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Abstract 
 
 

INDIVIDUAL-TECHNOLOGY FIT: MATCHING INDIVIDUAL CHARACTERISTICS AND 
FEATURES OF BIOMETRIC INTERFACE TECHNOLOGIES WITH PERFORMANCE 

 
By 

 
ADRIANE B. RANDOLPH 

 
MAY 2007 

 
 

Committee Chair: Dr. Melody Moore Jackson 
 
Major Department: Computer Information Systems 
 

The term biometric literally means “to measure the body”, and has recently been associated with 
physiological measures commonly used for personal verification and security applications.  In 
this work, biometric describes physiological measures that may be used for non-muscularly 
controlled computer applications, such as brain-computer interfaces.  Biometric interface 
technology is generally targeted for users with severe motor disabilities which may last long-
term due to illness or injury or short-term due to temporary environmental conditions.  
Performance with a biometric interface can vary widely across users depending upon many 
factors ranging from health to experience. Unfortunately, there is no systematic method for 
pairing users with biometric interface technologies to achieve the best performance.  The current 
methods to accommodate users through trial-and-error result in the loss of valuable time and 
resources as users sometimes have diminishing abilities or suffer from terminal illnesses.  This 
dissertation presents a framework and methodology that links user characteristics and features of 
biometric interface technologies with performance, thus expediting the technology-fit process. 
The contributions include an outline of the underlying components of capturing and representing 
individual user characteristics and the impact on the performance of basic interaction tasks using 
a methodology called biometric user profiling.  In addition, this work describes a methodology 
for objectively measuring an individual’s ability to control a specific biometric interface 
technology such as one based on measures of galvanic skin response or neural activity.  Finally, 
this work incorporates these concepts into a new individual-technology fit framework for 
biometric interface technologies stemming from literature on task-technology fit. 
 
Key words: user profiles, biometric user profiling, biometric interfaces, fit, individual-
technology fit, galvanic skin response, functional near-infrared, brain-computer interface 
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1. Introduction 

Researchers in the field of management information systems (MIS) explore the impact of 

technology on various types of organizations ranging from businesses to homes.  Spanning MIS 

and computer science, the field of human-computer interaction (HCI) “lies at the intersection 

between the social and behavioral sciences… and computer and information technology…” 

(Carroll, 2003).  Its focus is to study ways of making devices and computer systems more usable 

for people through advances in design.  One way design has allowed systems to become more 

usable is by adjusting to fit the needs of specific individuals, such as through assistive 

technology.  Assistive technology augments the functional capabilities of people with 

disabilities.  Traditional computer applications and assistive technology devices require muscle 

movement for input, such as needed to manipulate a mouse and keyboard or a sip-and-puff 

switch. 

The term biometric literally means “to measure the body”, and has recently been associated 

with physiological measures commonly used for personal verification and security applications.  

In this work, biometric describes physiological measures that may be used for non-muscularly 

controlled computer applications, such as brain-computer interfaces, (Mason, Moore Jackson, & 

Birch, 2005; Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002) and can 

therefore be considered assistive technology.  Biometric interface technology has been 

demonstrated in assistive technologies generally targeting users with severe motor disabilities as 

a result of disease, illness, or injury and able-bodied users with physical disabilities temporarily 

induced by their environment, such as with jet pilots subjected to extreme forces or soldiers in 

hostile territory.  Biometric interfaces provide these users with capabilities for communication 

and control of environmental, navigational, and prosthetic devices.  As a result, people who 
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might not otherwise have an outlet can interact with their friends and family members and take 

more proactive roles in their environment.  Thus, severely disabled users who are able to control 

biometric interface technologies can experience a significant improvement in their quality of life 

(Moore, 2003).  However, everyone does not experience equal success with controlling this 

technology; where someone is able to control a particular biometric interface technology with 

great reliability, another cannot control it at all.  The match between an individual and 

technology is their individual-technology fit and can be reflected by the individual’s performance 

with the technology. 

More people would be able to effectively utilize biometric interface technologies if we 

understood more about the factors that affect performance with these systems.  Currently, there 

exists a disparity in goals among researchers and assistive technology practitioners investigating 

biometric interfaces.  Researchers tend to focus more on characteristics of the technology being 

developed and practitioners focus more on characteristics of the user.  The result is that available 

biometric interface technologies are often matched to users through trial-and-error based on the 

specialized knowledge of the attending team.  Unfortunately this unsystematic approach can 

waste valuable time and resources as users sometimes have diminishing abilities or suffer from 

terminal illnesses which preclude them from enjoying the full benefits of the provided system.  A 

methodology that explains performance with available biometric interface technologies based on 

individual characteristics can greatly expedite the technology-fit process.   

This work examines an important consideration for biometric interface design: describing 

characteristics of an individual user and his or her fit with a specific technology.  Characteristics 

are a person’s demographic, physiological, and cognitive traits.  Individuals vary in their 

characteristics across many dimensions.  It is necessary to develop paradigms and heuristics that 
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link individual characteristics to available technologies to determine which approach is likely to 

be most effective.  Then, assistive technology practitioners may better incorporate information 

about their users to refine their design efforts, and research teams may refer these users to other 

targeted groups specializing in the most appropriate technology.  With better means for 

explaining performance with various biometric interface technologies, we make better use of the 

time and resources expended in offering impactful solutions to a sensitive user population. 

Further, we help advance the field of biometric interface technology for mainstream use by able-

bodied persons by understanding the overall concept of individual-technology fit.  

There are models and processes in existence for matching people with various technologies 

but these models have not yet been applied to the more non-traditional technology associated 

with biometric interfaces.  In addition, these models are not intended to uncover the salient user 

characteristics necessary for an effective pairing with various biometric interface technologies.  

Therefore, this research proposes that: salient individual user characteristics may be identified 

and modeled in a way that matches with features of biometric interface technologies to explain 

performance.  Specifically this research seeks to answer the following questions: 

RQ1: What are the salient characteristics of users to inform biometric interface design, 
and to what extent can they be modeled? 
 
RQ2: To what extent can performance with a biometric interface technology with a 
specific user be objectively measured? 
 
RQ3: To what extent can individual characteristics of users match with technology 
features to explain performance with biometric interfaces? 
 
The following sections of this manuscript describe a new individual-technology fit 

framework that explains performance with biometric interface technologies based on individual 

characteristics.  First, the manuscript provides background on biometric interfaces, assistive 

technologies, existing techniques for capturing information about users for system 
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personalization and performance enhancement, and theory describing technology-fit.  Second, 

the manuscript presents a new individual-technology fit framework and explores the links 

between individual characteristics and biometric interface technologies for explaining 

performance.  Finally, the manuscript outlines an approach called a biometric user profiling 

process for deriving comprehensive user profiles that may be used to explain individuals’ 

performance with biometric interface technologies.  In this work, performance is measured by 

BioGauges (Adriane B. Randolph, Moore Jackson, & Mason, 2007), a methodology and toolset 

for objectively measuring user controllability of biometric interface technologies. Individual-

technology fit is explored with two biometric interface technologies. 

2. Motivation and Background 

One out of five people in the United States has a disability (Social Security Administration, 

2003), which is a long-lasting impairment prohibiting what society considers normal activity 

(World Health Organization, 1980).  A disability is classified according to six categories 

including: sensory, physical, mental, self-care, difficulty going outside the home, and 

employment disability (Waldrop & Stern, 2003).  Physical disabilities can be understood along a 

continuum ranging from the retention of fine motor control by able-bodied individuals to the loss 

of all voluntary movement and speech, termed locked-in.  Half a million people worldwide are 

considered locked-in, essentially prisoners in their own bodies (National Organization for Rare 

Disorders (NORD), 2000).  A person may become locked-in due to diseases such as amyotrophic 

lateral sclerosis (ALS – also known as Lou Gehrig’s disease), spinal cord injury, or brain-stem 

stroke.  Although they have lost the ability for unaided control of their environment, locked-in 

persons are generally cognitively intact but this state may deteriorate over time (Ariniello, 1999).  
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Figure 1 illustrates this continuum of disabilities and the input devices most commonly used at 

each stage. 

 

 

Figure 1. A continuum of disabilities and control interfaces.   
Figure adapted from (Moore, Storey, & Randolph, 2005). 

 
 

Figure 1 also lists various technical options that aid disabled persons and help improve their 

quality of life.  However, more work is needed to make the interfaces less obtrusive for users and 

the people with whom they interact.  A way to achieve this goal is by better matching the related 

technologies to users based on individual characteristics.  In particular for people with severe 

motor disabilities, it would be advantageous to know which biometric interface technologies are 

most effective based on a profile of their individual characteristics.  If these individual 

characteristics were indicators of a person’s capabilities for control of biometric interface 

technologies, they could be linked to features of the technology to explain performance and 

ultimately improve biometric interface design. 
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The following provides background on the forerunning biometric interfaces that are currently 

available, key considerations for users of assistive technology, and how these may be measured 

and modeled. 

2.1. Biometric Interfaces 

Historically, the term biometric referred to the mathematical and statistical analysis of 

agricultural and atmospheric effects on humans, but more recently it has been associated with a 

physiological measure used for personal verification and security applications (Biometric 

Consortium, ; International Biometric Society, 2002).  Here, the term biometric is more generally 

defined as a measure of a physiological response that is not based on muscular control.  A 

biometric interface is the resulting system when biometrics are incorporated as input to assistive 

technologies.  A brain-computer interface (BCI) is a type of biometric interface that specifically 

utilizes measures of brain activity as input. 

Evolving from medical diagnostic systems, biometric interfaces are now also investigated in 

the assistive technology and HCI fields.  Traditionally, the targeted users are locked-in, but 

people who have movement disorders (e.g., severe cerebral palsy patients) or operate within 

situations that temporarily induce a movement disability (e.g., jet pilots) may also find biometric 

interfaces useful. 

Research in the field of biometric interfaces spans several disciplines including computer 

science, electrical engineering, cognitive psychology, neuroscience, and information systems all 

working to discover the most appropriate alternatives for users with severe physical impairments.  

Although biometric interfaces have yielded working applications based on non-muscular input 

for control, they currently only reach a maximum information transfer rate of 68 bits/minute (i.e., 

9 characters/minute is possible with a predictive program) and trade off speed and accuracy for 
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number of choices possible (Gao, Xu, Cheng, & Gao, 2003).  Despite this performance, these 

systems lend great hope to people who otherwise may not have another outlet. 

There are several approaches to recording the signals which serve as input to biometric 

interfaces although it is not yet clear which approach works best for a particular person for 

control.  This work focuses on non-invasive techniques which involve sensors placed on the 

skin’s surface for signal acquisition instead of surgically-implanted devices.  The most common 

of these approaches is electroencephalography (EEG), a bio-recording technique to measure 

electrical activity of the brain, collected from scalp electrodes.  Another approach includes the 

use of functional magnetic resonance imaging (fMRI) as a non-invasive method for measuring 

oxygenated blood volume using a powerful, magnetized probe that can reflect activity 

throughout the brain.  Other approaches include galvanic skin response (GSR) for measuring 

skin conductance and functional near-infrared (fNIR) for also measuring oxygenated blood 

volume in the brain but using near-infrared light reflections.  The following describes in greater 

detail the two biometric interface approaches used in this work: fNIR and GSR. 

2.1.1. Functional Near-Infrared Imaging 

In addition to the more widely examined electrical brain activity, researchers are beginning to 

explore another process of the brain, oxygenation of blood, as input to biometric interfaces 

(Stenger, 2005; Weiskopf et al., 2004).  Oxygenation of blood is a reflection of vascular activity 

that has a 3 to 7 second delay and only indirectly reflects brain activity.  Near-infrared 

spectroscopy (NIRS) is a process used to measure changes in oxygenated blood volume on the 

surface of the brain resulting in what is called functional near-infrared (fNIR) imaging.  A device 

such as Archinoetic’s Optical Tomographic Imaging Spectrometer (OTIS) illustrated in Figure 2 

may be used for fNIR sensing.  In this process, near-infrared light is used to non-invasively 
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penetrate the scalp and skull and is absorbed by oxygen carriers within the bloodstream, or 

hemoglobin.  The person on the right of Figure 2 shows how the sensor may be placed on the 

surface of the head to detect blood volume in different areas of the brain.  Different functions 

such as counting or moving a finger (Kleinschmidt et al., 1996) alter the amount of oxygen being 

absorbed at a given time and may allow a biometric interface to be controlled.    

 

 
Figure 2. The OTIS fNIR device and sensor placement.   

Photo on left used with permission from (Nishimura et al., 2006).  
Photo on right taken by Stanley Leary and used with permission. 

 

2.1.2. Galvanic Skin Response 

Whereas a BCI is based on activity recorded from the brain, galvanic skin response (GSR) is 

a measure taken non-invasively of the electrical conductivity of the skin.  Although the 

electrodes may be placed anywhere, a typical configuration for a GSR device includes two 

electrodes placed on the index and middle fingers, areas of the skin with the most active sweat 

glands, as illustrated in Figure 3.  The device sends an imperceptibly small amount of electrical 

current through the electrodes to measure the momentary amount of skin conductivity created in 

response to various stimuli or the person’s own imagery. 
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Figure 3. Example configuration for GSR electrodes.   

Modified from Michael Gasperi’s website (http://www.extremenxt.com/gsr.jpg). 

 

The measurable change in electrical skin conductivity for GSR is caused by increased 

activity in the sweat glands due to stimulation to the Sympathetic Nervous System (SNS), as 

when a person is anxious or excited (Abrams, 1973).  The GSR procedure was first used for 

psychiatric evaluation (Jung, 1907), and was later adopted for interrogation purposes by law 

enforcement officials as a component of polygraph testing (Committee to Review the Scientific 

Evidence on the Polygraph & National Research Council, 2003).  First, the system takes a 

baseline reading of GSR.  Then, it monitors the person for significant changes in his or her GSR 

levels from that baseline according to different stimuli or imagery.  For example, the person may 

be asked to talk about a particular incident (as with interrogation), watch different visual stimuli, 

or think of an image.  With lie-detection, a trained polygrapher then interprets the changes in 

GSR levels during that recording session generally in an offline context.  However, with 

computer applications such as video games and communications systems, the associated 

computer system analyzes the differences in real-time and provides immediate feedback to the 

user (Moore & Dua, 2004; Sakurazawa et al., 2003).  Although GSR is popularly identified with 

lie-detection, assistive technology researchers are investigating uses for control of computer-

based systems (Moore & Dua, 2004; Adriane B. Randolph, McCampbell, Moore, & Mason, 
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2005) as an alternative to neural control which has been found ineffective for some users 

(Birbaumer & Hinterberger, 2003). 

2.2. Biometric Interface Design 

Although biometric interfaces have largely been studied in laboratory settings, there is little 

work that provides general characterizations of the biometrics and how they relate to the users 

generating the biometric phenomenon.  In addition, there is currently no formal method for 

assessing what biometric interface technology is most appropriate for a user.  For example, 

current BCI community practices and underlying technical infrastructures do not easily allow for 

a comprehensive set of tests to determine the most appropriate means for signal control for a 

locked-in user.  Therefore, users often only benefit from the approach offered by their attending 

team which may not be the optimal choice. 

Researchers have explored the design of neurologically-based biometric interface 

technologies from a system perspective (Mason & Birch, 2003).  A full assistive technology 

system as described by Mason et al. (2005) includes a biometric transducer, a control interface, 

and an application or assistive device linked through the device controller.  Figure 4 illustrates 

the components of a full assistive technology system which may also be used to represent the 

components of a full biometric interface system.  The portion of the system that performs the 

signal acquisition and filtering is called the transducer.  The transducer outputs a low-level, 

machine-readable interpretation of the signal that the system may then use to talk with a control 

interface.  A control interface translates the low-level interpretation into one that can be used by 

an application or device.  Biometric transducers are characterized according to their form of 

output (e.g., spatial reference, discrete, or continuous form) (Adriane B. Randolph, Moore 

Jackson, Mason, & McCampbell, 2005). 
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Figure 4. A model of a full biometric interface system.   

Adapted from (Mason & Birch, 2003; Mason et al., 2005). 
 

2.3. Assistive Technology 

The term assistive technology refers to devices that seek to “increase, maintain, or improve 

the functional capabilities of individuals with disabilities” (U.S. Congress, 1998).  Biometric 

interface technologies such as those relying on measured input from the brain and GSR are a part 

of assistive technology systems which include an assistive technology device, a user with an 

inherent or induced disability, and the environment within which a particular task is performed 

(Cook & Hussey, 2002).   

2.3.1. The Human Activity Assistive Technology Model 

There has been an increasing awareness that the challenges faced by people with disabilities 

are not the result of the disability itself but rather a combination of the disability and the 

environment within which that individual operates (Brandt & Pope, 1997).  This environment or 

context includes considerations for: (1) setting; (2) social context; (3) cultural context; and (4) 

physical context (Cook & Hussey, 2002).  Setting includes the location and related conditions 

such as the task to be accomplished and rules surrounding completion of that task.  Social 

context governs what is considered “normal” or “expected.”  Cultural context relates to concepts 
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Transducer  

Control 
Display 

Control 
Interface 



 

 13

of shared patterns of behavior and how individuals interact with others and the environment.  

Finally, physical context describes the environmental conditions where the system is situated, 

and commonly includes measures for heat, light, and sound.  Together with context, three other 

components join to make up the Human Activity Assistive Technology (HAAT) model (Cook & 

Hussey, 2002), modified from a general model for human performance (Bailey, 1982), both 

illustrated in Figure 5.  The additional three components include the individual, the activity they 

wish to perform, and the technology assisting him/her in that activity all taking place within a 

particular context.   

 
Figure 5. Relationship between the Human Performance Model and the HAAT Model.   

Modified from (Bailey, 1982) and (Cook & Hussey, 2002). 
 
 

Figure 6 illustrates a proposed model for describing the interacting influences of the 

transducer, user, and environment on biometric system design as supported by the HAAT model.  

Researchers have largely focused on the hardware and software aspects included in the 

transducer component of biometric interface systems (Mason & Birch, 2003) but have not 

thoroughly examined the characteristics of the user and the environment in which the system is 

used.  All three components together influence biometric interface design and must be examined 

in depth to determine the appropriate technology for a user.  This work focuses largely on the 

characteristics of the user and his or her interactions with the transducer. 
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Figure 6. Proposed model of components of biometric interface system design 

 

The HAAT model emphasizes the need to assess human ability within the context of the 

environment where the task will be performed or else there may be a misrepresentation.  For 

example, a jet pilot has so many displays to monitor that he or she may experience a sensory 

disability because his or her sight is overloaded, thus creating the need for another input channel.  

Without considering the environment, the pilot may be modeled as an able-bodied person which 

would be an inaccurate assessment.  Other models such as the keystroke-level model (KLM) 

(Card, Moran, & Newell, 1980) and the three-state model (Buxton, 1990) provide an 

understanding of humans operating various devices, but they consider physical movement which 

is not applicable for biometric interfaces. 

2.3.2. The U.S. Institute of Medicine’s Model of Disability 

The human component of the HAAT model is based on intrinsic enablers that characterize 

inherent abilities an individual uses to perform a task.  These intrinsic enablers include:  

(1) sensory input; (2) central processing; and (3) effectors and are a combination of 

psychological and physical capabilities or limitations.  Such abilities (or lack thereof) may be 
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modeled using the “Conceptual Overview of the Enabling-Disabling Process” from the U.S. 

Institute of Medicine’s (IOM) model of disability (Brandt & Pope, 1997) as reproduced in 

Figure 7.  This model illustrates the effect a disability has on an individual operating within his 

or her environment. 

 

Figure 7. Conceptual overview of the Enabling-Disabling Process. 
Used with permission from (Brandt & Pope, 1997). 

 

2.3.3. The ALS Functional Rating Scale 

It is helpful to measure human abilities using an established scale.  In the case of measuring 

abilities for people with ALS, the ALS Functional Rating Scale (ALSFRS) (Amyotrophic Lateral 

Sclerosis Ciliary Neurotrophic Factor Treatment Study (ACTS) Phase I-II Study Group, 1996) 

may be used.  This rating scale allows an assessor to assign points to various levels within the 

following ten categories as illustrated in Figure 8, where a zero assigned for some categories, 

such as speech, would indicate that the person is completely locked-in:  



 

 16

 

1. speech  
2. salivation  
3. swallowing  
4. handwriting  
5. cutting food and handling utensils (with or without gastrostomy)  
6. dressing and hygiene  
7. turning in bed and adjusting bed clothes  
8. walking  
9. climbing stairs  
10. breathing  

 

 
Figure 8. Sample of the ALS Functional Rating Scale.   

Modified from (Amyotrophic Lateral Sclerosis Ciliary Neurotrophic Factor Treatment Study (ACTS) Phase 
I-II Study Group, 1996). 

 
Table 1 proposes how each of the measures relates to the use of traditional assistive 

technologies which rely on some degree of muscular control.  Similar to how they indicate the 

need for traditional assistive technologies, these measures may indicate the need for a biometric 

interface.  However, it is unknown how they might relate to a user’s performance when using a 

biometric interface technology. 
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Table 1. Proposed relationship of ALSFRS measures to use of traditional AT 

No. Measure Relationship to Traditional AT Use 
1. Speech  Reflects ability to use speech-activation or 

recognition for control 
2. Salivation  Unknown 
3. Swallowing  Reflects ability to use controlled, detectable 

movement to activate a switch 
4. Handwriting  Reflects ability to use stylus-type devices 
5. Cutting food and handling utensils 

(with or without gastrostomy)  
Reflects degree of fine motor control needed to 
type or move a mouse 

6. Dressing and hygiene  Reflects degree of motor control and 
independence possibly necessitating AT use 

7. Turning in bed and adjusting bed 
clothes  

Reflects degree of motor control and 
independence possibly necessitating AT use 

8. Walking  Reflects need for device that assists with 
ambulation 

9. Climbing stairs  Reflects fatigability with gross motor movement 
10. Breathing  May use controlled breaths to make activations 

such as needed with sip-and-puff switches 

 

 
Although the HAAT model emphasizes the overall interplay between human (abilities), 

technology, and activity as a type of human performance model, it does not indicate which 

aspects have the most influence on performance.  This link is needed to improve biometric 

interface design.  In fact, when designing based on the underlying Human Performance Model, it 

is necessary to consider the separate parts as well as the combined elements.  In particular, 

designers should focus on the most complex element, the human, whose widely ranging 

characteristics can alone affect human performance (Bailey, 1982).  Other factors that affect user 

interface design are further discussed in the next sections.  

2.4. User Profiling 

Research on profiling and ways to more effectively incorporate information about the system 

user were proposed to help overcome problems of ineffective interfaces.  User profiling is a way 

to allow information filtering based on a user’s personal characteristics and is often used 

interchangeably with the term user modeling (Hanani, Shapira, & Shoval, 2001).  The term user 
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profiling is overloaded.  It has been described as taking a content-centered approach by 

capturing information about a person’s habits and taking a user-centered approach that focuses 

on particular user traits or characteristics.  Most commonly, user profiling is conducted in online 

communities using the content-focused approach.  Well-known websites such as Amazon.com 

and Yahoo! employ profiling to better understand their users’ needs and provide customization 

and personalization.  Whenever someone establishes a new account with an online service, a 

type of user profile is created.  User-centered profiling such as how Jameson (2001) describes it, 

takes into account both current state and long-term characteristics of the user combined with 

environmental context.  Current state characteristics included aspects of the user’s current 

cognitive or psychological state such as current level of emotional arousal.  Longer-term 

characteristics included: objective personal characteristics; level of knowledge of particular 

topics; level of interest in particular topics; and perceptual and motor skills and limitations.  This 

work applies this definition for user profiling. 

Knowledge about the user for populating the profile may be acquired via explicit or implicit 

means.  An explicit approach requires active user involvement to provide the information.  One 

of the most popular techniques of the explicit approach is user interrogation where users are 

asked to complete questionnaires about themselves or select from a predefined set of profiles 

(Hanani et al., 2001).  User interrogation began with the Lens system (Malone, Grant, Turbak, 

Brobst, & Cohen, 1987) to define a set of rules with which to filter information.  In contrast, an 

implicit approach requires no direct action or involvement by the user.  The system records the 

user’s behavior and makes inferences about the relevancy of information based upon the user’s 

reaction (Hanani et al., 2001).    
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2.5. Fit 

The words “link” and “match” used in the introduction of this manuscript are synonymous 

with the word “fit”.  The theoretical concept of fit, used to describe contingent relationships 

between variables, is classified according to six perspectives (Venkatraman, 1989): moderation, 

mediation, matching, gestalts, profile deviation, and covariation described as:  

• Fit as moderation – An interaction between two variables that affects a third variable.   

