Hypoxia, or reduced oxygen pressure, in healthy cells leads to cell necrosis and reoxygenation injuries; however, hypoxia is a prominent property of most solid tumors. The low oxygen pressure in cells activates the hypoxia-inducible factor (HIF) family of transcription factors, which induce targets genes that regulates adaptive biological processes such as anaerobic metabolism, cell motility and angiogenesis\(^1\). Overexpression of HIF-1\(\alpha\), a subunit of the HIF complex, has been linked to metastasis of tumor cells, and resistance to radio and chemotherapy. Because of this, HIF-1 has become an important therapeutic target for the inhibition of tumor growth by small molecules. It is our goal to design and synthesize novel small-molecules that disrupts HIF pathway mainly by targeting the HIF-1\(\alpha\) subunit to prevent it from binding with the HIF-1\(\beta\) subunit that makes the HIF heterodimer and initiate its biochemical activity as a transcription factor that promote tumor cell growth. Mechanistic studies shows that these novel inhibitors do not primarily alter HIF-1 levels rather, they interfere with the HIF complex formation\(^1\). An initial HRE-alkaline phosphatase assay screening was done to find a lead compound.

A compound (KCN-1) with an IC\(_{50}\) of 0.4µM was tested and was found to be very potent in decreasing tumor size. Optimization of the said compound was subsequently done by dividing the compound into 4 parts (cores) and analogues have been made; the best compound made to date has an IC\(_{50}\) of 0.25µM.

References: