψ, β))′ , (5.1)

such that E[U(W,ψ, β)] = 0. We also assume that the information about the nuisance

parameter β is available through q functionally independent unbiased estimating functions

that are not involved in ψ, i.e., vk(W,β), such that E[vk(W,β)] = 0, k = 1, . . . , q. In vector

form, we have

V (W,β) = (v1(W,β), . . . , vq(W,β))′ , (5.2)

such that E[V (W,β)] = 0.

Then the empirical likelihood for (ψ, β) can be defined as follows:

L(ψ, β) = sup

{
n∏
i=1

pi : each pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

piU(Wi, ψ, β) = 0

}
. (5.3)

The nuisance parameter β in L(ψ, β) could be consistently estimated by β̂ which is the

solution to the estimating equation: 1
n

∑n
i=1 V (Wi, β) = 0. By plugging β̂ into (5.3), we

obtain a profile empirical likelihood for ψ:

L̂(ψ) = sup

{
n∏
i=1

pi : each pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

piU(Wi, ψ, β̂) = 0

}
. (5.4)
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By regular methods of EL, such as Qin and Lawless [43], the corresponding empirical likeli-

hood ratio for ψ is:

R̂(ψ) =
n∏
i=1

(npi) =
n∏
i=1

{
1 + t̂′U(Wi, ψ, β̂)

}−1

,

where t̂ is the solution of

1

n

n∑
i=1

U(Wi, ψ, β̂)

1 + t̂′U(Wi, ψ, β̂)
= 0. (5.5)

Then the empirical log-likelihood ratio for ψ is given by

l̂(ψ) ≡ −2 log R̂(ψ) = 2
n∑
i=1

log
{

1 + t̂′U(Wi, ψ, β̂)
}
. (5.6)

Let

Q1n(t, ψ, β) ≡ 1

n

n∑
i=1

Q1(Wi, t, ψ, β) ≡ 1

n

n∑
i=1

U(Wi, ψ, β)

1 + t′U(Wi, ψ, β)
, (5.7)

Q2n(β) ≡ 1

n

n∑
i=1

V (Wi, β). (5.8)

Then, Q1n(0, ψ, β) = 1
n

∑n
i=1 U(Wi, ψ, β), which will be used in the Taylor expansion at

t = 0.

Under mild regularity conditions, we obtain the asymptotic distribution of the empirical

log-likelihood ratio for ψ, which is a weighted sum of independent chi-squared distributions,

in the following theorem.

Theorem 5 Assume that (ψ0, β0) is the true value of (ψ, β), E
[
∂U(W,ψ0,β0)

∂ψ′

]
and E

[
∂V (W,β0)

∂β′

]
are negatively definite. Then,

l̂(ψ0)
d−→ r1χ

2
1,1 + · · · + rpχ

2
1,p, (5.9)
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where χ2
1,j, j = 1, . . . , p are independent chi-squared random variables with one degree of

freedom, and the weights r1, . . . , rp are p none-zero eigenvalues of Λ, defined as follows:

Λ = (S∗)
1
2

 I

(−S22)
−1S ′

12

 (−S11)
−1
(
I S12(−S22)

−1

)
(S∗)

1
2 ,

S∗ = Cov [(U ′(W,ψ0, β0), V
′(W,β0))

′] ,

S11 = E

[
∂Q1(W, 0, ψ0, β0)

∂t′

]
,

S12 = E

[
∂Q1(W, 0, ψ0, β0)

∂β′

]
,

S22 = E

[
∂V (W,β0)

∂β′

]
.

Remark 1: The eigenvalues of Λ could be calculated by solving the eigenvalues of

Λ∗ = (−S11)
−1
(
I S12(−S22)

−1

)
S∗

 I

(−S22)
−1S ′

12

 .

Remark 2: This theorem could be treated as a special case of Theorem 2.1 provided by

Hjort et al. [44]. But we proved it with a usual EL approach. In our framework, nuisance

parameters are estimated from another set of estimating equations. All conditions from (A0)

to (A3) in Theorem 2.1 could be verified directly. Also, explicit formulas of V1 and V2 in

Theorem 2.1 are derived, whereas they are conditions in Theorem 2.1. By using notations

in Theorem 2.1, U ∼ Np(0, V1) and V2 = −S11, where

V1 =
(
I S12(−S22)

−1

)
S∗

 I

(−S22)
−1S ′

12

 .

It is easy to see Λ∗ and V −1
2 V1 share same none-zero eigenvalues. Therefore, these two

theorems coincide.

When a consistent estimate of Λ is available, Theorem 5 can be used to make inference
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for the parameters of interest.

5.2.2 Bias-corrected Empirical Likelihood Confidence Regions

In this part, we try to derive various bias-corrected joint empirical likelihood confidence

regions for the sensitivity and the specificity as well as the cut-off level based on the FI, MSI,

IPW and SPE methods.

Let Ti denote the continuous test result from a screening test, and let Di denote the

binary disease status without measurement error, i = 1, . . . , n, where Di = 1 indicates the

ith patient is diseased and Di = 0 indicates the ith patient is free of disease. Due to various

causes, such as cost limits and privacy security, only a subset of patients have their disease

statuses verified; let Vi denote the binary verification status of the ith patient, with Vi = 1

if the ith patient has the true disease status verified, and Vi = 0 if otherwise. In practice,

some covariate information, other than the results from the screening test, can be obtained.

Let Ai be a vector of observed covariates for the ith patient that may be associated with

both Di and Vi.

When all patients are verified, i.e., Vi = 1, i = 1, . . . , n, a complete data set is obtained.

In this case, for any cut-off level τ , the sensitivity θ(τ), and the specificity η(τ) can be

estimated by

θ̂Full(τ) =

∑n
i=1 I(Ti > τ)Di∑n

i=1Di

, η̂Full(τ) =

∑n
i=1 I(Ti ≤ τ)(1 −Di)∑n

i=1(1 −Di)
. (5.10)

Obviously, θ̂Full(τ) and η̂Full(τ) are unbiased estimators for θ and η respectively.

Many current studies center on the MAR assumption because it is manageable in prac-

tice. Under this assumption, whether one subject has his or her disease status verified is

conditionally independent of the true disease status given test results and observed covari-

ates, i.e., V ⊥ D|T,A or P (V |D,T,A) = P (V |T,A) or P (D|V, T,A) = P (D|T,A). In other

words, the decision to verify the patient’s true disease status only depends on T and A

regardless of the true disease status D. All following methods are based on this assumption.
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Assume that Si = (Ti, Ai, Vi, Di), i = 1, . . . , n is an i.i.d. sample of S = (T,A, V,D),

and that Vi and Di are conditionally independent on Ti and Ai. Let πi = P (Vi = 1|Ti, Ai)

and ρi = P (Di = 1|Ti, Ai). Motivated by He et al. [27], based on the IPW estimator, we

observed that

E

[
n∑
i=1

π−1
i ViDi(I(Ti ≤ τ) − (1 − θ))

]
= 0, (5.11)

E

[
n∑
i=1

π−1
i Vi(1 −Di)(I(Ti ≤ τ) − η)

]
= 0. (5.12)

Actually, with the FI, MSI and SPE methods, we could obtain similar estimating func-

tions. Let’s take the SPE method as an example, and the other two are straightforward.

When misspecification of either verification model or disease model occurs, the semipara-

metric efficient (SPE) estimators for sensitivity and specificity were shown to be ”doubly

robust” ([57], [58], [28]). Hopefully, bias-corrected joint confidence regions with the SPE

method would retain such a good property. Under the MAR assumption, we observe that

E[I(Ti ≤ τ){ViDi/πi − (Vi − πi)ρi/πi}]

= E
[
E[I(Ti ≤ τ){ViDi/πi − (Vi − πi)ρi/πi}]|Ti, Ai

]
= E

[
I(Ti ≤ τ)

1

πi
EViDi −

ρi
πi

(EVi − πi)|Ti, Ai
]

= E
[
I(Ti ≤ τ)

1

πi
EViEDi −

ρi
πi

(EVi − πi)|Ti, Ai
]

= E
[
I(Ti ≤ τ)ρi

]
= E

[
(1 − θ){ViDi/πi − (Vi − πi)ρi/πi}

]
.

Thus,

E

[
n∑
i=1

{ViDi/πi − (Vi − πi)ρi/πi}
(
I(Ti ≤ τ) − (1 − θ)

)]
= 0. (5.13)
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Similarly, we have

E

[
n∑
i=1

{Vi(1 −Di)/πi − (Vi − πi)(1 − ρi)/πi}
(
I(Ti ≤ τ) − η

)]
= 0. (5.14)

Therefore, motivated by the IPW, FI, MSI and SPE methods, we can obtain following four

pairs of estimating functions for ϑ = (θ, η, τ)′:

IPW:

 gIPW,1(Si, ϑ, πi) = π−1
i ViDi(I(Ti ≤ τ) − (1 − θ))

gIPW,2(Si, ϑ, πi) = π−1
i Vi(1 −Di)(I(Ti ≤ τ) − η)

FI:

 gFI,1(Si, ϑ, ρi) = ρi(I(Ti ≤ τ) − (1 − θ))

gFI,2(Si, ϑ, ρi) = (1 − ρi)(I(Ti ≤ τ) − η)

MSI:

 gMSI,1(Si, ϑ, ρi) = (ViDi + (1 − Vi)ρi)(I(Ti ≤ τ) − (1 − θ))

gMSI,2(Si, ϑ, ρi) = (Vi(1 −Di) + (1 − Vi)(1 − ρi))(I(Ti ≤ τ) − η)

SPE:

 gSPE,1(Si, ϑ, πi, ρi) = (ViDi/πi − (Vi − πi)ρi/πi)(I(Ti ≤ τ) − (1 − θ))

gSPE,2(Si, ϑ, πi, ρi) = (Vi(1 −Di)/πi − (Vi − πi)(1 − ρi)/πi)(I(Ti ≤ τ) − η)

Let

gIPW(Si, ϑ, πi) = (gIPW,1(Si, ϑ, πi), gIPW,2(Si, ϑ, πi))
′, (5.15)

gFI(Si, ϑ, ρi) = (gFI,1(Si, ϑ, ρi), gFI,2(Si, ϑ, ρi))
′, (5.16)

gMSI(Si, ϑ, ρi) = (gMSI,1(Si, ϑ, ρi), gMSI,2(Si, ϑ, ρi))
′, (5.17)

gSPE(Si, ϑ, πi, ρi) = (gSPE,1(Si, ϑ, πi, ρi), gSPE,2(Si, ϑ, πi, ρi))
′. (5.18)

Because πi’s and ρi’s are often unknown in practice, one way to profile them is to replace

them by their consistent estimators. In general, with binary essentials of both Di’s and Vi’s,

πi = P (Vi = 1|Ti, Ai) and ρi = P (Di = 1|Ti, Ai) could be modeled by employing parametric

models such as logistic regression or probit model. For illustration, we use probit model

to model ρi’s and logistic regressions to model πi’s as follows, which will be used in the
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simulation studies:

Φ−1(ρi) = Z ′
iα, log

πi
1 − πi

= Z ′
iβ,

where Zi = (1, Ti, Ai)
′,α = (α0, α1, α2)

′,β = (β0, β1, β2)
′, and Φ(·) is the standard normal

distribution function. These two models could include different covariates. Here, we use

same covariates for notation simplicity. Thus, ρi = Φ(Z ′
iα) and πi = 1

1+e−Z′
i
β

.

Actually, both logistic regressions and probit models could be included in a general

estimation equation framework. Assume that ρi = ρ(Zi,α) and πi = π(Zi,β) with a known

function ρ and π. Then the unknown parameter β could be estimated by the estimating

equation Q2n,2(β) ≡ 1
n

∑n
i=1Q2,2(Si,β) = 0, where Q2,2(S,β) is an estimating function

satisfying E[Q2,2(S,β)] = 0. In the logistic regression setting,

Q2n,2(β) ≡ 1

n

n∑
i=1

Q2,2(Si,β) ≡ 1

n

n∑
i=1

(Vi − πi)Zi. (5.19)

For Di’s, exact disease statuses are only available for verified subjects with Vi =

1. Therefore, only verified observations could be employed to obtain an estimate of

α. Then the unknown parameters α could be estimated by the estimating equation

Q2n,1(α) ≡ 1
n

∑n
i ViQ2,1(Si,α) = 0, where Q2,1(S,α) is an estimating function satisfy-

ing E[Q2,1(S,α)] = 0. In the probit model setting,

Q2n,1(α) ≡ 1

n

n∑
i=1

ViQ2,1(Si,α) ≡ 1

n

n∑
i=1

Vi[Di − Φ(Z ′
iα)]ϕ(Z ′

iα)

Φ(Z ′
iα)(1 − Φ(Z ′

iα))
Zi, (5.20)

where ϕ(·) is the standard normal density function.

After obtaining consistent estimators α̂ of α and β̂ of β, we can plug in consistent

estimators ρ̂i = ρ(Zi, α̂) of ρi and π̂i = π(Zi, β̂) of πi into (5.15)-(5.18), and then obtain the

profile empirical likelihood for ϑ:

L̂P (ϑ) = sup

{
n∏
i=1

pi : each pi > 0,
n∑
i=1

pi = 1,
n∑
j=1

pig(Si, ϑ, ψ̂i) = 0

}
, (5.21)
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where ψ̂i could be π̂i, ρ̂i, or (π̂i, ρ̂i). In the simulation studies in Section 5.3, we use estimates

ρ̂i = Φ(Z ′
iα̂) and π̂i = 1/(1 + e−Z

′
iβ̂).

Then, the profile empirical log-likelihood ratio for ϑ is given by

l̂P (ϑ) = 2
n∑
i=1

log(1 + t̂′g(Si, ϑ, ψ̂i)), (5.22)

where t̂ is the solution of the following equation:

1

n

n∑
i=1

g(Si, ϑ, ψ̂i)

1 + t̂′g(Si, ϑ, ψ̂i)
= 0.

Let

Q1n(t, ϑ,ψ) ≡ 1

n

n∑
i=1

Q1(Si, t, ϑ,ψ) ≡ 1

n

n∑
i=1

g(Si, ϑ, ψi)

1 + t′g(Si, ϑ, ψi)
, (5.23)

where ψi could be πi, ρi, or (πi, ρi), depending on the selection of g(Si, ϑ, ψi). Then,

Q1n(0, ϑ,ψ) = 1
n

∑n
i=1 g(Si, ϑ, ψi), and Q1n(0, ϑ, ψ̂) = 1

n

∑n
i=1 g(Si, ϑ, ψ̂i) where ψ̂i could

be π̂i, ρ̂i, or (π̂i, ρ̂i).

In the previous section, we provide a general framework combining the empirical likeli-

hood and general estimation equations with nuisance parameters, which explicitly offers the

limiting distribution, a weighted chi-squared distribution, of the empirical likelihood ratio

statistic. By applying this framework to estimation functions (5.15)-(5.18), we can obtain

the following results.

Theorem 6 Assume that (ϑ0,β0) is the true value of (ϑ,β). Then,

l̂IPW(ϑ0) = 2
n∑
i=1

log(1 + t̂′gIPW(Si, ϑ0, π̂i))
d−→ r1χ

2
1,1 + r2χ

2
1,2 (5.24)

where {χ2
1,j, j = 1, 2} are independent chi-squared random variables with one degree of free-
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dom, and the weights r1, r2 are the two none-zero eigenvalues of Λ, defined as follows:

Λ = I − (−S11)
−1S12(−S22)

−1S ′
12

S11 = E

[
∂Q1(Si, 0, ϑ0,β0)

∂t′

]
= −E[gIPW(Si, ϑ0, πi)g

′
IPW(Si, ϑ0, πi)] = −Cov(Q1(Si, 0, ϑ0,β0)),

S12 = E

[
∂Q1(Si, 0, ϑ0,β0)

∂β′

]
= −Cov (Q1(Si, 0, ϑ0,β0), Q2(Si,β0)) ,

S22 = E

[
∂Q2(Si,β0)

∂β′

]
.

Additionally, if Q2(Zi,β) is a score function, S22 has the form

S22 = −Cov[Q2(Si,β0)].

Theorem 7 Assume that (ϑ0,α0,β0) is the true value of (ϑ,α,β). Then,

l̂FI(ϑ0) = 2
∑n

i=1 log(1 + t̂′gFI(Si, ϑ0, ρ̂i))

l̂MSI(ϑ0) = 2
∑n

i=1 log(1 + t̂′gMSI(Si, ϑ0, ρ̂i))

 d−→ r1χ
2
1,1 + r2χ

2
1,2, (5.25)

where {χ2
1,j, j = 1, 2} are independent chi-squared random variables with one degree of free-

dom, and the weights r1, r2 are the two none-zero eigenvalues of Λ, defined as follows:

Λ = (S∗)
1
2

 I

(−S22)
−1S ′

12

 (−S11)
−1
(
I S12(−S22)

−1

)
(S∗)

1
2 ,

S∗ = Cov
[
(g′(Si, ϑ0, ψi), ViQ

′
2,1(Si,α0))

′] ,
S11 = E

[
∂Q1(Si, 0, ϑ0,α0)

∂t′

]
= −E[g(Si, ϑ0, ψi)g

′(Si, ϑ0, ψi)],

S12 = E

[
∂Q1(Si, 0, ϑ0,α0)

∂α′

]
,

S22 = E

[
Vi∂Q2,1(Si,α0)

∂α′

]
,

where g(Si, ϑ0, ψi) is gFI(Si, ϑ0, ρi) for l̂FI(ϑ0), or gMSI(Si, ϑ, ρi) for l̂MSI(ϑ0).
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Theorem 8 Assume that (ϑ0,α0,β0) is the true value of (ϑ,α,β). Then,

l̂SPE(ϑ0) = 2
n∑
i=1

log(1 + t̂′gSPE(Si, ϑ0, π̂i, ρ̂i))
d−→ r1χ

2
1,1 + r2χ

2
1,2, (5.26)

where {χ2
1,j, j = 1, 2} are independent chi-squared random variables with one degree of free-

dom, and the weights r1, r2 are the two none-zero eigenvalues of Λ, defined as follows:

Λ = (S∗)
1
2

 I

(−S22)
−1S ′

12

 (−S11)
−1
(
I S12(−S22)

−1

)
(S∗)

1
2 ,

S∗ = Cov
[
(g′SPE(Si, ϑ0, πi, ρi), ViQ

′
2,1(Si,α0), Q

′
2,2(Si,β0))

′] ,
S11 = E

[
∂Q1(Si, 0, ϑ0, (α

′
0,β

′
0)

′)

∂t′

]
= −E[gSPE(Si, ϑ0, πi, ρi)g

′
SPE(Si, ϑ0, πi, ρi)],

S12 = E

[(
∂Q1(Si, 0, ϑ0, (α

′
0,β

′
0)

′)

∂α′ ,
∂Q1(Si, 0, ϑ0, (α

′
0,β

′
0)

′)

∂β′

)]
,

S22 =

 E
[
Vi∂Q2,1(Si,α0)

∂α′

]
0

0 E
[
∂Q2,2(Si,β0)

∂β′

]
 .

Theorems 6-8 provide l̂IPW(ϑ) = l̂IPW(θ, η, τ), l̂FI(ϑ) = l̂FI(θ, η, τ), l̂MSI(ϑ) = l̂MSI(θ, η, τ)

and l̂SPE(ϑ) = l̂SPE(θ, η, τ) as asymptotic pivots in the presence of verification bias for the

inference of parameter pairs (θ, τ), (η, τ) or (θ, η), given a fixed value of the third remaining

parameter. Matrices Λ in Theorem 6-8 are still unknown, but they can be consistently

estimated by their empirical counterparts which can be obtained by plugging in Λ the bias-

corrected estimators θ̂ and η̂ (obtained from (1.6), (1.7) or (1.9)) at a pre-determined cut-off

level τ . Taking Theorem 7 as an example, Λ can be estimated by

Λ̂ = (Ŝ∗)
1
2

 I

(−Ŝ22)
−1Ŝ ′

12

 (−Ŝ11)
−1
(
I Ŝ12(−Ŝ22)

−1

)
(Ŝ∗)

1
2 ,
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where

Ŝ∗ =
1

n

n∑
i=1

[
(g′SPE(Si, ϑ̂, π̂i, ρ̂i), ViQ

′
2,1(Si, α̂), Q′

2,2(Si, β̂))′
]
,

Ŝ11 = − 1

n

n∑
i=1

gSPE(Si, ϑ̂, π̂i, ρ̂i)g
′
SPE(Si, ϑ̂, π̂i, ρ̂i),

Ŝ12 =
1

n

n∑
i=1

(
∂Q1(Si, 0, ϑ̂, (α̂

′, β̂
′
)′)

∂α′ ,
∂Q1(Si, 0, ϑ̂, (α̂

′, β̂
′
)′)

∂β′

)
,

Ŝ22 =

 1
n

∑n
i=1

Vi∂Q2,1(Si,α̂)

∂α′ 0

0 1
n

∑n
i=1

∂Q2,2(Si,β̂)

∂β′

 .

To our surprise, by taking into account the variation in estimating πi’s, the eigenvalues of

Λ in Theorem 6 would be smaller than 1, which means the weighted chi-squared distribution

is less variant than the chi-squared distribution with degrees of freedom 2. This is probably

because S12 is the negative of Cov (Q1(Si, 0, ϑ0,β0), Q2(Si,β0)) in this special model. Also,

it is pointed out by Robins et al. [67] that the inverse weighted estimating equations with

known propensity have larger variation than those with unknown propensity, and this is part

of the reason that the eigenvalues of Λ are smaller than 1. Our observation will be verified

in simulation studies.

However, verification probabilities are known in some studies. In these cases, the above

result could be reduced when nuisance parameters ρi’s and πi’s are known, and the result is

given in the following corollary which is consistent with that obtained by Qin and Lawless

[43] or Adimari and Guolo [68].

Corollary 2 If ρi’s and πi’s are known, then S12 in Theorems 6-8 is equal to 0. Furthermore,

lP (ϑ0)
d−→ χ2

2,

and lP (ϑ0) = 2
∑n

i=1 log(1 + t̂′g(Si, ϑ0, ψi)), where t̂ is the solution to 1
n

∑n
i=1

g(Si,ϑ,ψi)

1+t̂′g(Si,ϑ,ψi)
= 0

where ψi could be πi, ρi, or (πi, ρi).

By utilizing Theorems 6-8, at the level of (1 − α)100%, we can construct four types,
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i.e., IPW, FI, MSI and SPE, of profile empirical likelihood confidence regions (called EL(F)

regions) for three pairs of parameters as follows:

• Rα,1(θ, τ) = {(θ, τ) : l̂P (θ, η0, τ) ≤ cα};

• Rα,2(η, τ) = {(η, τ) : l̂P (θ0, η, τ) ≤ cα};

• Rα,3(θ, η) = {(θ, η) : l̂P (θ, η, τ0) ≤ cα};

where α ∈ (0, 1), l̂P (·) could be any one of l̂IPW(·), l̂FI(·), l̂MSI(·) and l̂SPE(·), and cα is the

(1 − α)-th quantile of the distributions r1χ
2
1,1 + r2χ

2
1,2 for l̂IPW(ϑ0), l̂FI(ϑ0), l̂MSI(ϑ0), and

l̂SPE(ϑ0). Note that the Monte Carlo simulation is needed to calculate the critical value

cα. This can be done by first finding consistent estimates r̂i’s of ri’s and generating a

large number of copies of r̂1χ
2
1,1 + r̂2χ

2
1,2, and then taking cα to be the (1 − α)-th sample

quantile of these copies. In our simulation studies, we generate 40000 random copies from a

standard chi-square distribution with degree of freedom 1 to obtain the (1 − α)-th quantile

of this weighted chi-square distribution, and the computation is fast. When πi’s and ρi’s are

known, cα = χ2
2,1−α is the (1 − α)-th quantile of the chi-squared distribution with degrees

of freedom 2. We can get the reduced profile empirical likelihood confidence regions (called

EL(R) regions) by using Corollary 2.

These confidence regions could provide a good solution to the problem of selecting a

reasonable cut-off point for a continuous-scale diagnostic test in a flexible manner. Depending

on the availability of disease models or verification models, we can apply bias-corrected

confidence regions correspondingly. If only disease models are available, we can apply FI

or MSI regions; if only verification models are available, we can apply IPW regions; if both

models are available or only one of them is correctly specified, SPE regions could be applied.

To find the EL-based confidence region for sensitivity and specificity, firstly, at a desirable

sensitivity value θ0 and specificity value η0, we construct the corresponding EL(R) regions

Rα,2(η, τ) and Rα,1(θ, τ) respectively. Secondly, by plotting these two regions on the same

graph along with cut-off level as the horizontal axis, a reasonable cut-off level τ0 could be

identified from the overlapping part of these two regions. Finally, the EL(F) region Rα,3(θ, η)
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for the sensitivity and the specificity can be constructed at the selected cut-off level τ0. Later

in the real data analysis, we will show the entire process for the diagnosis of depression in

elderly patients.

5.3 Simulation Studies

In this section, we conduct simulation studies to compare the finite sample performance

and robustness of the proposed bias-corrected empirical likelihood confidence regions.

Simulation settings in the presence of verification bias are similar to those in Alonzo

and Pepe [24] and He et al. [27]. Firstly, two independent underlying continuous disease pro-

cesses are generated, saying Z1 ∼ N (0, 0.5) and Z2 ∼ N (0, 0.5). The disease status indicator

random variable D is generated as a binary variable indicating whether a random variable

Z = Z1 + Z2 ∼ N (0, 1) exceeds a certain threshold h, which determines the disease preva-

lence. The continuous diagnostic test result T and the auxiliary covariate A are generated to

be related to D through Z1 and Z2: T = ν1Z1 + κ1Z2 + ε1 and A = ν2Z1 + κ2Z2 + ε2, where

ε1 ∼ N (0, 0.25) and ε2 ∼ N (0, 0.25) are independent. The extent to which the test result T

and the covariate A are correlated with each other, and the effect of different components of

the underlying disease process on the test result vary as one changes ν1, ν2, κ1 and κ2. The

explanations of different values of ν1, ν2, κ1 and κ2 were discussed by Alonzo and Pepe [24].

Under this model setting, we could obtain the joint distribution of (Z, T,A)′, which follows

a multivariate normal distribution:


Z

T

A

 ∼ N3

0,


1 0.5ν21 + 0.5κ21 0.5ν22 + 0.5κ22

0.5ν21 + 0.5κ21 0.5ν21 + 0.5κ21 + 0.25 0.5ν1ν2 + 0.5κ1κ2

0.5ν22 + 0.5κ22 0.5ν1ν2 + 0.5κ1κ2 0.5ν22 + 0.5κ22 + 0.25


 .

This joint distribution could be used to get the true values of the specificity η and the

sensitivity θ, given the cut-off level τ and the disease prevalence h. This joint distribution

could be used to get the true values of the specificity η and the sensitivity θ, given the cut-off

level τ and the disease prevalence h.
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5.3.1 Correct Models

In simulation studies, the verification probability π(Z,β) is chosen to be a specified

function of Z = (1, T, A)′ to match the MAR assumption, and the parameter β could

be estimated by an estimating equation. Here, we set log( π
1−π ) = −0.7 + T + A with

π = P (V = 1|T,A), and D is assumed to be missing for those subjects with V = 0. Thus

roughly 40% subjects will have their disease statuses verified. More specifically, 20%-30%

nondiseased subjects will have their disease statuses verified, and roughly 70%-80% of the

diseased subjects will have their disease statuses verified in different settings. Additionally,

FI, MSI and SPE methods require a parametric model for the probability, ρi’s, of getting a

disease. It was shown in Alonzo and Pepe [24] that a probit model that was linear in T and

A was correct under this simulation setting.

To evaluate the performance of the proposed various EL(F) and EL(R) confidence re-

gions in terms of coverage probability, 4000 random samples are generated from the under-

lying distributions with sample sizes n = 200, 400 and 500 respectively. In this part, we set

ν2 = κ2 = 1, and select h such that the prevalence of disease equals 0.3 and 0.5. Different

pairs of (ν1, κ1) are selected to make comparison. For the purpose of comparison, confidence

regions based on the normal approximation (denoted by NA) of GEE estimators with IPW,

FI, MSI and SPE methods proposed by Alonzo and Pepe [24] are also included in the study.

In Table 5.1 and 5.2, we present coverage probabilities of IPW, FI, MSI and SPE based

bias-corrected confidence regions with nominal levels 90% and 95% for various values of

the pair (θ, η) at different levels of disease prevalence, ν1, κ1 and τ , in the presence of

verification bias under the above model setting. Simulation results in these tables indicate

that the proposed four bias-corrected EL(F) confidence regions work well with moderate

sample size cases (n ≥ 400). From these tables, we also observe that only if (ν1, κ1) is

comparable with (ν2, κ2) (ν1 = κ1 = 1 and ν2 = κ2 = 1), better sensitivity and better

specificity could be achieved simultaneously by carefully selecting the cut-off level τ . The

IPW bias-corrected EL(R) regions are more conservative than the EL(F) regions. In contrast,

the FI and MSI bias-corrected EL(R) regions severely under-cover (θ, η) compared with the
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corresponding EL(F) regions. The SPE bias-corrected EL(R) regions perform similarly with

the EL(F) regions, and this probably results from the property of double robustness of the

SPE method. Thus the reduced method in Corollary 2 must be employed cautiously.

If both verification model and disease model are correctly specified, any one of IPW, FI,

MSI and SPE based bias-corrected EL(F) regions is valid, but MSI-based EL(F) region is

preferred. From Table 5.1 and 5.2, when sample sizes are relatively small (n = 200), IPW, FI

and SPE based EL(F) regions slightly under-cover (θ, η). On the contrary, MSI-based EL(F)

regions work well in most settings. Three possible reasons for this preference are that (a) MSI

method is relatively simple to apply than SPE method, (b) only one part of Di’s are required

to be imputed compared with the FI method, and (c) the maximum likelihood estimators

in the logistic regression model with the IPW method are unstable and biased when the

sample size is not large enough [69]. When one does not have a reasonable cut-off level, one

can use the SPE-based EL(R) regions Rα,1 and Rα,2 to identify a reasonable cut-off level.

Compared with all proposed methods, the IPW, FI and MSI based NA regions under-cover

true parameters, and their performance improves slowly when the sample size increases as

expected. The SPE-based NA regions could perform well in some settings especially when

the sensitivity and the specificity are close to each other, but the overall performances are

not stable. Additionally, GEE estimates involve the selection of initial values, which will

influence the convergence of the algorithm. Also, Alonzo and Pepe [24] set the sample size

to 5000 with prevalence 0.1 in the simulation, and this large sample size setting may not be

applicable in practice. Our proposed methods work well in much smaller sample size cases.

Thus they are more applicable in real settings.

5.3.2 Misspecified Models

Till now, disease models and verification models are correctly specified in the simulation.

But in practice, misspecification of underlying models is possible. In the following, we

will discuss the robustness of proposed bias-corrected joint empirical likelihood confidence

regions.
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To introduce misspecification, similar to those used in Alonzo and Pepe [24], V is

generated from a Bernoulli random variable with P (V = 1) = 1 for subjects with T > t(0.8)

and P (V = 1) = 0.2 for others, where t(0.8) is the 80-th quantile of the distribution of T .

However, we still apply logistic regression to model V , which results in the misspecification

of the verification model.

In correct models, the disease status is generated as D = I(Z1 +Z2 > h), and T and A

are generated from linear combinations of Z1 and Z2. Following the discussion in [24], with

ν1 = 1 and τ = 0 for T and ν2 = 0 and τ2 = 1 for A, the disease model P (D|T ) that is linear

in T is misspecified. Here we apply probit models to D on T for verified subjects to simulate

misspecification. The SPE estimator was shown to be doubly robust in [57] and [58]. It is

expected that bias-corrected joint empirical likelihood confidence regions based on l̂SPE(ϑ0)

are still doubly robust.