• Fit as mediation – How a variable intervenes between an antecedent and its consequent 

variable.   

• Fit as matching – A theoretical match between two variables without specific regard to 

a criterion variable although effect on a third variable may be measured.   

• Fit as gestalts – Internal coherence to frequently recurring clusters of attributes.   

• Fit as profile deviation – Degree of adherence to an ideal, externally specified profile.   

• Fit as covariation – Internal consistency reflecting an underlying thread that logically 

relates variables. 

Fit as moderation, mediation, and matching specify a relationship typically between just two 

variables, and fit as gestalts, profile deviation, and covariation specify a relationship typically 

between multiple variables.   

The concept of fit has been used widely throughout the management literature.  It has been 

applied to business organizations using fit as matching by pairing individuals with 

psychological situations and observing behavior (Joyce, Slocum, & Glinow, 1982) and by 

pairing certain business strategies with company structure and observing company performance 

(Chandler, 1962).  
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The concept of fit has also been applied to information systems by linking tasks to 

technology features in a manner affecting performance with fit as an ideal profile (Zigurs & 

Buckland, 1998) and with fit as moderation (D.L. Goodhue, 1995; Dale L. Goodhue & 

Thompson, 1995).  According to the fit as moderation perspective, the concept of task-

technology fit (TTF) most closely aligned with the aims of HCI and was defined as “the extent 

that technology functionality matches task requirements and individual abilities [and] …is 

presumed to lead to higher performance” (D.L. Goodhue, 1995, page 1829).  There, the word 

“match” was used to describe how technology features are moderated by task requirements and 

individual characteristics to predict performance impacts.  Performance has typically been 

analyzed for able-bodied individuals with traditional interfaces and models have largely ignored 

the impacts of disability. 

Goodhue and Thompson’s (1995) model of the Technology-to-Performance Chain (TPC) as 

shown in Figure 9 initially considered individual characteristics as a component affecting TTF 

but only tested a subset of the model and did not include this construct.   
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Figure 9. The Technology-to-Performance Chain Model. 

Used with permission from (Dale L. Goodhue & Thompson, 1995). 
 

However, Goodhue (1995) tested the effect of individual characteristics on TTF using the 

model shown in Figure 10.  Here, individual characteristics were represented with a single 

feature: computer literacy.  Analysis of the data showed that an individual’s level of computer 

literacy had an effect on TTF.  User evaluations of TTF served as a surrogate for the objective 

measure of TTF.  Analysis also uncovered inconsistencies in results of the assertion that more 

computer literate individuals would find that systems more completely address their needs; this 

assertion was only true for system reliability but not for other dimensions of TTF such as 

locatability of data.  This implies that a more robust construct for individual characteristics is 

needed. 
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Task Characteristics

Technology 
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Individual 
Characteristics

User Evaluations 
(Surrogate for TTF)

 
Figure 10. Upstream determinants of user evaluations of task-technology fit. 

Adapted from (D.L. Goodhue, 1995). 
 
 

Others exploring the concept of TTF in MIS consider TTF to be a function of task 

characteristics and technology characteristics with perhaps other moderating variables (Dishaw 

& Strong, 1998) but have not incorporated the construct of individual characteristics.  Therefore, 

further investigation is needed for incorporating the construct for individual characteristics into 

models considering the concept of fit.  It was not clear if computer literacy should have been the 

sole descriptor of an individual and whether or not other characteristics might have had greater 

and more consistent impacts on TTF.  In addition, Goodhue’s model only examined TTF 

according to self-reports from users of performance and did not link individual characteristics to 

measures of actual performance. 

3. Theoretical Framework 

This work describes a new framework for individual-technology fit (ITF) as illustrated in 

Figure 11 which seeks to initially link individual characteristics and features of biometric 
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interface technologies with human performance using a fit as matching perspective.  This 

framework is a modified version of Goodhue’s models of TTF (Figures 9 and 10).  This work is 

focused on the discovery and exploration of fit between individual characteristics and biometric 

interface technology.  This framework is investigated with the GSR (amount of sweat) and fNIR 

(amount of oxygenated blood volume) biometric interface technologies.  Through this study, 

expertise will be created and used for future investigations.   

 

Technology 
Characteristics

Individual 
Characteristics

Performance

Individual-Technology Fit 
(ITF)

 

Figure 11. Proposed framework of individual-technology fit 

 
The ITF framework does not include utilization because utilization of biometric interface 

technology may be considered mandatory for locked-in users if they have no other alternatives 

and a strong desire for communication and control.  “When utilization is mandatory, it does not 

need to be considered” (D.L. Goodhue, 1995, page 1830).  Furthermore, utilization considers 

ongoing use and this ITF framework is for explaining initial performance.  In addition, task is not 

included because it is held constant in an effort to focus on the impact of individual 

characteristics with technology features.  The following sections describe the components of the 

proposed ITF framework in greater detail. 
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3.1. Individual-Technology Fit 

Similar to the definition for task-technology fit, individual-technology fit is the extent to 

which individual characteristics match with technology features to enable a person’s control of a 

technology.  Here the context is biometric interfaces.  Specifically, ITF is the correspondence 

between individual characteristics and the biometric interface technology being used.  A strict 

interpretation of the original task-technology fit model is not applicable here because there are no 

true experts that exist to determine fit a priori or independently of performance; it does not 

appear that any researcher or manufacturer is suited to provide an external measure of fit because 

this technology is only beginning to be investigated for control purposes and few users have 

sufficient experience with these technologies or alternative biometric technologies to understand 

their own fit.   

3.2. Technology Characteristics 

The technology features of biometric interfaces are based on a taxonomy of brain-computer 

interfaces and attributes of a transducer (Mason et al., 2005) which should include the following: 

1. Type – Classification of the general mechanism used (i.e., endogenous, exogenous, or 

modulated response).  An endogenous type of transducer has internally generated control 

versus an automated response to external stimuli, such as used with exogenous types, or 

an internal modulation of external stimulation, such as used with modulated response 

types. 

2. Biorecording Technology - Approach used to record signals from the participants (e.g., 

EEG, fNIR, fMRI, GSR). 

3. Inputs – Placement of sensors/electrodes (e.g., areas over the brain, fingers). 
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4. Biometric Phenomenon – Phenomenon used to control the biometric transducer (i.e., 

phenomena in electrical brain activity, phenomena in blood oxygenation, or phenomena 

in skin conductance). 

5. Stimulator – If applicable, the stimulus used for cueing exogenous transducers. 

6. Feature Extraction/Translation Algorithms – Component that extracts and translates the 

signal into a useful control signal. 

7. Output – Type of transducer output (i.e., discrete, continuous, or spatial reference). 

Discrete transducers produce output in a set of states, such as a switch; continuous 

transducers produce an ongoing stream of output within a range; and spatial reference 

transducers produce output in a particular point in 2-D or 3-D space that can be selected.  

8. Idle Support – Indication of whether the transducer supports a state where the user is not 

intending to control the technology (i.e., No Control State). 

This study considered just one feature of the transducer, biorecording technology (fNIR or 

GSR), as the distinguishing factor between the biometric interface technologies being compared.  

Of the other seven features of the transducer three were held constant to narrow the scope of this 

work (endogenous type, continuous output, and idle support in the form of a “rest” state); three 

had a one-to-one correlation with the biometric technology tested (biometric phenomenon, 

inputs, and the feature extraction/translation algorithms); and one was not applicable per the 

experimental protocol (stimulator). 

3.3. Individual Characteristics 

Individual characteristics are the distinguishing factors between people and include their 

demographic, physiological, and cognitive differences.  Little is known about which individual 

characteristics best match with particular biometric interface technologies although there are 
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numerous assessments of human capabilities ranging from functional limitations to the amount 

of system training received.   

Table 2 lists and provides cited justifications for a proposed set of characteristics affecting 

biometric interface technology control.  This list is based on a review of related literature and 

discussions with researchers in the fields of biometric interfaces and assistive technology 

concerning observed or plausible physiological effects.  Although characteristics such as age 

change over time and vision may degrade for locked-in users, these characteristics generally 

remain constant for more than a few days and may be considered more stable.  In addition, there 

are more dynamic characteristics of an individual such as the amount of sleep and recent intake 

of caffeine that may significantly affect performance.  These dynamic or momentary 

characteristics can vary so much over a short period of time that it is difficult to use them as 

stable constructs, so their potential effects are noted through the use of a session questionnaire. 

Table 2. Proposed individual characteristics to test 

Category Attribute Justification for Inclusion 
1. Sex There are a number of physiological and spatial reference 

differences based on sex.  For example, sex may be a key factor 
for GSR-based control since skin conductivity is based on the 
amount of sweat; although women have more sweat glands than 
men, men’s sweat glands are more active (Medline Plus, 2006). 

2. Age Age moderates various physiological differences.  For example, 
older people (age 52 +/- 10 years) have lower increases in 
localized levels of oxygenated blood (Hock et al., 1995).  

Demographic 
Trait 

3. Handedness Human handedness relates to location of the language center in 
the brain where this center is generally located in the left, front 
hemisphere but sometimes found on the right for left-handed 
individuals (Annett, 1985, 2001).  A common protocol for fNIR 
recordings is to place the sensor over the left hemisphere Broca’s 
area for language production (Nishimura et al., 2006). 

4. Athleticism Athletes’ cardiovascular systems respond differently from the 
average population and from people with limited motor functions, 
such as people with quadriplegia (Patil, Karve, & DiCarlo, 1993).  
This difference may affect performance with a system based on 
vascular responsiveness. 

5. Smoking 
Experience 

Limited exposure to nicotine has been shown to increase parietal 
activity (Giessinga, Thiela, Röslerc, & Fink, 2005) and people 
classified as smokers have increased cerebral blood flow velocity 
(Terborg, Birkner, Schack, & Witte, 2002). 

Physiological 
Trait 

6. Paralysis Studies have shown that the strength of electrical signals from 
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Category Attribute Justification for Inclusion 
sensorimotor cortex activity weakens as physical ability declines  
(Tran, Boord, Middleton, & Craig, 2004).  

7. Hair Color Collaborators using fNIR technology have shared anecdotal 
evidence of difficulty calibrating their systems with individuals with 
darker hair color. 

8. Skin Color Collaborators using fNIR technology have shared anecdotal 
evidence of difficulty calibrating their systems with individuals with 
darker skin color. 

 

9. Hair Texture Collaborators using fNIR technology have shared anecdotal 
evidence of difficulty calibrating their systems with individuals with 
thicker hair. 

10. Prior 
Training with 
Biometric 
Interfaces 

The amount of hours of training with particular BCIs affects a 
person’s ability to control electrical signals such as those from 
sensorimotor cortex activity (Wolpaw et al., 2002).  It is possible 
that training with a biometric interface technology increases kinetic 
intelligence (Gardner, 1993) and thus will improve overall 
performance with any biometric interface technology. 

11. Video Game 
Experience 

High-speed interactive video game players versus non-high-speed 
interactive video game players experience changes in their visual 
attention (Green & Bavelier, 2003), a key factor for visually-evoked 
potentials (VEPs) recorded through EEG.  It is possible that 
experience with particular types of video games will also impact 
performance with other biometric interface technologies. 

12. Computer 
Use 

A person’s self-reported assessment of his or her aptitude for using 
basic computer applications was found to affect IS performance 
(D.L. Goodhue, 1995). 

13. Acting 
Experience 

There is an acting method pioneered by Konstantin Stanislavski 
called “Method Acting” where actors learn to express their 
character’s emotions based on recollection of actual emotions felt 
in the past (WordNet). 

Cognitive 
Trait 

14. Meditation 
Experience 

By using techniques such as the Transcendental Method for 
meditation, people are trained to focus their minds and produce 
calm states (Yogi, 2005). 

 

3.4. Performance 

Here, performance is the observable evidence of fit between individual characteristics and a 

particular biometric interface technology.  As individuals are better matched to biometric 

interfaces, their performance should increase and vice-versa if ill-matched.  In this study, 

performance is defined as the proportion of successful attempts out of overall attempts by a user 

to achieve a prescribed goal using a particular biometric interface technology. 
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4. Method 

4.1. Research Design 

The biometric user profiling process was developed as an approach for deriving 

comprehensive user profiles that may be used in conjunction with the ITF framework to explain 

individuals’ performance with biometric interface technologies.  This study investigated ITF of 

the characteristics proposed in section 3.3 with the fNIR and GSR biometric interface 

technologies.  All participants were tested with each selected biometric interface technology 

twelve times.  Aside from distinctions based on motor control, groups could not be established 

ahead of time because individual characteristics for people cannot be manipulated.  Therefore, 

there was no explicit control set up as typically conducted with between-group tests; rather the 

control was elicited within each person.  According to the design details, this study is considered 

to be a non-experiment because it did not employ random assignment or a control group 

(Trochim, 2001).   

The scope of this work was narrowed based on sample population and application area.  

Purposive sampling was used to gather participants with a range of motor disabilities brought on 

by ALS and who had a wide range of ages beyond what is typically achieved with a university 

student population.  Purposive sampling involves taking a sample of people from a targeted 

group to ensure their participation (Trochim, 2001).  In this study, it was necessary to gain 

participants who suffered from severe motor disabilities and who represented a wide range of 

ages such as found in the target population for biometric interfaces.  The timeframe for 

explanation covered the person’s initial state in using the technology because user needs change 
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over time (Hanani et al., 2001).  This work focused on the person’s initial use of the technology 

and not his or her intention for future use.  Therefore, training effects were not considered.    

4.2. Participants 

The study included 38 adult participants (33 able-bodied and 5 disabled) with a range of prior 

experience using a biometric interface.  Overall, the ages ranged from 21 to 67 with an average 

of 39 years, and there were 13 females and 25 males.  Participants included undergraduate 

students, graduate students, trade workers, and working professionals.  Appendix A provides 

details about the participants.  Specific differences in characteristics are presented and analyzed 

in the results section.  To narrow the focus of the population, users were cognitively intact with a 

range of physical disabilities not including total loss of sight or hearing.  All participants were 

recruited via word-of-mouth or were referred by friends to participate in the study.  Sessions with 

able-bodied participants were conducted in the Georgia State University and Georgia Institute of 

Technology BrainLabs.  Sessions with disabled participants were conducted in their homes with 

steps taken to provide a controlled atmosphere similar to the lab setting by requesting a quiet 

environment away from streaming sunlight. 

4.3. Apparatus 

The approaches for signal collection selected for this work were GSR and fNIR to enable 

objective cross-comparisons between results since both produced continuous output.  In addition, 

these approaches were portable and relatively easy to operate due to the related hardware and 

non-invasive approaches.  The complete system setup with GSR is illustrated in Figure 12.  A 

standard laptop was used to run the BioGauges system shown on the left-most laptop and a 
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separate laptop was used to run the biometric recording software for fNIR and GSR shown on 

the right-most laptop.  The components of each biometric system are outlined as follows.   

 

 
Figure 12. Complete experimental system setup 

 

GSR Recordings: 

• Lafayette Instrument Company DataLab 2000 biometric recording system 

(www.lafayetteinstrument.com): 

o DataLab 2000 software version 1.3 

o General Purpose Interface Bed model 70701 

o Biopotential amplifier model 70702 with a signal range of  +/- 10V, a fixed 

gain of 5000, and built-in calibration values of +/- 4mV  

o Two metal plate electrodes for placement on the index and middle fingers 

• National Instruments Data Acquisition (NI-DAQ) hardware version 7.1.0 (www.ni.com)  

fNIR Recordings: 

• Archinoetics fNIR recording system (www.archinoetics.com): 

o OTIS™ 
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o Pucklink software version 2.2 

o Sensor with one infrared emitter and two detectors arranged in a fixed 

triangular shape with each surrounded by foam padding to add comfort and 

reduce light scatter 

• Standard size tennis headband to hold fNIR sensor in place on head over left dorso-lateral 

prefrontal cortex (DLPFC) (left temple area on the head) 

• Participant seated away from directly streaming sunlight 

4.4. Capturing Individual Characteristics 

Individual characteristics may be used to populate a biometric user profile which is a 

representation of the most salient features of a user for explaining performance with biometric 

interface technologies in a concise representation.  A biometric user profile was first outlined in 

the work conducted by Davis (Randolph) et al. (2003) to indicate communication topics for use 

with a biometric interface.  Although the attributes differ slightly when used for explanation of 

performance with a biometric interface technology, the process for populating the values remains 

the same.  This previous work revealed that when initially setting up user profiles, as for a 

conversational system for a severely disabled user, an explicit approach should be implemented 

(Moore, Storey, Davis, & Napier, 2004).  Therefore, a questionnaire was appropriate for 

obtaining the sample biometric user profile values illustrated in Table 3. 
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Table 3. Sample biometric user profile for one locked-in patient 

 
Category Attribute-Value Pair 
Demographic Traits 
 

Sex = male 
Age = 45 
Handedness = right 

Physiological Traits 
 

Athleticism = 1-low 
Smoking Experience = no 
Motor Control = very little 
Skin Color = 1-white 
Hair Color = 2-brown 
Hair Texture = 3-curly 
Affective Drugs = yes 
Regular Caffeine = no 
Regular Alcohol = no 
Head Injury = no 
Hand Dexterity = yes 
Played Sports = yes 

Cognitive Traits 
 

Prior Biometric Training = extensive 
Video Game Experience = none 
Computer Use = extensively 
Acting Experience = none 
Meditation Experience = none 
Years of Education = 16 

 
 

A questionnaire was devised for explicitly obtaining the values for each property of the 

biometric user profile while keeping in mind temporary influences (e.g., possible sleep 

deprivation, biological rhythms, illness) and vasoactive agents (e.g., stimulants such as caffeine) 

which could significantly affect the performance of participants (Alluisi & B.B. Morgan, 1976; 

Liu et al., 2004).  The questionnaire underwent pilot testing with two able-bodied users and a 

researcher experienced with ALS patients to ensure content validity.  Each participant completed 

the biometric user profile questionnaire and session information sheets provided in Appendices B 

and C.  

4.5. Measuring Performance 

After completing the questionnaires about their individual characteristics and momentary 

influences, the researcher verified correct positioning of the biometric sensor and calibrated the 
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recording system.  For GSR, the sensors were always cleaned with an alcoholic-based gel and 

then placed on the pads of the index and middle fingers of the right hand and secured by Velcro.  

Then, the DataLab 2000 software provided an end-to-end calibration of the recording system.  

For fNIR, the Pucklink software’s Signal Quality Assessment tool was used to verify correct 

sensor placement by when it achieved an accurate heart rate and a heartbeat signal-to-noise ratio 

greater than 2.01.  Actual heart rate was taken by the participant or researcher feeling for the 

pulse over a 30 second period or by using a pulse oximeter. 

Next, the BioGauges system was calibrated according to the low and high values that each 

person was able to achieve at that moment.  Detrending, a process for obtaining a moving 

average of values, was not incorporated into the BioGauges system because it was important to 

reduce bias for control.  For GSR, participants were asked to relax for a low value and then think 

of something exciting and raised their temperature for a high value.  Participants were asked to 

devise their own imagery since different things excite different people but to try to vary the 

images since people habituate over time and what was once exciting is no longer so.  For fNIR, 

participants were asked to think of a non-sensical, droning sound created by repeating “la-la” 

slowly in their heads for a low value and then to think of counting rapidly but clearly enunciating 

each number in their heads for a high value.  Participants then used this imagery to attempt 

control of each of the biometric interface technologies according to the protocol provided in 

Appendix D.  Participants were tested with each of the biometric interface technologies in a 

randomly-ordered session and the trials within each session were also randomly ordered.  An 

objective outcome measure of performance was taken after each trial using the BioGauges 

methodology and toolset.  For this study, performance is the proportion of total trials in which a 

                                                 
1 All participants except DS38 achieved heartbeat signal-to-noise ratios greater than 2.0.  After numerous 
adjustments of the sensor over a 5-minute period, the system was only able to achieve 1.83 with an accurate heart 
rate likely due to the overriding strength of the participant’s ventilator. 
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person is able to successfully move a cursor and acquire a bounded target within an allotted 

timeframe of twenty seconds. 

BioGauges measure and characterize the capabilities of a user with a biometric interface 

technology (A.B. Randolph, McCampbell, Mason, & Moore, 2005; Adriane B. Randolph et al., 

2007; Adriane B. Randolph, Melody Moore Jackson et al., 2005).  They assess a user’s range, 

reliability, and granularity of control with a biometric interface technology based on very basic 

tasks.  Specifically, gauges are very simple control interfaces that reflect changes in biometric 

phenomenon for the basic components of interaction.  Gauges can be used to match a person to a 

particular biometric interface technology by producing an actual measure of performance 

(Adriane B. Randolph et al., 2007).   

Thus far, gauges have been designed to characterize controllability of discrete and 

continuous transducers during periods when users intend to control their biometric input (i.e., 

Control State), such as when they wish to make a selection, and when they do not intend to 

control it (i.e., No Control State), such as when they are idly looking at the screen reviewing 

content.  The protocols are summarized as follows.  The protocols for continuous-output 

transducers are detailed in Appendix E. 

For Discrete Output: 

• Response to No Control 

• Temporal accuracy to a predictable event 

• Response rate to an unpredictable event 

• Repetition rate 

• Ability to hold and release 
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For Continuous Output: 

• Response to No Control 

• Attain output levels (1-D) or point/region in 2-D or 3-D space 

• Attain and hold output within a certain range of levels or region in space 

 
This study incorporated a bounded attain task to test spatial control using an fNIR and a 

GSR-based biometric interface with continuous output.  The bounded attain task is illustrated in 

Figure 13 and shows what the participant saw on his or her computer screen.  Figure 14 shows 

what the researcher saw on her computer screen while monitoring the biometric phenomenon 

used to control the interface.  Here, sample blood oxygenation readings appeared as the blue line 

at the top of the graph on the operator’s screen.  The participant was asked to concentrate on the 

area with the black background and the screen to the left of the black background was used to set 

up and monitor the tasks.  In this study, after the system provided a warning signal a cursor was 

presented as an orange square that always started in the middle of the screen.  The participant 

attempted to activate the transducer to move the cursor along a one-dimensional track, 

represented as the blue bar, to attain a target located to the right or left.  The target was 

represented by a yellow rectangle.  A new trial started once the participant attained the target by 

placing the cursor completely within the target boundary lines or the system timed out.  The 

participant had twenty seconds to attempt to attain the target before system timeout. 
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Figure 13. BioGauges interface for the Attain task 

 

 
 

Figure 14. Pucklink interface for use with fNIR biometric interface technology with translating component 
for BioGauges interface 
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At the end of the session, each participant then completed an exit questionnaire provided in 

Appendix F. 

4.6. Understanding Individual-Technology Fit 

For this exploratory study, performance is the observable evidence of fit between individual 

characteristics and the fNIR or GSR technology tested.  Again, a higher performance indicates a 

better match and a lower performance indicates a poor match.  Table 4 details the predicted 

exploratory relationships that each individual characteristic will have with performance based on 

extrapolation from the justifications provided in Table 2.  In addition to the fourteen 

characteristics proposed, seven more characteristics were added upon generation of the biometric 

user profile questionnaire to take advantage of the opportunity to collect this data from 

participants.  Exploratory relationships were also described for these characteristics and are 

included below.  These hypotheses serve as a theoretical basis for understanding the observed 

phenomenon within this study. 

