

 55

 60

 61

 62Image of Trees at different resolutions with
Multiresolutuin DCT and Block DCT

 63

 64

Figure 6.1: From page 35 – 64. Various images at different resolutions with two different approaches

 65

The above images represent the comparison between our new multi-resolution DCT algorithm

and the block DCT at different levels. At each level after the DCT is taken, 50% of the high

frequency DCT coefficients and discarded and replaced by zeros to keep the original size. IDCT

is taken after that to reconstruct image. At the next level the DCT is taken again for the

reconstructed image and the DCT coefficients are spread again across the image. The sharp

edges will be in the high frequency range and the other important information in the lower

frequency range. It is evident from the above images that; since we keep discarding the high

frequency coefficients, meaning the edges, the images at each subsequent level get blurrier. The

claim that the DCT coefficients are spread nicely with most of the information being compacted

in the lower frequency can be proven by the following graph of the DCT coefficients.

Figure 6.2: The DCT coefficients of a 256 x 256 image

 66

Figure 6.2 represents the distribution of the DCT coefficients of a 256x256 image. The X axis

represents the frequency and the Y axis represents the amplitude. It is clear from the above graph

that the high frequency DCT coefficients do not contain much of the information about the

image and hence can be discarded in the compression process.

We stopped our analysis at the sixth resolution mainly because the block DCT image at

higher levels is almost unrecognizable and the blocking effect is more prominent than the actual

image. It is clear from the images shown above that at every resolution the images with block

DCT gets more blocking effects than the previous level. One the other hand, the images that have

been applied the multi-resolution analysis, even though they get blurry on each resolution, the

results are still much better than the block DCT mainly because of no blocking effect. The tables

below show the mean square errors for various images at different resolutions with multi-

resolution DCT and also with Block DCT.

Image Autum

Level MSE for Multi-resolution DCT MSE for Block DCT

1 3.548652e-004 1.807085e-004

2 7.369907e-004 5.544897e-004

3 9.854389e-004 1.190332e-003

4 1.124062e-003 2.112189e-003

5 1.197013e-003 3.312929e-003

6 1.234432e-003 4.344019e-003

Table 6.1 MSE for multi-resolution DCT and Block DCT at different levels for Autumn

 67

Image Books

Level MSE for Multi-resolution DCT MSE for Block DCT

1 4.529395e-005 2.033844e-005

2 9.491778e-005 9.229971e-005

3 1.271715e-004 2.280965e-004

4 1.45190e-004 4.238396e-004

5 1.546181e-004 6.816383e-004

6 1.594641e-004 9.795495e-004

Table 6.2 MSE for multi-resolution DCT and Block DCT at different levels for Books

Image Cameraman

Level MSE for Multi-resolution DCT MSE for Block DCT

1 6.215928e-004 4.861981e-004

2 1.141939e-003 1.402589e-003

3 1.480183e-003 2.739405e-003

4 1.668838e-003 4.462630e-003

5 1.768058e-003 6.403300e-003

6 1.818897e-003 8.686007e-003

Table 6.3 MSE for multi-resolution DCT and Block DCT at different levels for Cameraman

 68

Image flowers

Level MSE for Multi-resolution DCT MSE for Block DCT

1 8.163322e-004 8.656227e-004

2 1.451321e-003 2.193417e-003

3 1.864060e-003 3.842966e-003

4 2.094242e-003 5.786849e-003

5 2.215287e-003 8.391775e-003

6 2.277299e-003 1.117396e-003

Table 6.4 MSE for multi-resolution DCT and Block DCT at different levels for Flowers

Image Kids

Level MSE for Multi-resolution DCT MSE for Block DCT

1 6.044608e-005 6.603947e-005

2 9.167781e-005 1.177201e-004

3 1.119818e-004 1.687027e-004

4 1.233087e-004 2.368734e-004

5 1.292679e-004 3.386910e-004

6 1.323230e-004 4.750812e-004

Table 6.5 MSE for multi-resolution DCT and Block DCT at different levels for Kids

 69

Image Lena

Level MSE for Multi-resolution DCT MSE for Block DCT

1 4.134701e-004 3.649426e-004

2 6.848883e-004 9.258494e-004

3 8.613066e-004 1.642532e-003

4 9.597309e-004 2.599402e-003

5 1.011525e-003 3.859901e-003

6 1.038089e-003 5.628552e-003

Table 6.6 MSE for multi-resolution DCT and Block DCT at different levels for Lena

Image Lily

Level MSE for Multi-resolution DCT MSE for Block DCT

1 4.076074e-004 3.702754e-004

2 8.268696e-004 1.192358e-003

3 1.099404e-003 2.564030e-003

4 1.251411e-003 4.683560e-003

5 1.331360e-003 7.51501e-003

6 1.372329e-003 1.149584e-002

Table 6.7 MSE for multi-resolution DCT and Block DCT at different levels for Lily

 70

Image Moon

Level MSE for Multi-resolution DCT MSE for Block DCT

1 9.884459e-005 9.940853e-005

2 1.765026e-004 2.738870e-004

3 2.269800e-004 5.336040e-004

4 2.551315e-004 9.586841e-004

5 2.699360e-004 1.668065e-003

6 2.775211e-004 2.781449e-003

Table 6.8 MSE for multi-resolution DCT and Block DCT at different levels for Moon

Image Saturn

Level MSE for Multi-resolution DCT MSE for Block DCT

1 3.760181e-005 3.315156e-005

2 6.871493e-005 1.069349e-004

3 8.893843e-005 2.537179e-004

4 1.002170e-004 5.102209e-004

5 1.061479e-004 9.287271e-004

6 1.091864e-004 1.717426e-003

Table 6.9 MSE for multi-resolution DCT and Block DCT at different levels for Saturn

 71

Image Trees

Level MSE for Multi-resolution DCT MSE for Block DCT

1 2.786072e-004 2.924482e-004

2 4.537206e-004 6.142078e-004

3 5.675393e-004 1.069397e-003

4 6.310620e-004 1.748493e-003

5 6.644224e-004 2.916259e-003

6 6.815399e-004 4.446754e-003

Table 6.10 MSE for multi-resolution DCT and Block DCT at different levels for Trees

The above tables from 6.1 to 6.10 represent the MSE for different images at different levels with

two different approaches: the mutiresolution analysis for DCT and the block DCT. In order to

present the results in a more meaningful manner the next table provides an average of the MSE

of all the images at the different levels. These results will also be presented in a graphical

manner.

 72

Average MSE for All the images at each level

Level Average MSE for Multi-

resolution DCT

Average MSE for Block

DCT

1 3.1347e-004 2.7791e-004

2 5.7275e-004 7.4738e-004

3 7.4130e-004 0.0014

4 8.3532e-004 0.0024

5 8.8476e-004 0.0036

6 9.1011e-004 0.0042

Table 6.11: Average MSE for all images for both Multi-resolution DCT and Block DCT

Table 6.11 provides an average of the MSE for each image at each level. It is clear from the

above table that the MSE for Multi-resolution DCT does not change by a big margin at each

level. One the other hand, it can be seen that the MSE for the block DCT changes with quite a

big difference at each level. This is the reason we see very prominent blocking effects at higher

levels in the images presented in figure 6.1. The results achieved in table 6.11 are also shown

graphically in figure 6.2 below.

 73

Figure 6.3: Multi-resolution vs. Block DCT (Y-axis represents the resolution and X-axis represents the MSE)

Figure 6.3 further elaborates our claim that the Multi-resolution analysis for DCT provides better

results than the block DCT. The red line with “+” represents the MSE for Multi-resolution DCT

while the “o” represents the MSE for block DCT at different levels. The graph for Multi-

resolution DCT is very steep as compared to the graph of Block DCT which means that the MSE

for Multi-resolution DCT at higher resolution levels is not as much as in Block DCT. For the

first two resolutions, the MSE for both the Multi-resolution DCT and Block DCT are comparable

and not that far off. But from the 3rd resolution, the differences between the two algorithms start

to get bigger and bigger. This observation proves that to go to various levels of compressions, it

is better to use Multi-resolution analysis than the block DCT.

 74

Chapter 7

CONCLUSION AND FUTURE WORK

The purpose of this thesis was to come with a new algorithm that would eliminate the

blocking from the DCT as well as apply multi-resolution analysis to the DCT. The experimental

results obtained in the previous chapter proves our claims in the sense that the images

reconstructed after compression do not have blocking artifacts and also we have shown that

multi-resolution analysis can be applied to the DCT and, in fact, the results are very encouraging.

We compared our algorithm with the block DCT using 32x32 blocks. The reason for choosing

this block size is that any blocks smaller would produce worse results and any blocks bigger

would take quite longer time to do the processing.

7.1 Future Work

The possibility of using multi-resolution analysis for DCT opens many doors for future

research. The suggested future work is as follows:

7.1.1 Noise Reduction using multi-resolution analysis for DCT

Our new introduced algorithm of applying multi-resolution analysis on DCT can be used

to achieve noise reduction from the images. At each resolution level the coefficients are averaged

which perform the noise reduction for us. This process can be further improved by some more

work. Instead of padding with zeros we can actually select the coefficients as done in the

wavelets and this will further improve the quality of the noise reduction in the images.

 75

Just to give an idea of what can be done, Gaussian noise was introduced in a coupe of images

and then our algorithm was run on them. The effects and the MSE for the two images are shown

below:

 MSE = 0.0128

Figure 7.1: Images of moon with Noise: The top figure shows the image with Gaussian noise and the bottom
figure shows the sixth level of resolution with noise reduction

 76

 MSE = 0.0178

Figure 7.2: Images of cameraman with Noise: The top figure shows the image with Gaussian noise and the bottom
figure shows the sixth level of resolution with noise reduction

 77

Figures 7.1 and 7.2 clearly show the MSE at each level is reduced considerably which means that

the noise is reduced at each level. The results from this are very encouraging and the future work

can be done to improve it and also to compare it with the wavelets to see if better results can be

obtained with DCT than with wavelets.