When either disease models or verification models are misspecified, our simulation re-

sults (not reported here) indicate that all other methods perform poorly except SPE-based

regions. Thus only results for SPE-based regions are presented here. Similar with obser-

vations in correct models, Tables 5.3 and 5.4 indicate that the proposed SPE-based bias-

corrected EL(F) confidence regions work well with moderate sample size cases (n ≥ 400)

when misspecified disease models and verification models are present, respectively. But in

these cases, EL(R) regions break down due to the misspecification. SPE-based NA regions

could still perform well in some settings, but their performances are not stable. Proba-

bly, larger sample size (e.g., sample size set to be 5000 in [24] is required to obtain good

performance for SPE-based NA regions.

5.4 Study of Depression in Elderly Patients Recruited from Primary-care Prac-

tices

We apply proposed various bias-corrected joint empirical likelihood confidence regions to

the data set from a longitudinal study of depression in elderly patients (age ≥ 65) recruited

from primary-care practices in Monroe County, New York. This data set is provided by
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He et al. [27] who directly estimated the area under the ROC curve in the presence of

verification bias. The purpose of this analysis is to run a comparative study of choosing a

reasonable cut-off point for the Hamilton Depression Rating Scale (HAM-D) and to evaluate

the accuracy of the HAM-D in diagnosing depression in terms of specificity and sensitivity.

Because the full data set is available, we could compare all proposed bias-corrected regions

with regions from the full data.

The HAM-D, a 24-item observer-rated scale designed to measure the severity of depres-

sion, is treated as a screening marker for the diagnosis of depression. The HAM-D takes

much shorter time, approximately 15-20 minutes, to administer, compared with 1-3 hours

to administer the Structured Clinical Interview for DSM-IV (SCID), an intensive examiner-

based assessment that could be used as a practical gold standard for this medical diagnosis

[70]. During the collection process, 708 patients were recruited, and they were evaluated by

a comprehensive diagnostic assessment for depression using the SCID. Based on the SCID,

249 patients were diagnosed as having depression and 459 patients were diagnosed as being

free of depression. Other auxiliary information was also collected, including the HAM-D,

age, gender, years of education, and the Cumulative Illness Rating Scale (CIRS). The CIRS

is a reliable and valid measure of medical burden that quantifies the amount of pathology in

each organ system [71].

Data for both SCID and HAM-D were collected from recruited patients in the data set.

To go through the whole procedure of evaluating the diagnostic accuracy of HAM-D in the

presence of verification bias, a verified subset of the data should be obtained to simulate the

process of a two-phase design. In this subset, HAM-D results were obtained for all patients,

but SCID results were only available for certain patients selected according to the following

mechanism:

log
P (SCID available)

1 − P (SCID available)
= −1 + 5I(HAM-D > 7) + 4I(CIRS > 7)I(Age < 75).

Therefore, similar to the verification mechanism in [27], patients who had a HAM-D score
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> 7 or patients under the age of 75 with a relatively high cumulative illness burden are more

likely to be selected by our verification mechanism in the log-odds-ratio way. Our verification

mechanism selected 477 patients of the 708 patients (67.4%) to have their depression statuses

to be verified. Because of the availability of the full data, for patients with disease, the

verification rate is 86.7%; for patients without disease, the verification rate is 56.9%.

In this example, D=SCID diagnosis, T=HAM-D, and other factors, including age, gen-

der, years of education, and CIRS score were treated as covariates A. In order to apply

proposed methods in the presence of verification bias, a model for both P (V = 1|T,A)

and P (D = 1|T,A) are required. Here, we use a logistic model with I(HAM-D > 7) and

I(CIRS > 7)I(Age < 75) as covariates to V . For disease status D if available, we tried both

logistic regression and probit models with I(HAM-D > 7) and I(CIRS > 7)I(Age < 75) as

covariates, and there is no big difference. Thus we only use probit models here to model D.

It is noted that the disease model is unavailable in this study, and probit models of D may

be misspecified. Then it is of great interest to apply SPE-based confidence regions to get

robust results. Also we provide MSI-based confidence regions and confidence regions from

the full data generated by the method in [4] for comparison purpose.

To show how proposed empirical likelihood confidence regions could be used to identify

a reasonable cut-off point that results in both higher sensitivity and higher specificity, we

borrow ideas from the real data analysis part in [4]. Firstly, proper joint inferences on the

pair (sensitivity, cut-off level) at a fixed specificity value and on the pair (specificity, cut-

off level) at a fixed sensitivity value are required to investigate the relationship between

the sensitivity/specificity and the cut-off level, when a certain specificity/sensitivity (e.g.,

0.7, 0.8) is required. Due to the less powerful essential of HAM-D, the sensitivity and the

specificity of the HAM-D are fixed at a moderate level of 0.75 for both cases after a series

of comparison among possible ranges. Since the sensitivity θ and specificity η of the HAM-

D depend on the cut-off level τ , EL(R) regions are adopted to choose τ . This is not a

big problem for SPE-based regions because of their robustness reported in our simulation

studies. Contour curves are employed to show confidence regions by calculating l̂P (θ, η0, τ)
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and l̂P (θ0, η, τ) values on a fine grid and connecting these values according to (1 − α)-th

quantiles.

The left panel in Figure 5.1 shows the contour curves of l̂SPE(θ, 0.75, τ), giving confidence

regions for the pair (sensitivity, cut-off level) at different nominal confidence levels 90%, 95%

and 99%. The plot shows that, at the nominal 95% level, a variety of pairs of values for

(θ, τ) are compatible with the target specificity level of 0.75. Due to integer HAM-D scores,

the valid values of τ are limited to 8. The right panel in Figure 5.1 shows the contour curves

of l̂SPE(0.75, η, τ), giving confidence regions for the pair (specificity, cut-off level) at different

nominal levels 90%, 95% and 99%. This plot also shows that, at the nominal 95% level, a

variety of pairs of values for (η, τ) are compatible with the target sensitivity level of 0.75, and

the valid values of τ are limited from 8 to 9. Similarly we have Figure 5.2 for l̂MSI(θ, 0.75, τ)

and l̂MSI(0.75, η, τ), and Figure 5.3 for confidence regions from full data, respectively. All

three figures offer similar shapes of confidence regions at nominal levels 90% and 95%. For

99% confidence regions, they differ due to the introduction of verification bias. Also, probit

model assumption for D seems to be reasonable by comparing the first two figures with

Figure 5.3.

In order to simultaneously obtain reasonably good sensitivity and specificity, a reason-

able cut-off level should be carefully selected. The joint confidence regions offer a good

chance to search for cut-off levels compatible with both specificity and sensitivity at 0.75.

Figure 5.4-5.6 shows both the 95% confidence region for the pair (sensitivity, cut-off level)

at the fixed specificity level of 0.75 and the 95% confidence region for the pair (specificity,

cut-off level) at the fixed sensitivity level of 0.75, provided by SPE-based regions, MSI-based

regions and regions from full data, respectively. The cut-off level 8 could be identified as a

reasonable value.

Figure 5.7 to 5.9 show the contour curves of l̂SPE(θ, η, 8), l̂MSI(θ, η, 8) and l̂(θ, η, 8)

with full data, respectively, indicating the joint 95% EL(F) confidence regions for the pair

(specificity, sensitivity) with the cut-off level fixed at 8. “True” sensitivity and specificity of

HAM-D could be obtained nonparametrically because the full data set is available. When
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the cut-off level is 8, η = 0.752 and θ = 0.767, marked as points in all three figures. It is

clear that “true” values are covered by their corresponding 95% confidence regions. When

the cut-off level is fixed at 8, the specificity and the sensitivity never fall below 0.6 and 0.5,

respectively. MSI-based regions are relatively more conservative. Generally speaking, the

performance of the HAM-D, treated as the screening test, is not satisfactory enough. Thus

the gold standard SCID is required to verify the depression status.
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Table 5.1 Correct models: Coverage probabilities of various joint empirical likelihood con-
fidence regions with nominal confidence level 90% in the presence of verification bias. Pre.
means disease prevalence; EL(F) stands for the proposed method based on weighted chi-
squared method; EL(R) stands for the reduced method from Corollary 2; NA means the
normality approximation method.

n = 200 n = 400 n = 500
Type Pre. τ0 ν1 κ1 η0 θ0 EL(F) EL(R) NA EL(F) EL(R) NA EL(F) EL(R) NA
IPW 0.3 0.2 1 1 0.783 0.924 0.887 0.925 0.912 0.904 0.946 0.836 0.904 0.944 0.848

0.4 1 1 0.855 0.864 0.871 0.914 0.882 0.886 0.927 0.874 0.892 0.932 0.884
0.15 1 0 0.690 0.715 0.880 0.930 0.907 0.901 0.952 0.875 0.892 0.942 0.877
-0.2 1 0 0.520 0.850 0.865 0.908 0.840 0.895 0.934 0.846 0.895 0.892 0.829
0.15 0 1 0.690 0.715 0.889 0.929 0.911 0.894 0.942 0.884 0.899 0.940 0.886
-0.2 0 1 0.520 0.850 0.872 0.917 0.838 0.903 0.940 0.843 0.886 0.933 0.838

0.5 0 1 1 0.852 0.852 0.873 0.911 0.850 0.896 0.922 0.879 0.899 0.922 0.882
-0.2 1 1 0.771 0.913 0.876 0.908 0.867 0.910 0.931 0.838 0.898 0.932 0.826
0 1 0 0.696 0.696 0.887 0.928 0.906 0.902 0.952 0.877 0.897 0.941 0.885
-0.4 1 0 0.495 0.851 0.840 0.877 0.807 0.899 0.931 0.825 0.892 0.932 0.843
0 0 1 0.696 0.696 0.873 0.921 0.902 0.907 0.956 0.887 0.902 0.950 0.884
-0.4 0 1 0.495 0.851 0.846 0.885 0.799 0.902 0.938 0.837 0.908 0.940 0.828

FI 0.3 0.2 1 1 0.783 0.924 0.884 0.617 0.825 0.891 0.611 0.856 0.899 0.622 0.873
0.4 1 1 0.855 0.864 0.884 0.631 0.836 0.894 0.624 0.861 0.908 0.654 0.883
0.15 1 0 0.690 0.715 0.891 0.733 0.867 0.892 0.737 0.884 0.900 0.753 0.891
-0.2 1 0 0.520 0.850 0.891 0.735 0.859 0.891 0.739 0.868 0.900 0.745 0.880
0.15 0 1 0.690 0.715 0.882 0.731 0.870 0.892 0.735 0.884 0.903 0.747 0.896
-0.2 0 1 0.520 0.850 0.886 0.740 0.855 0.894 0.742 0.873 0.896 0.738 0.882

0.5 0 1 1 0.852 0.852 0.870 0.530 0.807 0.902 0.540 0.846 0.901 0.545 0.870
-0.2 1 1 0.771 0.913 0.868 0.528 0.798 0.896 0.519 0.839 0.897 0.523 0.861
0 1 0 0.696 0.696 0.882 0.688 0.865 0.893 0.692 0.879 0.896 0.707 0.893
-0.4 1 0 0.495 0.851 0.880 0.696 0.855 0.888 0.701 0.876 0.889 0.707 0.883
0 0 1 0.696 0.696 0.883 0.702 0.872 0.890 0.696 0.879 0.892 0.702 0.890
-0.4 0 1 0.495 0.851 0.880 0.702 0.863 0.892 0.703 0.873 0.898 0.703 0.885

MSI 0.3 0.2 1 1 0.783 0.924 0.890 0.768 0.836 0.897 0.740 0.846 0.901 0.770 0.870
0.4 1 1 0.855 0.864 0.895 0.760 0.847 0.897 0.747 0.864 0.910 0.780 0.896
0.15 1 0 0.690 0.715 0.896 0.796 0.873 0.895 0.795 0.887 0.900 0.811 0.893
-0.2 1 0 0.520 0.850 0.886 0.784 0.859 0.893 0.791 0.873 0.899 0.798 0.883
0.15 0 1 0.690 0.715 0.891 0.793 0.874 0.898 0.799 0.888 0.902 0.803 0.893
-0.2 0 1 0.520 0.850 0.892 0.795 0.861 0.896 0.793 0.873 0.890 0.792 0.878

0.5 0 1 1 0.852 0.852 0.885 0.617 0.822 0.890 0.616 0.856 0.894 0.625 0.876
-0.2 1 1 0.771 0.913 0.889 0.615 0.803 0.891 0.598 0.842 0.904 0.605 0.871
0 1 0 0.696 0.696 0.887 0.734 0.867 0.891 0.732 0.877 0.898 0.746 0.896
-0.4 1 0 0.495 0.851 0.883 0.726 0.851 0.891 0.732 0.881 0.894 0.734 0.885
0 0 1 0.696 0.696 0.892 0.744 0.878 0.891 0.740 0.884 0.897 0.752 0.889
-0.4 0 1 0.495 0.851 0.884 0.736 0.860 0.890 0.739 0.875 0.901 0.742 0.889

SPE 0.3 0.2 1 1 0.783 0.924 0.874 0.874 0.945 0.892 0.892 0.937 0.895 0.893 0.942
0.4 1 1 0.855 0.864 0.886 0.887 0.946 0.892 0.892 0.939 0.903 0.901 0.952
0.15 1 0 0.690 0.715 0.882 0.882 0.912 0.892 0.891 0.902 0.902 0.900 0.908
-0.2 1 0 0.520 0.850 0.866 0.866 0.929 0.893 0.893 0.907 0.890 0.889 0.905
0.15 0 1 0.690 0.715 0.888 0.888 0.917 0.895 0.895 0.907 0.901 0.899 0.907
-0.2 0 1 0.520 0.850 0.885 0.885 0.919 0.890 0.889 0.898 0.893 0.892 0.898

0.5 0 1 1 0.852 0.852 0.879 0.881 0.842 0.885 0.885 0.847 0.893 0.892 0.846
-0.2 1 1 0.771 0.913 0.871 0.873 0.869 0.892 0.891 0.937 0.894 0.893 0.854
0 1 0 0.696 0.696 0.877 0.877 0.895 0.893 0.892 0.840 0.897 0.896 0.849
-0.4 1 0 0.495 0.851 0.874 0.875 0.914 0.891 0.890 0.870 0.890 0.889 0.859
0 0 1 0.696 0.696 0.888 0.888 0.920 0.892 0.892 0.848 0.897 0.895 0.861
-0.4 0 1 0.495 0.851 0.879 0.879 0.883 0.888 0.886 0.858 0.892 0.890 0.855
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Table 5.2 Correct models: Coverage probabilities of various joint empirical likelihood con-
fidence regions with nominal confidence level 95% in the presence of verification bias. Pre.
means disease prevalence; EL(F) stands for the proposed method based on weighted chi-
squared method; EL(R) stands for the reduced method from Corollary 2; NA means the
normality approximation method.

n = 200 n = 400 n = 500
Type Pre. τ0 ν1 κ1 η0 θ0 EL(F) EL(R) NA EL(F) EL(R) NA EL(F) EL(R) NA
IPW 0.3 0.2 1 1 0.783 0.924 0.938 0.966 0.956 0.961 0.980 0.890 0.962 0.981 0.901

0.4 1 1 0.855 0.864 0.935 0.961 0.927 0.948 0.976 0.929 0.951 0.974 0.935
0.15 1 0 0.690 0.715 0.940 0.964 0.952 0.960 0.984 0.930 0.952 0.975 0.934
-0.2 1 0 0.520 0.850 0.926 0.954 0.894 0.949 0.972 0.896 0.947 0.945 0.882
0.15 0 1 0.690 0.715 0.936 0.967 0.953 0.949 0.977 0.938 0.947 0.978 0.936
-0.2 0 1 0.520 0.850 0.935 0.963 0.890 0.953 0.975 0.906 0.951 0.974 0.901