Table 4. Exploratory relationships of individual characteristics with performance for fNIR and GSR  

Category No. Dependent 
Variable 

Effect on fNIR 
Performance 

Effect on GSR 
Performance 

Value Set 

1.  Sex Males > Females Males > Females Categorical (1-
male, 0-female), 
self-reported 
variable 

2.  Age Decreases with age Decreases with age Continuous, self-
reported variable 

Demographic 
Trait 

3.  Handedness Right-handers >  
Left-handers 

No effect 
anticipated  

Categorical (1-
right, 0-left), self-
reported variable 

4.  Athleticism Increases as more 
athletic 

Increases as more 
athletic 

Scaled (7-points 
of athletic 
identity ranging 
from 1-sedentary 
to 7-trained 
athlete), self-
reported variable 

Physiological 
Trait 

5.  Smoking Smokers > Non- Smokers > Non- Categorical (1-
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Category No. Dependent 
Variable 

Effect on fNIR 
Performance 

Effect on GSR 
Performance 

Value Set 

Experience smokers smokers yes, 0-no), self-
reported variable 

6.   Paralysis Decreases with 
increased years of 
paralysis 

Decreases with 
increased years of 
paralysis 

Continuous 
(years with 
paralysis), self-
reported variable 

7.  Hair Color Decreases with 
darker hair 

No effect 
anticipated 

Scaled (1-
Blond/None, 2-
Brown, 3-Black, 
4-Gray), 
Observed 

8.  Skin Color Decreases with 
darker skin 
pigmentation 

No effect 
anticipated 

Scaled (1-White, 
2-LightBrown, 3-
MediumBrown, 
4-DarkBrown), 
Observed 

9.  Hair Texture Decreases as hair 
gets more 
curly/dense 

No effect 
anticipated 

Scaled (1-None, 
2-Straight, 3-
Curly), Observed

10.  Affective Drugs Decreases with use 
of drugs that affect 
alertness 

Decreases with use 
of drugs that affect 
alertness 

Categorical (1-
yes, 0-no), self-
reported variable 

11.  Regular 
Caffeine 
Consumption 

Increases with 
regular use of 
caffeine 

Increases with 
regular use of 
caffeine 

Categorical (1-
yes, 0-no), self-
reported variable 

12.  Regular Alcohol 
Consumption 

Increases with 
regular consumption 
of alcohol 

Decreases with 
regular 
consumption of 
alcohol 

Categorical (1-
yes, 0-no), self-
reported variable 

13.  Sustained Head 
Injury 

Decreases with 
injury 

No effect 
anticipated 

Categorical (1-
yes, 0-no), self-
reported variable 

14.  Hand Dexterity Increases with 
dexterity 

Increases with 
dexterity 

Categorical (1-
yes, 0-no), self-
reported variable 

 

15.  Play(ed) Sports Increases with 
sports played 

Increases with 
sports played 

Categorical (1-
yes, 0-no), self-
reported variable 

16.  Prior Biometric 
Training 

Increases with more 
training 

Increases with 
more training 

Scaled (Approx. 
Hours: 0, 2, 
7,14), self-
reported variable 

17.  Video Game 
Experience 

Increases with more 
video game 
experience (may 
vary for particular 
types of video 
games) 

Increases with 
more video game 
experience (may 
vary for particular 
types of video 
games) 

Categorical (1-
none, 2-some, 3-
extensive), self-
reported variable 

Cognitive 
Trait 

18.  Computer Use No effect 
anticipated 

No effect 
anticipated 

Scaled (1-Hardly 
Ever, 2-A Little, 
3-Extensively), 
self-reported 
variable 
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Category No. Dependent 
Variable 

Effect on fNIR 
Performance 

Effect on GSR 
Performance 

Value Set 

19.  Acting 
Experience 

No effect 
anticipated 

Actors > Non-
actors 

Categorical (1-
yes, 0-no), self-
reported variable 

20.  Meditation 
Experience 

Meditators >  
Non-meditators 

Meditators <  
Non-meditators 

Categorical (1-
yes, 0-no), self-
reported variable 

 

21.  Years of 
Education 

Increases with 
education 

Decreases with 
education 

Continuous, 
inferred 

 
 

Further, to more accurately capture video game experience, there were eight types of video 

games listed that people could play: action/first-person shooter (e.g., Quake), adventure (e.g., 

Myst), puzzle (e.g., Tetris), real-time strategy (e.g., StarCraft), rhythm (e.g., Dance Dance 

Revolution), role-playing (e.g., Final Fantasy), simulation (e.g., Gran Turismo), and sports 

games (e.g., Madden).  These eight types of video game experiences increased the total number 

of variables to twenty-eight.  Participants answered questions about video game experience 

according to the same scale of: none, some, or extensively.  A reliability check run across these 

eight variables assured that the scale was internally consistent for measuring video game 

experience.  The Cronbach’s alpha coefficient was .8981 which is greater than the prescribed .7 

value indicating that the scale was reliable (Pallant, 2001).  

5. Results and Discussion 

A quantitative analysis was performed to understand the results of this exploratory study.  

Thirty-eight participants attempted 5,360 total trials (2,716 fNIR trials and 2,644 GSR trials).  

Results were aggregated into an overall average success value for each biometric interface 

technology per person where success is the proportion of successfully completed trials out of 

trials attempted.  Based on the data, both test-wise regression and non-parametric tests were 

selected as analysis techniques for this study.  First, non-parametric testing with Chi-square for 
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independence and Mann-Whitney U revealed if there were any differences between able-bodied 

and disabled participants.  Then, parametric testing with test-wise regression was run to discover 

which variables had significant impact on performance with each biometric interface technology 

tested.  Spearman Rank Order was used to determine correlations between independent variables.  

The statistical package, SPSS version 11.0.1, was used to conduct the data analysis. 

Convention holds that there should be at least a 5 to 1 ratio for observations to independent 

variables (Hair, Anderson, Tatham, & Black, 1998) although some believe for social science 

research that the ratio should be 15 to 1 (Stevens, 1996).  Using the minimum rule of thumb for 

the 28 variables examined, the number of observations should be more than 140.   However, as is 

common with many behavioral science studies and especially common within the BCI literature 

due to the time-intensive requirements of gathering biometric data, this exploratory study 

included a relatively small number of people with just 38 sampled.  Thus, traditional parametric 

tests could not be used; experiment-wise regression could not be run using the overall measures 

of performance, but test-wise regression could be run for each characteristic separately to test for 

main effects.     

In addition, non-parametric tests to discover relationships between characteristics and 

performance were run.  Non-parametric tests are independent of the number of samples involved, 

are distribution-free, and considered ideal when the data is categorical or scaled (Pallant, 2001).  

Although considered by some to be less robust than parametric tests, the non-parametric tests of 

Chi-square for independence, Mann-Whitney U, and Spearman Rank Order, offered suitable 

alternatives for understanding the study results (Siegel & Castellan, 1988).     



 

 41

5.1. Descriptive Statistics 

The histograms in Figures 15-21 show the frequency distribution of participants’ scores and 

the normal plots for the continuous and scaled variables: fNIR success, GSR success, age, level 

of athleticism, years with paralysis, years of education, and hours of training with biometric 

devices.  The histograms in Figures 15-17 show that the data for fNIR Success, GSR Success, 

and age appear to have been normally distributed.  The histograms in Figures 18, 19, and 21 

show that the data for level of athleticism, years with paralysis, and hours of biometric training 

were positively skewed, where most participants reported lower values.  The histogram in Figure 

20 shows that the data for Years of Education was negatively skewed, where most participants 

had undergraduate degrees and some graduate work.   

 

fNIR Success

.81.75.69.63.56.50.44.38.31.25.19

Fr
eq

ue
nc

y

10

8

6

4

2

0

Std. Dev = .16  
Mean = .47

N = 38.00

Figure 15. Histogram of fNIR Success 
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Figure 16. Histogram of GSR Success 
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Age
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Figure 17. Histogram of Age 

Athleticism
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Figure 18. Histogram of Level of Athleticism 
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Figure 19. Histogram of Years with Paralysis 

Yrs Education
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Figure 20. Histogram of Years of Education 
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Figure 21. Histogram of Hours of Biometric Training 
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Table 5 shows results of tests for normality where a significance value (Sig.) greater than .05 

indicates normality.  Table 5 also shows the obtained value (Statistic) and the Degrees of 

Freedom (df) according to the sample size.  A Shapiro-Wilk Test for normality is generally used 

when sample sizes are less than 2000 (Shapiro & Francia, 1965).  Although the dependent 

variables of performance are normally distributed, the independent variables are not – including 

age, which appeared to be normally-distributed from visual inspection.  This does not indicate a 

problem with the scale but rather reflects the underlying nature of the phenomenon being 

measured.  Although the independent variables were not all normally distributed as generally 

assumed by regression, regression analysis is robust enough to handle such departures and data 

transformation techniques are rife with controversy (Pedhazur, 1997).  Therefore, the data were 

not transformed. 

Table 5. Test for normality 

Tests of Normality

.980 38 .709

.963 38 .231

.929 38 .018

.918 38 .008

.452 38 .000

.304 38 .000

.909 38 .004

fNIR Success
GSR Success
Age
Athleticism
Biometric Training
Yrs with Paralysis
Yrs Education

Statistic df Sig.
Shapiro-Wilk

 
 

 
A summary of descriptive statistics is provided in Table 6.  Table 6 shows the sample size 

(N), the Minimum and Maximum values obtained, the average value (Mean), and the Standard 

Deviation which indicates the dispersion of the sample.  Detailed descriptive statistics for the 

continuous/scaled variables and frequencies for the categorical variables are provided in 
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Appendix G.  Only one person responded “yes” to having sustained a head injury so this variable 

was thrown out from analysis due to lack of variation. The variable for handedness was also 

thrown out because there were only four people who displayed this characteristic and five was 

needed as the minimum for comparative statistical analysis.  This reduced the number of 

variables analyzed to twenty-six.   

Table 6. Summary of descriptive statistics 

Descriptive Statistics

38 .181 .833 .46637 .158585
38 .000 .806 .35435 .217120
38 21 67 39.24 13.206
38 1 7 3.16 1.653
38 0 19 1.13 4.088
38 12 20 17.08 2.084
38 0 14 1.08 2.551
38

fNIR Success
GSR Success
Age
Athleticism
Yrs with Paralysis
Yrs Education
Biometric Training
Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

 
 
 

 The chance of hitting the desired target was 1 / 7 = .143 because although there were four 

possible targets, there were five bins including the center bin where the cursor always started and 

then two infinite edges totaling seven possible results for cursor placement.  As Table 6 shows, 

the average fNIR success was .466 and the average success for GSR was .354 (detailed results of 

participants’ performance with fNIR and GSR may be seen in Appendices H and I).  Because 

these average success values were significantly greater than chance at a 95% confidence level, 

on average, people were able to control both the fNIR and GSR technologies; the success values 

needed to be greater than .330 to be considered significantly greater than chance (Pearson NCS, 

2006).  Twenty-eight participants (74 percent) were able to achieve greater than chance results 

with fNIR, where the minimum fNIR success was .181 and the maximum fNIR success was 

.833.  For GSR, 23 participants (60 percent) were able to achieve greater than chance results, 
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where there were individuals who were unable to generate a response with the GSR device at all 

for calibration and hence their success was .000 and some achieved as high as .806.  For those 

individuals unable to generate a response with GSR, in each case, the researcher verified that the 

sensors were in fact operating properly and able to record variations in GSR by placing the 

sensors on her own fingers and observing fluctuations in values.  In general, these individuals 

reported that they did not consider themselves to be very “sweaty”. 

5.2. Population Differences 

After initial exploration of the data, the file was split between able-bodied and disabled 

persons to understand if any differences existed between groups.  If significant differences were 

found, then it meant that the characteristics of able-bodied people were not good surrogates for 

those people with ALS and the data would be analyzed per group instead of as a whole.  A 

variable “ALS” represented the presence of the chronic disease ALS with a 0 for “no” and a 1 for 

“yes” per person.  The sample included at least five people with ALS to satisfy minimum criteria 

for running between-group, non-parametric tests (Pallant, 2001).  Individuals varied in the 

progression of the disease where participant DS22 still had upper body movement but used a 

wheelchair and participant DS38 was almost completely locked-in except for a slight, controlled 

flick of the wrist.   

A Chi-square test for independence determined if differences existed between the categorical 

characteristics of able-bodied participants and the categorical characteristics of those participants 

with ALS.  A Pearson Chi-Square value with significance greater than .05 indicated that there 

did not appear to be a difference between populations for that characteristic.  A Mann-Whitney U 

test determined if differences existed between the continuous/scaled characteristics of able-

bodied participants and the continuous/scaled characteristics of those participants with ALS.  A 
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Z value with an exact significance greater than .05 indicated that there did not appear to be a 

difference between populations for that characteristic.  Detailed results of both tests may be 

reviewed in Appendix J.  Table 7 presents a summary of the Chi-Square and Mann-Whitney U 

tests for differences between able-bodied and disabled participants.  Two asterisks indicate 

which values significantly differed across groups at the level of p ≤ .05.   

 

Table 7. Summary of results of tests for differences between able-bodied and disabled participants 

Variable Z-value/Pearson Chi-
Square Value 

p-value 

Technology Ran First 2.073 .150 
fNIR Success -.368 .738 
GSR Success -1.363 .187 
Sex .086 .770 
Age -1.427 .159 
Athleticism -2.288 .021** 
Smoking Experience 2.056 .152 
Paralysis -6.064 p < .001** 
Hair Color 6.855 .077 
Skin Color 2.695 .441 
Hair Texture 1.085 .581 
Affective Drugs 14.528 p < .001** 
Regular Caffeine Consumption 2.699 .100 
Regular Alcohol Consumption 2.657 .103 
Hand Dexterity .001 .979 
Play(ed) Sports .010 .922 
Prior Biometric Training -.663 .615 
First-Person Shooter Games 3.573 .168 
Adventure Games 2.159 .340 
Puzzle Games .359 .836 
Strategy Games 1.303 .521 
Rhythm Games 2.056 .358 
Role-Playing Games 3.359 .187 
Simulation Games 2.795 .247 
Sports Games .722 .697 
Computer Use 7.206 .027** 
Acting Experience .494 .482 
Meditation Experience 25.498 p < .001** 
Years of Education -.941 .376 

 

The results show that there was a significant difference in values (where p ≤ .05) between 

able-bodied and disabled participants for only five of the twenty-six total characteristics (less 
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than 20 percent): use of affective drugs, meditation experience, computer use, level of 

athleticism, and years with paralysis.  In addition, a Chi-square test indicated that the order in 

which the biometric interface technology was presented to participants did not matter to the 

results because the Pearson Chi-Square p-value was .150. 

A significant difference in means was anticipated for the paralysis and athleticism variables 

because of the general limited mobility of people who have ALS and both variables assessed 

current states.  There was a difference in means of 8.60 between able-bodied and disabled 

participants for paralysis which was significant at the p ≤ .001 level.  There was a difference in 

means of 1.79 between able-bodied and disabled participants for athleticism which was 

significant at the p = .021 level.  Both variables represented current states of motor ability 

whereas the variable for play(ed) sports represented the person’s previous athletic ability for 

those individuals with paralysis.  Therefore, it made sense that the difference in the proportion of 

people who play(ed) sports to those who do/did not play sports between able-bodied participants 

(63.6%) and disabled participants (60.0%) was not observed to be significantly different with  

p = .922.   

Further, ALS patients are often prescribed a cocktail of drugs to assist their immune systems 

and various other needs; these drugs often affect alertness levels, so the difference in proportion 

of people who did take affective drugs to those who did not take affective drugs between able-

bodied participants (-81.8%) and disabled participants (60%) was expected to be significant  

(p ≤.001).   

The statistically significant differences observed in overall frequency of computer use 

between able-bodied participants (75.8%) and disabled participants (20%) at the p = .027 level 

may be due to some remaining confound with the survey question. Although mobility may be 
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distinctly limited for ALS patients and they may have responded that they engaged in little to no 

computer use, the person may have previously used computers extensively and thus still been 

very computer literate; this is the crux of the computer use variable.  

There was no variation for meditation experience for ALS patients; they all reported that they 

engaged in regular meditation which is perhaps a necessary coping mechanism when locked-in, 

thus explaining the significant difference observed in the proportion of meditators to non-

meditators between able-bodied participants (-87.8%) and disabled participants (100%) at the  

p ≤ .001 level.  In addition, a Mann-Whitney U test revealed that there was no significant 

difference observed between the mean fNIR and GSR success values for able-bodied participants 

(difference in means of .03012) and disabled participants (difference in means of .1825) because 

the p-values were .738 and .187 respectively.   

Overall, the differences in these few characteristics were not compelling enough to indicate 

gross differences between the populations nor did these differences seem to affect performance 

as the following results explain.  Therefore, these results suggest that able-bodied individuals 

were able to serve as surrogates for disabled persons in studies involving fNIR and GSR input.  

This formal comparison between able-bodied and disabled persons had not previously been 

examined in the field and represents a significant contribution that helps justify testing biometric 

interfaces with able-bodied individuals prior to testing with ALS patients. 

5.3. Test-Wise Regression 

Because no overall difference was observed between able-bodied and disabled participants, 

the data were able to be combined for further analysis of participants’ results.  Test-wise 

regression was performed with each individual characteristic and fNIR success and then again 

with GSR success.  Table 8 provides a summary of the twenty-six regressions for both 
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technologies listed per individual characteristic, whereas Appendix K provides the detailed 

regression results.  Table 8 shows the R-square value which tells how much variance in success 

is explained by the characteristic, the Beta coefficient is reported because this is a standardized 

value that allows cross-comparisons between coefficient values independent of scale, and the  

p-value is the significance level.  The individual characteristics that appear to have a significant 

relationship with performance (p-value ≤ .05) are indicated with two asterisks; the characteristics 

that are significant at the p-value ≤ .10 are indicated with one asterisk.  

Table 8. Summary of test-wise regression results 

Individual Characteristic fNIR R2 
Value 

fNIR 
Beta 

fNIR 
p-value

GSR R2 
Value 

GSR 
Beta 

GSR 
p-value 

Sex .063 .251 .128 .176 .420 .009** 
Age .208 -.456 .004** .253 -.503 .001** 
Athleticism .009 .093 .578 .017 .131 .434 
Smoking Experience .001 -.031 .855 .000 -.012 .942 
Paralysis .000 .005 .976 .023 -.151 .356 
Hair Color .005 -.074 .659 .134 -.367 .024** 
Skin Color .002 -.043 .797 .149 -.386 .017** 
Hair Texture .070 .264 .109 .131 -.362 .026** 
Affective Drugs .024 -.154 .356 .041 -.203 .222 
Regular Caffeine Consumption .127 -.356 .028** .003 .057 .734 
Regular Alcohol Consumption .009 -.093 .580 .126 .355 .029** 
Hand Dexterity .003 .058 .728 .057 .238 .150 
Play(ed) Sports .009 .097 .564 .066 .258 .118 
Prior Biometric Training .029 .171 .305 .009 -.096 .565 
First-Person Shooter Games .062 .249 .132 .117 .342 .035** 
Adventure Games .057 .239 .149 .027 .163 .327 
Puzzle Games .046 .213 .198 .032 .178 .285 
Strategy Games .023 .152 .363 .178 .422 .008** 
Rhythm Games .030 .174 .297 .008 .089 .595 
Role-Playing Games .050 .224 .177 .205 .453 .004** 
Simulation Games .043 .206 .214 .135 .368 .023** 
Sports Games .049 .221 .183 .095 .308 .060* 
Computer Use .014 .120 .474 .021 .146 .382 
Acting Experience .013 .115 .492 .066 -.256 .120 
Meditation Experience .002 -.040 .813 .218 -.467 .003** 
Years of Education .124 .352 .030** .001 -.030 .858 

 

For fNIR, there are three individual characteristics that appear to have a significant 

relationship with performance at p-value ≤ .05.  These characteristics should be highly 
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considered when deciding if a person is a good candidate for an fNIR device and are explained 

as follows.  

1. Age – There is a negative correlation with age which indicates that younger people have 

better success than older people controlling an fNIR device.  This falls in line with the 

original exploratory relationship that localized blood flow decreases with age and may 

explain this phenomenon.   

2. Regular Caffeine Consumption – There is a negative correlation which indicates that non-

caffeine consumers have better control of an fNIR device.  This result is contrary to the 

exploratory relationships that regular caffeine consumption has a positive effect on 

performance.   

3. Years of Education – There is a positive correlation which indicates that as people spend 

more time in school, their control of an fNIR device increases, and this supports the original 

exploratory relationship. 

Interestingly, hair color, skin color, and hair texture do not appear to have strongly 

significant relationships with fNIR performance although hair texture has a marginally 

significant relationship.  These characteristics were thought to be among the more influential 

variables per anecdotal evidence from collaborators, but this study indicates that this is not the 

case.  No definitive statements can be made regarding a relationship with handedness because 

there were only four people who were left-handers which precludes inter-group comparison 

because a minimum of five is needed.  Further, characteristics related to physical abilities and 

sex also appear not to have a relationship with performance.  This is encouraging for use of this 

technology by locked-in patients; because there does not appear to be a dependency on physical 
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or motor ability for control.  So, as a person progresses with ALS, he or she should be able to 

continue utilizing an fNIR device although there appear to be tradeoffs as age increases.  

For GSR, there are twelve individual characteristics that appear to have a significant 

relationship with performance at p-value ≤ .05 and are as follows.  These characteristics may be 

condensed into six variables and should be highly considered when deciding if a person is a good 

candidate for being able to control a GSR device. 

1. Age – There is a negative correlation with age which indicates that younger people have 

better success than older people with controlling a GSR device.  This falls in line with the 

original exploratory relationship that circulation slows with age affecting emission and 

absorption of sweat. 

2. Sex – There is a positive correlation with sex indicating that men perform better than women 

at controlling GSR.  This result supports the proposed exploratory relationship about men 

sweating more than women and thus a better range of control. 

3. Regular Alcohol Consumption – Regular alcohol consumption is positively correlated with 

GSR performance perhaps reflecting that alcohol promotes thinner blood and thus increases 

blood flow. 

4. Meditation – Meditation is negatively correlated with performance indicating that people 

who do not meditate regularly perform better controlling GSR.  This supports the original 

exploratory relationship, perhaps indicating that people who meditate are calmer and have 

difficulty raising their excitement level, thus making control of a GSR device more difficult. 
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5.-9. FPS, Strategy, Role-Playing, Simulation, and Sports games – These game types all 

positively correlate with performance.  Further, these game types highly correlate with each 

other as shown in Appendix L.  An average of these values representing overall video game 

experience appears to be better to avoid multicollinearity issues in the future.   

10.-12. Skin color, Hair color, Hair texture – Contrary to the exploratory relationship, these  

individual characteristics all negatively correlate with performance indicating that as features 

lighten, performance increases.  These characteristics all highly correlate with each other as 

shown in Appendix L, and it is plausible that this correlation is a reflection of race.  By using 

hair color as the surrogate, the same positive relationship is reflected.  Further investigation 

into related physiological literature uncovered that conductivity varies with race, where 

people with brown skin have higher conductivity than people with white skin (Berardesca & 

Maibach, 2003).  This higher conductivity may result in saturation of the sensors given the 

set signal range for the Lafayette Instrument GSR system of +/- 10V. 

5.4. Summary of Results 

Overall, from the experience of running thirty-eight participants with fNIR and GSR 

biometric interface technologies, it appears that there are significant relationships between 

different individual characteristics and performance.  The only shared result between fNIR and 

GSR performance is the significantly observed inverse relationship with age for both.  Age has 

the largest Beta coefficient (-.456 for fNIR and -.503 for GSR) and R-Square (.208 for fNIR and 

.253 for GSR) values for both technologies indicating that age has the largest weight and 

explains the most variance of success with fNIR and GSR.  Therefore, age should be given the 

most consideration when considering a person’s match with either fNIR or GSR technologies 

because it appears that younger people have a better chance at success with both.  To achieve 
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success that is significantly better than chance of .330, the person should be 65 years or younger 

for fNIR and 43 years or younger for GSR; this pivot point was calculated by taking the 

unstandardized coefficient (B1) for fNIR (-5.47 x 10-3) and for GSR (-8.27 x 10-3) and solving for 

X 1 using the equation: y = B0 + B1X1, where y (dependent variable) was .330 and B0 (Constant) 

was .681 for fNIR and .679 for GSR.  The unstandardized coefficient and constant values may be 

found for all characteristics in Appendix K. 

In addition to younger age, increased success with fNIR appears to be related to non-regular 

caffeine consumption and increased years of education.  To achieve success that is significantly 

better than chance of .330, the person should have 12 years or more of education calculated using 

a similar process to that for calculating the pivot point for age.  Success with GSR appears to 

increase for men, regular alcohol consumption, non-practice of meditation, increased video game 

experience, and people with lighter hair colors.  To achieve success that is significantly better 

than chance of .330, the person should have hair that is lighter than black (2.76) calculated using 

a similar process to that for calculating the pivot point for age. These characteristics may be 

captured using a biometric user profile.   

Once captured within a biometric user profile, to determine a person’s ITF with a similar 

fNIR or GSR technology a checklist such as the biometric technology checklist provided in 

Table 9 may be used.  A biometric technology checklist lays out all of the discovered 

relationships with performance for individual characteristics with a particular biometric interface 

technology.  In the table, a check or “x” indicate if ITF is present or not for the technology with 

the particular characteristic expressed, and shading indicates that the characteristic has no 

observed significant relationship with the technology.   
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Table 9. Biometric Technology Checklist for fNIR and GSR technologies 

No. Individual Characteristic fNIR-ITF GSR-ITF 
1.  The person is under the age of 43   
2.  The person is of age 43 to 64  x 
3.  The person is 65 years or older x x 
4.  The person is a male   
5.  The person is a female  x 
6.  The person does not regularly consume caffeine   
7.  The person does regularly consume caffeine x  
8.  The person completed high school   
9.  The person did not complete high school x  
10.  The person does not regularly meditate   
11.  The person does regularly meditate  x 
12.  The person plays/played video games   
13.  The person does/did not play video games  x 
14.  The person regularly drinks alcohol   
15.  The person does not regularly drink alcohol  x 
16.  The person has brown hair or lighter or no hair   
17.  The person has black hair  x 

 

Ideally, the person would have 3 checks for fNIR-ITF and 6 checks for GSR-ITF, 

representing an ideal fit profile for each biometric interface technology.  A recommended 

heuristic may be to have at least 2 out of 3 matches to have an overall good ITF with fNIR and 5 

out of 6 matches to have a good ITF with GSR.  Unfortunately, aside from a person being of age 

43 to 64, no other characteristics were discovered to have a significant relationship with 

performance that would help to decide between fNIR and GSR technologies because there are no 

other overlapping results with differing effects.  For example when considering the person’s sex, 

if the person is female, GSR may not be considered to be a well-matched technology but no 

statement may be made about if fNIR would instead by a good match because sex was not 

observed to have a relationship with fNIR success. 