7.1.2 Lossless Compress using DCT

By using the proposed technique “Lossless” compression is possible from the DCT. In

our algorithm, at each resolution, after taking the DCT of the coefficients, we discard the high

resolution 50% DCT coefficients. These coefficients mainly contain the edges of the images. If

we save all the coefficients that we discard in our algorithm, then at the lowest resolution we can

try to reverse the process and build up from the last resolution but taking the DCT of the last

resolution image and replacing the high frequency 50% of the DCT coefficients with the

coefficients that we saved (instead of discarding) while going down the resolution level. This

would make sure that we are not loosing any information and hence the compression would be

Lossless instead of the default lossy DCT compression.

7.1.3 MDCT for Image compression

MDCT has been proven to be the best technique so far for sound compression because of

its technique for time domain alias cancellation. The alternate approach mentioned in the

previous chapter can be implemented using MDCT since both use one dimensional DCT.

 78

References:

[1]. I.H. Barkdoll, B.L. McGlamery: “An online Image processing system”. Proceedings of the
1968 23rd ACM national conference Pages: 705 - 716, Year of Publication: 1968

[2]. Robert Leggat: A History of Photography.

http://www.rleggat.com/photohistory/index.html

[3] Bottou, L., Howard, P. G., and Bengio, Y. “The Z-Coder Adaptive Binary Coder”, Proc.
IEEE DCC, Mar. 1998, pp. 13-22,
 http://www.research.att.com/~leonb/PS/bottou-howard-bengio.ps.gz.

[4] Pavel A. Chochia, “Image enhancement using sliding histograms”, Computer Vision,
Graphics, and Image Processing, v.44 n.2, p.211-229, Nov. 1988

[5] http://www.quantlet.com/mdstat/scripts/wav/html/wavhtmlnode13.html

[6] MICHAEL LOUNSBERY, TONY D. DEROSE, and JOE WARREN, “Multiresolution
Analysis for Surfaces of Arbitrary Topological Type”, ACM Transactions on Graphics, Vol. 16,
No. 1, January 1997.

[7] Stephane G. Mallat A, “Theory for Multi-resolution Signal Decomposition:
The Wavelet Representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence.
Vol. 2. NO. 7. JULY 1989

[8] Hairong Qi, Wesley E. Snyder, Griff L. Bilbro ; “Comparison of Mean Field Annealing and
Multi-resolution Analysis in Missing Data Estimation”, Electrical and Computer Engineering
Department, Box 7911 North Carolina State University, Raleigh, NC 27695-7911, U.S.A

[9] Mauro Maggioni , Department of Mathematics, Yale University
http://www.math.yale.edu/%7Emmm82/hrmwav.htm

[10] An Introduction to Wavelets
IEEE Computational Science and Engineering, Summer 1995, vol. 2.
http://www.amara.com/IEEEwave/IEEEwavelet.html

[11] Jackie (Jianhong) Shen; “Wavelets: Motivation, Construction, & Application”, School of
Math, University of Minnesota, Minneapolis

[12] http://www.ct-magazine.com/archives/ct/0300/feature2.htm

 79

[13] Zixiang Xiong, Kannan Ramchandran, Michael T. Orchard, and Ya-Qin Zhang; “A comparative
study of DCT and wavelet based image coding:, IEEE Transactions on circuits and systems for video
technology, VOL. 9, NO. 5, AUGUST 1999

[14] Ahumada, Albert J., Jr. Peterson, Heidi A.: “A visual detection model for DCT coefficient
quantization”, AIAA Computing in Aerospace Conference, 9th, San Diego, CA, Oct. 19-21,
1993, Technical Papers. Pt. 1 (A94-11401 01-62), Washington, American Institute of
Aeronautics and Astronautics, 1993, p. 314-318

[15]. Andrew B. Watson, “Image Compression Using the Discrete Cosine Transform”, NASA
Ames Research Center.

[16]. A. Gresho, R. M. Gray, “Vector Quantization and Signal Compression”, Kluwer Academic
Publishers, 1991.

[17] Kannan Ramchandran, Antonio Ortega, K. Metin Uz, and Martin Vetterli, “Multi-resolution
broadcast for digital HDTV using joint source/channel coding.” IEEE Journal on Selected Areas
in Communications, 11(1):6-23, January 1993.

[18] Mark W. Garrett and Martin Vetterli, “Joint Source/Channel Coding of Statistically
Multiplexed Real Time Services on Packet Networks,” IEEE/ACM Transactions on
Networking, 1993.

[19] S. McCanne and Martin Vetterli, “Joint source/channel coding for multicast packet
video,”International Conference on Image Processing (Vol. 1)-Volume 1, October 1995,
Washington D.C.

[20] Khalid Sayood and Jay C. Borkenhagen, “Use of residual redundancy in the design of joint
source/channel coders,” IEEE Transactions on Communications, 39(6):838-846, June 1991.

[21] J.Modestino, D.G. Daut, and A. Vickers, “Combined source channel coding of images
usingthe block cosine transform,” IEEE Transactions on Communications, vol. 29, pp.1261-
1274,September 1981.

[22] Irina Popovici and Wm. Douglas Withers, “The Eidochromatic Transform for Color Image
Coding”, IEEE Transactions on Image Processing, vol. 14, no. 3, MARCH 2005

[23] Cutnell, John D. and Kenneth W. Johnson. Physics. 4th ed. New York: Wiley, 1998: 466.