0.5 0 1 1 0.852 0.852 0.941 0.965 0.901 0.941 0.958 0.934 0.944 0.962 0.933
-0.2 1 1 0.771 0.913 0.941 0.960 0.914 0.952 0.963 0.891 0.958 0.970 0.868
0 1 0 0.696 0.696 0.939 0.964 0.951 0.963 0.986 0.936 0.953 0.979 0.941
-0.4 1 0 0.495 0.851 0.907 0.933 0.864 0.950 0.969 0.889 0.949 0.948 0.912
0 0 1 0.696 0.696 0.932 0.961 0.951 0.963 0.987 0.940 0.962 0.984 0.938
-0.4 0 1 0.495 0.851 0.911 0.940 0.859 0.961 0.976 0.895 0.960 0.977 0.888

FI 0.3 0.2 1 1 0.783 0.924 0.937 0.708 0.874 0.948 0.705 0.906 0.946 0.717 0.923
0.4 1 1 0.855 0.864 0.939 0.729 0.891 0.947 0.723 0.917 0.953 0.744 0.935
0.15 1 0 0.690 0.715 0.942 0.823 0.928 0.943 0.825 0.938 0.950 0.830 0.946
-0.2 1 0 0.520 0.850 0.946 0.819 0.912 0.942 0.818 0.925 0.949 0.831 0.931
0.15 0 1 0.690 0.715 0.940 0.814 0.830 0.946 0.817 0.942 0.948 0.828 0.944
-0.2 0 1 0.520 0.850 0.939 0.817 0.911 0.946 0.820 0.928 0.945 0.823 0.932

0.5 0 1 1 0.852 0.852 0.930 0.628 0.857 0.959 0.632 0.903 0.952 0.638 0.915
-0.2 1 1 0.771 0.913 0.931 0.610 0.856 0.947 0.615 0.896 0.949 0.617 0.916
0 1 0 0.696 0.696 0.936 0.774 0.924 0.948 0.778 0.935 0.946 0.786 0.948
-0.4 1 0 0.495 0.851 0.941 0.776 0.907 0.946 0.787 0.933 0.942 0.789 0.935
0 0 1 0.696 0.696 0.939 0.782 0.921 0.942 0.787 0.932 0.942 0.782 0.939
-0.4 0 1 0.495 0.851 0.940 0.788 0.919 0.938 0.790 0.931 0.948 0.787 0.940

MSI 0.3 0.2 1 1 0.783 0.924 0.931 0.848 0.883 0.948 0.828 0.900 0.948 0.846 0.916
0.4 1 1 0.855 0.864 0.947 0.847 0.902 0.950 0.840 0.923 0.953 0.863 0.943
0.15 1 0 0.690 0.715 0.944 0.875 0.931 0.947 0.875 0.941 0.948 0.877 0.946
-0.2 1 0 0.520 0.850 0.941 0.862 0.913 0.947 0.864 0.928 0.950 0.875 0.929
0.15 0 1 0.690 0.715 0.943 0.869 0.933 0.947 0.880 0.941 0.952 0.878 0.945
-0.2 0 1 0.520 0.850 0.945 0.870 0.915 0.949 0.867 0.929 0.942 0.865 0.931

0.5 0 1 1 0.852 0.852 0.941 0.713 0.873 0.940 0.709 0.914 0.942 0.724 0.921
-0.2 1 1 0.771 0.913 0.931 0.699 0.859 0.939 0.687 0.903 0.953 0.703 0.922
0 1 0 0.696 0.696 0.942 0.822 0.926 0.945 0.820 0.935 0.946 0.829 0.946
-0.4 1 0 0.495 0.851 0.938 0.811 0.907 0.940 0.819 0.929 0.943 0.823 0.937
0 0 1 0.696 0.696 0.943 0.827 0.926 0.944 0.823 0.935 0.949 0.821 0.944
-0.4 0 1 0.495 0.851 0.940 0.815 0.916 0.941 0.823 0.931 0.948 0.823 0.937

SPE 0.3 0.2 1 1 0.783 0.924 0.923 0.922 0.974 0.950 0.950 0.969 0.945 0.946 0.974
0.4 1 1 0.855 0.864 0.939 0.939 0.973 0.940 0.940 0.972 0.948 0.948 0.977
0.15 1 0 0.690 0.715 0.937 0.937 0.956 0.945 0.945 0.950 0.947 0.947 0.956
-0.2 1 0 0.520 0.850 0.924 0.924 0.965 0.947 0.947 0.952 0.940 0.940 0.953
0.15 0 1 0.690 0.715 0.941 0.941 0.960 0.950 0.950 0.954 0.952 0.952 0.953
-0.2 0 1 0.520 0.850 0.941 0.941 0.958 0.945 0.945 0.951 0.945 0.945 0.945

0.5 0 1 1 0.852 0.852 0.940 0.940 0.909 0.946 0.946 0.910 0.946 0.946 0.909
-0.2 1 1 0.771 0.913 0.933 0.934 0.932 0.955 0.955 0.904 0.944 0.945 0.917
0 1 0 0.696 0.696 0.940 0.940 0.939 0.948 0.948 0.905 0.946 0.946 0.916
-0.4 1 0 0.495 0.851 0.941 0.941 0.954 0.949 0.949 0.922 0.941 0.941 0.918
0 0 1 0.696 0.696 0.946 0.945 0.959 0.941 0.941 0.915 0.943 0.944 0.916
-0.4 0 1 0.495 0.851 0.942 0.942 0.935 0.950 0.950 0.915 0.947 0.947 0.925
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Table 5.3 Misspecified disease models: Coverage probabilities of SPE-based joint empirical
likelihood confidence regions with nominal confidence levels 90% and 95% in the presence
of verification bias. Pre. means disease prevalence; EL(F) stands for the proposed method
based on weighted chi-squared method; EL(R) stands for the reduced method from Corollary
2; NA means the normality approximation method.

n = 300 n = 400 n = 500
Level Pre. τ0 η0 θ0 EL(F) EL(R) NA EL(F) EL(R) NA EL(F) EL(R) NA
90% 0.3 0.0 0.620 0.779 0.892 0.914 0.832 0.893 0.915 0.823 0.901 0.923 0.811

-0.2 0.520 0.850 0.892 0.906 0.854 0.892 0.915 0.961 0.894 0.914 0.827
0.5 -0.2 0.599 0.781 0.892 0.913 0.944 0.890 0.910 0.933 0.890 0.910 0.913

-0.4 0.495 0.851 0.887 0.907 0.950 0.893 0.915 0.868 0.893 0.913 0.858
95% 0.3 0.0 0.620 0.779 0.944 0.959 0.895 0.949 0.963 0.889 0.949 0.961 0.879

-0.2 0.520 0.850 0.940 0.956 0.916 0.948 0.959 0.917 0.945 0.956 0.886
0.5 -0.2 0.599 0.781 0.941 0.954 0.961 0.943 0.957 0.956 0.943 0.955 0.949

-0.4 0.495 0.851 0.936 0.953 0.966 0.948 0.959 0.914 0.946 0.958 0.910

Table 5.4 Misspecified verification models: Coverage probabilities of SPE-based joint empiri-
cal likelihood confidence regions with nominal confidence levels 90% and 95% in the presence
of verification bias. Pre. means disease prevalence; EL(F) stands for the proposed method
based on weighted chi-squared method; EL(R) stands for the reduced method from Corollary
1; NA means the normality approximation method.

n = 300 n = 400 n = 500
Level Pre. τ0 ν1 κ1 η0 θ0 EL(F) EL(R) NA EL(F) EL(R) NA EL(F) EL(R) NA
90% 0.3 0.2 1 1 0.783 0.924 0.888 0.839 0.939 0.904 0.854 0.888 0.909 0.860 0.882

0.4 1 1 0.855 0.864 0.889 0.828 0.921 0.896 0.822 0.901 0.891 0.815 0.874
0.15 1 0 0.690 0.715 0.891 0.927 0.968 0.904 0.939 0.963 0.890 0.921 0.966
-0.2 1 0 0.520 0.850 0.889 0.920 0.983 0.885 0.917 0.962 0.888 0.917 0.983
0.15 0 1 0.690 0.715 0.882 0.917 0.967 0.890 0.922 0.966 0.907 0.930 0.942
-0.2 0 1 0.520 0.850 0.888 0.924 0.975 0.891 0.917 0.967 0.900 0.920 0.953

0.5 0 1 1 0.852 0.852 0.890 0.837 0.866 0.893 0.825 0.858 0.896 0.832 0.845
-0.2 1 1 0.771 0.913 0.908 0.875 0.887 0.898 0.849 0.870 0.895 0.854 0.860
0 1 0 0.696 0.696 0.883 0.918 0.963 0.890 0.928 0.954 0.897 0.933 0.958
-0.4 1 0 0.495 0.851 0.888 0.914 0.966 0.898 0.937 0.957 0.891 0.928 0.945
0 0 1 0.696 0.696 0.882 0.926 0.965 0.890 0.926 0.958 0.895 0.938 0.960
-0.4 0 1 0.495 0.851 0.881 0.913 0.962 0.903 0.942 0.956 0.895 0.941 0.958

95% 0.3 0.2 1 1 0.783 0.924 0.943 0.908 0.969 0.953 0.912 0.945 0.961 0.921 0.933
0.4 1 1 0.855 0.864 0.945 0.894 0.960 0.956 0.894 0.948 0.946 0.890 0.930
0.15 1 0 0.690 0.715 0.958 0.977 0.975 0.964 0.979 0.974 0.947 0.963 0.977
-0.2 1 0 0.520 0.850 0.948 0.965 0.986 0.946 0.967 0.970 0.944 0.962 0.987
0.15 0 1 0.690 0.715 0.943 0.967 0.975 0.952 0.972 0.974 0.957 0.970 0.962
-0.2 0 1 0.520 0.850 0.949 0.968 0.981 0.947 0.965 0.973 0.955 0.971 0.961

0.5 0 1 1 0.852 0.852 0.957 0.913 0.923 0.949 0.901 0.923 0.955 0.904 0.910
-0.2 1 1 0.771 0.913 0.960 0.935 0.939 0.955 0.925 0.924 0.948 0.915 0.922
0 1 0 0.696 0.696 0.942 0.964 0.973 0.949 0.975 0.973 0.953 0.976 0.972
-0.4 1 0 0.495 0.851 0.944 0.955 0.977 0.954 0.976 0.971 0.950 0.970 0.959
0 0 1 0.696 0.696 0.942 0.965 0.976 0.954 0.974 0.974 0.952 0.973 0.973
-0.4 0 1 0.495 0.851 0.944 0.966 0.972 0.961 0.977 0.972 0.959 0.978 0.966
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Figure 5.1 Left panel: contour curves of l̂SPE(θ, 0.75, τ), giving confidence regions for the
pair (cut-off level, sensitivity) at the fixed specificity level of 0.75. Right panel: contour

curves of l̂SPE(0.75, η, τ), giving confidence regions for the pair (cut-off level, specificity) at
the fixed sensitivity level of 0.75. Contours in both panels correspond to nominal confidence
levels 90%, 95% and 99%.
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Figure 5.2 Left panel: contour curves of l̂MSI(θ, 0.75, τ), giving confidence regions for the
pair (cut-off level, sensitivity) at the fixed specificity level of 0.75. Right panel: contour

curves of l̂MSI(0.75, η, τ), giving confidence regions for the pair (cut-off level, specificity) at
the fixed sensitivity level of 0.75. Contours in both panels correspond to nominal confidence
levels 90%, 95% and 99%.
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Figure 5.3 Left panel: contour curves of l̂(θ, 0.75, τ) from full data, giving confidence regions
for the pair (cut-off level, sensitivity) at the fixed specificity level of 0.75. Right panel:

contour curves of l̂(0.75, η, τ) from full data, giving confidence regions for the pair (cut-off
level, specificity) at the fixed sensitivity level of 0.75. Contours in both panels correspond
to nominal confidence levels 90%, 95% and 99%.
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Figure 5.4 In red, the 95% SPE-based confidence region for the pair (cut-off level, sensitivity)
at the fixed 0.75 level of specificity; In blue, the 95% SPE-based confidence region for the
pair (cut-off level, specificity,) at the fixed 0.75 level of sensitivity.
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Figure 5.5 In red, the 95% MSI-based confidence region for the pair (cut-off level, sensitivity)
at the fixed 0.75 level of specificity; In blue, the 95% MSI-based confidence region for the
pair (cut-off level, specificity,) at the fixed 0.75 level of sensitivity.
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Figure 5.6 In red, the 95% confidence region for the pair (cut-off level, sensitivity) at the
fixed 0.75 level of specificity with full data; In blue, the 95% confidence region for the pair
(cut-off level, specificity,) at the fixed 0.75 level of sensitivity with full data.
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Figure 5.7 Contour curves of l̂SPE(θ, η, 8), offering the confidence regions for the pair (speci-
ficity, sensitivity), at different nominal coverage levels 90%, 95% and 99%.
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Figure 5.8 Contour curves of l̂MSI(θ, η, 8), offering the confidence regions for the pair (speci-
ficity, sensitivity), at different nominal coverage levels 90%, 95% and 99%.
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Figure 5.9 Contour curves of l̂(θ, η, 8) from full data, offering the confidence regions for the
pair (specificity, sensitivity), at different nominal coverage levels 90%, 95% and 99%.
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CHAPTER 6

JACKKNIFE EMPIRICAL LIKELIHOOD CONFIDENCE REGIONS FOR

THE EVALUATION OF CONTINUOUS SCALE DIAGNOSTIC TEST WITH

VERIFICATION BIAS

6.1 Introduction

In Chapter 5, motivated by Adimari and Chiogna [4], we developed various bias-

corrected joint empirical likelihood confidence regions for continuous-scale tests. Their meth-

ods are based on the inverse probability weighting (IPW) estimator, the full imputation (FI)

method, the mean score imputation (MSI) method, and the semi-parametric efficient esti-

mator (SPE) for the sensitivity and the specificity [24]. We constructed confidence regions

for the pairs of (sensitivity, cut-off level), (specificity, cut-off level), and (sensitivity, speci-

ficity) based on limiting weighted chi-squared distributions of empirical log-likelihood ratio

statistics for the sensitivity and the specificity as well as the cut-off level. We also point out

the necessity of constructing joint confidence regions. Our EL-based joint confidence regions

provide visual tools to choose cut-off levels for desirable sensitivity and specificity by drawing

contours of joint confidence regions for (θ, τ) and (η, τ) in the same graph. Such visual tools

are easy to implement in practice. Additionally, those proposed confidence regions inherit

merits from the empirical likelihood method, such as good small sample performance, data

determined confidence regions and range-respecting.

The jackknife EL method, proposed by Jing et al. [41], is a powerful EL-based method to

overcome the computational difficulty for dealing with nonlinear functionals with a particular

application to U-statistics. Li et al. [45] proposed a jackknife EL method to construct

confidence regions for parameters of interest in the presence of nuisance parameters being

simply replaced by some estimators under the general estimating equation framework. With

jackknife pseudo samples, the resulting jackknife EL method retains the attractive property
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of standard chi-squared limiting distributions. In order to reduce the computation in the

jackknife empirical likelihood method when explicit estimators of nuisance parameters are

not available, Peng [46] proposed an approximate jackknife empirical likelihood method.

In this chapter, we would apply jackknife empirical likelihood methods proposed in

[45] to the framework proposed in the precious chapter to construct jackknife empirical

likelihood confidence regions for the evaluation of continuous-scale diagnostic tests in the

presence of verification bias. Since the proposed jackknife empirical log-likelihood ratio

statistics have standard chi-squared distributions as their limiting distributions, it is easy to

do joint inferences for the sensitivity and the specificity as well as the cut-off level in practice.

Most previous works, like Alonzo and Pepe [24], require estimates of complicate variance-

covariance matrices based on normal approximation theory in order to do inferences on joint

confidence regions. If explicit formulas are not available, bootstrap methods are required

at a price of computation burden. Also, Alonzo and Pepe [24] used a large sample size,

n = 5000, in their simulation studies, which are often unavailable in practice. Our methods

persist the attractive property of the empirical likelihood method, which has standard chi-

squared distribution as the asymptotic distribution of the EL ratio statistic and is free of

the estimation of any variance-covariance matrix. Additionally, our methods work well in

moderate sample size n ≥ 300 shown in simulation studies, and small sample size in practice

means a great save of money and other resources. These are contributions of our work.