6. Conclusions 

This work followed an exploratory design research approach by creating a new framework 

and methodology for matching individual characteristics with biometric interface technology 
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features.  It proposed several characteristics of individuals to examine based on a review of 

related literature on biometric interfaces and human physiology and ongoing research with 

colleagues in the field of biometric interfaces.  Biometric user profiling appears to be a helpful 

methodology to explain an individual’s performance with fNIR or GSR technologies by 

capturing his or her biometric user profile and considering practical tradeoffs between the 

matches on particular characteristics to determine an overall ITF.  The steps of the biometric user 

profiling methodology are shown in Figure 22. 

 

 
Figure 22. Biometric User Profiling Methodology 

 
 

An assistive technology practitioner may use a questionnaire that asks about the person’s age, 

sex, regular caffeine consumption, experience playing video games, years of education, and 

meditation experience, and then observe hair color.  This would be a relatively short process with 

only seven questions to ask the person.   The eight total data points would then be compared 

against a checklist to determine overall ITF.  For fNIR, a younger adult who has gone on to 

college and does not regularly consume caffeine should perform best.  For GSR, a blond, 

younger adult male who does not regularly meditate but does have extensive experience playing 

video games and regularly consumes alcohol should perform best.  These serve as ideal 

biometric user profiles for fNIR and GSR. 
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This work provides encouragement for more research to further understand the differences 

between individuals and the impacts on biometric interface design.  The following sections 

provide a summary of contributions provided by related work as part of a multi-paper 

dissertation, overall conclusions from this study, limitations of the study, and intended follow-on 

work. 

6.1. Summary of Research Contributions 

This section summarizes the individual research contributions that were captured as six 

papers through the dissertation study.  Table 10 lists the publication details for each paper and 

the associated research questions they addressed.  The following subsections present the 

contributions of each paper according to the topic that was covered. 

 Table 10. Summary of related research papers 

No. Title Authorship Publication Outlet Approach Research 
Question 

1 Context Aware 
Communication for 
Severely Disabled 
Users 

Davis 
(Randolph), 
Adriane B., 
Moore, Melody 
M., and Storey, 
Veda C. 

Proceedings of the 
Conference on 
Universal Usability 
(CUU) 2003, 
Vancouver, B. C. 
Canada, November 
10-11, 2003 

Case study RQ1 

2 Deriving User 
Profiles for 
Augmentative 
Communication 

Moore, Melody 
M., Storey, Veda 
C., Davis 
(Randolph), 
Adriane B., and 
Napier, Nannette

Proceedings of the 
Americas 
Conference on 
Information Systems 
(AMCIS), New York 
City, NY, August 6-8, 
2004 

Interviews 
Observations 
Questionnaires 

RQ1 

3 User Profiles for 
Facilitating 
Conversations with 
Locked-in Users 

Moore, Melody 
M., Storey, Veda 
C., Randolph, 
Adriane B. 

Proceedings of the 
International 
Conference on 
Information Systems 
(ICIS), Las Vegas, 
NV, December 10-
14, 2005 

Prototype 
Empirical test 
Questionnaires 

RQ1 
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No. Title Authorship Publication Outlet Approach Research 

Question 
4 Controllability of 

Galvanic Skin 
Response 

Randolph, 
Adriane B., 
McCampbell, 
Luke A., Moore, 
Melody M., and 
Mason, Steven 
G. 

Proceedings of the 
International 
Conference on 
Human-Computer 
Interaction (HCII), 
Las Vegas, NV, July 
22-27, 2005 

Case study 
Empirical test 
 

RQ2 

5 BioGauges: Toward 
More Objective 
Evaluation of 
Biometric Interfaces 

Randolph, 
Adriane B., 
Moore Jackson, 
Melody, and 
Mason, Steven 
G. 

Targeting journal 
publication in ACM 
Transactions on 
Computer-Human 
Interaction 

Case study 
Empirical test 
 

RQ2, 
RQ3 

6 Toward Predicting 
Control of a Brain-
Computer Interface 

Randolph, 
Adriane B., 
Karmakar, 
Saurav, Moore 
Jackson, Melody 

Proceedings of the 
International  
Conference on 
Information  
Systems (ICIS), 
Milwaukee, WI,  
December 10-13, 
2006 

Empirical test RQ3 

 
Figure 23 provides a conceptual map of the topics covered by the research papers associated 

with this dissertation work. 

 

Figure 23. Map of related research papers and coverage 
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6.1.1. Biometric User Profiling 

Paper 1: Context Aware Communication for Severely Disabled Users 
 
Even with assistive communication technology, interactive conversation is extremely 

difficult for users with severely limited mobility and loss of speech.  Input to such devices is 

painfully slow and subject to high error resulting in output that may not reflect the true intentions 

of the user.  Conversational prediction, such as word completion, has been incorporated into 

assistive systems to help speed up communication but can be further improved by considering 

the contextual interaction between the user and conversant.  Contextual information applied to 

user profiles can greatly enhance conversational prediction and increase a severely disabled 

user’s control over his or her complex world.  For example, information about a particular nurse 

being in a patient’s room may spark conversational topics unique to that relationship such as 

about the patient’s comfort or care. 

This paper presents a framework that integrates a rich profile of the user, a model of the 

user’s environment, and actors on that environment.  To test the validity of the framework, a set 

of profiles was developed and applied in two different scenarios.  Initial results showed that the 

context-aware user profiles could increase both the accuracy and speed of the communication.  

This work serves as the first step towards developing biometric user profiles. 

Paper 2: Deriving User Profiles for Augmentative Communication 

User profiling provides personalized and relevant content for users of information 

technology.  Describing and representing an individual’s capabilities and interests can enhance 

assistive technology for users with severe disabilities, such as paralysis and the inability to speak.  

These users are particularly challenged when attempting to interface with technology because of 

their limited means for providing input.  This paper describes the extent to which user profiling 
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can be helpful for encapsulating the preferences of such disabled users.  It also presents a 

methodology for capturing and representing user profile information in augmentative and 

assistive communication devices.  User profiles were developed for both disabled users and their 

conversational partners. 

Paper 3: User Profiles for Facilitating Conversations with Locked-in Users 

This research presents an approach to developing user profiles for locked-in users. The 

profiles can be used to enhance the speed and accuracy of conversation by reducing the selection 

space for conversational topics. An empirical study that simulated the application of user profiles 

demonstrated how they could be used to improve the speed and accuracy of conversation in 

severely disabled users relying on augmentative and assistive communication devices. 

6.1.2. Objective Measurement of Biometric User Control 

Paper 4: Controllability of Galvanic Skin Response 

Biometric interfaces are on the leading edge of the assistive technology and human-computer 

interaction fields.  When a user’s motor disability prevents input from traditional physical input 

devices, alternatives that do not require muscle movement must be considered.  Galvanic Skin 

Response is one such method for control that does not require muscle-based input but rather 

relies on biofeedback.  Work at the Georgia State University BrainLab has included examination 

of GSR as a viable input mechanism for communication and control for users with severe motor 

disabilities such as ALS.  This paper details a study with 5 able-bodied participants to determine 

the basic characteristics of control using GSR and the BioGauges toolset. 
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Paper 5: BioGauges: Toward More Objective Evaluation of Biometric 

Interfaces 

Biometric interfaces measure small changes in a user’s psychophysiological properties to 

provide alternative paths for controlling computers and other devices. The motivation for 

developing biometric interfaces has been to offer channels of control to people with severe 

physical disabilities.  Although research and development of these interfaces has progressed 

substantially in recent years, it has been difficult to objectively compare user performance with 

different biometric interfaces to determine the optimum choice for a particular person.  The 

BioGauges method and toolset provide a mechanism to fully characterize the outputs of a user 

operating a biometric interface to determine the range, reliability, and granularity of control 

possible.  This paper first demonstrates the method with a study of ten able-bodied people 

characterizing two different continuous biometric interfaces with a thresholded task.  Then, this 

paper further demonstrates the method by assessing the spatial granularity of two continuous 

biometric interfaces for seven able-bodied people and three people with varying stages of ALS.  

6.1.3. Explaining Performance with Biometric Interface Technologies 

Paper 6: Toward Predicting Control of a Brain-Computer Interface  

There is currently no formalized process for determining a user’s aptitude for control of 

various biometric interfaces without testing on an actual system. This study presents how basic 

information captured about users may be used to predict their control of a brain-computer 

interface that is based on electrical variations in the motor cortex region of the brain measured by 

EEG.  Based on data from 55 able-bodied users, this study found that the interaction of age and 

daily average amount of hand-and-arm movement by individuals correlates to their ability in 
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brain-computer interface control.  This research serves as a proof-of-concept for a more robust 

model linking individual characteristics and control of various biometric interfaces. 

6.1.4. Overall Contributions 
 

This work advances knowledge in the field of human-computer interaction by examining 

more closely relationships within biometric interfaces and assistive technology systems.  This 

work is an important step toward better matching users with appropriate biometric interface 

technologies according to their characteristics, thus saving time and resources expended.  

Although thirty-eight participants may sound small, this is the most extensive study to date 

exploring fNIR and GSR devices for control purposes.  A significant finding is that able-bodied 

participants may in fact be suitable surrogates for studying applications that target people with 

motor disabilities.  This was shown to be true for fNIR and GSR research and may hold true for 

other types of biometric interface technologies, as well.  In the field of MIS, this work expands 

upon the concepts of technology fit and validates aspects of Goodhue’s popular model for TTF 

in a new context for biometric interface technologies with stronger results by measuring actual 

performance rather than perceptions.  Finally, this work emphasizes the power of user-centered 

design by providing a better understanding of individual user characteristics as they relate to 

biometric interface technologies which should help stimulate better design of biometric interface 

systems.   

6.2. Limitations and Future Research 

There were some limitations to this study related to the survey tool and performance metrics.  

More work could be done to further refine the questions in the biometric user profiling 

questionnaire to elicit more precise responses.  Instead of categorical yes/no responses, a scaled 
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response could be used for questions inquiring about regularity of behavior, such as consuming 

caffeinated items, using a computer (in the past or present), engaging in meditation, and drinking 

alcohol.  For example, without a scale the question about regular alcohol consumption may have 

been interpreted more widely than intended; some participants may have considered themselves 

to regularly drink alcohol if they consumed a drink each weekend whereas some may have 

consumed a drink multiple times in a day.  Although this question was not attempting to reveal 

alcoholism, there may be related physiological implications to consider for people classified as 

alcoholics versus “social drinkers”.   

For performance metrics, participants attempted a difficult task to attain a bounded target 

instead of simply activating the transducer above or below a certain threshold to attain an 

infinitely large target area.  Performance should increase significantly with a thresholded task.  

Further, although detrending was not used in this study, participants should benefit from use of 

an interface that dynamically calibrates because sometimes peoples’ ranges shifted over the 

course of one task.  However, this study was not focused on understanding the interface 

designed, but rather on understanding the underlying relationships of individual characteristics 

with control. 

Further examination of individual characteristics and the potential differences between able-

bodied and disabled participants’ motivation and frustration levels is still necessary.  Also, a 

larger sample size would allow stronger conjectures by using parametric statistics for data 

analysis.  Unfortunately, achieving a larger sampling of disabled participants poses a definite 

challenge.  According to members of the ALS Association, although approximately 30,000 ALS 

patients reside in the United States many of them are unaware of support networks available and 

do not have a technically-savvy team to help connect them with resources.  Therefore, it may be 
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necessary to recruit participants with illnesses and conditions other than ALS that result in motor 

disabilities.  In addition, further investigation into the effects of handedness on performance may 

prove interesting because of differences in cognitive development. 

This study focused on initial control but does not specifically address the potential long term 

effects of training with biometric interface technologies on performance.  It may be possible that 

training could supersede characteristics from a person’s biometric user profile.  A longitudinal, 

controlled study is needed to isolate the effects of training on performance with particular 

biometric interface technologies.  In particular, a fully-crossed (2 x 2) free experiment could be 

run to compare people who are predicted to fit either a fNIR or GSR biometric interface 

technology with those who are predicted not to fit and people in both of these groups who have 

received training with those who have not.  Able-bodied participants may be used to obtain a 

larger sample size. 

Although tested with a select set of biometric interface technologies, we may expand this 

methodology to explain other types of continuous input technology, such as some EEG-based 

recordings, and the effect of task on performance.  In the future, this work may be extended to 

technologies with discrete types of transducer output, tested under different conditions, resulting 

in a more widely validated model that may be used for prediction of performance.  Although not 

addressed here, future work could explore the temporary effects of drugs and caffeine on 

performance or differences in environments that impose temporary disabilities.  In addition to 

testing with different biometric interface technologies, different tasks may be analyzed for their 

effect on performance.  Only one task was investigated here, but a study to replicate and extend 

this work may reveal a deeper cognitive relationship between the task and the type of biometric 

interface technology. 
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This work may be extended into a protocol for conducting integrated remote assessments for 

users of biometric interface technologies.  Results of this dissertation work may serve as 

screening and analysis portions of a protocol which can be shared across remote teams to 

determine what system works best for a user.  However, because an integrated approach for 

remote team collaboration would likely require a form of high-computing infrastructure such as 

grid-technology and deeper investigation into related telemedicine techniques, this is presently 

outside the scope of a dissertation but may be appropriate for career work. 

Finally, opportunities exist for future collaborations with governmental organizations, such 

as the Air Force, to understand if biometric interface technologies like fNIR and GSR may be 

used in conditions with extreme forces that affect vascular activity.  Performance may be 

compared for fNIR, GSR, and EEG devices, where EEG has previously been investigated for use 

by jet pilots.  This represents just one of many directions for future research as a result of this 

work. 
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Appendix A: Participant Details 
 
Participant 

ID Age Sex Smoke 
Yrs 
Quit Drugs Alertness Caffeine Alcohol

Head 
Injury Act Meditate Dexterity Sports Athleticism

DS01 32 M N N/A N N/A N Y N N N Y Y 2 
DS02 55 M Y 0 N N/A Y N N N N Y Y 6 
DS03 56 F N N/A N N/A Y N N N N Y Y 2 
DS04 54 M N N/A N N/A N Y N N N N Y 4 
DS05 53 F Y 2 Y less Y N N N N Y Y 1 
DS06 56 M Y 35 N N/A Y Y N N N Y N 1 
DS07 51 F N N/A N N/A Y N N N N Y Y 1 
DS08 52 M Y 16 N N/A Y N N N N Y Y 1 
DS09 59 F N N/A N N/A N N N N Y N Y 2 
DS10 23 M N N/A N N/A N N N N N N Y 7 
DS11 59 F Y 30 N N/A Y N N N N N Y 2 
DS12 48 F N N/A Y more Y N N N N N N 4 
DS13 39 M Y 0 N N/A Y N N N N N Y 2 
DS14 30 M N N/A N N/A Y N N N N N Y 4 
DS15 40 M N N/A N N/A Y N N N N N Y 5 
DS16 34 F N N/A N N/A Y N N N N N N 3 
DS17 38 F Y 3 N N/A Y N N Y Y Y N 3 
DS18 30 M N N/A N N/A N N N N N Y Y 5 
DS19 30 M N N/A N N/A N N Y N N Y Y 3 
DS20 29 F N N/A N N/A N Y N N N Y Y 5 
DS21 37 M N N/A N N/A Y Y N N N Y Y 1 
DS22 67 F N N/A Y more Y N N N Y Y N 4 
DS23 45 M N N/A N N/A N N N N Y Y Y 1 
DS24 41 F N N/A N N/A Y Y N N N N Y 4 
DS25 45 M N N/A N N/A Y Y N N N N Y 5 
DS26 30 M Y 1 N N/A Y Y N N N Y Y 4 
DS27 27 M Y 0 N N/A Y Y N N N N Y 5 
DS28 24 M N N/A N N/A Y N N N N Y Y 5 
DS29 36 M N N/A N N/A N N N N N N Y 3 
DS30 56 M N N/A Y less N N N N Y Y Y 1 
DS31 48 F N N/A Y less N N N N Y N Y 1 
DS32 21 M N N/A N N/A Y N N N N Y N 3 
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Participant 
ID Age Sex Smoke 

Yrs 
Quit Drugs Alertness Caffeine Alcohol

Head 
Injury Act Meditate Dexterity Sports Athleticism

DS33 28 M N N/A N N/A Y N N Y N Y N 3 
DS34 25 M N N/A N N/A Y Y N N N Y Y 5 
DS35 22 F N N/A N N/A Y N N Y N Y Y 3 
DS36 23 M N N/A N N/A Y Y N N N Y Y 4 
DS37 23 M Y 0 Y less Y Y N N N Y Y 4 
DS38 25 M N N/A Y less Y N N N Y N Y 1 

 
 
Participant 

ID Hand BioTrng FPS Adven Puzzle Strat Rhythm RPG Sims SporG Comp Paralys SkinColor HairCol HairTextr Ed 
DS01 right 2 3 3 3 3 3 3 2 1 3 0 white black straight 18 
DS02 left 1 1 1 1 1 1 1 1 1 3 0 darkbrown black curly 18 
DS03 right 1 1 1 1 1 1 1 1 1 3 0 lightbrown black straight 18 
DS04 right 1 2 2 2 1 1 1 1 2 2 0 lightbrown black curly 14 
DS05 right 1 1 1 2 1 1 2 1 1 3 0 lightbrown black straight 14 
DS06 right 1 1 1 1 1 1 1 1 1 3 0 darkbrown black curly 12 
DS07 right 1 1 1 1 1 1 1 1 1 3 0 lightbrown black straight 14 
DS08 right 1 2 2 1 2 1 1 1 2 2 0 lightbrown black curly 14 
DS09 right 1 1 1 2 1 1 1 1 1 2 0 darkbrown black straight 16 
DS10 right 1 2 2 2 1 1 1 2 2 3 0 darkbrown black curly 16 
DS11 left 1 1 1 1 1 1 1 1 1 2 0 lightbrown gray curly 16 
DS12 right 1 1 1 1 1 1 1 1 1 3 0 lightbrown black straight 16 
DS13 right 1 2 1 3 1 1 1 2 1 3 0 white brown straight 20 
DS14 left 2 3 2 2 3 1 2 2 3 3 0 medbrown black curly 16 
DS15 right 1 1 1 1 1 1 1 1 1 3 0 medbrown black curly 20 
DS16 right 2 2 1 2 1 2 1 1 1 3 0 medbrown black curly 20 
DS17 right 2 1 2 2 1 1 1 2 1 3 0 white brown straight 18 
DS18 right 1 2 2 2 3 1 2 2 3 3 0 white brown straight 19 
DS19 right 1 2 2 2 2 2 2 1 1 3 0 white brown curly 20 
DS20 right 1 1 1 3 1 2 1 1 1 3 0 white brown straight 20 
DS21 right 2 2 2 2 2 2 2 2 2 3 0 white brown curly 20 
DS22 right 2 1 1 2 1 1 1 1 1 2 2 lightbrown gray curly 20 
DS23 right 4 1 1 1 1 1 1 1 1 3 19 white brown curly 16 
DS24 right 1 1 1 2 1 1 1 1 1 3 0 lightbrown brown straight 16 
DS25 left 1 1 1 1 1 1 1 1 1 3 0 lightbrown none none 16 
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Participant 
ID Hand BioTrng FPS Adven Puzzle Strat Rhythm RPG Sims SporG Comp Paralys SkinColor HairCol HairTextr Ed 

DS26 right 2 3 3 3 3 2 3 3 2 3 0 white black straight 18 
DS27 right 2 2 2 2 3 1 2 2 3 3 0 white brown straight 18 
DS28 right 2 3 2 3 3 2 1 2 2 3 0 lightbrown black straight 18 
DS29 right 1 3 2 3 3 1 3 2 2 3 0 white brown straight 18 
DS30 right 1 1 1 2 1 1 1 1 1 3 2 white brown straight 16 
DS31 right 1 1 1 3 1 1 1 1 1 3 17 white brown curly 16 
DS32 right 1 3 2 3 3 1 3 1 1 3 0 white brown straight 16 
DS33 right 3 3 3 3 2 3 3 2 1 3 0 white brown straight 18 
DS34 right 1 2 1 2 2 1 3 3 3 3 0 white brown straight 18 
DS35 right 2 2 2 2 1 1 1 1 1 3 0 lightbrown black curly 18 
DS36 right 1 2 2 2 2 2 2 2 1 3 0 white brown straight 16 
DS37 right 1 2 2 3 1 3 2 3 1 3 0 lightbrown black straight 18 
DS38 right 1 3 2 3 3 1 1 3 2 3 3 white brown straight 14 
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Appendix B: Biometric User Profile Questionnaire 
 
Participant ID:  (For Use by Investigator) 

Age:              Sex:            Male            Female 

 
Please answer the following questions to the best of your ability.  Your identity will be kept private 
and your answers will be made anonymous if used in any analysis. 

                Yes    No 
 

1. Do you smoke or were you a smoker? � � 

If you quit smoking, how long ago did you quit? ________________________________________ 

2. Are you currently taking any medication, drugs, or vitamins that may affect your alertness? 

(e.g., anti-histamine, anti-depressant, anti-anxiety, recreational drug, Super B complex) � � 
If yes, does it make you less alert or more alert than normal for you? Circle one:       Less       More 

3. Do you regularly (i.e., daily) drink caffeinated beverages and/or eat chocolate? � � 
(e.g., coffee, caffeinated soda, tea, hot chocolate, chocolate bar) 

4. Do you regularly drink alcohol (i.e., wine, beer, liquor)?  � � 

5. Have you ever suffered from any short/long-term memory or speech loss due to a concussion or 

blow to the head?  � � 

6. Do you act or do you consider yourself to be an actor/actress? � � 

7. Do you regularly (i.e., daily) engage in meditation? � � 

8. Do you have any dexterity and/or special skills with your hands?  � � 
(e.g., painting, playing an instrument, other detailed work with your hands) 

If yes, in what area(s)?_____________________________________________________________ 

9. Do you play any sports or did you play any in the past?  � � 
 
If you played sports, what kind did you play and how recently did you play them? (e.g., cross-country 
runner, 5 years ago; ballroom dance, currently) 
_______________________________________________________________________________ 
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10. Please rate your overall current level of athleticism on a scale from 1-7, where 7 is very athletic 
such as a trained athlete and 1 is very sedentary.  Circle one:                           1   2   3   4   5   6   7 

11. Which hand do you use for writing?  Circle one:                                                      Right        Left     

12. Have you received any prior training with a direct-brain interface or biometric technology?  
(e.g., mu-based system, polygraph, fNIR system) Circle one (hours):                        0      1-3      4-10     11+ 

If yes, what type of direct-brain interface or biometric technology and how long ago? 
_______________________________________________________________________________ 

13. What experience do you have with playing video games?  

Action/First-person shooter games (e.g., Quake)?  Circle one:                        None   Some   Extensive 

Adventure games (e.g., Myst)?  Circle one:                                                     None   Some   Extensive 

Puzzle games (e.g., Tetris)?  Circle one:                                                          None   Some   Extensive  

Real-time Strategy games (e.g., StarCraft)?  Circle one:                                  None   Some   Extensive 

Rhythm games (e.g., Dance Dance Revolution)?  Circle one:                              None   Some   Extensive  

Role-playing games e.g., Fallout, Final Fantasy)?  Circle one:                           None   Some   Extensive 

Simulation games (e.g., Gran Turismo)?  Circle one:                                         None   Some   Extensive 

Sports games (e.g., Madden)?  Circle one:                                                        None   Some   Extensive 

Other? (Name and Type) __________________ Circle one:                       None   Some   Extensive 

14. How much do you typically use a computer for non-gaming activities?  
Circle one:                                                                                  Hardly Ever    A Little    Extensively 

15. If you suffer from any form of paralysis, how long has it been since the onset of your condition? 

_______________________________________________________________________________ 
  
 
Investigator Notes: 
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Appendix C: Participant Session Information Sheet 
 
 

Participant ID  Date Start time End time 

    
 
 

No. Question Response 

1.  If you smoke, how long ago did you smoke your last cigarette? 
(hours) 

 
 

2.  a. If you drink caffeinated beverages or eat chocolate, how 
long ago did you last drink/eat a serving? (hours) 
 
b. How much did you consume? (servings, bars) 
 

 

3.  a. If you drink alcohol, how long ago was your last drink? 
(hours) 
 
b. What type? (i.e., wine, beer, liquor) 
 

 
 

4.  a. Are you currently hungry? (yes/no) 
 
 
b. How long ago did you eat your last major meal? (hours) 
 

 

5.  Please rate how rested you feel on a scale of 1-5, where 5 is the 
most rested. 

 

6.  Please rate your current level of alertness on a scale of 1-5, 
where 5 is the most alert. 

 

7.  Please rate your current level of stress on a scale of 1-5, where 
5 is the most stressed. 

 

8.  Please rate your current level of anxiety on a scale of 1-5, 
where 5 is the most anxious.  

 
 
Investigator Notes:  
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Appendix D: Session Protocol 
 
Orientation      
STEP TASK INSTRUCTIONS DURATION ELAPSED 

TIME 

1.  Participant reviews consent form 
Please read over the provided consent form (or the form 
is read aloud) and sign if you agree to participate. 5 min  5 min 

2.  Complete initial questionnaires Please answer questions to the best of your knowledge. 10 min 15 min 
 
System Setup 
STEP TASK INSTRUCTIONS DURATION ELAPSED 

TIME 

3.  