[24] Julio Enrique Castrillon-Candas and Kevin Amaratunga, “Fast Estimation of Karhunen-
Loeve Eigen Function usin Wavelets,” Submitted to IEEE Transactions on Signal Processing,
2001.

[25] A. Jain, “A Fast Karhunen-loeve Transform for Digital Restoration of Images Degraded by
White and Colored Noise,” IEEE Transactions on Computers, vol. 26, number 6, June 1977.

 80

[26] Syed Ali Khayam, “The Discrete Cosine Transform: Theory and Application”, Michigan
State University, March 2003

[27] Hoon Paek; Sang-Uk Lee, “A projection-based post-processing technique to reduce
blocking artifact using a priori information on DCT coefficients of adjacent blocks”, Image
Processing, 1996. Proceedings., International Conference on , Volume: 1 , 16-19, Sept. 1996.

[28] Hoon Paek; Rin-Chul Kim; “Sang-Uk Lee, A DCT-based spatially adaptive post-processing
technique to reduce the blocking artifacts in transform coded images”, Circuits and Systems for
Video Technology, IEEE Transactions on , Volume: 10 Issue: 1, Feb. 2000.

[29] Malvar, H.S. “Signal Processing with Lapped Transforms”, Artech House (1992).

[30] Belkasim, S., and Bhatia, P., Image compression using one-dimensional DCT, 2002.

[31] J. Princen and A. Bradley, “Analysis/Synthesis Filterbank Design Based on
Time Domain Aliasing Cancellation,” IEEE Trans. on Acoust. Speech, and
Signal Process. Vol. ASSP-34, pp.1153-1161, 1986.

[32] Y Wang, Miika Vilermo, “The Modified Discrete Cosine Transform, Coding and Error
Concealment”, Nokia Research Center, P.O. Box 100, FIN-33721 Tampere, Finland

[33] Wang, Y., Yaroslavsky, L., Vilermo, M., and Vaananen, M.: ‘Some peculiar properties of
the MDCT’. Proc. ICSP 2000

[34]. Wang Jianxin, Dong Zaiwang, “A fast algorithm for discrete cosine transform”,
Department of Electrical Engineering, Tsinghua University Beijing, China.

[35] Sung-Hwan Jung, Sanjit K. Mitra, and Debargha Mukherjee, “Subband DCT: Definition,
Analysis, and Applications”, IEEE Transactions on circuits and system for video technology,
VOL. 6, NO. 3, JUNE 1996

[36] Jie Huang, Wu-chi Feng, Jonathan Walpole, and Wilfried Jouve, “An experimental analysis
of DCT-based approaches for fine-grain multi-resolution video”, An experimental analysis of
DCT-based approaches for fine-grain multi-resolution video

[37] Seymour Shlien, “The Modulated Lapped Transform, Its Time-Varying Forms, and Its
Applications to Audio Coding Standards”, IEEE Transactions on speech and audio processing,
Vol. 5, No. 4, July 1997

 81

APPENDIX A

There are three files used in this thesis. All the code has been written in MATLAB 7.0. The files

with their codes are listed below.

DCT_multires.m

function DCT_multires(ratio)

%compress an image in two opposite directions of rows and columns in 1d dct

%cascade the rows with columns in horizontal and vertical zigzag wave.

%ie the last element in a row or

% a column will be next to the last element of the next row or column.

%read an image and convert it to double

% discard elements and then reconstruct the image and repeat the process in

% several resolution levels

%there is no ordering of coefficients for the cascaded method

%the block dct still uses the ordering which is results in unfair comparison.

% this function calls blockdct_comp(a,ratio,8,8,rowoverlap,coloverlap);

% and bidirection(a) where a is an image to be wave zigaged.

% We may be able to plot the error for changing the lenght of the vector from

% one row to 2,3 up to the whole image size. compare this to the block dct

% by also changing the block dct size. from 8 to 16, 32...

 82

% for high compression ratios we used 32x32 due the fact that the number of coefficients

% in the 8x8 dct does not allow low bit rate or high compression.

% We can also use the zigzag waving on the blocks and try the 2d zigzag waves.

a = imread('trees1.tif');

a = im2double(a);

ao=a;

%a = a(32:159, 64:191);%get 128 by 128 windnow

% get the size of the image

[row col] = size(a);

% Threshold is decided by the percentage of compression desired 0.90 means 90% compression

if(nargin <1)

 error('Please enter the percentage of compression');

end

rowoverlap=0;

coloverlap=0;

window_rows=row;

window_cols=col;

totalsize=row*col;

totalsize=totalsize+totalsize;

thr = totalsize-round(totalsize*(ratio));

%get the row array

 83

fwave=bidirection(a);%to get the rows reversed

onedarrayr= im2col(fwave,[row,col]);

%the column array;

fwavec=bidirection(a');

onedarrayc= im2col(fwavec,[row,col]);

onedarray(1:(totalsize/2),1)=onedarrayr;

onedarray(((totalsize/2)+1):totalsize,1)=onedarrayc;

%disp('the dimension of the array is'); row,size(onedarray),size(onedarrayr)

dct_onedarray=dct2(onedarray,[totalsize,1]);%use 2d dct to compute 1d

%dim=size(dct_onedarray);