We organize this chapter as follows. In Section 6.2, we apply the jackknife empirical

likelihood method to construct joint empirical likelihood confidence regions in the presence

of verification bias under estimating equation framework. Section 6.3 presents some simula-

tion studies to evaluate the finite sample performance and robustness of proposed methods.

Section 6.4 presents a real data analysis with one data set.
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6.2 Jackknife Empirical Likelihood Confidence Regions in the Presence of Ver-

ification Bias

Some standard notations are necessary to derive following results. We use Ti to denote

the continuous-scale test result from a screening test, and Di to denote the dichotomous

indicator of disease status without measurement error, for i = 1, . . . , n, where Di = 1 means

the ith patient is diseased and Di = 0 means the ith patient is free of disease. Due to

many reasons, such as budget limits and privacy security, only a part of patients decide to

have their disease statuses verified by gold standard tests. Let Vi denote the dichotomous

indicator of the verification status of the ith patient, with Vi = 1 if the ith patient has

his or her true disease status verified, and Vi = 0 if otherwise. Usually, during diagnostic

process, some covariates, like demographic variables, other than results from the screening

test, are collected. By incorporating this information, it is possible to model the verification

mechanism and the disease status, and we are interested in such kind of cases. Let Ai denote

a vector of observed covariates for the ith patient that may be associated with both Di and

Vi.

Similar with Chapter 5, under the missing at random (MAR) assumption, we assume

that the verification of disease status is conditionally independent of the true disease status

given test results and observed covariates, i.e., V ⊥ D|T,A. That is to say, whether or not

a patient has his or her true disease status verified only depends on T and A regardless of

the true disease status D, part of which are missing. Throughout this chapter, results are

based on this assumption.

With an i.i.d. sample Si = (Ti, Ai, Vi, Di), i = 1, . . . , n, conditionally independent Vi and

Di given Ti and Ai, motivated by the IPW, FI, MSI and SPE method-based bias-corrected

estimators of the sensitivity and the specificity provided in [24], Chapter 5 provides following
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four pairs of estimating functions for ϑ = (θ, η, τ)′:

IPW:

 gIPW,1(Si, ϑ, πi) = π−1
i ViDi(I(Ti ≤ τ) − (1 − θ))

gIPW,2(Si, ϑ, πi) = π−1
i Vi(1 −Di)(I(Ti ≤ τ) − η)

FI:

 gFI,1(Si, ϑ, ρi) = ρi(I(Ti ≤ τ) − (1 − θ))

gFI,2(Si, ϑ, ρi) = (1 − ρi)(I(Ti ≤ τ) − η)

MSI:

 gMSI,1(Si, ϑ, ρi) = (ViDi + (1 − Vi)ρi)(I(Ti ≤ τ) − (1 − θ))

gMSI,2(Si, ϑ, ρi) = (Vi(1 −Di) + (1 − Vi)(1 − ρi))(I(Ti ≤ τ) − η)

SPE:

 gSPE,1(Si, ϑ, πi, ρi) = (ViDi/πi − (Vi − πi)ρi/πi)(I(Ti ≤ τ) − (1 − θ))

gSPE,2(Si, ϑ, πi, ρi) = (Vi(1 −Di)/πi − (Vi − πi)(1 − ρi)/πi)(I(Ti ≤ τ) − η)

where πi = P (Vi = 1|Ti, Ai), and ρi = P (Di = 1|Ti, Ai). Let

gIPW(Si, ϑ, πi) = (gIPW,1(Si, ϑ, πi), gIPW,2(Si, ϑ, πi))
′, (6.1)

gFI(Si, ϑ, ρi) = (gFI,1(Si, ϑ, ρi), gFI,2(Si, ϑ, ρi))
′, (6.2)

gMSI(Si, ϑ, ρi) = (gMSI,1(Si, ϑ, ρi), gMSI,2(Si, ϑ, ρi))
′, (6.3)

gSPE(Si, ϑ, πi, ρi) = (gSPE,1(Si, ϑ, πi, ρi), gSPE,2(Si, ϑ, πi, ρi))
′. (6.4)

πi’s and ρi’s are sometimes unknown in practice. But one can replace them by their

consistent estimators from parametric models on observed information, i.e., ρi = ρ(Si,α) and

πi = π(Si,β). Usually, logistic regressions and probit models are employed to model binary

outcomes. For illustration, probit models are used to model ρi’s and logistic regressions are

used to model πi’s by incorporating covariates. Let Zi = (1, Ti, Ai)
′,α = (α0, α1, α2)

′,β =

(β0, β1, β2)
′, and Φ(·) is the standard normal distribution function. Then, ρi = Φ(Z ′

iα) and

πi = 1

1+e−Z′
i
β

. In the estimating equation framework, for probit models, we have:

Q2n,1(α) ≡ 1

n

n∑
i=1

ViQ2,1(Si,α) ≡ 1

n

n∑
i=1

Vi[Di − Φ(Z ′
iα)]ϕ(Z ′

iα)

Φ(Z ′
iα)(1 − Φ(Z ′

iα))
Zi, (6.5)
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where exact disease statuses are only available for verified subjects with Vi = 1 and ϕ(·) is

the standard normal density function. For logistic regressions, we have:

Q2n,2(β) ≡ 1

n

n∑
i=1

Q2,2(Si,β) ≡ 1

n

n∑
i=1

(Vi − πi)Zi. (6.6)

If above models are correctly specified, we can obtain consistent estimates α̂ of α

and β̂ of β. Then profiled estimating equations are given by plugging in resulting consistent

estimates ρ̂i = ρ(Zi, α̂) of ρi and π̂i = π(Zi, β̂) of πi into (6.1)-(6.4). These plug-in estimating

equations are easy to obtain, but they are not independent anymore. Therefore, Chapter 5

defines a plug-in EL for ϑ = (θ, η, τ)′, and proves that the corresponding profile empirical

likelihood ratio statistic has a weighted chi-squared distributions as its limiting distribution.

But the weights are required to be estimated before constructing confidence regions.

Motivated by [45], the jackknife technique could be employed to obtain asymptotically

independent pseudo values. Let α̂−i denote the solution to the equations

Q2n,−i,1(α) ≡ 1

n− 1

n∑
j=1,j ̸=i

Vj[Dj − Φ(Z ′
jα)]ϕ(Z ′

jα)

Φ(Z ′
jα)(1 − Φ(Z ′

jα))
Zj, (6.7)

and β̂−i denote the solution to the equations

Q2n,−i,2(β) ≡ 1

n− 1

n∑
j=1,j ̸=i

(Vj − πj)Zj. (6.8)
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Set

Tn,IPW(ϑ) =
n∑
i=1

gIPW(Si, ϑ, π̂i),

Tn,FI(ϑ) =
n∑
i=1

gFI(Si, ϑ, ρ̂i),

Tn,MSI(ϑ) =
n∑
i=1

gMSI(Si, ϑ, ρ̂i),

Tn,SPE(ϑ) =
n∑
i=1

gSPE(Si, ϑ, π̂i, ρ̂i).

And let ρ̂j,−i = Φ(Z ′
jα̂−i) and π̂j,−i = 1

1+e
−Z′

j
β̂−i

, if j ̸= i. Similarly, define

Tn,−i,IPW(ϑ) =
n∑

j=1,j ̸=i

gIPW(Sj, ϑ, π̂j,−i),

Tn,−i,FI(ϑ) =
n∑

j=1,j ̸=i

gFI(Sj, ϑ, ρ̂j,−i),

Tn,−i,MSI(ϑ) =
n∑

j=1,j ̸=i

gMSI(Sj, ϑ, ρ̂j,−i),

Tn,−i,SPE(ϑ) =
n∑

j=1,j ̸=i

gSPE(Sj, ϑ, π̂j,−i, ρ̂j,−i).

Therefore, jackknife pseudo samples are defined as

Yi,IPW(ϑ) = nTn,IPW(ϑ) − (n− 1)Tn,−i,IPW(ϑ) (6.9)

Yi,FI(ϑ) = nTn,FI(ϑ) − (n− 1)Tn,−i,FI(ϑ) (6.10)

Yi,MSI(ϑ) = nTn,MSI(ϑ) − (n− 1)Tn,−i,MSI(ϑ) (6.11)

Yi,SPE(ϑ) = nTn,SPE(ϑ) − (n− 1)Tn,−i,SPE(ϑ). (6.12)

With similar argument in Tukey [72], the above Yi,IPW(ϑ)’s, Yi,FI(ϑ)’s, Yi,MSI(ϑ)’s and

Yi,SPE(ϑ)’s, i = 1, . . . , n, are expected to be asymptotically independent, respectively. Then

standard empirical likelihood methods could be applied to above jackknife samples for con-
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structing joint empirical likelihood confidence regions for ϑ. We define the jackknife EL

function as follows:

LJ(ϑ) = sup

{
n∏
i=1

pi : each pi > 0,
n∑
i=1

pi = 1,
n∑
j=1

piYi(ϑ) = 0

}
, (6.13)

where Yi(ϑ) could be any one of Yi,IPW(ϑ), Yi,FI(ϑ), Yi,MSI(ϑ) and Yi,SPE(ϑ). With the La-

grange multiplier method, the jackknife log empirical likelihood ratio for ϑ is given by

lJ(ϑ) = 2
n∑
i=1

log(1 + t̂′Yi(ϑ)), (6.14)

where t̂ is the solution of the following equation:

1

n

n∑
i=1

Yi(ϑ)

1 + t′Yi(ϑ)
= 0.

By applying Theorem 1 in [45] to these special cases with all conditions there satisfied,

we obtain the following theorem.

Theorem 9 Assume that ϑ0 is the true value of ϑ. Then,

lJ(ϑ0)
d−→ χ2

2, (6.15)

where χ2
2 is a chi-squared random variable with two degrees of freedom.

Remark 1: Theorem 9 provides lJ(ϑ) = lJ(θ, η, τ) as a very good asymptotic pivotal

for the inference of parameter pairs (θ0, τ0), (η0, τ0) or (θ0, η0) with verification bias, when

the third remaining parameter is fixed at a given value. It is clear that based on Theorem 9,

we do not need to estimate any complicate variance-covariance matrices, which are necessary

for the normal approximation-based inferences. These complicate expressions of such kind

of matrices limit the application of normal approximation-based methods, and bootstrap

methods are required to alleviate these problems at prices of computation burden and time

consumption. Alonzo and Pepe [24] sketched the proof of asymptotic results in the framework
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of general estimating equations, and explicit formulas are complicate. Therefore, they used

bootstrap resampling in simulation studies.

Remark 2: Theorem 9 provides four types of bias-corrected joint confidence regions,

which are flexible to accommodate many situations. One could use one or several of them

according to the specific situation. Also, simulation studies show that our methods work

well in moderate sample size, n ≥ 300, compared with n = 5000 in [24]. Good performance

in smaller sample size situations implies a great save of money and other resources, often

crucial in practical applications.

Based on above remarks, we could say our methods are best ones so far in constructing

joint confidence regions in the presence of verification bias under the MAR assumption.

The proof of Theorem 1 directly follows from the theory in [45]. Only two points should

be pointed out here. In our case, estimating equations Q2n,1(α) for α and Q2n,2(β) for β do

not involve ϑ. Thus their estimates are not functions of ϑ. Additionally, the number of total

parameters equal the number of estimating functions in our case, thus as mentioned in [45],

lJ(ϑ̂) = 0.

In practice, the verification mechanism is known sometimes. If this is true, it is unneces-

sary to apply IPW-based jackknife empirical likelihood confidence regions for ϑ. One can use

the reduced empirical likelihood confidence regions for ϑ provided in Chapter 5 because the

reduced empirical log-likelihood ratio statistic for ϑ is still a standard chi-square distribution

with 2 degrees of freedom.

In this chapter, we consider three types of (1 − α)100% jackknife empirical likelihood

confidence regions as follows:

• Rα,1(θ, τ) = {(θ, τ) : lJ(θ, η0, τ) ≤ χ2
α,2};

• Rα,2(η, τ) = {(η, τ) : lJ(θ0, η, τ) ≤ χ2
α,2};

• Rα,3(θ, η) = {(θ, η) : lJ(θ, η, τ0) ≤ χ2
α,2};

where α ∈ (0, 1), and χ2
α,2 is the (1 − α)-th quantile of the chi-square distribution with 2

degrees of freedom. Compared with the methods proposed in Chapter 5, we do not need to
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estimate quantiles of weighted chi-square distribution. Methods proposed in this paper merit

a lot from the application of the jackknife technique. Thus, they bring much convenience in

practice.

The above three types of confidence regions will be utilized to select a reasonable cut-off

level for a continuous-scale screening test. With the selected cut-off level, joint confidence

regions of the sensitivity and the specificity can be constructed. The whole procedure is

similar to that in Chapter 5. In this chapter, it will be illustrated by another real data set.

6.3 Simulation Studies

In this section, simulation studies are conducted to evaluate the finite sample per-

formance and robustness of proposed various bias-corrected jackknife empirical likelihood

confidence regions.

Same model settings with those in Chapter 5 are utilized here for the purpose of com-

parison. Firstly, two independent underlying continuous disease processes are generated,

denoted by Z1 ∼ N (0, 0.5) and Z2 ∼ N (0, 0.5). The disease status indicator D is generated

as a binary variable: if a random variable Z = Z1 +Z2 ∼ N (0, 1) exceeds a certain threshold

h, then D = 1, indicating the patient is diseased; otherwise, D = 0. Thus h determines

the disease prevalence. Continuous screening test results T and the auxiliary covariates A

are generated through Z1 and Z2: T = ν1Z1 + κ1Z2 + ε1 and A = ν2Z1 + κ2Z2 + ε2, where

ε1 ∼ N (0, 0.25) and ε2 ∼ N (0, 0.25) are independent. It is clear that ν1, ν2, κ1 and κ2

determine the strength of correlation between T and A. Additionally, T and A are related

to D. For detailed explanation, one may refer to [24]. Under this model setting, it can be

shown that D conditional on T and A follows a probit model.

6.3.1 Correct Models

Under the MAR assumption, the verification probability π(Z,β) is specified as a func-

tion of Z = (1, T, A)′, and the parameter β could be estimated from an estimating equation

regardless of ϑ of major interest. In this section, we set log( π
1−π ) = −0.7 + T + A with
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π = P (V = 1|T,A). In the presence of verification bias, D is only available for those pa-

tients with V = 1. Therefore, disease status results are available for roughly 40% of patients.

More exactly, 20%-30% of non-diseased patients have their disease status verified, compared

with roughly 70%-80% for diseased patients under model settings. In order to apply FI, MSI

and SPE methods, a parametric model for probabilities, ρi’s, are required to be specified. It

was shown in [24] that a probit model that was linear in T and A was a true model under

above settings.

4000 random samples are drawn from underlying distributions with sample sizes n =

200, 300, 400 and 500 respectively to evaluate the performance of proposed various jackknife

empirical likelihood confidence regions in terms of coverage probability at nominal levels

90% and 95%. At this moment, we fix ν2 = κ2 = 1, and select h to make the prevalence

of disease equals 0.3 and 0.5. Different values of (ν1, κ1) are selected to generate balanced

and unbalanced specificity and sensitivity. For the purpose of comparison, one may refer

to Chapter 5 for results of profile empirical likelihood methods and normal approximation

methods. The proposed jackknife EL confidence regions clearly perform much better than

normal approximation-based methods.

In Table 6.1, coverage probabilities of IPW, FI, MSI and SPE based jackknife EL

confidence regions are presented with nominal levels 90% and 95% under various scenarios

in the presence of verification bias. It is clear that the proposed four bias-corrected jackknife

EL confidence regions generally work pretty well in moderate sample size cases (n ≥ 300).