Operator places sensors for 
interface 
 
For GSR: Place electrodes on the 
index and middle finger of the right 
hand. 
 
For fNIR: Place the padded sensor 
on the left temple (over the 
language area of the brain) and 
hold in place using a tennis 
headband. 

Randomized order of testing 
 
For GSR: The electrodes placed on the fingers will send 
an imperceptible amount of electricity to measure sweat.  
You should not experience any discomfort so please 
inform me if you do. 
 
For fNIR: A sensor producing infrared light placed on the 
scalp over the language area of the brain will measure 
oxygenation of the blood.  You should not experience any 
discomfort so please inform me if you do. 2 min 17 min 

4.  
Conduct manual system 
calibration 

For GSR: Stay relaxed or think of a very exciting moment 
for you. 
 
For fNIR:  Say ‘lala’ repeatedly in your head or ‘count’ 
rapidly in your head. 1 min  18 min 

5.  Practice – attain target 5b Try to move the cursor into the target to the right. 
3 x (20 s timeout+10 s 
breaks) = 1.5 min  19.5 min 

6.  Practice – attain target 1b 
Same thing but this time, try to move the cursor into the 
target to the left. 

3 x (20 s timeout+10 s 
breaks) = 1.5 min  21 min 

7.  Break 
We are not recording now.  Take a break while remaining 
in your place.  We will begin in a minute. 1 min  22 min 
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Experiment 
STEP TASK INSTRUCTIONS DURATION ELAPSED 

TIME 

8.  Attain target 4 Try to move the cursor into the target to the right. 
6 x (20 s timeout+10 s 
breaks) = 3 min 25 min 

9.  Attain target 1 Try to move the cursor into the target to the left. 
6 x (20 s timeout+10 s 
breaks) = 3 min 28 min 

10.  Attain target 3 Try to move the cursor into the target to the right. 
6 x (20 s timeout+10 s 
breaks) = 3 min 31 min  

11.  Attain target 2 Try to move the cursor into the target to the left. 
6 x (20 s timeout+10 s 
breaks) = 3 min 34 min 

12.  Break 
We are not recording now.  Take a break while remaining 
in your place.  We will begin in a minute. 1 min 35 min 

13.  Attain target 2 Try to move the cursor into the target to the left. 
6 x (20 s timeout+10 s 
breaks) = 3 min 38 min 

14.  Attain target 4 Try to move the cursor into the target to the right. 
6 x (20 s timeout+10 s 
breaks) = 3 min 41 min  

15.  Attain target 3 Try to move the cursor into the target to the right. 
6 x (20 s timeout+10 s 
breaks) = 3 min 44 min 

16.  Attain target 1 Try to move the cursor into the target to the left. 
6 x (20 s timeout+10 s 
breaks) = 3 min 47 min  

17.  Break 
We are not recording now.  Take a break while remaining 
in your place.  We will begin in a minute. 1 min 48 min 

18.  Attain target 1 Try to move the cursor into the target to the left. 
6 x (20 s timeout+10 s 
breaks) = 3 min 51 min 

19.  Attain target 3 Try to move the cursor into the target to the right. 
6 x (20 s timeout+10 s 
breaks) = 3 min 54 min 

20.  Attain target 4 Try to move the cursor into the target to the right. 
6 x (20 s timeout+10 s 
breaks) = 3 min 57 min  

21.  Attain target 2 Try to move the cursor into the target to the left. 
6 x (20 s timeout+10 s 
breaks) = 3 min 60 min 

22.  Break 
We are not recording now.  Take a break do what you 
want to.  We will begin again in 5 minutes. 5 min 65 min 

23.  
Repeat Steps 3-21 with other 
Technology 

We will repeat the same protocol using the other 
technology. 45 min 110 min 

24.  Complete exit questionnaire 

You have completed the session.  Thank you for your 
time.  Please answer questions to the best of your 
knowledge.  Do you have any questions at this time?   5 min  115 min 

TOTAL DURATION: Approx. 2 hours (1 hour and 55 min)
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Appendix E: BioGauge Protocols for Continuous-Output 
Transducers 
 
No Control Protocols 
 
NC1: No Control – resting 

Description: Record transducer output for 1 minute while participant relaxes in seated 
position with eyes closed. 

Objective:  Characterize the transducer’s ability to remain neutral when the user is relaxed 
with eyes closed and there is no intent by the participant to control the 
transducer 

 
NC2: No Control – passive 

Description: Record transducer output for 1 minute while participant relaxes in seated 
position while simply watching a seascape. 

Objective:  Indicate the transducer’s ability to remain neutral when the user is passively 
observant, but there is no intent by the participant to make an activation. 

 
NC3: No Control – attentive 

Description: Record transducer output for 1 minute while participant relaxes in seated 
position and performs an active mental search for hidden faces in a picture. The 
difficulty level is such that the hidden images are not readily apparent but the 
task is not impossible.  The search is non-exhaustive for the participant where 
they are told to search for images but not told how many images to find. 

Objective:  Indicate the transducer’s ability to remain neutral when the user is attentive, but 
there is no intent by the participant to make an activation. 

 
Intentional Control Protocols 
 
RC1: Attain Target from Fixed Starting Point 

Description: For 1D continuous output transducers, the participant is presented with a 1D 
space (indicated by a blue bar) and asked to move an indicator to a specific 
target box.  Likewise for 2D continuous output transducers, the participant is 
presented with a 2D space (indicated by a blue area) and asked to move an 
indicator to a specific target box.  The computer system does not move the 
indicator at a regular rate, but rather the indicator movement is controlled by the 
participant.  The participant’s screen is proportional to the absolute range of 
transducer values.  At the start of a new trial, the indicator is set at a pre-
specified starting point along the 1D or 2D space. 

Objective:  Indicate how quickly and accurately a participant can change from one 
transducer output level to another  
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RC2: Attain Target from Fixed Starting Point and Hold for Prescribed Time 
Description: For 1D continuous output transducers, the participant is presented with a 1D 

space (indicated by a blue bar) and asked to move an indicator to a specific 
target box and hold it within that target box for a predefined time interval.  
Likewise for 2D continuous output transducers, the participant is presented with 
a 2D space (indicated by a blue area) and asked to move an indicator to a 
specific target box and hold it within that target box for a predefined time 
interval.  When the participant moves the indicator within the target box, the 
box slowly fills in from the edges inward representing a timer for how long the 
transducer output should be held at a certain level.  If feedback is desired, the 
target box will change color upon entry of the indicator and change back to its 
original color upon exit of the indicator from the target box.  A trial ends after 
the target box is first reached and exited or upon timeout.  After each trial, the 
target box disappears and is repositioned after a set amount of time.  Indicator 
positioning and movement is the same as above. 

Objective:  1) Indicate how quickly and accurately a participant can change from one 
transducer output level to another; and 2) Indicate how well a participant can 
maintain a specific output level  

 



 

 76

Appendix F: Participant Post-Session Questionnaire 
 

Participant ID:  

 
Please answer the following questions to the best of your ability.  Your identity will be kept 
private and your answers will be made anonymous if used in any analysis. 
 
1. What sort of imagery did you use to control the cursor?   

To move it to the right?   
 
 
To move it to the left?   
 

 
2. How was the experience of the exercise for you? Fun, interesting, boring, tiring, etc.? 
 
 
3. Were you given enough instructions? 
 
 
4. What do you think of this research? 
 
 
5. Would you like to come back? 
 
 
6. Do you have any additional comments/feedback to the session? 
 
 
 
Investigator Notes: 
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Appendix G: Detailed Descriptive Statistics 
 
Continuous/Scaled Variables 

Descriptives

.46637 .025726

.41424

.51849

.46295

.46528
.025

.158585
.181
.833
.653

.23958
.285 .383

-.344 .750
.35435 .035221
.28299

.42572

.34970

.35417
.047

.217120
.000
.806
.806

.30382
-.037 .383
-.478 .750
39.24 2.142
34.90

43.58

38.89
37.50

174.402
13.206

21
67
46

24.50
.307 .383

-1.204 .750

Mean
Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis
Mean

Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis
Mean

Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

fNIR Success

GSR Success

Age

Statistic Std. Error
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Descriptives

3.16 .268
2.61

3.70

3.09
3.00

2.731
1.653

1
7
6

2.50
.190 .383

-.822 .750
1.08 .414

.24

1.92

.61

.00
6.507
2.551

0
14
14

2.00
4.022 .383

18.621 .750
1.13 .663
-.21

2.48

.25

.00
16.712

4.088
0

19
19
.00

4.034 .383
15.568 .750

Mean
Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis
Mean

Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis
Mean

Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

Athleticism

Biometric Training

Yrs with Paralysis

Statistic Std. Error
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Descriptives

17.08 .338
16.39

17.76

17.15
18.00
4.345
2.084

12
20

8
2.00

-.318 .383
-.459 .750

Mean
Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

Yrs Education
Statistic Std. Error

 
 
 
 
 
Categorical Variables 

Sex

13 34.2 34.2 34.2
25 65.8 65.8 100.0
38 100.0 100.0

Female
Male
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Smoker

28 73.7 73.7 73.7
10 26.3 26.3 100.0
38 100.0 100.0

No
Yes
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Drugs

31 81.6 81.6 81.6
7 18.4 18.4 100.0

38 100.0 100.0

No
Yes
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent
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Regular Caffeine

11 28.9 28.9 28.9
27 71.1 71.1 100.0
38 100.0 100.0

No
Yes
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Regular Alcohol

26 68.4 68.4 68.4
12 31.6 31.6 100.0
38 100.0 100.0

No
Yes
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Head Injury

37 97.4 97.4 97.4
1 2.6 2.6 100.0

38 100.0 100.0

No
Yes
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Acting Experience

35 92.1 92.1 92.1
3 7.9 7.9 100.0

38 100.0 100.0

No
Yes
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Meditation Experience

31 81.6 81.6 81.6
7 18.4 18.4 100.0

38 100.0 100.0

No
Yes
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Dexterity

15 39.5 39.5 39.5
23 60.5 60.5 100.0
38 100.0 100.0

No
Yes
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent
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Play Sports

7 18.4 18.4 18.4
31 81.6 81.6 100.0
38 100.0 100.0

No
Yes
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Handedness

4 10.5 10.5 10.5
34 89.5 89.5 100.0
38 100.0 100.0

Left
Right
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
First-Person Shooter Games

17 44.7 44.7 44.7
13 34.2 34.2 78.9

8 21.1 21.1 100.0
38 100.0 100.0

None
Some
Extensive
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Adventure Games

19 50.0 50.0 50.0
16 42.1 42.1 92.1

3 7.9 7.9 100.0
38 100.0 100.0

None
Some
Extensive
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Puzzle Games

10 26.3 26.3 26.3
17 44.7 44.7 71.1
11 28.9 28.9 100.0
38 100.0 100.0

None
Some
Extensive
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent
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Strategy Games

23 60.5 60.5 60.5
6 15.8 15.8 76.3
9 23.7 23.7 100.0

38 100.0 100.0

None
Some
Extensive
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Rhythm Games

28 73.7 73.7 73.7
7 18.4 18.4 92.1
3 7.9 7.9 100.0

38 100.0 100.0

None
Some
Extensive
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Role-Playing Games

24 63.2 63.2 63.2
8 21.1 21.1 84.2
6 15.8 15.8 100.0

38 100.0 100.0

None
Some
Extensive
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Simulations

22 57.9 57.9 57.9
12 31.6 31.6 89.5

4 10.5 10.5 100.0
38 100.0 100.0

None
Some
Extensive
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
SportGames

26 68.4 68.4 68.4
8 21.1 21.1 89.5
4 10.5 10.5 100.0

38 100.0 100.0

None
Some
Extensive
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent
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ComputerUse

1 2.6 2.6 2.6
5 13.2 13.2 15.8

32 84.2 84.2 100.0
38 100.0 100.0

Hardly Ever
A Little
Extensively
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Skin Color

18 47.4 47.4 47.4
13 34.2 34.2 81.6

3 7.9 7.9 89.5
4 10.5 10.5 100.0

38 100.0 100.0

White
LightBrown
MediumBrown
DarkBrown
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Hair Color

1 2.6 2.6 2.6
17 44.7 44.7 47.4
18 47.4 47.4 94.7

2 5.3 5.3 100.0
38 100.0 100.0

Blond/None
Brown
Black
Gray
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent

 
Hair Texture

1 2.6 2.6 2.6
22 57.9 57.9 60.5
15 39.5 39.5 100.0
38 100.0 100.0

None
Straight
Curly
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent
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Appendix H: Detailed Performance Results with fNIR 
 
Yellow shading indicates averaged results for able-bodied participants and green shading 
indicates averaged results for participants with ALS (DS22, 23, 30, 31, and 38).  Bold values are 
the overall measures of success taken as an average across the entire set. 
 

Participant 
ID 

Order 
Ran Run No. p06 p07 p08 p09 

Average 
Success 

   far right far left mid right mid left  
DS01 1 1 0.500 0.000 0.000 0.000 0.125
  2 0.500 0.500 0.500 0.000 0.375
  3 0.833 0.500 0.833 0.667 0.708
    Success 0.611 0.333 0.444 0.222 0.403
        
DS02 1 1 0.833 0.000 0.333 0.500 0.417
  2 0.333 0.167 0.167 0.000 0.167
  3 0.333 0.833 0.000 0.000 0.292
    Success 0.500 0.333 0.167 0.167 0.292
        
DS03 2 1 0.833 0.000 1.000 0.667 0.625
  2 0.000 0.000 0.500 0.000 0.125
  3 0.333 0.500 0.000 0.000 0.208
    Success 0.389 0.167 0.500 0.222 0.319
        
DS04 1 1 0.000 0.667 0.000 0.667 0.333
  2 0.500 0.333 0.167 0.000 0.250
  3 0.833 0.500 0.833 0.667 0.708
    Success 0.444 0.500 0.333 0.444 0.431
        
DS05 2 1 0.667 1.000 0.000 0.500 0.542
  2 0.167 0.000 0.833 0.333 0.333
  3 0.167 0.000 0.167 1.000 0.333
    Success 0.333 0.333 0.333 0.611 0.403
        
DS06 1 1 0.333 0.667 0.833 0.333 0.542
  2 0.500 0.333 0.833 0.500 0.542
  3 0.500 0.000 0.667 0.167 0.333
    Success 0.444 0.333 0.778 0.333 0.472
        
DS07 1 1 0.333 0.000 0.333 0.000 0.167
  2 0.000 0.000 0.333 0.000 0.083
  3 0.500 1.000 1.000 0.167 0.667
    Success 0.278 0.333 0.556 0.056 0.306
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Participant 
ID 

Order 
Ran Run No. p06 p07 p08 p09 

Average
Success

DS08 2 1 0.000 1.000 0.333 0.333 0.417
  2 1.000 0.000 0.167 0.000 0.292
  3 0.000 0.333 0.167 0.000 0.125
    Success 0.333 0.444 0.222 0.111 0.278
   
DS09 1 1 0.000 0.833 0.000 0.833 0.417
  2 1.000 0.833 0.833 0.000 0.667
  3 0.667 0.667 0.333 0.833 0.625
    Success 0.556 0.778 0.389 0.556 0.569
        
DS10 2 1 0.500 0.333 0.667 0.833 0.583
  2 0.500 1.000 1.000 0.500 0.750
  3 0.667 0.333 0.833 0.667 0.625
    Success 0.556 0.556 0.833 0.667 0.653
        
DS11 2 1 0.333 0.167 0.167 0.667 0.333
  2 0.000 0.833 0.000 1.000 0.458
  3 0.500 0.000 0.667 0.833 0.500
    Success 0.278 0.333 0.278 0.833 0.431
        
DS12 1 1 0.333 0.000 0.000 0.000 0.083
  2 0.333 0.167 0.333 0.000 0.208
  3 0.500 0.000 0.500 0.500 0.375
    Success 0.389 0.056 0.278 0.167 0.222
        
DS13 1 1 0.333 0.000 0.833 0.000 0.292
  2 0.833 0.500 0.667 0.500 0.625
  3 0.833 0.667 0.500 0.500 0.625
    Success 0.667 0.389 0.667 0.333 0.514
        
DS14 2 1 0.833 0.000 1.000 0.000 0.458
  2 0.333 1.000 0.833 1.000 0.792
  3 0.000 1.000 0.000 0.333 0.333
    Success 0.389 0.667 0.611 0.444 0.528
        
DS15 1 1 0.500 0.000 0.000 0.667 0.292
  2 0.500 0.000 0.500 1.000 0.500
  3 1.000 0.833 0.667 1.000 0.875
    Success 0.667 0.278 0.389 0.889 0.556
        
DS16 2 1 0.833 0.000 0.500 1.000 0.583
  2 0.833 0.833 0.333 1.000 0.750
  3 1.000 0.333 0.500 0.500 0.583
    Success 0.889 0.389 0.444 0.833 0.639
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Participant 
ID 

Order 
Ran Run No. p06 p07 p08 p09 

Average
Success

DS17 2 1 1.000 0.000 0.333 0.000 0.333
  2 0.667 0.667 0.833 0.333 0.625
  3 0.500 0.000 0.500 0.000 0.250
    Success 0.722 0.222 0.556 0.111 0.403
   
DS18 1 1 0.833 0.667 0.833 0.500 0.708
  2 0.833 0.500 0.833 1.000 0.792
  3 0.667 0.500 1.000 1.000 0.792
    Success 0.778 0.556 0.889 0.833 0.764
        
DS19 2 1 0.833 0.167 0.500 1.000 0.625
  2 1.000 1.000 0.833 1.000 0.958
  3 1.000 0.833 0.833 1.000 0.917
    Success 0.944 0.667 0.722 1.000 0.833
        
DS20 1 1 0.500 0.833 0.667 0.000 0.500
  2 0.500 0.667 0.000 0.667 0.458
  3 0.500 0.667 0.500 0.833 0.625
    Success 0.500 0.722 0.389 0.500 0.528
        
DS21 2 1 0.500 0.500 0.167 1.000 0.542
  2 0.667 0.000 0.667 0.167 0.375
  3 0.500 0.000 0.833 0.833 0.542
    Success 0.556 0.167 0.556 0.667 0.486
        
DS22 1 1 0.167 0.000 0.833 0.833 0.458
  2 0.000 0.167 0.000 0.000 0.042
  3 0.833 0.000 0.833 0.167 0.458
    Success 0.333 0.056 0.556 0.333 0.319
        
DS23 2 1 1.000 0.667 0.667 0.333 0.667
  2 0.500 0.167 0.833 1.000 0.625
  3 0.833 0.333 0.833 0.333 0.583
    Success 0.778 0.389 0.778 0.556 0.625
        
DS24 2 1 0.000 0.000 0.167 0.833 0.250
  2 0.500 0.000 0.167 0.500 0.292
  3 0.000 0.000 0.000 0.000 0.000
    Success 0.167 0.000 0.111 0.444 0.181
        
DS25 1 1 0.667 0.500 0.000 0.000 0.292
  2 0.167 0.333 0.167 0.000 0.167
  3 0.167 0.333 0.167 0.000 0.167
    Success 0.333 0.389 0.111 0.000 0.208
        



 

 87

 
Participant 
ID 

Order 
Ran Run No. p06 p07 p08 p09 

Average
Success

DS26 1 1 0.000 0.000 0.833 0.000 0.208
  2 0.667 0.667 0.500 0.833 0.667
  3 0.833 0.167 0.833 0.000 0.458
    Success 0.500 0.278 0.722 0.278 0.444
        
DS27 2 1 0.667 0.667 0.500 0.167 0.500
  2 0.833 0.500 0.500 0.167 0.500
  3 1.000 0.667 1.000 1.000 0.917
    Success 0.833 0.611 0.667 0.444 0.639
        
DS28 2 1 0.333 0.000 0.500 0.833 0.417
  2 0.500 0.167 0.000 0.000 0.167
  3 0.333 0.500 0.000 0.167 0.250
    Success 0.389 0.222 0.167 0.333 0.278
        
DS29 1 1 0.167 0.667 1.000 0.167 0.500
  2 0.333 0.667 0.000 0.500 0.375
  3 0.500 0.833 0.500 0.500 0.583
    Success 0.333 0.722 0.500 0.389 0.486
        
DS30 2 1 0.667 0.000 0.833 0.667 0.542
  2 0.833 0.000 0.833 1.000 0.667
  3 0.500 0.000 0.500 0.000 0.250
    Success 0.667 0.000 0.722 0.556 0.486
        
DS31 1 1 0.167 0.167 1.000 0.333 0.417
  2 0.833 0.000 0.000 0.000 0.208
  3 N/A N/A N/A N/A N/A 
    Success 0.500 0.083 0.500 0.167 0.313
        
DS32 2 1 0.833 0.167 0.333 0.333 0.417
  2 0.500 0.833 1.000 0.333 0.667
  3 0.167 0.167 0.667 1.000 0.500
    Success 0.500 0.389 0.667 0.556 0.528
        
DS33 1 1 0.667 0.000 0.667 0.667 0.500
  2 0.167 0.333 0.333 0.833 0.417
  3 N/A N/A N/A N/A N/A 
    Success 0.417 0.167 0.500 0.750 0.458
        
DS34 2 1 0.500 0.667 0.833 0.500 0.625
  2 0.333 0.500 1.000 0.333 0.542
  3 0.667 0.000 0.500 0.000 0.292
    Success 0.500 0.389 0.778 0.278 0.486
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Participant 
ID 

Order 
Ran Run No. p06 p07 p08 p09 

Average
Success

DS35 2 1 0.833 0.333 0.833 0.500 0.625
  2 0.667 0.667 1.000 1.000 0.833
  3 1.000 0.667 1.000 0.167 0.708
    Success 0.833 0.556 0.944 0.556 0.722
        
DS36 1 1 0.000 0.500 0.500 0.167 0.292
  2 0.500 0.500 0.167 0.500 0.417
  3 N/A N/A N/A N/A N/A 
    Success 0.250 0.500 0.333 0.333 0.354
        
DS37 2 1 0.667 0.833 1.000 1.000 0.875
  2 0.167 0.000 1.000 0.667 0.458
  3 0.833 0.667 0.833 0.833 0.792
    Success 0.556 0.500 0.944 0.833 0.708
        
DS38 1 1 0.500 0.500 0.833 0.000 0.458
  2 N/A N/A N/A N/A N/A 
  3 N/A N/A N/A N/A N/A 
    Success 0.500 0.500 0.833 0.000 0.458
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Appendix I: Detailed Performance Results with GSR 
 
Yellow shading indicates averaged results for able-bodied participants and green shading 
indicates averaged results for participants with ALS (DS22, 23, 30, 31, and 38).  Bold values are 
the overall measures of success taken as an average across the entire set. 
 