%disp('the dimension of the array is'); dim

%sort the coefficients based on magnitude

%[y,i] = sort(abs(dct_onedarray));

c1 = dct_onedarray;

%dim=size(i);

%disp('the dimension of the i array is'); dim

%set the smallest ratio(90% for example) to zero.

c1((thr:totalsize),1) = 0;

%inverse one d dct

 84

idct_onedarray = idct2(c1,[totalsize,1]);

onedarrayro=idct_onedarray(1:(totalsize/2));

onedarrayco=idct_onedarray(((totalsize/2)+1):totalsize);

bidimager=col2im(onedarrayro,[1,1],[row,col]);

%The wave inverse transform

%get the even rows reversed

fw=bidirection(bidimager);%to get the rows reversed

fin=zeros(row,col);

fin=fw;

idct_roww=fin;

%get the column-wise dct coefficients

bidimagec=col2im(onedarrayco,[1,1],[row,col]);

fw=bidirection(bidimagec);%

fin=zeros(row,col);

fin=fw;

idct_colw=fin';

for i=1:row

 for j=1:col

 %i,j

 all=[idct_roww(i,j),idct_colw(i,j)];

 85

 finI(i,j) =sum(all)/2.0; %median(all);

 %finI(i,j)=min(idct_row(i,j)+idct_col(i,j));

 end

end

fin=finI;

%error for average

finI=fin;

error1 = a-finI;

error1 = error1.^2;

MSE_avg = sum(error1(:))/prod(size(a));

%ROW ERROR

finI=idct_roww;

error1 = a-finI;

error1 = error1.^2;

MSE_row = sum(error1(:))/prod(size(a));

%column ERRO

finI=idct_colw;

error1 = a-finI;

error1 = error1.^2;

MSE_col = sum(error1(:))/prod(size(a));

figure;

colormap(gray(256));

%subplot(2,2,1);imagesc(a); title('Original');

 86

subplot(2,2,1);imagesc(fin);title('Multiresolution DCT level 1');

s = sprintf('MSE = %d ',MSE_avg);

xlabel(s);

clear s;

%coloverlap=1;

%8X8

window_rows=32;

window_cols=32;

orig_ratio = ratio;

ratio_dct = ratio;

[Res,MSE] = blockdct_comp(a,ratio,window_rows,window_cols,rowoverlap,coloverlap);

% Simple block processing

subplot(2,2,2);imagesc(Res); title('block DCT');%

clear s;

s = sprintf('MSE = %d, blockw = %d',MSE,window_rows);

xlabel(s);

%level 2 resoluution

a=fin;

%get the row array

fwave=bidirection(a);%to get the rows reversed

 87

onedarrayr= im2col(fwave,[row,col]);

%the column array;

fwavec=bidirection(a');

onedarrayc= im2col(fwavec,[row,col]);

onedarray(1:(totalsize/2),1)=onedarrayr;

onedarray(((totalsize/2)+1):totalsize,1)=onedarrayc;

%disp('the dimension of the array is'); row,size(onedarray),size(onedarrayr)

dct_onedarray=dct2(onedarray,[totalsize,1]);%use 2d dct to compute 1d

%dim=size(dct_onedarray);

%disp('the dimension of the array is'); dim

%sort the coefficients based on magnitude

%[y,i] = sort(abs(dct_onedarray));

c1 = dct_onedarray;

%dim=size(i);

%disp('the dimension of the i array is'); dim

%set the smallest ratio(90% for example) to zero.

c1((thr:totalsize),1) = 0;

%inverse one d dct

idct_onedarray = idct2(c1,[totalsize,1]);

onedarrayro=idct_onedarray(1:(totalsize/2));

 88

onedarrayco=idct_onedarray(((totalsize/2)+1):totalsize);

bidimager=col2im(onedarrayro,[1,1],[row,col]);

%The wave inverse transform

%get the even rows reversed

fw=bidirection(bidimager);%to get the rows reversed

fin=zeros(row,col);

fin=fw;

idct_roww=fin;

%get the column-wise dct coefficients

bidimagec=col2im(onedarrayco,[1,1],[row,col]);

fw=bidirection(bidimagec);%

fin=zeros(row,col);

fin=fw;

idct_colw=fin';

for i=1:row

 for j=1:col

 %i,j

 all=[idct_roww(i,j),idct_colw(i,j)];

 finI(i,j) =sum(all)/2.0; %median(all);

 %finI(i,j)=min(idct_row(i,j)+idct_col(i,j));

 89

 end

end

fin=finI;

%error for average

finI=fin;

error1 = ao-finI;

error1 = error1.^2;

MSE_avg = sum(error1(:))/prod(size(ao));

%ROW ERROR

finI=idct_roww;

error1 = ao-finI;

error1 = error1.^2;

MSE_row = sum(error1(:))/prod(size(ao));

%column ERRO

finI=idct_colw;

error1 = ao-finI;

error1 = error1.^2;

MSE_col = sum(error1(:))/prod(size(ao));

figure;

colormap(gray(256));

%subplot(2,2,1);imagesc(a); title('Original');

subplot(2,2,1);imagesc(fin);title('Multiresolution DCT level 2');

s = sprintf('MSE = %d ',MSE_avg);