Also, if (ν1, κ1) is comparable with (ν2, κ2) (i.e. ν1 = κ1 = 1 and ν2 = κ2 = 1), better

sensitivity and better specificity could be achieved simultaneously with carefully selected

cut-off level τ . When sample size is small, n = 200, all four types of confidence regions are

not satisfactory in many cases, especially for unbalanced sensitivity and specificity case. This

observation is reasonable because jackknife technique relies on the asymptotic independence

of pseudo samples. With smaller sample sizes, pseudo samples may not be ”adequately

independent”.

With correctly specified verification models and disease models, IPW, FI, MSI and SPE
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based bias-corrected jackknife EL regions are competent with each other. But when the

disease prevalence is lower, 0.3, τ0 = 0.2, and sensitivity is much greater than specificity,

coverage probabilities are not stable enough with smaller sample sizes (n ≤ 400). Our

observation could still be explained by asymptotic independence of jackknife pseudo samples.

According to our experience, we have several suggestions on the application of these methods.

If the verification mechanism is more likely to be correctly specified, IPW-based regions are

preferred. Alternatively, if the prevalence of disease is more likely to be modeled correctly,

MSI-based regions are more preferred based on the following considerations: only part of Di’s

for unverified patients are required to be imputed compared with the FI method, resulting in

less variation. If either verification mechanism or prevalence of disease is correctly specified,

SPE-based confidence regions are employed, because it is doubly robust. This means if one

of these two models is misspecified, resulting estimates are still consistent ([26], [58], [57]).

When facing the problem of selecting a reasonable cut-off level for a screening test, one

can use jackknife EL confidence regions Rα,1 and Rα,2 to identify a reasonable cut-off level.

The entire procedure will be illustrated in the section of real case study.

Compared with proposed methods, estimates from estimating equations involve the se-

lection of initial values, which will influence the convergence of the algorithm. Also, inference

based on estimating equation estimates highly depends on accurate estimations of variance-

covariance matrices that are often provided in complicated forms. Bootstrap would aid this

yet at a price of computational burden.

6.3.2 Misspecified Models

So far, both disease models and verification models are assumed to be correctly spec-

ified in previous simulation studies. However, misspecification of underlying models may

happen. SPE method is proposed based on robustness consideration, which could work in

such situation. In the followings, we will evaluate the robustness of proposed bias-corrected

jackknife EL confidence regions, especially for SPE-based confidence regions.

To introduce misspecification, we apply the setting used in [24]. V is generated from a
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Bernoulli random variable with P (V = 1) = 1 for patients with T > t(0.8), i.e. all verified,

and P (V = 1) = 0.2 for others, where t(0.8) is the 80-th quantile of the distribution of T .

But we still model V by a logistic regression. Then a misspecification of the verification

model happens. In previous settings, the disease is present if Z1 + Z2 > h, and T and A

are generated from linear combinations of Z1 and Z2. Based on the discussion in [24], with

ν1 = 1 and τ = 0 for T and ν2 = 0 and τ2 = 1 for A, a probit model of D only linear in T is

misspecified. As mentioned above, it is expected that bias-corrected jackknife EL confidence

regions based on lJ(ϑ0) with Yi,SPE(ϑ)’s are still doubly robust.

When disease models are misspecified, confidence regions based on FI, MSI and SPE

methods are evaluated, because the IPW method does not depend on models of disease.

Coverage probabilities (which are from 70% to 80%, not reported here) for FI and MSI

based confidence regions are much smaller than nominal levels, and results for SPE-based

methods are displayed in Table 6.2. Table 6.2 shows that the proposed SPE-based jack-

knife EL confidence regions work well with moderate sample size cases (n ≥ 300) when a

misspecification of disease models is present.

When verification models are misspecified, only confidence regions based on IPW and

SPE methods are evaluated, because FI and MSI methods do not depend on models of

verification. Similarly, coverage probabilities for the IPW method are not good (not reported

here), and only results from SPE based method are presented. Table 6.3 indicates that SPE-

based jackknife EL confidence regions work well with moderate sample size cases (n ≥ 300)

for most cases when a misspecification of verification models is present. In the first case

where disease prevalence is 0.3, ν1 = κ1 = 1, and the cut-off level is selected to generate much

higher sensitivity than specificity, resulting joint confidence regions which undercover true

values. However, from simulation results, it is clear that their performance is improving as

the sample size increases from 300 to 600. One reasonable explanation for such phenomena

is still due to the asymptotic independence of jackknife pseudo samples. In order to get

better results, we recommend the proposed methods in Chapter 5 based on weighted chi-

square distributions, which are shown to perform well in all cases for moderate sample sizes
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n ≥ 300.

These observations confirm that the SPE-based jackknife EL method is “doubly robust”.

As mentioned in Chapter 5, SPE-based NA regions could perform well in some settings, but

results are not stable.

6.4 Study of Neonatal Hearing Screening Data

We apply proposed various jackknife confidence regions in the presence of verification

bias to the data set from a neonatal hearing screening data set. This data set is analyzed by

Alonzo and Pepe [24]. In their paper, they applied several bias-corrected estimators of true

and false positive rates to construct ROC curves and estimate areas under the ROC curve

of screening tests for neonatal hearing loss.

Undetected hearing loss in infants is of great concern in practice, because it would result

in serious problems with speech, social and emotional development. Thus, earlier diagnosis

of such loss will lower the risk of infants. The identification of neonatal hearing impairment

(INHI) study aims at assessing the accuracy of two passive electronic devices, the distorting

product otoacoustic emissions (DPOAE) and the transient evoked otoacoustic emissions

(TEOAE) tests. These two tests could be administered soon after birth [73], compared with

the gold standard test for determining neonatal hearing loss, visual reinforcement audiometry

(VRA), which cannot be administered until infants are 8 to 12 months old. Therefore, the

evaluation of such two screening tests is necessary.

The subset of the INHI data used in this section was generated by Alonzo and Pepe

[24], following a two-phase design. In the first phase, DPOAE and TEOAE test results

are available for all infants. In the second phase, all infants with DPOAE test results

greater than the 80-th quantile of the distribution of DPOAE test results at least on one ear

are sent to be verified, and remaining infants are verified with probability 0.4. The subset

includes TEOAE and DPOAE test results on 5101 ears, corresponding to 2763 infants. Also,

verification statuses Vi’s and VRA results, Di’s, for 1571 verified infants are also available.

We follow the same argument in [24] to let T ≡DPOAE and A ≡TEOAE. Also logistic
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regression for P (D = 1|T,A) is utilized to obtain ρ̂i’s. We use 2763 observations, one ear

of each infant, in our real case study because the decision of verifying ears just depend on

the ear with larger screening test values. Estimates of πi could be written into a general

estimating equation resulting in empirical estimates. For infants with DPOAE test results

greater than the 80-th quantile of DPOAE results, π̂i = 1; for infants with DPOAE test

results below the threshold, π̂i = 0.394. With a large data set at hand, we just simply

remove the ith value of {π̂i}ni=1 to obtain Tn,−i,IPW(ϑ) and Tn,−i,SPE(ϑ), because empirical

estimates are stable for a large data set.

In order to select a reasonable cut-off point that generates both higher sensitivity and

higher specificity of the screening test DPOAE, motivated by [68], we follow the procedure

in Chapter 5. Firstly, proper joint confidence regions of the pair (sensitivity, cut-off level) at

a fixed specificity value and the pair (specificity, cut-off level) at a fixed sensitivity value are

constructed to investigate the relationship between the sensitivity/specificity and the cut-off

level. In order to fix the specificity and the sensitivity, we check ROC curves provided in

[24]. From those curves, the screening test DPOAE does not have a good performance,

thus we fix both specificity and sensitivity at 0.6. With jackknife technique, joint empirical

likelihood confidence regions could be directly constructed by applying Theorem 9. Contour

plots are employed to show confidence regions. lJ(θ, 0.6, τ) and lJ(0.6, η, τ) are evaluated

at fine grids of (θ, τ) and (η, τ), and contours are connected according to the (1 − α)th

quantile of the chi-squared distribution with 2 degrees of freedom. Because the true model

of verification is available, jackknife empirical likelihood confidence regions based on the

IPW method are used as reference. Additionally, results from MSI-based jackknife empirical

likelihood with the logistic regression assumption of P (D = 1|T,A) are also presented here

to make a comparison.

The left panel in Figure 6.1 shows contour curves of lJIPW(θ, 0.6, τ), offering confidence

regions for the pair (sensitivity, cut-off level) at nominal confidence levels 90%, 95% and 99%.

The plot indicates that, only a narrow range around −4 of the cut-off level is compatible

with the target specificity level of 0.6. The right panel in Figure 6.1 shows contour curves of
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lJIPW(0.6, η, τ), offering confidence regions for the pair (specificity, cut-off level) at nominal

levels 90%, 95% and 99%. This plot shows that, a variety of pairs of values for (η, τ) are

compatible with the target sensitivity level of 0.6 in a narrow strip manner. Similarly we have

Figure 6.2 for lJMSI(θ, 0.6, τ) and lJMSI(0.6, η, τ). Although, both figures offer similar shapes

of confidence regions at nominal levels 90% and 95%, MSI-based confidence regions of the

pair of specificity and cut-off level have narrower ranges for the cut-off level. Therefore,

MSI-based joint confidence regions with the logistics regression assumption for D seems to

be optimistic by comparing the first two figures.

Joint confidence regions offer us a good chance to select reasonable cut-off levels com-

patible with both good specificity and sensitivity, 0.6 in this study, as we plot two regions in

the same graph. Figure 6.3 shows both 95% IPW-based jackknife joint confidence region for

the pair (sensitivity, cut-off level) at the fixed specificity level of 0.6 and the 95% confidence

region for the pair (specificity, cut-off level) at the fixed sensitivity level of 0.6. Figure 6.4

shows similar regions from MSI-based jackknife joint confidence regions. The overlapping

parts in two figures indicate a narrow interval around −4 of the cut-off level. Therefore, we

select −4 as a reasonable value of the cut-off level.

Given the cut-off level, joint confidence regions of the specificity and the sensitivity could

be obtained. Figure 6.5 and 6.6 show contour curves of lJIPW(θ, η,−4) and lJMSI(θ, η,−4),

respectively, indicating 95% joint jackknife confidence regions for the pair (specificity, sensi-

tivity) with the cut-off level fixed at −4. With the cut-off level fixed at −4, in Figure 6.5,

the specificity ranges from 0.58 to 0.67, and the sensitivity has a larger variation, from 0.35

to 0.75; in Figure 6.6, the MSI-based region is optimistic, providing a smaller region, i.e., the

specificity ranges from 0.60 to 0.65, and the sensitivity ranges from 0.40 to 0.73. Generally

speaking, the performance of DPOAE, treated as a screening test, could not offer both high

sensitivity and high specificity. Thus the gold standard VRA is required to verify neonatal

hearing impairment.
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Table 6.1 Correct models: Coverage probabilities of various jackknife empirical likelihood
confidence regions with nominal confidence levels 90% and 95% in the presence of verification
bias. Pre. means disease prevalence.

n = 200 n = 300 n = 400 n = 500
Type Pre. τ0 ν1 κ1 η0 θ0 90% 95% 90% 95% 90% 95% 90% 95%
IPW 0.3 0.2 1 1 0.783 0.924 0.930 0.969 0.896 0.951 0.881 0.937 0.878 0.935

0.4 1 1 0.855 0.864 0.897 0.948 0.888 0.940 0.885 0.940 0.894 0.942
0.15 1 0 0.690 0.715 0.896 0.944 0.897 0.952 0.899 0.948 0.897 0.950
-0.2 1 0 0.520 0.850 0.896 0.943 0.889 0.938 0.898 0.940 0.905 0.947
0.15 0 1 0.690 0.715 0.897 0.945 0.901 0.948 0.906 0.953 0.907 0.949
-0.2 0 1 0.520 0.850 0.897 0.946 0.887 0.941 0.900 0.944 0.890 0.944

0.5 0 1 1 0.852 0.852 0.888 0.942 0.893 0.945 0.897 0.948 0.894 0.949
-0.2 1 1 0.771 0.913 0.890 0.934 0.892 0.943 0.888 0.939 0.893 0.946
0 1 0 0.696 0.696 0.901 0.945 0.900 0.946 0.904 0.949 0.911 0.956
-0.4 1 0 0.495 0.851 0.858 0.910 0.871 0.924 0.888 0.934 0.905 0.947
0 0 1 0.696 0.696 0.903 0.942 0.905 0.953 0.911 0.956 0.904 0.954
-0.4 0 1 0.495 0.851 0.866 0.913 0.889 0.927 0.895 0.938 0.894 0.939

FI 0.3 0.2 1 1 0.783 0.924 0.868 0.919 0.888 0.940 0.887 0.937 0.895 0.941
0.4 1 1 0.855 0.864 0.892 0.942 0.898 0.948 0.897 0.945 0.906 0.957
0.15 1 0 0.690 0.715 0.901 0.953 0.889 0.949 0.902 0.953 0.908 0.960
-0.2 1 0 0.520 0.850 0.895 0.946 0.888 0.939 0.891 0.945 0.902 0.949
0.15 0 1 0.690 0.715 0.904 0.955 0.902 0.953 0.900 0.953 0.913 0.954
-0.2 0 1 0.520 0.850 0.893 0.946 0.899 0.950 0.900 0.946 0.900 0.947

0.5 0 1 1 0.852 0.852 0.877 0.924 0.902 0.947 0.901 0.949 0.910 0.955
-0.2 1 1 0.771 0.913 0.874 0.927 0.892 0.937 0.884 0.940 0.910 0.953
0 1 0 0.696 0.696 0.911 0.954 0.907 0.957 0.901 0.956 0.914 0.960
-0.4 1 0 0.495 0.851 0.888 0.944 0.906 0.950 0.905 0.954 0.907 0.952
0 0 1 0.696 0.696 0.912 0.953 0.902 0.953 0.905 0.952 0.906 0.957
-0.4 0 1 0.495 0.851 0.897 0.944 0.908 0.952 0.899 0.949 0.907 0.958

MSI 0.3 0.2 1 1 0.783 0.924 0.880 0.920 0.888 0.939 0.891 0.943 0.898 0.947
0.4 1 1 0.855 0.864 0.904 0.952 0.906 0.953 0.898 0.950 0.911 0.957
0.15 1 0 0.690 0.715 0.903 0.954 0.896 0.951 0.902 0.954 0.905 0.956
-0.2 1 0 0.520 0.850 0.896 0.944 0.895 0.942 0.897 0.948 0.902 0.947
0.15 0 1 0.690 0.715 0.910 0.957 0.903 0.954 0.900 0.956 0.907 0.955
-0.2 0 1 0.520 0.850 0.898 0.945 0.906 0.953 0.898 0.949 0.893 0.948

0.5 0 1 1 0.852 0.852 0.889 0.935 0.906 0.951 0.911 0.955 0.914 0.954
-0.2 1 1 0.771 0.913 0.875 0.922 0.900 0.943 0.893 0.947 0.917 0.958
0 1 0 0.696 0.696 0.910 0.955 0.911 0.958 0.898 0.953 0.913 0.958
-0.4 1 0 0.495 0.851 0.892 0.943 0.904 0.950 0.901 0.951 0.906 0.953
0 0 1 0.696 0.696 0.912 0.957 0.906 0.950 0.906 0.953 0.908 0.956
-0.4 0 1 0.495 0.851 0.898 0.946 0.908 0.952 0.900 0.951 0.906 0.956

SPE 0.3 0.2 1 1 0.783 0.924 0.854 0.899 0.879 0.928 0.876 0.930 0.890 0.940
0.4 1 1 0.855 0.864 0.896 0.946 0.903 0.949 0.894 0.942 0.906 0.952
0.15 1 0 0.690 0.715 0.896 0.943 0.890 0.950 0.899 0.949 0.905 0.953
-0.2 1 0 0.520 0.850 0.878 0.932 0.866 0.866 0.892 0.944 0.897 0.945
0.15 0 1 0.690 0.715 0.899 0.950 0.904 0.951 0.901 0.953 0.906 0.955
-0.2 0 1 0.520 0.850 0.882 0.928 0.892 0.942 0.888 0.939 0.887 0.940

0.5 0 1 1 0.852 0.852 0.885 0.935 0.895 0.945 0.900 0.951 0.903 0.949
-0.2 1 1 0.771 0.913 0.851 0.896 0.883 0.930 0.878 0.932 0.896 0.945
0 1 0 0.696 0.696 0.897 0.948 0.896 0.949 0.885 0.938 0.901 0.953
-0.4 1 0 0.495 0.851 0.857 0.915 0.883 0.936 0.884 0.936 0.894 0.942
0 0 1 0.696 0.696 0.898 0.949 0.894 0.945 0.900 0.950 0.904 0.951
-0.4 0 1 0.495 0.851 0.868 0.925 0.883 0.934 0.880 0.935 0.891 0.946
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Table 6.2 Misspecified disease models: Coverage probabilities of SPE-based joint empirical
likelihood confidence regions with nominal confidence levels 90% and 95% in the presence of
verification bias. Pre. means disease prevalence.

n = 300 n = 400 n = 500
Pre. τ0 η0 θ0 90% 95% 90% 95% 90% 95%
0.3 0.0 0.620 0.779 0.910 0.958 0.908 0.960 0.914 0.956

-0.2 0.520 0.850 0.907 0.955 0.904 0.954 0.907 0.952
0.5 -0.2 0.599 0.781 0.915 0.957 0.905 0.953 0.909 0.957

-0.4 0.495 0.851 0.913 0.956 0.909 0.956 0.909 0.961

Table 6.3 Misspecified verification models: Coverage probabilities of SPE-based joint empiri-
cal likelihood confidence regions with nominal confidence levels 90% and 95% in the presence
of verification bias. Pre. means disease prevalence.

n = 300 n = 400 n = 500 n = 600
Pre. τ0 ν1 κ1 η0 θ0 90% 95% 90% 95% 90% 95% 90% 95%
0.3 0.2 1 1 0.783 0.924 0.768 0.817 0.805 0.850 0.846 0.889 0.859 0.916

0.4 1 1 0.855 0.864 0.859 0.905 0.876 0.928 0.893 0.940 0.891 0.946
0.15 1 0 0.690 0.715 0.885 0.937 0.884 0.941 0.903 0.953 0.897 0.947
-0.2 1 0 0.520 0.850 0.864 0.917 0.877 0.931 0.888 0.937 0.885 0.939
0.15 0 1 0.690 0.715 0.892 0.943 0.893 0.946 0.903 0.946 0.900 0.950
-0.2 0 1 0.520 0.850 0.874 0.920 0.874 0.928 0.881 0.938 0.897 0.947

0.5 0 1 1 0.852 0.852 0.878 0.929 0.907 0.952 0.908 0.958 0.911 0.958
-0.2 1 1 0.771 0.913 0.853 0.898 0.886 0.924 0.911 0.952 0.897 0.949
0 1 0 0.696 0.696 0.890 0.945 0.888 0.949 0.911 0.954 0.907 0.953
-0.4 1 0 0.495 0.851 0.902 0.943 0.902 0.956 0.906 0.954 0.906 0.952
0 0 1 0.696 0.696 0.909 0.949 0.898 0.947 0.904 0.949 0.895 0.945
-0.4 0 1 0.495 0.851 0.901 0.951 0.894 0.943 0.907 0.952 0.907 0.952
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Figure 6.1 Left panel: contour curves of lJIPW(θ, 0.6, τ), offering confidence regions for the pair
(cut-off level, sensitivity) at the fixed specificity level of 0.6. Right panel: contour curves of
lJIPW(0.6, η, τ), offering confidence regions for the pair (cut-off level, specificity) at the fixed
sensitivity level of 0.6. Contours in both panels correspond to nominal confidence levels 90%,
95% and 99%.



106

Cut−off

Se
ns

itiv
ity

 90% 

 95
% 

 99% 

−8 −7 −6 −5 −4 −3 −2 −1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Cut−off

Sp
ec

ific
ity

 90% 

 95
% 

 95
% 

 99% 

−8 −7 −6 −5 −4 −3 −2 −1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

Figure 6.2 Left panel: contour curves of lJMSI(θ, 0.6, τ), offering confidence regions for the pair
(cut-off level, sensitivity) at the fixed specificity level of 0.6. Right panel: contour curves of
lJMSI(0.6, η, τ), offering confidence regions for the pair (cut-off level, specificity) at the fixed
sensitivity level of 0.6. Contours in both panels correspond to nominal confidence levels 90%,
95% and 99%.
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Figure 6.3 IPW-based joint confidence regions: in red, the 95% confidence region for the
pair (cut-off level, sensitivity) at the fixed 0.6 level of specificity; In blue, the 95% confidence
region for the pair (cut-off level, specificity,) at the fixed 0.6 level of sensitivity.
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Figure 6.4 MSI-based joint confidence regions: in red, the 95% confidence region for the pair
(cut-off level, sensitivity) at the fixed 0.6 level of specificity; In blue, the 95% confidence
region for the pair (cut-off level, specificity,) at the fixed 0.6 level of sensitivity.
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Figure 6.5 Contour curves of lJIPW(θ, η,−4), offering the confidence regions for the pair (speci-
ficity, sensitivity) when the cut-off level τ is fixed at -4, at nominal coverage levels 90%, 95%
and 99%.
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Figure 6.6 Contour curves of lJMSI(θ, η,−4), offering the confidence regions for the pair (speci-
ficity, sensitivity) when the cut-off level τ is fixed at -4, at nominal coverage levels 90%, 95%
and 99%.
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CHAPTER 7

DISCUSSION AND FUTURE WORK

This dissertation focuses on the inference of ROC curves with missing data under both

MCAR and MAR assumptions, which are usual in practice. Also various bias-corrected

empirical likelihood confidence intervals for the sensitivity of ROC curves, the AUC and

joint confidence regions for the sensitivity and the specificity with missing data are proposed.

Simulation studies are conducted to evaluate the finite sample performance of all proposed

methods. Additionally, all new methods have been applied to some real data sets in medical

diagnostics to show their practical meanings.

In Chapter 2, We have established the EL-based theory and proposed two EL-based

intervals for the sensitivity of a continuous-scale diagnostic test with missing data under

the MCAR assumption. In Chapter 3, an imputation-based empirical likelihood method is

proposed to construct confidence interval for the AUC with MCAR data. Furthermore, joint

confidence regions of the pair (cut-off level, sensitivity) at a fixed value of specificity, the pair

(cut-off level, specificity) at a fixed value of sensitivity or the pair (specificity, sensitivity)

at a fixed cut-off value are constructed by applying the empirical likelihood method, under

the MCAR assumption in Chapter 4 and the MAR assumption in Chapter 5. Chapter 6

applies the jackknife technique to the framework combining the empirical likelihood method

and generalized estimating equations with nuisance parameters, proposed in Chapter 5, to

simplify the inference procedure.

As we mentioned, MAR and MNAR assumptions are more general than the MCAR

assumption, because missing values may depend on observed or even unobserved variables.

These assumptions are more flexible to accommodate real cases. Then we could do the in-

ference of the sensitivity given a specificity and the AUC under the more general MAR or

MNAR assumption, rather than the MCAR assumption. These problems are challenging be-
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cause the missing mechanism depends on different characteristics of patients. Some research

have been done on these topics. Rotnitzky et al. [26] proposed a doubly robust estimator of

the AUC under both MAR and MNAR assumptions. Later, He et al. [27] provided a direct

estimate of the AUC in the presence of verification bias, and Fluss et al. [28] investigated

the properties of the doubly robust method for estimating the ROC curve under verification

bias. Long et al. [30] developed robust statistical methods for estimating the ROC AUC,

and the proposed methods used information from auxiliary variables that are potentially

predictive of the missingness of the biomarkers or the missing biomarker values.

So far, all these methods are based on normal approximation methods, which involve

complicate variance-covariance matrices and require large sample size to obtain satisfactory

results. In the future, we could apply the empirical likelihood method and the jackknife

empirical likelihood method to construct robust confidence intervals of the sensitivity and

the AUC under the MAR and the MNAR assumptions. Additionally, joint confidence regions

of the sensitivity and the specificity as well as the cut-off level could be extended to MNAR

cases.
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Appendix A

PROOFS OF CHAPTER 2

In order to prove Proposition 1, Proposition 2 and Theorem 1, a few lemmas are neces-

sary.

Lemma 1 (Chen and Rao [74]) Let Un, Vn be two sequences of random variables and Bn be

a σ-algebra. Assume that: (i) There exists σ1n > 0 such that σ−1
1n Vn

d→ N (0, 1) as n → ∞,

where Vn is Bn measurable; (ii) E(Un|Bn) = 0 and VAR(Un|Bn) = σ2
2n such that

sup
t

|P (σ−1
2nUn ≤ t|Bn) − Φ(t)| = op(1),

where Φ(·) is the cumulative distribution function of the standard normal distribution; (iii)

γ2n = σ2
1n/σ

2
2n = γ2 + op(1). Then,

Un + Vn√
σ2
1n + σ2

2n

d→ N (0, 1) as n→ ∞.

Proof of Proposition 1. Let Ī1r = 1
rX

∑
i∈SrX

I(Xi ≤ x) and Bm = σ(Xi, δXi
, i =

1, . . . ,m). Then, we have

E(I(X∗
i ≤ x)|Bm) = Ī1r, VAR(I(X∗

i ≤ x)|Bm) =
1

rX

∑
i∈SrX

{I(Xi ≤ x) − Ī1r}2,

and the following decomposition:

F̃ (x) =
1

m

∑
i∈SrX

I(Xi ≤ x) +mX Ī1r +
∑
i∈SmX

(I(X∗
i ≤ x) − Ī1r)


=

1

rX

∑
i∈SrX

I(Xi ≤ x) +
mX

m

1

mX

∑
i∈SmX

(I(X∗
i ≤ x) − Ī1r) ≡ I + II.
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Based on the fact that the empirical distribution is uniformly consistent, the first part (I) is

uniformly consistent with F (x), and the second part (II) uniformly tends to 0. Therefore,

F̃ (x) is a uniformly consistent estimate for F (x). Additionally,

√
m(F̃ (x) − F (x)) =

1√
m

∑
i∈SrX

I(Xi ≤ x) +mX Ī1r −mF (x) +
∑
i∈SmX

(I(X∗
i ≤ x) − Ī1r)


=

√
m

√
rX

1
√
rX

∑
i∈SrX

(I(Xi ≤ x) − F (x))

+

√
mX√
m

1
√
mX

∑
i∈SmX

(I(X∗
i ≤ x) − Ī1r) ≡ Vm + Um.

It is clear that Vm is Bm measurable. Combining the MCAR assumption, the Central

Limit Theorem and the Slutsky’s Theorem, it follows that

Vm
d→ N (0, π−1

1 F (x)(1 − F (x))).

From the Berry-Essen’s Central Limit Theorem for independent variables, we have

sup
x

|P (σ−1
2mUm ≤ x|Bm) − Φ(x)| = op(1),

where σ2
2m = mX

m
VAR(I(X∗

i ≤ x)|Bm).

Also we know VAR(I(X∗
i ≤ x)|Bm)

P→ F (x)(1 − F (x)). Combined with mX

m

P→ 1 − π1,

we have σ2
2m

P→ (1 − π1)F (x)(1 − F (x)).

Then, as m→ ∞, by Lemma 1 and the Slutsky’s Theorem,

1√
m

m∑
i=1

I(X̃i ≤ x) −
√
mF (x)

d→ N (0, σ2
X)

where σ2
X = (1 − π1 + π−1

1 )F (x)(1 − F (x)).

Similarly, we could prove the same results for G̃(y).

Proof of Corollary 1. The proof is the same as it of Proposition 1 by disregarding
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the random hot deck imputation part.

Proof of Proposition 2. This proposition is an extension of the result in the paper

of Gastwirth [59]. Thus, some adjustments are needed.

Let ef be the standardized ”excess random variable” defined by

ef =
m∑
i=1

ri − F−1(p)√
mp(1 − p)

,

where

ri =

 1, if X̃i ≤ F−1(p)

0, o.w.

and, let

e∗g =
n∑
j=1

sj −G(F−1(p))√
nG(F−1(p))(1 −G(F−1(p)))

,

where

sj =

 1, if Ỹj ≤ G(F−1(p))

0, o.w.

Based on similar calculation in the paper of Gastwirth [59], we have

u∗ = G̃(F̃−1(p)) −G(F−1(p))

= [G(F−1(p))(1 −G(F−1(p)))n−1]1/2e∗g +
g(F−1(p))

f(F−1(p))
p(1 − p)m−1/2ef + op(m

−1/2).

It is clear that e∗g and ef are independent. By Proposition 1, it follows that

e∗g
d→ N (0, 1 − π2 + π−1

2 ), ef
d→ N (0, 1 − π1 + π−1

1 ).
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Therefore, combined with R(p) = 1 −G(F−1(p)), we have

√
nσ−1

1 (p)u∗ =
√
nσ−1

1 (p)(G̃(F̃−1(p)) −G(F−1(p))
d→ N (0, 1),

Lemma 2 Under the same conditions as in Theorem 1, the followings hold:

(i). 1
n

∑n
j=1 W̃

2
j (p)

P→ σ2(p);

(ii). 1
n1/2σ1(p)

∑n
j=1 W̃j(p)

d→ N (0, 1).

Proof of Lemma 2.

Lemma 2(i) follows from the uniform consistency of F̃ and the following:

∣∣∣∣∣ 1n
n∑
j=1

W̃ 2
j (p) − 1

n

n∑
j=1

W 2
j (p)

∣∣∣∣∣ ≤ 2

n

n∑
j=1

|I(Ũj ≤ 1 − p) − I(Uj ≤ 1 − p)| P→ 0,

1

n

n∑
j=1

W 2
j (p) =

1

n

n∑
j=1

[I(Uj ≤ 1 − p) −R(p)]2

=
1

n

n∑
j=1

[
I(Uj ≤ 1 − p) +R2(p) − 2R(p)I(Uj ≤ 1 − p)

]
P→ R(p)(1 −R(p)) = σ2(p),

because we can similarly show 1
n

∑n
j=1 I(Uj ≤ 1 − p)

P→ R(p) as in Proposition 1.

Lemma 2(ii) follows from Proposition 2 and the following identity

1

n1/2σ1(p)

n∑
j=1

W̃j(p) =
√
nσ−1

1 (p)(1 − G̃(F̃−1(p)) −R(p)) = −
√
nσ−1

1 (p)(G̃(F̃−1(p)) −G(F−1(p)))..

Proof of Theorem 1.

Based on Lemma 2 and the same procedure of the proof of Theorem 3.1 in Qin et al.

[36], it is straight forward to obtain the result. Key steps are listed as follows.
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Similarly, we could prove that |λ̃| = Op(n
−1/2). Based on Taylor expansion, we have

l̃(R(p)) = 2
n∑
j=1

log
(

1 + λ̃W̃j(p)
)

= 2
n∑
j=1

[
λ̃W̃j(p) −

1

2

(
λ̃W̃j(p)

)2]
+ rn,

with |rn| = Op(n
−1/2).

By applying similar arguments in Qin et al. [36], it follows that

λ̃ =

(
n∑
j=1

W̃j(p)
2

)−1 n∑
j=1

W̃j(p) +Op(n
−1),

n∑
j=1

λ̃W̃j(p) =
n∑
j=1

(λ̃W̃j(p))
2 +Op(n

−1/2).

Combining all previous results and Lemma 2, it follows that

c(p)l̃(R(p)) = c(p)
n∑
j=1

λ̃W̃j(p) + op(1)

=
σ2(p)

1
n

∑n
j=1 W̃

2
j (p)

[
1

n1/2σ1(p)

n∑
j=1

W̃j(p)

]2
+ op(1)

d→ χ2
1.
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Appendix B

PROOFS OF CHAPTER 3

In order to prove Theorem 2, a few lemmas are necessary.