 

Participant Order Run p10 p11 p12 p13 
Average 
Success

   far right far left mid right mid left  
DS01 2 1 0.167 0.000 0.333 0.333 0.208
  2 0.333 0.667 0.000 0.000 0.250
  3 1.000 0.167 0.667 0.167 0.500
    Success 0.500 0.278 0.333 0.167 0.319
        
DS02 2 1 0.000 0.000 0.000 0.000 0.000
  2 0.000 0.833 0.000 0.000 0.208
  3 0.000 0.333 0.000 0.833 0.292
    Success 0.000 0.389 0.000 0.278 0.167
        
DS03 1 1 0.500 1.000 0.500 0.500 0.625
  2 0.000 0.000 0.000 0.833 0.208
  3 0.500 0.500 0.000 0.000 0.250
    Success 0.333 0.500 0.167 0.444 0.361
        
DS04 2 1 0.000 0.667 0.833 0.000 0.375
  2 0.000 0.167 0.500 0.833 0.375
  3 0.500 0.167 0.500 0.000 0.292
    Success 0.167 0.333 0.611 0.278 0.347
        
DS05 1 1 0.833 0.167 1.000 0.667 0.667
  2 0.000 0.833 0.000 0.667 0.375
  3 0.000 0.333 0.167 0.333 0.208
    Success 0.278 0.444 0.389 0.556 0.417
        
DS06 2 1 0.500 0.000 0.500 0.500 0.375
  2 1.000 0.500 0.833 0.167 0.625
  3 0.500 0.000 0.833 0.000 0.333
    Success 0.667 0.167 0.722 0.222 0.444
        
DS07 2 1 0.333 0.000 0.167 0.000 0.125
  2 0.667 0.500 1.000 1.000 0.792
  3 0.500 0.833 0.000 0.500 0.458
    Success 0.500 0.444 0.389 0.500 0.458
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Participant Order Run p10 p11 p12 p13 
Average
Success

DS08 1 1 0.333 0.500 0.833 0.000 0.417
  2 0.000 0.000 0.000 0.167 0.042
  3 0.500 0.167 0.500 0.000 0.292
    Success 0.278 0.222 0.444 0.056 0.250
   
DS09 2 1 0.000 0.000 0.000 0.000 0.000
  2 0.000 0.000 0.000 0.000 0.000
  3 0.000 0.333 0.000 0.000 0.083
    Success 0.000 0.111 0.000 0.000 0.028
        
DS10 1 1 0.333 0.333 0.167 0.333 0.292
  2 0.000 0.000 0.000 0.667 0.167
  3 N/A N/A N/A N/A N/A 
    Success 0.167 0.167 0.083 0.500 0.229
        
DS11 1 1 0.833 0.000 0.000 N/A 0.278
  2 N/A N/A N/A N/A N/A 
  3 N/A N/A N/A N/A N/A 
    Success 0.833 0.000 0.000 N/A 0.278
        
DS12 2 1 0.333 0.333 1.000 0.333 0.500
  2 0.167 0.000 0.167 0.000 0.083
  3 0.000 0.667 0.333 0.000 0.250
    Success 0.167 0.333 0.500 0.111 0.278
        
DS13 2 1 0.167 0.833 0.500 0.500 0.500
  2 0.833 0.167 0.833 0.500 0.583
  3 0.667 0.833 0.000 0.167 0.417
    Success 0.556 0.611 0.444 0.389 0.500
        
DS14 1 1 0.000 0.833 0.167 0.167 0.292
  2 0.000 0.167 0.000 0.500 0.167
  3 0.000 0.333 0.000 0.000 0.083
    Success 0.000 0.444 0.056 0.222 0.181
        
DS15 2 1 0.167 0.000 0.000 0.667 0.208
  2 0.000 N/A 0.000 0.667 0.222
  3 N/A N/A N/A N/A N/A 
    Success 0.083 0.000 0.000 0.667 0.188
        
DS16 1 1 0.000 0.000 N/A N/A 0.000
  2 N/A N/A N/A N/A N/A 
  3 N/A N/A N/A N/A N/A 
    Success 0.000 0.000 N/A N/A 0.000
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Participant Order Run p10 p11 p12 p13 
Average
Success

DS17 1 1 N/A N/A N/A N/A N/A 
  2 N/A N/A N/A N/A N/A 
  3 N/A N/A N/A N/A N/A 
    Success N/A N/A N/A N/A 0.000
        
DS18 2 1 0.833 0.000 1.000 1.000 0.708
  2 0.833 0.167 0.833 0.167 0.500
  3 0.667 1.000 0.667 1.000 0.833
    Success 0.778 0.389 0.833 0.722 0.681
        
DS19 1 1 0.667 0.000 0.333 0.667 0.417
  2 0.833 0.500 0.667 0.167 0.542
  3 0.167 1.000 1.000 1.000 0.792
    Success 0.556 0.500 0.667 0.611 0.583
        
DS20 2 1 0.833 0.333 0.000 0.500 0.417
  2 0.667 0.667 0.000 0.667 0.500
  3 0.667 1.000 0.000 0.500 0.542
    Success 0.722 0.667 0.000 0.556 0.486
        
DS21 1 1 0.667 0.333 0.333 0.500 0.458
  2 0.333 0.500 0.500 0.000 0.333
  3 0.167 0.333 0.333 0.500 0.333
    Success 0.389 0.389 0.389 0.333 0.375
        
DS22 2 1 N/A N/A N/A N/A N/A 
  2 N/A N/A N/A N/A N/A 
  3 N/A N/A N/A N/A N/A 
    Success N/A N/A N/A N/A 0.000
        
DS23 1 1 0.667 0.000 0.500 0.333 0.375
  2 0.000 0.667 0.833 0.333 0.458
  3 0.000 0.833 0.833 0.500 0.542
    Success 0.222 0.500 0.722 0.389 0.458
        
DS24 1 1 0.500 0.000 0.667 0.000 0.292
  2 0.500 0.500 0.167 0.833 0.500
  3 0.333 0.667 0.000 0.000 0.250
    Success 0.444 0.389 0.278 0.278 0.347
        
DS25 2 1 1.000 0.667 0.000 0.667 0.583
  2 0.167 0.333 0.333 0.500 0.333
  3 0.500 0.000 1.000 0.167 0.417
    Success 0.556 0.333 0.444 0.444 0.444
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Participant Order Run p10 p11 p12 p13 
Average
Success

DS26 2 1 0.167 0.667 0.333 0.333 0.375
  2 0.167 0.167 0.167 0.333 0.208
  3 0.833 0.833 0.000 0.167 0.458
    Success 0.389 0.556 0.167 0.278 0.347
        
DS27 1 1 0.833 0.667 1.000 0.667 0.792
  2 0.167 0.167 0.500 0.167 0.250
  3 0.000 0.333 0.667 0.500 0.375
    Success 0.333 0.389 0.722 0.444 0.472
        
DS28 1 1 0.500 0.333 0.167 0.333 0.333
  2 0.167 0.833 0.500 0.833 0.583
  3 0.167 0.833 0.667 0.167 0.458
    Success 0.278 0.667 0.444 0.444 0.458
        
DS29 2 1 0.333 0.500 0.167 0.667 0.417
  2 0.333 0.667 0.500 1.000 0.625
  3 0.500 0.167 1.000 0.833 0.625
    Success 0.389 0.444 0.556 0.833 0.556
        
DS30 1 1 N/A N/A N/A N/A N/A 
  2 N/A N/A N/A N/A N/A 
  3 N/A N/A N/A N/A N/A 
    Success N/A N/A N/A N/A 0.000
        
DS31 2 1 N/A N/A N/A N/A N/A 
  2 N/A N/A N/A N/A N/A 
  3 N/A N/A N/A N/A N/A 
    Success N/A N/A N/A N/A 0.000
        
DS32 1 1 0.833 1.000 0.833 1.000 0.917
  2 1.000 0.500 0.500 0.667 0.667
  3 1.000 0.833 0.833 0.333 0.750
    Success 0.944 0.778 0.722 0.667 0.778
        
DS33 2 1 0.000 0.167 0.000 0.500 0.167
  2 N/A N/A N/A N/A N/A 
  3 N/A N/A N/A N/A N/A 
    Success 0.000 0.167 0.000 0.500 0.167
        
DS34 1 1 0.833 0.833 1.000 0.667 0.833
  2 1.000 1.000 0.667 0.667 0.833
  3 0.667 0.667 1.000 0.667 0.750
    Success 0.833 0.833 0.889 0.667 0.806
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Participant Order Run p10 p11 p12 p13 
Average
Success

DS35 1 1 0.333 0.500 0.000 0.000 0.208
  2 0.667 0.667 0.333 0.833 0.625
  3 0.167 0.000 0.500 0.000 0.167
    Success 0.389 0.389 0.278 0.278 0.333
        
DS36 2 1 0.333 0.000 0.667 1.000 0.500
  2 0.833 1.000 0.833 0.500 0.792
  3 0.333 0.833 0.333 0.333 0.458
    Success 0.500 0.611 0.611 0.611 0.583
        
DS37 1 1 0.667 0.833 0.833 0.167 0.625
  2 0.833 0.000 0.500 0.333 0.417
  3 1.000 0.500 1.000 0.833 0.833
    Success 0.833 0.444 0.778 0.444 0.625
        
DS38 2 1 0.750 0.333 0.667 0.333 0.521
  2 N/A N/A N/A N/A N/A 
  3 N/A N/A N/A N/A N/A 
    Success 0.750 0.333 0.667 0.333 0.521
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Appendix J: Explored Population Differences 
 

Descriptive Statistics

33 .181 .833 .47033 .163851
33 .000 .806 .37837 .202323
33 21 59 37.88 12.534
33 1 7 3.39 1.580
33 0 0 .00 .000
33 12 20 17.18 2.083
33

5 .313 .625 .44021 .129870
5 .000 .521 .19587 .269115
5 25 67 48.20 15.515
5 1 4 1.60 1.342
5 2 19 8.60 8.620
5 14 20 16.40 2.191
5

fNIR Success
GSR Success
Age
Athleticism
Yrs with Paralysis
Yrs Education
Valid N (listwise)
fNIR Success
GSR Success
Age
Athleticism
Yrs with Paralysis
Yrs Education
Valid N (listwise)

ALS Patient
No

Yes

N Minimum Maximum Mean Std. Deviation

 
 

 

Ran First

18 54.5 54.5 54.5
15 45.5 45.5 100.0
33 100.0 100.0

1 20.0 20.0 20.0
4 80.0 80.0 100.0
5 100.0 100.0

GSR Ran First
fNIR Ran First
Total

Valid

GSR Ran First
fNIR Ran First
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Sex

11 33.3 33.3 33.3
22 66.7 66.7 100.0
33 100.0 100.0

2 40.0 40.0 40.0
3 60.0 60.0 100.0
5 100.0 100.0

Female
Male
Total

Valid

Female
Male
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent
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Smoker

23 69.7 69.7 69.7
10 30.3 30.3 100.0
33 100.0 100.0

5 100.0 100.0 100.0

No
Yes
Total

Valid

NoValid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Drugs

30 90.9 90.9 90.9
3 9.1 9.1 100.0

33 100.0 100.0
1 20.0 20.0 20.0
4 80.0 80.0 100.0
5 100.0 100.0

No
Yes
Total

Valid

No
Yes
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Regular Caffeine

8 24.2 24.2 24.2
25 75.8 75.8 100.0
33 100.0 100.0

3 60.0 60.0 60.0
2 40.0 40.0 100.0
5 100.0 100.0

No
Yes
Total

Valid

No
Yes
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Regular Alcohol

21 63.6 63.6 63.6
12 36.4 36.4 100.0
33 100.0 100.0

5 100.0 100.0 100.0

No
Yes
Total

Valid

NoValid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Head Injury

32 97.0 97.0 97.0
1 3.0 3.0 100.0

33 100.0 100.0
5 100.0 100.0 100.0

No
Yes
Total

Valid

NoValid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent
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Acting Experience

30 90.9 90.9 90.9
3 9.1 9.1 100.0

33 100.0 100.0
5 100.0 100.0 100.0

No
Yes
Total

Valid

NoValid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Meditation Experience

31 93.9 93.9 93.9
2 6.1 6.1 100.0

33 100.0 100.0
5 100.0 100.0 100.0

No
Yes
Total

Valid

YesValid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Dexterity

13 39.4 39.4 39.4
20 60.6 60.6 100.0
33 100.0 100.0

2 40.0 40.0 40.0
3 60.0 60.0 100.0
5 100.0 100.0

No
Yes
Total

Valid

No
Yes
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Play Sports

6 18.2 18.2 18.2
27 81.8 81.8 100.0
33 100.0 100.0

1 20.0 20.0 20.0
4 80.0 80.0 100.0
5 100.0 100.0

No
Yes
Total

Valid

No
Yes
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent
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Biometric Training

23 69.7 69.7 69.7
9 27.3 27.3 97.0
1 3.0 3.0 100.0

33 100.0 100.0
3 60.0 60.0 60.0
1 20.0 20.0 80.0
1 20.0 20.0 100.0
5 100.0 100.0

0
2
7
Total

Valid

0
2
14
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
First-Person Shooter Games

13 39.4 39.4 39.4
13 39.4 39.4 78.8

7 21.2 21.2 100.0
33 100.0 100.0

4 80.0 80.0 80.0
1 20.0 20.0 100.0
5 100.0 100.0

None
Some
Extensive
Total

Valid

None
Extensive
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Adventure Games

15 45.5 45.5 45.5
15 45.5 45.5 90.9

3 9.1 9.1 100.0
33 100.0 100.0

4 80.0 80.0 80.0
1 20.0 20.0 100.0
5 100.0 100.0

None
Some
Extensive
Total

Valid

None
Some
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Puzzle Games

9 27.3 27.3 27.3
15 45.5 45.5 72.7

9 27.3 27.3 100.0
33 100.0 100.0

1 20.0 20.0 20.0
2 40.0 40.0 60.0
2 40.0 40.0 100.0
5 100.0 100.0

None
Some
Extensive
Total

Valid

None
Some
Extensive
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent
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Strategy Games

19 57.6 57.6 57.6
6 18.2 18.2 75.8
8 24.2 24.2 100.0

33 100.0 100.0
4 80.0 80.0 80.0
1 20.0 20.0 100.0
5 100.0 100.0

None
Some
Extensive
Total

Valid

None
Extensive
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Rhythm Games

23 69.7 69.7 69.7
7 21.2 21.2 90.9
3 9.1 9.1 100.0

33 100.0 100.0
5 100.0 100.0 100.0

None
Some
Extensive
Total

Valid

NoneValid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Role-Playing Games

19 57.6 57.6 57.6
8 24.2 24.2 81.8
6 18.2 18.2 100.0

33 100.0 100.0
5 100.0 100.0 100.0

None
Some
Extensive
Total

Valid

NoneValid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Simulations

18 54.5 54.5 54.5
12 36.4 36.4 90.9

3 9.1 9.1 100.0
33 100.0 100.0

4 80.0 80.0 80.0
1 20.0 20.0 100.0
5 100.0 100.0

None
Some
Extensive
Total

Valid

None
Extensive
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent
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SportGames

22 66.7 66.7 66.7
7 21.2 21.2 87.9
4 12.1 12.1 100.0

33 100.0 100.0
4 80.0 80.0 80.0
1 20.0 20.0 100.0
5 100.0 100.0

None
Some
Extensive
Total

Valid

None
Some
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
ComputerUse

4 12.1 12.1 12.1
29 87.9 87.9 100.0
33 100.0 100.0

1 20.0 20.0 20.0
1 20.0 20.0 40.0
3 60.0 60.0 100.0
5 100.0 100.0

A Little
Extensively
Total

Valid

Hardly Ever
A Little
Extensively
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Skin Color

14 42.4 42.4 42.4
12 36.4 36.4 78.8

3 9.1 9.1 87.9
4 12.1 12.1 100.0

33 100.0 100.0
4 80.0 80.0 80.0
1 20.0 20.0 100.0
5 100.0 100.0

White
LightBrown
MediumBrown
DarkBrown
Total

Valid

White
LightBrown
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
Hair Color

1 3.0 3.0 3.0
13 39.4 39.4 42.4
18 54.5 54.5 97.0

1 3.0 3.0 100.0
33 100.0 100.0

4 80.0 80.0 80.0
1 20.0 20.0 100.0
5 100.0 100.0

Blond/None
Brown
Black
Gray
Total

Valid

Brown
Gray
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent
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Hair Texture

1 3.0 3.0 3.0
20 60.6 60.6 63.6
12 36.4 36.4 100.0
33 100.0 100.0

2 40.0 40.0 40.0
3 60.0 60.0 100.0
5 100.0 100.0

None
Straight
Curly
Total

Valid

Straight
Curly
Total

Valid

ALS Patient
No

Yes

Frequency Percent Valid Percent
Cumulative

Percent

 
 
 Mann-Whitney U Test 

Test Statisticsb

74.000 51.000 49.500 30.500 70.000 .000 61.500
89.000 66.000 610.500 45.500 631.000 561.000 76.500

-.368 -1.363 -1.427 -2.288 -.663 -6.064 -.941
.713 .173 .154 .022 .507 .000 .347

.738
a

.187
a

.159
a

.021
a

.615
a

.000
a

.376
a

Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed
Sig.)]

fNIR Success GSR Success Age Athleticism
Biometric
Training

Yrs with
Paralysis Yrs Education

Not corrected for ties.a. 

Grouping Variable: ALS Patientb. 
 

 
Chi-Square Tests 
 
ALS Patient * Ran First 

Crosstab

18 15 33
16.5 16.5 33.0

54.5% 45.5% 100.0%
94.7% 78.9% 86.8%
47.4% 39.5% 86.8%

1 4 5
2.5 2.5 5.0

20.0% 80.0% 100.0%
5.3% 21.1% 13.2%
2.6% 10.5% 13.2%

19 19 38
19.0 19.0 38.0

50.0% 50.0% 100.0%
100.0% 100.0% 100.0%
50.0% 50.0% 100.0%

Count
Expected Count
% within ALS Patient
% within Ran First
% of Total
Count
Expected Count
% within ALS Patient
% within Ran First
% of Total
Count
Expected Count
% within ALS Patient
% within Ran First
% of Total

No

Yes

ALS Patient

Total

GSR Ran
First fNIR Ran First

Ran First

Total
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Chi-Square Tests

2.073b 1 .150
.921 1 .337

2.201 1 .138
.340 .170

2.018 1 .155

38

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

2 cells (50.0%) have expected count less than 5. The minimum expected count is
2.50.

b. 

 
ALS Patient * Sex 

Crosstab

11 22 33
11.3 21.7 33.0

33.3% 66.7% 100.0%
84.6% 88.0% 86.8%
28.9% 57.9% 86.8%

2 3 5
1.7 3.3 5.0

40.0% 60.0% 100.0%
15.4% 12.0% 13.2%
5.3% 7.9% 13.2%

13 25 38
13.0 25.0 38.0

34.2% 65.8% 100.0%
100.0% 100.0% 100.0%
34.2% 65.8% 100.0%

Count
Expected Count
% within ALS Patient
% within Sex
% of Total
Count
Expected Count
% within ALS Patient
% within Sex
% of Total
Count
Expected Count
% within ALS Patient
% within Sex
% of Total

No

Yes

ALS Patient

Total

Female Male
Sex

Total

 
Chi-Square Tests

.086b 1 .770

.000 1 1.000

.084 1 .772
1.000 .567

.083 1 .773

38

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

2 cells (50.0%) have expected count less than 5. The minimum expected count is
1.71.

b. 
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ALS Patient * Smoker 
Crosstab

23 10 33
24.3 8.7 33.0

69.7% 30.3% 100.0%
82.1% 100.0% 86.8%
60.5% 26.3% 86.8%

5 0 5
3.7 1.3 5.0

100.0% .0% 100.0%
17.9% .0% 13.2%
13.2% .0% 13.2%

28 10 38
28.0 10.0 38.0

73.7% 26.3% 100.0%
100.0% 100.0% 100.0%

73.7% 26.3% 100.0%

Count
Expected Count
% within ALS Patient
% within Smoker
% of Total
Count
Expected Count
% within ALS Patient
% within Smoker
% of Total
Count
Expected Count
% within ALS Patient
% within Smoker
% of Total

No

Yes

ALS Patient

Total

No Yes
Smoker

Total

 
Chi-Square Tests

2.056b 1 .152
.790 1 .374

3.316 1 .069
.298 .196

2.002 1 .157

38

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

2 cells (50.0%) have expected count less than 5. The minimum expected count is
1.32.

b. 

 



 

 103

ALS Patient * Drugs 
Crosstab

30 3 33
26.9 6.1 33.0

90.9% 9.1% 100.0%
96.8% 42.9% 86.8%
78.9% 7.9% 86.8%

1 4 5
4.1 .9 5.0

20.0% 80.0% 100.0%
3.2% 57.1% 13.2%
2.6% 10.5% 13.2%

31 7 38
31.0 7.0 38.0

81.6% 18.4% 100.0%
100.0% 100.0% 100.0%

81.6% 18.4% 100.0%

Count
Expected Count
% within ALS Patient
% within Drugs
% of Total
Count
Expected Count
% within ALS Patient
% within Drugs
% of Total
Count
Expected Count
% within ALS Patient
% within Drugs
% of Total

No

Yes

ALS Patient

Total

No Yes
Drugs

Total

 
Chi-Square Tests

14.528b 1 .000
10.193 1 .001
11.197 1 .001

.002 .002

14.146 1 .000

38

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

2 cells (50.0%) have expected count less than 5. The minimum expected count is
.92.

b. 

 



 

 104

ALS Patient * Regular Caffeine 
Crosstab

8 25 33
9.6 23.4 33.0

24.2% 75.8% 100.0%
72.7% 92.6% 86.8%
21.1% 65.8% 86.8%

3 2 5
1.4 3.6 5.0

60.0% 40.0% 100.0%
27.3% 7.4% 13.2%

7.9% 5.3% 13.2%
11 27 38

11.0 27.0 38.0
28.9% 71.1% 100.0%

100.0% 100.0% 100.0%
28.9% 71.1% 100.0%

Count
Expected Count
% within ALS Patient
% within Regular Caffeine
% of Total
Count
Expected Count
% within ALS Patient
% within Regular Caffeine
% of Total
Count
Expected Count
% within ALS Patient
% within Regular Caffeine
% of Total

No

Yes

ALS Patient

Total

No Yes
Regular Caffeine

Total

 
Chi-Square Tests

2.699b 1 .100
1.241 1 .265
2.443 1 .118

.134 .134

2.628 1 .105

38

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

2 cells (50.0%) have expected count less than 5. The minimum expected count is
1.45.

b. 

 



 

 105

ALS Patient * Regular Alcohol 
Crosstab

21 12 33
22.6 10.4 33.0

63.6% 36.4% 100.0%
80.8% 100.0% 86.8%
55.3% 31.6% 86.8%

5 0 5
3.4 1.6 5.0

100.0% .0% 100.0%
19.2% .0% 13.2%
13.2% .0% 13.2%

26 12 38
26.0 12.0 38.0

68.4% 31.6% 100.0%
100.0% 100.0% 100.0%

68.4% 31.6% 100.0%

Count
Expected Count
% within ALS Patient
% within Regular Alcohol
% of Total
Count
Expected Count
% within ALS Patient
% within Regular Alcohol
% of Total
Count
Expected Count
% within ALS Patient
% within Regular Alcohol
% of Total

No

Yes

ALS Patient

Total

No Yes
Regular Alcohol

Total

 
Chi-Square Tests

2.657b 1 .103
1.241 1 .265
4.136 1 .042

.158 .131

2.587 1 .108

38

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

2 cells (50.0%) have expected count less than 5. The minimum expected count is
1.58.

b. 

 



 

 106

 ALS Patient * Acting Experience 
Crosstab

30 3 33
30.4 2.6 33.0

90.9% 9.1% 100.0%

85.7% 100.0% 86.8%

78.9% 7.9% 86.8%
5 0 5

4.6 .4 5.0
100.0% .0% 100.0%

14.3% .0% 13.2%

13.2% .0% 13.2%
35 3 38

35.0 3.0 38.0
92.1% 7.9% 100.0%

100.0% 100.0% 100.0%

92.1% 7.9% 100.0%

Count
Expected Count
% within ALS Patient
% within Acting
Experience
% of Total
Count
Expected Count
% within ALS Patient
% within Acting
Experience
% of Total
Count
Expected Count
% within ALS Patient
% within Acting
Experience
% of Total

No

Yes

ALS Patient

Total

No Yes
Acting Experience

Total

 
Chi-Square Tests

.494b 1 .482

.000 1 1.000

.885 1 .347
1.000 .647

.481 1 .488

38

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

3 cells (75.0%) have expected count less than 5. The minimum expected count is
.39.

b. 