 90

xlabel(s);

clear s;

%coloverlap=1;

%8X8

ratio_dct = ratio_dct + (orig_ratio/2);

window_rows=32;

window_cols=32;

[Res,MSE] = blockdct_comp(ao,ratio_dct,window_rows,window_cols,rowoverlap,coloverlap);

% Simple block processing

subplot(2,2,2);imagesc(Res); title('block DCT');%

clear s;

s = sprintf('MSE = %d, blockw = %d',MSE,window_rows);

xlabel(s);

%level 3 resoluution

a=fin;

%get the row array

fwave=bidirection(a);%to get the rows reversed

 91

onedarrayr= im2col(fwave,[row,col]);

%the column array;

fwavec=bidirection(a');

onedarrayc= im2col(fwavec,[row,col]);

onedarray(1:(totalsize/2),1)=onedarrayr;

onedarray(((totalsize/2)+1):totalsize,1)=onedarrayc;

%disp('the dimension of the array is'); row,size(onedarray),size(onedarrayr)

dct_onedarray=dct2(onedarray,[totalsize,1]);%use 2d dct to compute 1d

%dim=size(dct_onedarray);

%disp('the dimension of the array is'); dim

%sort the coefficients based on magnitude

%[y,i] = sort(abs(dct_onedarray));

c1 = dct_onedarray;

%dim=size(i);

%disp('the dimension of the i array is'); dim

%set the smallest ratio(90% for example) to zero.

c1((thr:totalsize),1) = 0;

%inverse one d dct

idct_onedarray = idct2(c1,[totalsize,1]);

onedarrayro=idct_onedarray(1:(totalsize/2));

 92

onedarrayco=idct_onedarray(((totalsize/2)+1):totalsize);

bidimager=col2im(onedarrayro,[1,1],[row,col]);

%The wave inverse transform

%get the even rows reversed

fw=bidirection(bidimager);%to get the rows reversed

fin=zeros(row,col);

fin=fw;

idct_roww=fin;

%get the column-wise dct coefficients

bidimagec=col2im(onedarrayco,[1,1],[row,col]);

fw=bidirection(bidimagec);%

fin=zeros(row,col);

fin=fw;

idct_colw=fin';

for i=1:row

 for j=1:col

 %i,j

 all=[idct_roww(i,j),idct_colw(i,j)];

 finI(i,j) =sum(all)/2.0; %median(all);

 %finI(i,j)=min(idct_row(i,j)+idct_col(i,j));

 93

 end

end

fin=finI;

%error for average

finI=fin;

error1 = ao-finI;

error1 = error1.^2;

MSE_avg = sum(error1(:))/prod(size(ao));

%ROW ERROR

finI=idct_roww;

error1 = ao-finI;

error1 = error1.^2;

MSE_row = sum(error1(:))/prod(size(ao));

%column ERRO

finI=idct_colw;

error1 = ao-finI;

error1 = error1.^2;

MSE_col = sum(error1(:))/prod(size(ao));

figure;

colormap(gray(256));

%subplot(2,2,1);imagesc(a); title('Original');

subplot(2,2,1);imagesc(fin);title('Multiresolution DCT level 3');

s = sprintf('MSE = %d,stitch',MSE_avg);

 94

xlabel(s);

clear s;

%coloverlap=1;

%8X8

ratio_dct = ratio_dct + (orig_ratio/4);

window_rows=32;

window_cols=32;

[Res,MSE] = blockdct_comp(ao,ratio_dct,window_rows,window_cols,rowoverlap,coloverlap);

% Simple block processing

subplot(2,2,2);imagesc(Res); title('block DCT');%

clear s;

s = sprintf('MSE = %d, blockw = %d',MSE,window_rows);

xlabel(s);

%level 4 resoluution

a=fin;

%get the row array

fwave=bidirection(a);%to get the rows reversed

 95

onedarrayr= im2col(fwave,[row,col]);

%the column array;

fwavec=bidirection(a');

onedarrayc= im2col(fwavec,[row,col]);

onedarray(1:(totalsize/2),1)=onedarrayr;

onedarray(((totalsize/2)+1):totalsize,1)=onedarrayc;

%disp('the dimension of the array is'); row,size(onedarray),size(onedarrayr)

dct_onedarray=dct2(onedarray,[totalsize,1]);%use 2d dct to compute 1d

%dim=size(dct_onedarray);

%disp('the dimension of the array is'); dim

%sort the coefficients based on magnitude

%[y,i] = sort(abs(dct_onedarray));

c1 = dct_onedarray;

%dim=size(i);

%disp('the dimension of the i array is'); dim

%set the smallest ratio(90% for example) to zero.

c1((thr:totalsize),1) = 0;

%inverse one d dct

idct_onedarray = idct2(c1,[totalsize,1]);

onedarrayro=idct_onedarray(1:(totalsize/2));

 96

onedarrayco=idct_onedarray(((totalsize/2)+1):totalsize);

bidimager=col2im(onedarrayro,[1,1],[row,col]);

%The wave inverse transform

%get the even rows reversed

fw=bidirection(bidimager);%to get the rows reversed

fin=zeros(row,col);

fin=fw;

idct_roww=fin;