Lemma 3 Under the same conditions as in Theorem 2, the followings hold:

(i). 1
n

∑n
j=1 W̃

2
j (p)

P→ σ2
0, where σ

2
0 = E[F 2(Y )] − δ20;

(ii). ( mn
m+n

)1/2 δ̃−δ0
S

d→ N (0, 1), where δ̃ is defined by (3.1).

Proof of Lemma 3.

(i) From the uniform consistency of F̃ in Lemma 1, it follows that

1

n

n∑
j=1

F̃ 2(Ỹj) −
1

n

n∑
j=1

F 2(Ỹj)
P→ 0.

By using the similar technique employed in the proof of Lemma 1, we get that

1

n

n∑
j=1

F 2(Ỹj)

=
1

rY

∑
j∈SrY

F 2(Yj) +
mY

n

1

mY

∑
j∈SmY

(F 2(Y ∗
j ) − F̄1r)

P→ E[F 2(Y )],

where F̄1r = 1
rY

∑
j∈SrY

F 2(Yj). Therefore,

1

n

n∑
j=1

F̃ 2(Ỹj)
P→ E[F 2(Y )].

Similarly, we can prove that 1
n

∑n
j=1 F̃ (Ỹj)

P→ E[F (Y )] = δ0. Combining the above results,
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from Lemma 3(i), it follows that:

1

n

n∑
j=1

W̃ 2
j (δ0) =

1

n

n∑
j=1

(
F̃ (Ỹj) − δ0

)2
=

1

n

n∑
j=1

F̃ 2(Ỹj) −
2δ0
n

n∑
j=1

F̃ (Ỹj) + δ20

P→ E[F 2(Y )] − δ20 = σ2
0.

(ii) If the data set is complete, Sen [75] has proved similar result. Based on imputed

data, some necessary modifications are needed. Let

αδ =

∫ 1

0

F 2(y)dG(y), βδ =

∫ 1

0

[1 −G(x)]2dF (x),

n0 =
mn

m+ n
,

Bn = σ(Ỹj, j = 1, . . . , n), Am = σ(X̃i, i = 1, . . . ,m).

Then, the variance of
√
n0δ̃ can be calculated as follows:

VAR(
√
n0δ̃) = VAR

(
E(

√
n0δ̃|Bn)

)
+ E

(
VAR(

√
n0δ̃|Bn)

)
. (B.1)

For the first term of the right-hand side in (B.1), from

E(
√
n0δ̃|Bn) =

√
n0

mn

n∑
j=1

m∑
i=1

E[I(X̃i ≤ Ỹj)|Bn]

=

√
n0

n

n∑
j=1

[F̃ (Ỹj)],

it follows that

VAR
(
E(

√
n0δ̃|Bn)

)
= VAR

(√
n0

n

n∑
j=1

[F̃ (Ỹj)]

)

→ 1

1 + τ
(1 − π2 + π−1

2 )(αδ − δ20),
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where the last step follows from Lemma 1.

As for the second term of the right-hand side in (B.1), from

VAR
(√

n0δ̃|Bn

)
=

n0

m2n2
VAR

(
n∑
j=1

m∑
i=1

I(X̃i ≤ Ỹj)|Bn

)

=
n0m

m2n2

[
(1 − π1 + π−1

1 )VAR

(
n∑
j=1

I(X ≤ Ỹj|Bn)

)
+ oP (1)

]

=
n0

mn2

[
(1 − π1 + π−1

1 )

( n∑
j=1

F (Ỹj) + 2
∑
j≤k

E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn) −
( n∑
j=1

F (Ỹj)
)2)

+ oP (1)

]
,

it follows that

E
(

VAR(
√
n0δ̃|Bn)

)
=

n0

mn2

[
(1 − π1 + π−1

1 )

( n∑
j=1

EF (Ỹj)

+2
∑
j≤k

E
(
E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn)

)
− E

( n∑
j=1

F (Ỹj)
)2)

+ o(1)

]
=

n0

mn2

[
(1 − π1 + π−1

1 )

(
nδ0 + 2

∑
j≤k

E
(
E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn)

)
−
(
VAR

( n∑
j=1

F (Ỹj)
)

+ E2(
n∑
j=1

F (Ỹj))
))

+ o(1)

]
=

n0

mn2

[
(1 − π1 + π−1

1 )

(
nδ0 + 2

∑
j≤k

E
(
E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn)

)
−
(
(1 − π2 + π−1

2 )n(αδ − δ20) + (nδ0)
2 + o(n)

))
+ o(1)

]
.
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From

∑
j≤k

E
(
E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn)

)
= E

[
E

(∑
j≤k

I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn

)]

= EE

[ ∑
j≤k

j,k∈SrY

+
∑
j≤k

j∈SrY
,k∈SmY

+
∑
j≤k

j∈SmY
,k∈SrY

+
∑
j≤k

j,k∈SmY

 I(X ≤ Ỹj)I(X ≤ Ỹk)

∣∣∣∣Bn

]

= EE

[ ∑
j≤k

j,k∈SrY

+
∑
j≤k

j∈SrY
,k∈SmY

+
∑
j≤k

j∈SmY
,k∈SrY

+
∑
j≤k

j,k∈SmY

 I(X ≤ Ỹj)I(X ≤ Ỹk)

∣∣∣∣X)

]

= EE

[ ∑
j≤k

j,k∈SrY

(
1 −G(X)

)2
+

∑
j≤k

j∈SrY
,k∈SmY

(
1

rY
(1 −G(X)) +

rY − 1

rY
(1 −G(X))2

)

+
∑
j≤k

j∈SmY
,k∈SrY

(
1

rY
(1 −G(X)) +

rY − 1

rY
(1 −G(X))2

)

+
∑
j≤k

j,k∈SmY

1

r2Y

(
rY (1 −G(X)) + rY (rY − 1)(1 −G(X))2

) ∣∣∣X, σ(δYj , j = 1, . . . , n)

]

= EE

[
n(n− 1)

2
(1 −G(X))2

+
∑
j≤k

j or k∈SmY

1

rY

(
(1 −G(X)) − (1 −G(X))2

) ∣∣∣X, σ(δYj , j = 1, . . . , n)

]

= EE

[
n(n− 1)

2
(1 −G(X))2

+
n(n− 1) − rY (rY − 1)

2rY

(
(1 −G(X)) − (1 −G(X))2

) ∣∣∣X, σ(δYj , j = 1, . . . , n)

]
,
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it follows that

2
∑
j≤k

E
(
E(I(X ≤ Ỹj)I(X ≤ Ỹk)|Bn)

)
= EE

[
2(1 −G(X))2 + (

n(1 − π2
2)

π2
+OP (n))

(
(1 −G(X)) − (1 −G(X))2

)∣∣∣X]
= n(n− 1)βδ + EE

[(n(1 − π2
2)

π2
+OP (n)

)(
(1 −G(X)) − (1 −G(X))2

)∣∣∣X].
Therefore,

E
(

VAR(
√
n0δ̃|Bn)

)
→ τ

1 + τ
(1 − π1 + π−1

1 )(βδ − δ20),

VAR(
√
n0δ̃)→

1

1 + τ
(1 − π2 + π−1

2 )(αδ − δ20)

+
τ

1 + τ
(1 − π1 + π−1

1 )(βδ − δ20).

In order to prove Lemma 3(ii), we need to show that S and VAR(
√
n0δ̃) converge to the

same limit. Let

V10(X̃i) =
1

n

n∑
j=1

I(X̃i ≤ Ỹj), i = 1, . . . ,m;

V01(Ỹj) =
1

m

m∑
i=1

I(X̃i ≤ Ỹj), j = 1, . . . , n.

It follows that

S2
10 =

1

m− 1

m∑
i=1

[
V10(X̃i) − δ̃

]2
=

1

m− 1

m∑
i=1

[
V 2
10(X̃i) − 2V10(X̃i)δ̃ + δ̃2

]
.

By Lemma 1, we have

δ̃
P→ δ0, and V10(X̃i)

P ∗
→ 1 −G(X̃i)
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where P ∗ is the probability measure on Am. Thus,

S2
10

P→ βδ − δ20.

Similarly, we have

S2
01

P→ αδ − δ20.

Therefore,

S2 =
m(1 − π2 + π−1

2 )S2
01 + n(1 − π1 + π−1

1 )S2
10

m+ n
P→ 1

1 + τ
(1 − π2 + π−1

2 )(αδ − δ20)

+
τ

1 + τ
(1 − π1 + π−1

1 )(βδ − δ20).

Based on Sen [75], S2
01 and S2

10 have the alternative algebraic expressions in Theorem

2. Finally, from Lemma 1, the Slutsky’s theorem and the similar procedures of structural

convergence of U-statistics in Sen ([75], [76]), it follows that

√
n0
δ̃ − δ0
S

=

(
mn

m+ n

)1/2
δ̃ − δ0
S

d→ N (0, 1).

Proof of Theorem 2.

Based on Lemma 3 and the same procedure of the proof of Theorem 1 in Qin and Zhou

[40], it is straight forward to obtain the result.

Proof of Theorem 3.

Based on Theorem 2 and the same procedure of the proof of Theorem 2 in Qin and

Zhou [40], it is straight forward to obtain the result.
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Appendix C

PROOFS OF CHAPTER 4

Proof of Theorem 4: With similar arguments with Adimari and Chiogna [4],

l̃(θ0, η0, τ0) is finite with probability tending to 1, as min{m,n} → +∞. By using Tay-

lor expansion and some algebra, it follows that

l̃(θ0, η0, τ0) = m
[F̃X(τ0) − η0]

2

η0(1 − η0)
+ n

[F̃Y (τ0) − 1 + θ0]
2

θ0(1 − θ0)
+ op(1).

Bases on the results in Proposition 1,

√
m[F̃X(τ0) − η0]

d→ N (0, σ2
X)

where σ2
X = (1 − π1 + π−1

1 )η0(1 − η0), and

√
n[F̃Y (τ0) − 1 + θ0]

d→ N (0, σ2
Y )

where σ2
Y = (1 − π2 + π−1

2 )θ0(1 − θ0).

Then the result follows.



129

Appendix D

PROOFS OF CHAPTER 5

Proof of Theorem 5: By Taylor Expansion, we have that

l̂(ψ0) = 2
n∑
i=1

log(1 + t̂′U(Wi, ψ0, β̂)) = 2

(
n∑
i=1

t̂′U(Wi, ψ0, β̂) −
∑n

i=1(t̂
′U(Wi, ψ0, β̂))2

2
+ op(1)

)
.

Based on the standard methods used in empirical likelihood literature ([31],[32],[33]), we can

get

n∑
i=1

t̂′U(Wi, ψ0, β̂) =
n∑
i=1

(t̂′U(Wi, ψ0, β̂))2 +Op(n
−1/2).

Therefore,

l̂(ψ0) =
n∑
i=1

t̂′U(Wi, ψ0, β̂) + op(1).

Observe that

0 = Q1n(t̂, ψ0, β̂)

= Q1n(0, ψ0,β0) +
∂Q1n(0, ψ0, β0)

∂t′
(t̂− 0) +

∂Q1n(0, ψ0, β0)

∂β′ (β̂ − β0) + op(δn)

0 = Q2n(β̂) = Q2n(β0) +
∂Q2n(β0)

∂β′ (β̂ − β0) + op(δn),

where δn = ∥t̂∥ + ∥β̂ − β0∥.

In matrix notation, we have

 t̂

β̂ − β0

 = S−1
n

 −Q1n(0, ψ0, β0) + op(δn)

−Q2n(β0) + op(δn)

 ,
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where

Sn =

 ∂Q1n(0,ψ0,β0)
∂t′

∂Q1n(0,ψ0,β0)
∂β′

0 ∂Q2n(β0)
∂β′


P−→ S =

 S11 S12

0 S22

 =

 E
[
∂Q1(Wi,0,ψ0,β0)

∂t′

]
E
[
∂Q1(Wi,0,ψ0,β0)

∂β′

]
0 E

[
∂V (Wi,β0)

∂β′

]
 .

From this and Q1n(0, ψ0, β0) = (1/n)
∑n

i=1 U(Wi, ψ0, β0) = Op(n
−1/2), it follows that δn =

Op(n
−1/2).

By applying the block-wise inverse technique,

S−1 =

 S−1
11 −S−1

11 S12S
−1
22

0 S−1
22

 ,

then

t̂ = −S−1
11 Q1n(0, ψ0, β0) + S−1

11 S12S
−1
22 Q2n(β0) +Op(n

−1/2).

By regular methods of estimating equations, it follows that

√
n(−S22)(β̂ − β0) =

√
nQ2n(β0) + op(1).

Combined with that Taylor expansion of Q1n(0, ψ0, β̂) at β0, we have

Q1n(0, ψ0, β̂) = Q1n(0, ψ0, β0) + S12(β̂ − β0) + op(n
−1/2).



131

Therefore,

l̂(ψ0)

= n
(
Q1n(0, ψ0, β0) + S12(β̂ − β0)

)′ (
−S−1

11 Q1n(0, ψ0, β0) + S−1
11 S12S

−1
22 Q2n(β0)

)
+ op(1)

= nQ′
1n(0, ψ0, β0)(−S11)

−1Q1n(0, ψ0,β0) + nQ′
1n(0, ψ0, β0)(−S11)

−1S12(−S22)
−1Q2n(β0)

+n(−S22(β̂ − β0))
′(−S22)

−1S ′
12[(−S11)

−1Q1n(0, ψ0, β0) + (−S11)
−1S12(−S22)

−1Q2n(β0)] + op(1)

= n (Q′
1n(0, ψ0, β0), Q

′
2n(β0))

 (−S11)
−1 (−S11)

−1S12(−S22)
−1

(−S22)
−1S ′

12(−S11)
−1 (−S22)

−1S ′
12(−S11)

−1S12(−S22)
−1


×

 Q1n(0, ψ0, β0)

Q2n(β0)

+ op(1)

Let

S∗ = Cov
[
(U ′(Wi, ψ0, β0), V

′(Wi, β0))
′]
.

Then,

√
n(S∗)−1/2

 Q1n(0, ψ0, β0)

Q2n(β0)

 d−→ N (0, I(p+q)×(p+q)).
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Finally, we have that

l̂(ψ0) =
√
n (Q′

1n(0, ψ0, β0), Q
′
2n(β0)) (S∗)−1/2

× (S∗)1/2

 (−S11)
−1 (−S11)

−1S12(−S22)
−1

(−S22)
−1S ′

12(−S11)
−1 (−S22)

−1S ′
12(−S11)

−1S12(−S22)
−1


× (S∗)1/2

√
n(S∗)−1/2

 Q1n(0, ψ0, β0)

Q2n(β0)


=

[√
n(S∗)−1/2 (Q′

1n(0, ψ0, β0), Q
′
2n(β0))

′]′
Λ

√n(S∗)−1/2

 Q1n(0, ψ0, β0)

Q2n(β0)

+ op(1)

d−→ Y ′ΛY

where Y ∼ N (0, I(p+q)×(p+q)).

Note that

Λ = (S∗)
1
2

 I

(−S22)
−1S ′

12

 (−S11)
−1
(
I S12(−S22)

−1

)
(S∗)

1
2 ,

thus Λ has rank p.

By applying the same method in the Lemma 3 of Qin and Jing [77],

l̂(ψ0)
d−→ r1χ

2
1,1 + · · · + rpχ

2
1,p

where χ2
1,j, j = 1, . . . , p are independent chi-squared random variables with one degree of

freedom, and the weights r1, . . . , rp are none-zero eigenvalues of Λ.

Proofs of Theorem 6-8:

It is straightforward to obtain these theorems by applying Theorem 5. Only a few

modifications are needed.
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In Theorem 5, note that

S∗ =

 −S11 −S12

−S ′
12 −S22

 .

Thus the Λ∗ in Remark 2 is equal to

Λ∗ = I − (−S11)
−1S12(−S22)

−1S ′
12.

Therefore, Λ shares the same eigenvalues with Λ∗.
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