 



 

 107

ALS Patient * Meditation Experience 
Crosstab

31 2 33
26.9 6.1 33.0

93.9% 6.1% 100.0%

100.0% 28.6% 86.8%

81.6% 5.3% 86.8%
0 5 5

4.1 .9 5.0
.0% 100.0% 100.0%

.0% 71.4% 13.2%

.0% 13.2% 13.2%
31 7 38

31.0 7.0 38.0
81.6% 18.4% 100.0%

100.0% 100.0% 100.0%

81.6% 18.4% 100.0%

Count
Expected Count
% within ALS Patient
% within Meditation
Experience
% of Total
Count
Expected Count
% within ALS Patient
% within Meditation
Experience
% of Total
Count
Expected Count
% within ALS Patient
% within Meditation
Experience
% of Total

No

Yes

ALS Patient

Total

No Yes
Meditation Experience

Total

 
Chi-Square Tests

25.498b 1 .000
19.630 1 .000
21.217 1 .000

.000 .000

24.827 1 .000

38

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

2 cells (50.0%) have expected count less than 5. The minimum expected count is
.92.

b. 

 



 

 108

ALS Patient * Dexterity 
Crosstab

13 20 33
13.0 20.0 33.0

39.4% 60.6% 100.0%
86.7% 87.0% 86.8%
34.2% 52.6% 86.8%

2 3 5
2.0 3.0 5.0

40.0% 60.0% 100.0%
13.3% 13.0% 13.2%

5.3% 7.9% 13.2%
15 23 38

15.0 23.0 38.0
39.5% 60.5% 100.0%

100.0% 100.0% 100.0%
39.5% 60.5% 100.0%

Count
Expected Count
% within ALS Patient
% within Dexterity
% of Total
Count
Expected Count
% within ALS Patient
% within Dexterity
% of Total
Count
Expected Count
% within ALS Patient
% within Dexterity
% of Total

No

Yes

ALS Patient

Total

No Yes
Dexterity

Total

 
Chi-Square Tests

.001b 1 .979

.000 1 1.000

.001 1 .979
1.000 .668

.001 1 .980

38

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

2 cells (50.0%) have expected count less than 5. The minimum expected count is
1.97.

b. 

 



 

 109

ALS Patient * Play(ed) Sports 
Crosstab

6 27 33
6.1 26.9 33.0

18.2% 81.8% 100.0%
85.7% 87.1% 86.8%
15.8% 71.1% 86.8%

1 4 5
.9 4.1 5.0

20.0% 80.0% 100.0%
14.3% 12.9% 13.2%

2.6% 10.5% 13.2%
7 31 38

7.0 31.0 38.0
18.4% 81.6% 100.0%

100.0% 100.0% 100.0%
18.4% 81.6% 100.0%

Count
Expected Count
% within ALS Patient
% within Play Sports
% of Total
Count
Expected Count
% within ALS Patient
% within Play Sports
% of Total
Count
Expected Count
% within ALS Patient
% within Play Sports
% of Total

No

Yes

ALS Patient

Total

No Yes
Play Sports

Total

 
Chi-Square Tests

.010b 1 .922

.000 1 1.000

.009 1 .923
1.000 .661

.009 1 .923

38

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

2 cells (50.0%) have expected count less than 5. The minimum expected count is
.92.

b. 

 



 

 110

 ALS Patient * First-Person Shooter Games 
Crosstab

13 13 7 33
14.8 11.3 6.9 33.0

39.4% 39.4% 21.2% 100.0%

76.5% 100.0% 87.5% 86.8%

34.2% 34.2% 18.4% 86.8%
4 0 1 5

2.2 1.7 1.1 5.0
80.0% .0% 20.0% 100.0%

23.5% .0% 12.5% 13.2%

10.5% .0% 2.6% 13.2%
17 13 8 38

17.0 13.0 8.0 38.0
44.7% 34.2% 21.1% 100.0%

100.0% 100.0% 100.0% 100.0%

44.7% 34.2% 21.1% 100.0%

Count
Expected Count
% within ALS Patient
% within First-Person
Shooter Games
% of Total
Count
Expected Count
% within ALS Patient
% within First-Person
Shooter Games
% of Total
Count
Expected Count
% within ALS Patient
% within First-Person
Shooter Games
% of Total

No

Yes

ALS Patient

Total

None Some Extensive
First-Person Shooter Games

Total

 
Chi-Square Tests

3.573a 2 .168
5.014 2 .082

1.229 1 .268

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

3 cells (50.0%) have expected count less than 5. The
minimum expected count is 1.05.

a. 

 



 

 111

ALS Patient * Adventure Games 
Crosstab

15 15 3 33
16.5 13.9 2.6 33.0

45.5% 45.5% 9.1% 100.0%

78.9% 93.8% 100.0% 86.8%

39.5% 39.5% 7.9% 86.8%
4 1 0 5

2.5 2.1 .4 5.0
80.0% 20.0% .0% 100.0%

21.1% 6.3% .0% 13.2%

10.5% 2.6% .0% 13.2%
19 16 3 38

19.0 16.0 3.0 38.0
50.0% 42.1% 7.9% 100.0%

100.0% 100.0% 100.0% 100.0%

50.0% 42.1% 7.9% 100.0%

Count
Expected Count
% within ALS Patient
% within Adventure
Games
% of Total
Count
Expected Count
% within ALS Patient
% within Adventure
Games
% of Total
Count
Expected Count
% within ALS Patient
% within Adventure
Games
% of Total

No

Yes

ALS Patient

Total

None Some Extensive
Adventure Games

Total

 
Chi-Square Tests

2.159a 2 .340
2.555 2 .279

2.004 1 .157

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

4 cells (66.7%) have expected count less than 5. The
minimum expected count is .39.

a. 

 



 

 112

ALS Patient * Puzzle Games 
Crosstab

9 15 9 33
8.7 14.8 9.6 33.0

27.3% 45.5% 27.3% 100.0%
90.0% 88.2% 81.8% 86.8%
23.7% 39.5% 23.7% 86.8%

1 2 2 5
1.3 2.2 1.4 5.0

20.0% 40.0% 40.0% 100.0%
10.0% 11.8% 18.2% 13.2%

2.6% 5.3% 5.3% 13.2%
10 17 11 38

10.0 17.0 11.0 38.0
26.3% 44.7% 28.9% 100.0%

100.0% 100.0% 100.0% 100.0%
26.3% 44.7% 28.9% 100.0%

Count
Expected Count
% within ALS Patient
% within Puzzle Games
% of Total
Count
Expected Count
% within ALS Patient
% within Puzzle Games
% of Total
Count
Expected Count
% within ALS Patient
% within Puzzle Games
% of Total

No

Yes

ALS Patient

Total

None Some Extensive
Puzzle Games

Total

 
Chi-Square Tests

.359a 2 .836

.345 2 .842

.306 1 .580

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

3 cells (50.0%) have expected count less than 5. The
minimum expected count is 1.32.

a. 

 



 

 113

ALS Patient * Strategy Games 
Crosstab

19 6 8 33
20.0 5.2 7.8 33.0

57.6% 18.2% 24.2% 100.0%
82.6% 100.0% 88.9% 86.8%
50.0% 15.8% 21.1% 86.8%

4 0 1 5
3.0 .8 1.2 5.0

80.0% .0% 20.0% 100.0%
17.4% .0% 11.1% 13.2%
10.5% .0% 2.6% 13.2%

23 6 9 38
23.0 6.0 9.0 38.0

60.5% 15.8% 23.7% 100.0%
100.0% 100.0% 100.0% 100.0%

60.5% 15.8% 23.7% 100.0%

Count
Expected Count
% within ALS Patient
% within Strategy Games
% of Total
Count
Expected Count
% within ALS Patient
% within Strategy Games
% of Total
Count
Expected Count
% within ALS Patient
% within Strategy Games
% of Total

No

Yes

ALS Patient

Total

None Some Extensive
Strategy Games

Total

 
Chi-Square Tests

1.303a 2 .521
2.060 2 .357

.426 1 .514

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

3 cells (50.0%) have expected count less than 5. The
minimum expected count is .79.

a. 

 



 

 114

ALS Patient * Rhythm Games 
Crosstab

23 7 3 33
24.3 6.1 2.6 33.0

69.7% 21.2% 9.1% 100.0%
82.1% 100.0% 100.0% 86.8%
60.5% 18.4% 7.9% 86.8%

5 0 0 5
3.7 .9 .4 5.0

100.0% .0% .0% 100.0%
17.9% .0% .0% 13.2%
13.2% .0% .0% 13.2%

28 7 3 38
28.0 7.0 3.0 38.0

73.7% 18.4% 7.9% 100.0%
100.0% 100.0% 100.0% 100.0%

73.7% 18.4% 7.9% 100.0%

Count
Expected Count
% within ALS Patient
% within Rhythm Games
% of Total
Count
Expected Count
% within ALS Patient
% within Rhythm Games
% of Total
Count
Expected Count
% within ALS Patient
% within Rhythm Games
% of Total

No

Yes

ALS Patient

Total

None Some Extensive
Rhythm Games

Total

 
Chi-Square Tests

2.056a 2 .358
3.316 2 .190

1.713 1 .191

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

4 cells (66.7%) have expected count less than 5. The
minimum expected count is .39.

a. 

 



 

 115

ALS Patient * Role-Playing Games 
Crosstab

19 8 6 33
20.8 6.9 5.2 33.0

57.6% 24.2% 18.2% 100.0%

79.2% 100.0% 100.0% 86.8%

50.0% 21.1% 15.8% 86.8%
5 0 0 5

3.2 1.1 .8 5.0
100.0% .0% .0% 100.0%

20.8% .0% .0% 13.2%

13.2% .0% .0% 13.2%
24 8 6 38

24.0 8.0 6.0 38.0
63.2% 21.1% 15.8% 100.0%

100.0% 100.0% 100.0% 100.0%

63.2% 21.1% 15.8% 100.0%

Count
Expected Count
% within ALS Patient
% within
Role-Playing Games
% of Total
Count
Expected Count
% within ALS Patient
% within
Role-Playing Games
% of Total
Count
Expected Count
% within ALS Patient
% within
Role-Playing Games
% of Total

No

Yes

ALS Patient

Total

None Some Extensive
Role-Playing Games

Total

 
Chi-Square Tests

3.359a 2 .187
5.029 2 .081

2.748 1 .097

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

3 cells (50.0%) have expected count less than 5. The
minimum expected count is .79.

a. 

 



 

 116

ALS Patient * Simulations 
Crosstab

18 12 3 33
19.1 10.4 3.5 33.0

54.5% 36.4% 9.1% 100.0%
81.8% 100.0% 75.0% 86.8%
47.4% 31.6% 7.9% 86.8%

4 0 1 5
2.9 1.6 .5 5.0

80.0% .0% 20.0% 100.0%
18.2% .0% 25.0% 13.2%
10.5% .0% 2.6% 13.2%

22 12 4 38
22.0 12.0 4.0 38.0

57.9% 31.6% 10.5% 100.0%
100.0% 100.0% 100.0% 100.0%

57.9% 31.6% 10.5% 100.0%

Count
Expected Count
% within ALS Patient
% within Simulations
% of Total
Count
Expected Count
% within ALS Patient
% within Simulations
% of Total
Count
Expected Count
% within ALS Patient
% within Simulations
% of Total

No

Yes

ALS Patient

Total

None Some Extensive
Simulations

Total

 
Chi-Square Tests

2.795a 2 .247
4.232 2 .121

.195 1 .659

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

4 cells (66.7%) have expected count less than 5. The
minimum expected count is .53.

a. 

 



 

 117

ALS Patient * SportGames 
Crosstab

22 7 4 33
22.6 6.9 3.5 33.0

66.7% 21.2% 12.1% 100.0%
84.6% 87.5% 100.0% 86.8%
57.9% 18.4% 10.5% 86.8%

4 1 0 5
3.4 1.1 .5 5.0

80.0% 20.0% .0% 100.0%
15.4% 12.5% .0% 13.2%
10.5% 2.6% .0% 13.2%

26 8 4 38
26.0 8.0 4.0 38.0

68.4% 21.1% 10.5% 100.0%
100.0% 100.0% 100.0% 100.0%

68.4% 21.1% 10.5% 100.0%

Count
Expected Count
% within ALS Patient
% within SportGames
% of Total
Count
Expected Count
% within ALS Patient
% within SportGames
% of Total
Count
Expected Count
% within ALS Patient
% within SportGames
% of Total

No

Yes

ALS Patient

Total

None Some Extensive
SportGames

Total

 
Chi-Square Tests

.722a 2 .697
1.240 2 .538

.603 1 .437

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

4 cells (66.7%) have expected count less than 5. The
minimum expected count is .53.

a. 

 



 

 118

ALS Patient * ComputerUse 
Crosstab

0 4 29 33
.9 4.3 27.8 33.0

.0% 12.1% 87.9% 100.0%

.0% 80.0% 90.6% 86.8%

.0% 10.5% 76.3% 86.8%
1 1 3 5
.1 .7 4.2 5.0

20.0% 20.0% 60.0% 100.0%
100.0% 20.0% 9.4% 13.2%

2.6% 2.6% 7.9% 13.2%
1 5 32 38

1.0 5.0 32.0 38.0
2.6% 13.2% 84.2% 100.0%

100.0% 100.0% 100.0% 100.0%
2.6% 13.2% 84.2% 100.0%

Count
Expected Count
% within ALS Patient
% within ComputerUse
% of Total
Count
Expected Count
% within ALS Patient
% within ComputerUse
% of Total
Count
Expected Count
% within ALS Patient
% within ComputerUse
% of Total

No

Yes

ALS Patient

Total

Hardly Ever A Little Extensively
ComputerUse

Total

 
Chi-Square Tests

7.206a 2 .027
4.676 2 .097

4.776 1 .029

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

5 cells (83.3%) have expected count less than 5. The
minimum expected count is .13.

a. 

 



 

 119

ALS Patient * Skin Color 
Crosstab

14 12 3 4 33
15.6 11.3 2.6 3.5 33.0

42.4% 36.4% 9.1% 12.1% 100.0%
77.8% 92.3% 100.0% 100.0% 86.8%
36.8% 31.6% 7.9% 10.5% 86.8%

4 1 0 0 5
2.4 1.7 .4 .5 5.0

80.0% 20.0% .0% .0% 100.0%
22.2% 7.7% .0% .0% 13.2%
10.5% 2.6% .0% .0% 13.2%

18 13 3 4 38
18.0 13.0 3.0 4.0 38.0

47.4% 34.2% 7.9% 10.5% 100.0%
100.0% 100.0% 100.0% 100.0% 100.0%

47.4% 34.2% 7.9% 10.5% 100.0%

Count
Expected Count
% within ALS Patient
% within Skin Color
% of Total
Count
Expected Count
% within ALS Patient
% within Skin Color
% of Total
Count
Expected Count
% within ALS Patient
% within Skin Color
% of Total

No

Yes

ALS Patient

Total

White LightBrown
MediumB

rown DarkBrown

Skin Color

Total

 
Chi-Square Tests

2.695a 3 .441
3.472 3 .324

2.262 1 .133

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

6 cells (75.0%) have expected count less than 5. The
minimum expected count is .39.

a. 
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ALS Patient * Hair Color 
Crosstab

1 13 18 1 33
.9 14.8 15.6 1.7 33.0

3.0% 39.4% 54.5% 3.0% 100.0%
100.0% 76.5% 100.0% 50.0% 86.8%

2.6% 34.2% 47.4% 2.6% 86.8%
0 4 0 1 5
.1 2.2 2.4 .3 5.0

.0% 80.0% .0% 20.0% 100.0%

.0% 23.5% .0% 50.0% 13.2%

.0% 10.5% .0% 2.6% 13.2%
1 17 18 2 38

1.0 17.0 18.0 2.0 38.0
2.6% 44.7% 47.4% 5.3% 100.0%

100.0% 100.0% 100.0% 100.0% 100.0%
2.6% 44.7% 47.4% 5.3% 100.0%

Count
Expected Count
% within ALS Patient
% within Hair Color
% of Total
Count
Expected Count
% within ALS Patient
% within Hair Color
% of Total
Count
Expected Count
% within ALS Patient
% within Hair Color
% of Total

No

Yes

ALS Patient

Total

Blond/None Brown Black Gray
Hair Color

Total

 
Chi-Square Tests

6.855a 3 .077
8.270 3 .041

.322 1 .570

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

6 cells (75.0%) have expected count less than 5. The
minimum expected count is .13.

a. 

 



 

 121

ALS Patient * Hair Texture 
Crosstab

1 20 12 33
.9 19.1 13.0 33.0

3.0% 60.6% 36.4% 100.0%
100.0% 90.9% 80.0% 86.8%

2.6% 52.6% 31.6% 86.8%
0 2 3 5
.1 2.9 2.0 5.0

.0% 40.0% 60.0% 100.0%

.0% 9.1% 20.0% 13.2%

.0% 5.3% 7.9% 13.2%
1 22 15 38

1.0 22.0 15.0 38.0
2.6% 57.9% 39.5% 100.0%

100.0% 100.0% 100.0% 100.0%
2.6% 57.9% 39.5% 100.0%

Count
Expected Count
% within ALS Patient
% within Hair Texture
% of Total
Count
Expected Count
% within ALS Patient
% within Hair Texture
% of Total
Count
Expected Count
% within ALS Patient
% within Hair Texture
% of Total

No

Yes

ALS Patient

Total

None Straight Curly
Hair Texture

Total

 
Chi-Square Tests

1.085a 2 .581
1.177 2 .555

1.054 1 .305

38

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

4 cells (66.7%) have expected count less than 5. The
minimum expected count is .13.

a. 
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Appendix K: Test-Wise Regression Results 
 
Age 

Model Summaryb

.456a .208 .186 .143095
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Agea. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.681 .074 9.249 .000
-5.47E-03 .002 -.456 -3.073 .004

(Constant)
Age

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

 
 

Model Summaryb

.503a .253 .232 .190224
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Agea. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.679 .098 6.935 .000
-8.27E-03 .002 -.503 -3.493 .001

(Constant)
Age

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Sex 
Model Summaryb

.251a .063 .037 .155618
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Sexa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.412 .043 9.542 .000
8.285E-02 .053 .251 1.557 .128

(Constant)
Sex

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

 
 

Model Summaryb

.420a .176 .153 .199804
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Sexa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.230 .055 4.145 .000

.189 .068 .420 2.773 .009
(Constant)
Sex

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Smoking Experience 
Model Summaryb

.031a .001 -.027 .160696
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Smokera. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.469 .030 15.451 .000
-1.09E-02 .059 -.031 -.184 .855

(Constant)
Smoker

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

 
 

Model Summaryb

.012a .000 -.028 .220099
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Smokera. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.356 .042 8.557 .000
-5.91E-03 .081 -.012 -.073 .942

(Constant)
Smoker

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Affective Drugs 
Model Summaryb

.154a .024 -.003 .158852
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Drugsa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.478 .029 16.748 .000
-6.22E-02 .066 -.154 -.936 .356

(Constant)
Drugs

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.203a .041 .014 .215541
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Drugsa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.375 .039 9.687 .000
-.112 .090 -.203 -1.243 .222

(Constant)
Drugs

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Regular Caffeine Consumption 
Model Summaryb

.356a .127 .103 .150235
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Regular Caffeinea. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.554 .045 12.223 .000
-.123 .054 -.356 -2.286 .028

(Constant)
Regular Caffeine

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

 
 

Model Summaryb

.057a .003 -.024 .219757
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Regular Caffeinea. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.335 .066 5.059 .000
2.692E-02 .079 .057 .342 .734

(Constant)
Regular Caffeine

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Regular Alcohol Consumption 
 

Model Summaryb

.093a .009 -.019 .160080
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Regular Alcohola. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.476 .031 15.169 .000
-3.12E-02 .056 -.093 -.558 .580

(Constant)
Regular Alcohol

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.355a .126 .102 .205744
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Regular Alcohola. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.303 .040 7.500 .000

.164 .072 .355 2.281 .029
(Constant)
Regular Alcohol

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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 Acting Experience 
Model Summaryb

.115a .013 -.014 .159707
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Acting Experiencea. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.461 .027 17.081 .000
6.668E-02 .096 .115 .694 .492

(Constant)
Acting Experience

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.256a .066 .040 .212752
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Acting Experiencea. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.370 .036 10.301 .000
-.204 .128 -.256 -1.592 .120

(Constant)
Acting Experience

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Meditation Experience 
 

Model Summaryb

.040a .002 -.026 .160646
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Meditation Experiencea. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.469 .029 16.266 .000
-1.60E-02 .067 -.040 -.238 .813

(Constant)
Meditation Experience

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.467a .218 .196 .194656
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Meditation Experiencea. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.402 .035 11.495 .000
-.258 .081 -.467 -3.167 .003

(Constant)
Meditation Experience

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Dexterity 
 

Model Summaryb

.058a .003 -.024 .160499
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Dexteritya. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.455 .041 10.981 .000
1.866E-02 .053 .058 .350 .728

(Constant)
Dexterity

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.238a .057 .030 .213790
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Dexteritya. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.291 .055 5.276 .000

.104 .071 .238 1.470 .150
(Constant)
Dexterity

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Play(ed) Sports 
Model Summaryb

.097a .009 -.018 .160019
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Play Sportsa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.435 .060 7.184 .000
3.903E-02 .067 .097 .583 .564

(Constant)
Play Sports

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.258a .066 .041 .212671
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Play Sportsa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.238 .080 2.962 .005

.143 .089 .258 1.601 .118
(Constant)
Play Sports

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Athleticism/Physical Activity 
 

Model Summaryb

.093a .009 -.019 .160072
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Athleticisma. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.438 .057 7.741 .000
8.944E-03 .016 .093 .562 .578

(Constant)
Athleticism

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.131a .017 -.010 .218228
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Athleticisma. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.300 .077 3.890 .000
1.717E-02 .022 .131 .791 .434

(Constant)
Athleticism

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
 

 



 

 133

Hours Training with Biometric Interfaces 
Model Summaryb

.171a .029 .002 .158404
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Biometric Traininga. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.455 .028 16.271 .000
1.063E-02 .010 .171 1.041 .305

(Constant)
Biometric Training

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.096a .009 -.018 .219092
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Biometric Traininga. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.363 .039 9.392 .000
-8.19E-03 .014 -.096 -.580 .565

(Constant)
Biometric Training

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Video-Game Experience: First-Person Shooter Games 
Model Summaryb

.249a .062 .036 .155711
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), First-Person Shooter Gamesa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.378 .063 6.024 .000

5.022E-02 .033 .249 1.542 .132

(Constant)
First-Person
Shooter Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.342a .117 .093 .206821
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), First-Person Shooter Gamesa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.188 .083 2.253 .030

9.452E-02 .043 .342 2.186 .035

(Constant)
First-Person
Shooter Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Video-Game Experience: Adventure Games 
Model Summaryb

.239a .057 .031 .156127
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Adventure Gamesa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.373 .068 5.491 .000
5.892E-02 .040 .239 1.474 .149

(Constant)
Adventure Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.163a .027 .000 .217155
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Adventure Gamesa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.267 .095 2.825 .008
5.525E-02 .056 .163 .994 .327

(Constant)
Adventure Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Video-Game Experience: Puzzle Games 
Model Summaryb

.213a .046 .019 .157066
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Puzzle Gamesa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.375 .074 5.070 .000
4.496E-02 .034 .213 1.311 .198

(Constant)
Puzzle Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.178a .032 .005 .216601
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Puzzle Gamesa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.250 .102 2.453 .019
5.132E-02 .047 .178 1.085 .285

(Constant)
Puzzle Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Video-Game Experience: Strategy Games 
Model Summaryb

.152a .023 -.004 .158912
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Strategy Gamesa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.420 .056 7.466 .000
2.824E-02 .031 .152 .921 .363

(Constant)
Strategy Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.422a .178 .155 .199597
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Strategy Gamesa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.179 .071 2.532 .016

.107 .039 .422 2.790 .008
(Constant)
Strategy Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Video-Game Experience: Rhythm Games 
Model Summaryb

.174a .030 .003 .158332
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Rhythm Gamesa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.407 .061 6.643 .000
4.388E-02 .042 .174 1.057 .297

(Constant)
Rhythm Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.089a .008 -.020 .219239
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Rhythm Gamesa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.313 .085 3.685 .001
3.085E-02 .057 .089 .537 .595

(Constant)
Rhythm Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Video-Game Experience: Role-Playing Games 
Model Summaryb

.224a .050 .024 .156705
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Role-Playing Gamesa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.395 .058 6.871 .000
4.653E-02 .034 .224 1.376 .177

(Constant)
Role-Playing Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.453a .205 .183 .196204
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Role-Playing Gamesa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.157 .072 2.182 .036

.129 .042 .453 3.051 .004
(Constant)
Role-Playing Games

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Video-Game Experience: Simulation Games 
Model Summaryb

.206a .043 .016 .157315
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Simulationsa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.394 .063 6.264 .000
4.760E-02 .038 .206 1.265 .214

(Constant)
Simulations

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.368a .135 .111 .204673
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Simulationsa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.177 .082 2.163 .037

.116 .049 .368 2.374 .023
(Constant)
Simulations

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Video-Game Experience: Sports Games 
Model Summaryb

.221a .049 .022 .156803
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), SportGamesa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.394 .059 6.630 .000
5.127E-02 .038 .221 1.358 .183

(Constant)
SportGames

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.308a .095 .070 .209394
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), SportGamesa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.215 .079 2.714 .010
9.799E-02 .050 .308 1.944 .060

(Constant)
SportGames

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Computer Use 
Model Summaryb

.120a .014 -.013 .159615
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), ComputerUsea. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.349 .164 2.130 .040
4.160E-02 .057 .120 .724 .474

(Constant)
ComputerUse

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.146a .021 -.006 .217754
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), ComputerUsea. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.159 .224 .710 .482
6.948E-02 .078 .146 .886 .382

(Constant)
ComputerUse

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Motor Control 
Model Summaryb

.005a .000 -.028 .160770
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Yrs with Paralysisa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.466 .027 17.209 .000
1.923E-04 .006 .005 .030 .976

(Constant)
Yrs with Paralysis

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.151a .023 -.004 .217584
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Yrs with Paralysisa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.363 .037 9.914 .000
-8.03E-03 .009 -.151 -.918 .365

(Constant)
Yrs with Paralysis

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Skin Color 
Model Summaryb

.043a .002 -.026 .160622
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Skin Colora. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.479 .055 8.658 .000
-6.97E-03 .027 -.043 -.259 .797

(Constant)
Skin Color

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.386a .149 .125 .203043
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Skin Colora. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.509 .070 7.282 .000
-8.53E-02 .034 -.386 -2.512 .017

(Constant)
Skin Color

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Hair Color 
 

Model Summaryb

.074a .005 -.022 .160332
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Hair Colora. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.513 .108 4.770 .000
-1.82E-02 .041 -.074 -.445 .659

(Constant)
Hair Color

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.367a .134 .110 .204789
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Hair Colora. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.669 .137 4.875 .000
-.123 .052 -.367 -2.364 .024

(Constant)
Hair Color

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Hair Texture 
Model Summaryb

.264a .070 .044 .155063
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Hair Texturea. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

.283 .114 2.476 .018
7.738E-02 .047 .264 1.643 .109

(Constant)
Hair Texture

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

Model Summaryb

.362a .131 .107 .205229
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Hair Texturea. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.698 .151 4.611 .000
-.145 .062 -.362 -2.326 .026

(Constant)
Hair Texture

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Years of Education 
 

Model Summaryb

.352a .124 .100 .150458
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Yrs Educationa. 

Dependent Variable: fNIR Successb. 
 

Coefficientsa

8.460E-03 .204 .041 .967
2.681E-02 .012 .352 2.259 .030

(Constant)
Yrs Education

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: fNIR Successa. 
 

 

Model Summaryb

.030a .001 -.027 .220016
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Yrs Educationa. 

Dependent Variable: GSR Successb. 
 

Coefficientsa

.408 .299 1.365 .181
-3.12E-03 .017 -.030 -.180 .858

(Constant)
Yrs Education

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: GSR Successa. 
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Appendix L: Correlations 
Correlations

1.000 .242 .096 -.052 .379** -.438**
. .071 .283 .378 .009 .003

38 38 38 38 38 38
.242 1.000 .119 -.206 .034 -.496**
.071 . .238 .107 .420 .001

38 38 38 38 38 38
.096 .119 1.000 -.387** .376** -.392**
.283 .238 . .008 .010 .007

38 38 38 38 38 38
-.052 -.206 -.387** 1.000 -.167 .222
.378 .107 .008 . .158 .090

38 38 38 38 38 38
.379** .034 .376** -.167 1.000 -.261
.009 .420 .010 .158 . .057

38 38 38 38 38 38
-.438** -.496** -.392** .222 -.261 1.000
.003 .001 .007 .090 .057 .

38 38 38 38 38 38

Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N

fNIR Success

GSR Success

Athleticism

Yrs with Paralysis

Yrs Education

Age

Spearman's rho
fNIR Success GSR Success Athleticism

Yrs with
Paralysis Yrs Education Age

Correlation is significant at the .01 level (1-tailed).**. 
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Correlations

1.000 .825** .637** .824** .438** .641** .678** .571**
. .000 .000 .000 .003 .000 .000 .000

38 38 38 38 38 38 38 38
.825** 1.000 .510** .724** .477** .599** .628** .473**
.000 . .001 .000 .001 .000 .000 .001

38 38 38 38 38 38 38 38
.637** .510** 1.000 .461** .483** .466** .557** .175
.000 .001 . .002 .001 .002 .000 .147

38 38 38 38 38 38 38 38
.824** .724** .461** 1.000 .302* .716** .617** .653**
.000 .000 .002 . .033 .000 .000 .000

38 38 38 38 38 38 38 38
.438** .477** .483** .302* 1.000 .433** .367* -.086
.003 .001 .001 .033 . .003 .012 .304

38 38 38 38 38 38 38 38
.641** .599** .466** .716** .433** 1.000 .567** .340*
.000 .000 .002 .000 .003 . .000 .018

38 38 38 38 38 38 38 38
.678** .628** .557** .617** .367* .567** 1.000 .587**
.000 .000 .000 .000 .012 .000 . .000

38 38 38 38 38 38 38 38
.571** .473** .175 .653** -.086 .340* .587** 1.000
.000 .001 .147 .000 .304 .018 .000 .

38 38 38 38 38 38 38 38

Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N

First-Person Shooter
Games

Adventure Games

Puzzle Games

Strategy Games

Rhythm Games

Role-Playing Games

Simulations

SportGames

Spearman's rho

First-Person
Shooter
Games

Adventure
Games

Puzzle
Games

Strategy
Games

Rhythm
Games

Role-Playing
Games Simulations SportGames

Correlation is significant at the .01 level (1-tailed).**. 

Correlation is significant at the .05 level (1-tailed).*. 
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Correlations

1.000 .705** .384**
. .000 .009

38 38 38
.705** 1.000 .426**
.000 . .004

38 38 38
.384** .426** 1.000
.009 .004 .

38 38 38

Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N

Skin Color

Hair Color

Hair Texture

Spearman's rho
Skin Color Hair Color Hair Texture

Correlation is significant at the .01 level (1-tailed).**. 
 

 



 

 151

8.  References 

Abrams, S. (1973). The Polygraph in a Psychiatric Setting. American Journal of Psychiatry, 
130(1), 94-98. 

Alluisi, E. A., & B.B. Morgan, J. (1976). Engineering Psychology and Human Performance. 
Annual Review of Psychology, 27, 305-330. 

Amyotrophic Lateral Sclerosis Ciliary Neurotrophic Factor Treatment Study (ACTS) Phase I-II 
Study Group. (1996). The Amyotrophic Lateral Sclerosis Functional Rating Scale 
(ALSFRS): Assessment of activities of daily living in patients with Amyotrophic Lateral 
Sclerosis. Archives of Neurology, 53, 141-147. 

Annett, M. (1985). Left, Right, Hand and Brain: The Right Shift Theory. Hillsdale, NJ: Erlbaum. 

Annett, M. (2001). Handedness and Brain Asymmetry The Right Shift Theory. New York, NY: 
Psychology Press. 

Ariniello, L. (1999, November). Unlocking Locked-In Syndrome. Brain Briefings, 1-2. 

Bailey, R. W. (1982). Human Performance Engineering. Englewood Cliffs, NJ: Prentice-Hall, 
Inc. 

Berardesca, E., & Maibach, H. (2003). Ethnic Skin: Overview of Structure and Function. Journal 
of the American Academy of Dermatology, 48(6), S139-S142. 

Biometric Consortium.An Introduction to Biometrics. Retrieved January 2, 2006, from 
http://www.biometrics.org/html/introduction.html 

Birbaumer, N., & Hinterberger, T. (2003). The Thought-Translation Device (TTD): 
Neurobehavioral Mechanisms and Clinical Outcomes. IEEE Transactions on Neural 
Systems and Rehabilitation Engineering, 11(2). 

Brandt, E. N., & Pope, A. M. (Eds.). (1997). Enabling America: Assessing the Role of 
Rehabilitation Science and Engineering. Washington, DC: National Academy Press. 

Buxton, W. (1990). A Three-State Model of Graphical Input. Paper presented at the Human-
Computer Interaction - INTERACT '90, North-Holland, Amsterdam. 

Card, S. K., Moran, T. P., & Newell, A. (1980). The Keystroke-Level Model for User 
Performance with Interactive Systems. Communications of the ACM, 23, 396-410. 

Carroll, J. M. (Ed.). (2003). HCI Models, Theories, and Frameworks: Towards a 
Multidisciplinary Science. San Francisco: Morgan Kaufmann Publishers. 

Chandler, A. D. (1962). Strategy and Structure. Cambridge, MA: MIT Press. 



 

 152

Committee to Review the Scientific Evidence on the Polygraph, & National Research Council. 
(2003). The Polygraph and Lie Detection. Washington, DC: The National Academies 
Press. 

Cook, A. M., & Hussey, S. M. (2002). Assistive Technology: Principles and Practice (2nd ed. 
ed.). St. Louis, MO: Mosby, Inc. 

Davis, A. B., Moore, M. M., & Storey, V. (2003, November 2003). Context Aware 
Communication for Severely Disabled Users. Paper presented at the Conference on 
Universal Usability 2003, Vancouver, B. C. Canada. 

Dishaw, M. T., & Strong, D. M. (1998, August 14-16). Experience as a Moderating Variable in 
a Task-Technology Fit Model. Paper presented at the Fourth Americas Conference on 
Information Systems (AMCIS), Baltimore, MD. 

Gao, X., Xu, D., Cheng, M., & Gao, S. (2003). A BCI-Based Environmental Controller for the 
Motion-Disabled. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 
11(2), 137-140. 

Gardner, H. (1993). Frames of Mind: The Theory of Multiple Intelligences (10th ed.). New York, 
NY: Basic Books. 

Giessinga, C., Thiela, C. M., Röslerc, F., & Fink, G. R. (2005). The Modulatory Effects of 
Nicotine on Parietal Cortex Activity in a Cued Target Detection Task Depend on Cue 
Reliability. Neuroscience, 137(3), 853-864. 

Goodhue, D. L. (1995). Understanding User Evaluations of Information Systems. Management 
Science, 41(12), 1827-1844. 

Goodhue, D. L., & Thompson, R. L. (1995). Task-Technology Fit and Individual Performance. 
MIS Quarterly, 19(2 (June)), 213-236. 

Green, C. S., & Bavelier, D. (2003). Action Video Game Modifies Visual Selective Attention. 
Nature, 423, 534-537. 

Hair, J. F., Jr., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate Data 
Analysis with Readings, 5th Edition. Englewood Cliffs, NJ: Prentice Hall. 

Hanani, U., Shapira, B., & Shoval, P. (2001). Information Filtering: Overview of Issues, 
Research and Systems. User Modeling and User-Adapted Interaction, 11, 203-259. 

Hock, C., Muller-Spahn, F., Schuh-Hofer, S., Hofmann, M., Dirnagl, U., & Villringer, A. (1995). 
Age Dependency of Changes in Cerebral Hemoglobin Oxygenation During Brain 
Activation: A Near-Infrared Spectroscopy Study. Journal of Cerebral Blood Flow and 
Metabolism, 15(6), 1103-1108. 

International Biometric Society. (2002). Definition of Biometrics. Retrieved April 24, 2004, from 
http://tibs.org/biometrics/ 



 

 153

Jameson, A. (2001). Modeling Both the Context and the User. Personal and Ubiquitous 
Computing, 5(1), 29-33. 

Joyce, W., Slocum, J. W., & Glinow, M. A. V. (1982). Person-Situation Interaction: Competing 
Models of Fit. Journal of Occupational Behavior, 3(4), 265-280. 

Jung, C. G. (1907). On the Psychophysical Relations of the Association Experiment. Journal of 
Abnormal Psychology, 1 (Reprinted in the Collected Works, Vol. 2, Chapter 12), 247-
255. 

Kleinschmidt, A., Obrig, H., Requardt, M., Merboldt, K.-D., Dirnagl, U., Villringer, A., et al. 
(1996). Simultaneous Recording of Cerebral Blood Oxygenation Changes During Human 
Brain Activation by Magnetic Resonance Imaging and Near-Infrared Spectroscopy. 
Journal of Cerebral Blood Flow and Metabolism, 16, 817-826. 

Liu, T. T., Behzadi, Y., Restom, K., Uludag, K., Lu, K., Buracas, G. T., et al. (2004). Caffeine 
Alters the Temporal Dynamics of the Visual BOLD Response. NeuroImage, 23, 1402– 
1413. 

Malone, T., Grant, K., Turbak, F., Brobst, S., & Cohen, M. (1987). Intelligent Information 
Sharing Systems. Communications of the ACM, 43(8), 390-402. 

Mason, S. G., & Birch, G. E. (2003). A General Framework for Brain-Computer Interface 
Design. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(1), 
70-85. 

Mason, S. G., Moore Jackson, M. M., & Birch, G. E. (2005). A General Framework for Brain 
Interface Evaluation. Annals of Biomedical Engineering, 33(11), 1-18. 

Medline Plus. (2006, January 6). Medical Encyclopedia: Sweating. Retrieved January 26, 2006, 
from http://www.nlm.nih.gov/medlineplus/ency/article/003218.htm 

Moore, M. M. (2003). Real-World Applications for Brain–Computer Interface Technology. 
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 162-165. 

Moore, M. M., & Dua, U. (2004, October 18-20, 2004). A Galvanic Skin Response Interface for 
People with Severe Motor Disabilities. Paper presented at the The Sixth International 
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS), Atlanta, GA. 

Moore, M. M., Storey, V., Davis, A. B., & Napier, N. (2004, August 6-8, 2004). Deriving User 
Profiles for Augmentative Communication. Paper presented at the Americas Conference 
on Information Systems (AMCIS), New York City, NY. 

Moore, M. M., Storey, V. C., & Randolph, A. B. (2005). User Profiles for Facilitating 
Conversations with Locked-in Users. Paper presented at the International Conference for 
Information Systems (ICIS), Las Vegas. 



 

 154

National Organization for Rare Disorders (NORD). (2000). Locked In Syndrome (Report). 
Danbury CT. 

Nishimura, E. M., Darling, B. A., Rapoport, E. D., Zadra, J. R., Proffitt, D. R., Downs, T. H., et 
al. (2006, October 15-20, 2006). Functional Near-Infrared Sensing for Brain-Computer 
Interface Control By a Locked-In Individual. Paper presented at the 2nd Annual 
Augmented Cognition International Conference, San Francisco, CA. 

Pallant, J. (2001). SPSS Survival Manual: A Step by Step Guide to Data Analysis Using SPSS. 
Philadelphia: Open University Press. 

Patil, R. D., Karve, S. V., & DiCarlo, S. E. (1993). Integrated Cardiovascular Physiology: A 
Laboratory Excercise. Advances in Physiology Education, 10(1), 20-31. 

Pearson NCS. (2006). Survey Tool Kit: Significant Difference Calculator. Retrieved April 1, 
2007, from http://survey.pearsonncs.com/significant-calc.htm 

Pedhazur, E. J. (1997). Multiple Regression in Behavioral Research: Explanation and Prediction 
(3rd ed.): Thomson Wadsworth. 

Randolph, A. B., McCampbell, L. A., Mason, S. G., & Moore, M. M. (2005, November 14). 
Methodology for Characterizing Biometric Interface Systems. Paper presented at the 
Neuroscience 2005: The 35th Annual Meeting of the Society for Neuroscience, 
Washington, DC. 

Randolph, A. B., McCampbell, L. A., Moore, M. M., & Mason, S. G. (2005, July 22-27, 2005). 
Controllability of Galvanic Skin Response. Paper presented at the The 11th International 
Conference on Human-Computer Interaction (HCII), Las Vegas, NV. 

Randolph, A. B., Moore Jackson, M., & Mason, S. G. (2007). BioGauges: Toward More 
Objective Evaluation of Biometric Interfaces. Working Paper. 

Randolph, A. B., Moore Jackson, M., Mason, S. G., & McCampbell, L. A. (2005, June 14-19, 
2005). BioGauges for Characterizing Biometric Interface Systems. Paper presented at the 
The Third International Meeting of Brain-Computer Interface Technology, 
Rensselaerville, NY. 

Sakurazawa, S., Yoshida, N., Munekata, N., Omi, A., Takeshima, H., Koto, H., et al. (2003, May 
8-10, 2003). A Computer Game Using Galvanic Skin Response. Paper presented at the 
The Second International Conference on Entertainment Computing, Pittsburgh, 
Pennsylvania. 

Shapiro, S. S., & Francia, R. S. (1965). An Approximate Analysis of Variance Test for 
Normality. Journal of the American Statistical Association, 67(337), 215-216. 

Siegel, S., & Castellan, N. J. J. (1988). Nonparametric Statistics for the Social Sciences (Second 
Edition ed.). New York, NY: McGraw-Hill. 



 

 155

Social Security Administration. (2003, June 2003). Social Security Online: Social Security Basic 
Facts. Retrieved April 20, 2004, from 
http://www.socialsecurity.gov/pressoffice/basicfact.htm 

Stenger, B. (2005, October). Computer-Aided Brains. Scientific American Mind, 16. 

Stevens, J. (1996). Using Multivariate Statistics (3rd ed.). Mahway, New Jersey: Lawrence 
Erlbaum. 

Terborg, C., Birkner, T., Schack, B., & Witte, O. W. (2002). Acute Effects of Cigarette Smoking 
on Cerebral Oxygenation and Hemodynamics - A Combined Study with Near-Infrared 
Spectroscopy and Transcranial Doppler Sonography. Journal of the Neurological 
Sciences, 205(1), 71-75. 

Tran, Y., Boord, P., Middleton, J., & Craig, A. (2004). Levels of brain wave activity (8-13 Hz) in 
persons with spinal cord injury. Spinal Cord, 42(2), 73-79. 

Trochim, W. M. (2001). The Research Methods Knowledge Base. Cincinnati, OH: Atomic Dog 
Publishing. 

Assistive Technology Act of 1998, (1998). 

Venkatraman, N. (1989). The Concept of Fit in Strategy Research: Toward Verbal and Statistical 
Correspondence. Academy of Management Review, 13(3, July), 423-444. 

Waldrop, J., & Stern, S. M. (2003). Disability Status: 2000. Washington, DC: U.S. Census 
Bureau. 

Weiskopf, N., Mathiak, K., Bock, S. W., Scharnowski, F., Veit, R., Grodd, W., et al. (2004). 
Principles of a Brain-Computer Interface (BCI) Based on Real-Time Functional Magnetic 
Resonance Imaging (fMRI). IEEE Transactions on Biomedical Engineering, 51(6), 966-
970. 

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). 
Brain-Computer Interfaces for Communication and Control. Clinical Neurophysiology, 
113(6), 767-791. 

WordNet.Glossary. Retrieved March 18, 2007, from http://wordnet.princeton.edu/ 

World Health Organization. (1980). International Classification of Impairments, Disabilities, 
and Handicaps. Paper presented at the WHO, Geneva. 

Yogi, M. M. (2005). The Transcendental Meditation (TM) Program. Retrieved March 18, 2007, 
from http://www.tm.org/ 

Zigurs, I., & Buckland, B. K. (1998). A Theory of Task/Technology Fit and Group Support 
Systems Effectiveness. MIS Quarterly, 22(3), 313-334. 

 



 

 156

9. Curriculum Vitae 

 
Biographical Details 
 
Name:  Adriane B. Randolph 
Birthplace: Albany, GA USA, April 29, 1977 
Address: 3645 Marketplace Blvd. 130-257, East Point, GA 30344 
 
 
Education 
 
2007  Doctor of Philosophy (Business Administration – CIS), Georgia State University 
1999  Bachelor of Science (Major – Systems Engineering), University of Virginia 
 
 
Work Experience 
 
1998 – 1999 Capstone Consultant, Dominion Semiconductor, Manassas, VA 
1999 – 2002 Analyst and Consultant, Accenture, Reston, VA 
2002 – 2007 Graduate Research Assistant to Melody Moore Jackson, Georgia State University, 

Atlanta, GA 
2003 – 2004 Graduate Teaching Assistant, Georgia State University, Atlanta, GA 
2004 – 2007 Visiting Researcher, Georgia Institute of Technology, Atlanta, GA 
August 2007 Assistant Professor of Business Information Systems, Kennesaw State University, 

Kennesaw, GA 
 
 
Refereed Publications 
 
1. Randolph, Adriane B., Karmakar, Saurav, Moore Jackson, Melody, “Toward Predicting 

Control of a Brain-Computer Interface,” Proceedings of the International Conference on 
Information Systems (ICIS), Milwaukee, December 10-14, 2006. 

2. Randolph, Adriane B., and Hubona, Geoffrey S., “Organizational and Individual Acceptance 
of Assistive Interfaces and Technologies”, Galletta, Dennis, and Ping Zhang, eds. Human-
Computer Interaction and Management Information Systems - Applications. Advances in 
Management Information Systems (AMIS), Volume 5. Armonk, NY: M. E. Sharpe, Inc., 
2006. 

3. Moore, Melody M., Storey, Veda C., Randolph, Adriane B., “User Profiles for Facilitating 
Conversations with Locked-in Users,” Proceedings of the International Conference on 
Information Systems (ICIS), Las Vegas, pp. 11-24, December 10-14, 2005. 

4. Randolph, Adriane B., McCampbell, Luke A., Moore, Melody M., and Mason, Steven G., 
“Controllability of Galvanic Skin Response,” Proceedings of the International Conference 
on Human-Computer Interaction (HCII), Las Vegas, July 22-27, 2005. 



 

 157

5. Moore, Melody M., Allison, Brendan Z., and Davis (Randolph), Adriane B. "Brain-
Computer Interfaces," In Encyclopedia of Human Computer Interaction, C. Ghaoui (ed.) Idea 
Group Reference, Hershey, PA, April 2005. 

6. Moore, Melody M., Storey, Veda C., Davis (Randolph), Adriane B., and Napier, Nannette, 
"Deriving User Profiles for Augmentative Communication," Proceedings of the Americas 
Conference on Information Systems (AMCIS), New York City, NY, pp. 3359-3363, August 
6-8, 2004. 

7. Davis (Randolph), Adriane B., Moore, Melody M., and Storey, Veda C., "Context Aware 
Communication for Severely Disabled Users," Proceedings of the Conference on Universal 
Usability (CUU), Vancouver, B. C. Canada, pp. 106-111, November 10-11, 2003 

 
 
Awards & Honors 
 
1. Invited to attend Mentoring in Engineering Academia II, Banff International Research 

Station (BIRS) Workshop in Banff, Canada, July 2007 
2. Selected for a Georgia State University Dissertation Grant Award, 2007 
3. Accepted to Rochester Institute of Technology’s Future Faculty Career Exploration 

Program (FFCEP), 2006 
4. Accepted to North Carolina State University’s Building the Faculty of the Future Program, 

2006 
5. Accepted to the Georgia Institute of Technology’s FOCUS Fellows Program, 2006 
6. Recognized in The Chancellor’s List, 2005-2006 
7. Accepted to the International ACM SIGACCESS Conference on Computers and Accessibility 

(ASSETS) Doctoral Consortium, 2004 
8. National Science Foundation Graduate Research Fellowship Award, 2004-2007 
9. Southern Regional Education Board (SREB) Doctoral Scholar, 2003-2004 
10. Accepted to the Richard J. Tapia Diversity in Computing Doctoral Consortium, 2003 
11. National Science Foundation Graduate Research Honorable Mention, 2003 
12. KPMG Ph.D. Project Doctoral Fellow for Information Systems, 2002-2007 
13. Inducted into Tau Beta Pi Engineering Honor Society, 1997 
14. Inducted into the Golden Key National Honor Society, 1997 
 
 
Service 
 
Reviewer at Journals: Information Systems Journal (ISJ), MIS Quarterly (MISQ), IEEE 
Computer, IEEE Transactions on Neural Systems and Rehabilitation Engineering (TNSRE), The 
DATA BASE for Advances in Information Systems 
 
Reviewer at Conferences: Americas Conference on Information Systems (AMCIS), Hawaii 
International Conference on System Sciences (HICSS), International Conference on Information 
Systems (ICIS), International Federation for Information Processing (IFIP) Working Group 8.2 
 


	Georgia State University
	ScholarWorks @ Georgia State University
	5-18-2007

	Individual-Technology Fit: Matching Individual Characteristics and Features of Biometric Interface Technologies with Performance
	Adriane Randolph
	Recommended Citation


	Microsoft Word - Randolph_Dissertation_Final.doc