%get the column-wise dct coefficients

bidimagec=col2im(onedarrayco,[1,1],[row,col]);

fw=bidirection(bidimagec);%

fin=zeros(row,col);

fin=fw;

idct_colw=fin';

for i=1:row

 for j=1:col

 %i,j

 all=[idct_roww(i,j),idct_colw(i,j)];

 finI(i,j) =sum(all)/2.0; %median(all);

 %finI(i,j)=min(idct_row(i,j)+idct_col(i,j));

 97

 end

end

fin=finI;

%error for average

finI=fin;

error1 = ao-finI;

error1 = error1.^2;

MSE_avg = sum(error1(:))/prod(size(ao));

%ROW ERROR

finI=idct_roww;

error1 = ao-finI;

error1 = error1.^2;

MSE_row = sum(error1(:))/prod(size(ao));

%column ERRO

finI=idct_colw;

error1 = ao-finI;

error1 = error1.^2;

MSE_col = sum(error1(:))/prod(size(ao));

figure;

colormap(gray(256));

%subplot(2,2,1);imagesc(a); title('Original');

subplot(2,2,1);imagesc(fin);title('Multiresolution DCT level 4');

s = sprintf('MSE = %d,stitch',MSE_avg);

 98

xlabel(s);

clear s;

%coloverlap=1;

%8X8

ratio_dct = ratio_dct + (orig_ratio/8);

window_rows=32;

window_cols=32;

[Res,MSE] = blockdct_comp(ao,ratio_dct,window_rows,window_cols,rowoverlap,coloverlap);

% Simple block processing

subplot(2,2,2);imagesc(Res); title('block DCT');%

clear s;

s = sprintf('MSE = %d, blockw = %d',MSE,window_rows);

xlabel(s);

%level 5 resoluution

a=fin;

%get the row array

fwave=bidirection(a);%to get the rows reversed

onedarrayr= im2col(fwave,[row,col]);

 99

%the column array;

fwavec=bidirection(a');

onedarrayc= im2col(fwavec,[row,col]);

onedarray(1:(totalsize/2),1)=onedarrayr;

onedarray(((totalsize/2)+1):totalsize,1)=onedarrayc;

%disp('the dimension of the array is'); row,size(onedarray),size(onedarrayr)

dct_onedarray=dct2(onedarray,[totalsize,1]);%use 2d dct to compute 1d

%dim=size(dct_onedarray);

%disp('the dimension of the array is'); dim

%sort the coefficients based on magnitude

%[y,i] = sort(abs(dct_onedarray));

c1 = dct_onedarray;

%dim=size(i);

%disp('the dimension of the i array is'); dim

%set the smallest ratio(90% for example) to zero.

c1((thr:totalsize),1) = 0;

%inverse one d dct

idct_onedarray = idct2(c1,[totalsize,1]);

onedarrayro=idct_onedarray(1:(totalsize/2));

onedarrayco=idct_onedarray(((totalsize/2)+1):totalsize);

bidimager=col2im(onedarrayro,[1,1],[row,col]);

 100

%The wave inverse transform

%get the even rows reversed

fw=bidirection(bidimager);%to get the rows reversed

fin=zeros(row,col);

fin=fw;

idct_roww=fin;

%get the column-wise dct coefficients

bidimagec=col2im(onedarrayco,[1,1],[row,col]);

fw=bidirection(bidimagec);%

fin=zeros(row,col);

fin=fw;

idct_colw=fin';

for i=1:row

 for j=1:col

 %i,j

 all=[idct_roww(i,j),idct_colw(i,j)];

 finI(i,j) =sum(all)/2.0; %median(all);

 %finI(i,j)=min(idct_row(i,j)+idct_col(i,j));

 end

end

 101

fin=finI;

%error for average

finI=fin;

error1 = ao-finI;

error1 = error1.^2;

MSE_avg = sum(error1(:))/prod(size(ao));

%ROW ERROR

finI=idct_roww;

error1 = ao-finI;

error1 = error1.^2;

MSE_row = sum(error1(:))/prod(size(ao));

%column ERRO

finI=idct_colw;

error1 = ao-finI;

error1 = error1.^2;

MSE_col = sum(error1(:))/prod(size(ao));

figure;

colormap(gray(256));

%subplot(2,2,1);imagesc(a); title('Original');

subplot(2,2,1);imagesc(fin);title('Multiresolution DCT level 5');

s = sprintf('MSE = %d,stitch',MSE_avg);

xlabel(s);

clear s;

 102

%coloverlap=1;

%8X8

ratio_dct = ratio_dct + (orig_ratio/16);

window_rows=32;

window_cols=32;

[Res,MSE] = blockdct_comp(ao,ratio_dct,window_rows,window_cols,rowoverlap,coloverlap);

% Simple block processing

subplot(2,2,2);imagesc(Res); title('block DCT');%

clear s;

s = sprintf('MSE = %d, blockw = %d',MSE,window_rows);

xlabel(s);

%level 6 resoluution

a=fin;

%get the row array

fwave=bidirection(a);%to get the rows reversed

onedarrayr= im2col(fwave,[row,col]);

%the column array;

fwavec=bidirection(a');

 103

onedarrayc= im2col(fwavec,[row,col]);

onedarray(1:(totalsize/2),1)=onedarrayr;

onedarray(((totalsize/2)+1):totalsize,1)=onedarrayc;

%disp('the dimension of the array is'); row,size(onedarray),size(onedarrayr)

dct_onedarray=dct2(onedarray,[totalsize,1]);%use 2d dct to compute 1d

%dim=size(dct_onedarray);

%disp('the dimension of the array is'); dim

%sort the coefficients based on magnitude

%[y,i] = sort(abs(dct_onedarray));

c1 = dct_onedarray;

%dim=size(i);

%disp('the dimension of the i array is'); dim

%set the smallest ratio(90% for example) to zero.

c1((thr:totalsize),1) = 0;

%inverse one d dct

idct_onedarray = idct2(c1,[totalsize,1]);

onedarrayro=idct_onedarray(1:(totalsize/2));

onedarrayco=idct_onedarray(((totalsize/2)+1):totalsize);

bidimager=col2im(onedarrayro,[1,1],[row,col]);

%The wave inverse transform

%get the even rows reversed

 104

fw=bidirection(bidimager);%to get the rows reversed

fin=zeros(row,col);

fin=fw;

idct_roww=fin;

%get the column-wise dct coefficients

bidimagec=col2im(onedarrayco,[1,1],[row,col]);

fw=bidirection(bidimagec);%

fin=zeros(row,col);

fin=fw;

idct_colw=fin';

for i=1:row

 for j=1:col

 %i,j

 all=[idct_roww(i,j),idct_colw(i,j)];

 finI(i,j) =sum(all)/2.0; %median(all);

 %finI(i,j)=min(idct_row(i,j)+idct_col(i,j));

 end

end

fin=finI;

%error for average

 105

finI=fin;

error1 = ao-finI;

error1 = error1.^2;

MSE_avg = sum(error1(:))/prod(size(ao));

%ROW ERROR

finI=idct_roww;

error1 = ao-finI;

error1 = error1.^2;

MSE_row = sum(error1(:))/prod(size(ao));

%column ERRO

finI=idct_colw;

error1 = ao-finI;

error1 = error1.^2;

MSE_col = sum(error1(:))/prod(size(ao));

figure;

colormap(gray(256));

%subplot(2,2,1);imagesc(a); title('Original');

subplot(2,2,1);imagesc(fin);title('Multiresolution DCT level 6');

s = sprintf('MSE = %d,stitch',MSE_avg);

xlabel(s);

clear s;

%coloverlap=1;

 106

%8X8

ratio_dct = ratio_dct + (orig_ratio/32);

window_rows=32;

window_cols=32;

[Res,MSE] = blockdct_comp(ao,ratio_dct,window_rows,window_cols,rowoverlap,coloverlap);

% Simple block processing

subplot(2,2,2);imagesc(Res); title('block DCT');%

clear s;

s = sprintf('MSE = %d, blockw = %d',MSE,window_rows);

xlabel(s);

 107

blockdct_comp.m

function [Res,mserror] = blockdct_comp(amatrix,ratio,wr,wc,ro,co)

%read an image and convert it to double

a = amatrix;

[row col] = size(a);

% Threshold is decided by the percentage of compression desired

if(nargin <1)

 error('Please enter the percentage of compression');

end

rowoverlap=ro;

coloverlap=co;

window_rows=wr;

window_cols=wc;

thr = round(window_rows*window_cols*(ratio));

%get the rowwise dct coefficients

dct_rc = blkproc(a,[window_rows,window_cols],[rowoverlap,coloverlap],'dct2');

 108

%find variance

c = im2col(dct_rc,[window_rows,window_cols],'distinct');

var_c = var(c');

%sort the variance of dct coeff. using "sort"

[y,i] = sort(var_c);

c1 = c;

c1(i(1:thr),:) = 0;

%rearrange each column of c1 as an 8 by 8 dct block

f=col2im(c1,[window_rows,window_cols],[row,col],'distinct');

%inverse row dct

idct_rc = blkproc(f,[window_rows,window_cols],[rowoverlap,coloverlap],'idct2');

finI=idct_rc;

error1 = a-finI;

error1 = error1.^2;

MSE_avg = sum(error1(:))/prod(size(a));

Res = finI;

mserror = MSE_avg;

 109

bidirection.m

% This is a function which transforms a quadratic matrix into a

% matrix (of the same size) in which columns are transformed into

% diagonals, starting from the upper left corner

% i.e., for example matrix

% 1 4 7

% 2 5 8

% 3 6 9

%

% is transformed into matrix

% 1 2 6

% 3 5 7

% 4 8 9

function new=bidirection(q)

% to test how this transformation works, initialize a quadratic matrix, say ma

% then call this function by: col_to_diag(ma)

% output shoud give you transformed matrix in which

% coulmns are transformed into diagonals, starting for a lower left corner

a=q;

 110

[row col]=size(a);

% initialize a new matrix

for m=1:row;

 for n=1:col;

 if mod(m,2)==0 % for even rows reverse direction

 q(m,n)=a(col-n+1) ;

 end

 end;

end;

new=a;

