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CHAPTER 3 

DATA AND STUDY AREA 

 

3.1 Study Domain 

 The domain of the study is the Apalachicola-Chattahoochee-Flint river basin: a narrow 

hydrologic drainage basin straddling the borders of Alabama, Georgia, and Florida (fig 6). The 

basin drains a considerable meridional extent from Helen, Georgia to Apalachicola, Florida, 

where it terminates into the estuaries of the Gulf of Mexico The various sources of data for the 

study are summarized in table 2. 

 

Figure 6. Outline of ACF drainage system. 
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Table 2. Summary of data sources. 

Da ta se t Pa r a m e t e r S ou r ce

TD3 2 0 0 r a in  g a u g e  ob se r va t ion s N a t ion a l Clim a t ic  Da ta  Ce n t e r
N CEP/N CAR Re a n a lys is  Pr oje c t m od e l fit t e d  u p p e r  a ir N OAA Ea r th  S ys t e m s  Re se a r ch  La b

US GS  H yd r olog ic  Bou n d a r ie s ACF  Ba s in N a t ion a l At la s  of th e  Un it e d  S ta t e s
PDS I d r ou g h t  s e ve r it y N OAA Ea r th  S ys t e m s  Re se a r ch  La b
S PI m e t e or olog ica l d r ou g h t N a t ion a l Clim a t ic  Da ta  Ce n t e r

s t r e a m  d isch a r g e h yd r olog ic  d r ou g h t U.S . Ge olog ica l S u r ve y
h yd r og r a p h y s t r e a m s  a n d  w a t e r b od ie s N a t ion a l At la s  of th e  Un it e d  S ta t e s

p olit ica l b ou n d a r ie s tow n s  a n d  cou n t ie s ES RI
c lim a t e  d ivis ion s con ve n t ion a l d is t r ic t s N a t ion a l At la s  of th e  Un it e d  S ta t e s

Dig it a l At la s  of Ge or g ia p h ys ica l g e og r a p h y Ge or g ia  Ge olog ica l S u r ve y
GCM  ou tp u t g e n e r a l c ir cu la t ion  p r e d ic t ion N OAA Ge op h ys ica l F lu id  Dyn a m ics  La b

 

3.2 Rain Gauge Observations 

 The full time series of daily rain gauge observations were downloaded in delimited text 

format from the National Climatic Data Center’s TD3200 data set (source: NNDC Climate Data 

Online web interface). The observations originate from the National Weather Service (NWS) 

cooperative network. The primary intent of this network in recent years has been to measure 

precipitation, and while mostly consisting of volunteers, it includes the principal NWS stations, 

the Department of the Interior, the Department of Transportation, and the Department of Defense 

stations. A useful station list and data dictionary for the TD3200 is available (National Climatic 

Data Center 2003). Geographic coordinates are converted from degree-minutes-seconds to 

decimal degrees and locations are assumed NAD83 datum for GIS use. 

 There are about 104 TD3200 stations available within the basin. The final rainfall extract is a 

selection of forty, uniformly dispersed  localities, but there are actually forty-seven coop stations 

involved because occasionally a station is decommissioned (table 3). The National Climatic Data 

Center assigns S flags for measurements that are appended to subsequent days. 

 To ensure quality and preserve the highly empirical nature of the rain-gauge data, the rainfall 

data frequency is daily. For the 420,480 records in the database—covering forty localities over a 
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duration of 10,512 days—363,122 are absolutely empirical, and the rest are interpolations from 

nearby observations. 

 Rainfall data were extracted in comma delimited text files and stored in database. From here, 

they were queried and exported for cleaning in a spreadsheet program. Sometimes stations are 

decommissioned, and sometimes commissions overlap. This was handled in the database by 

querying only one station at a time for any time series. All S flags were coded to zero, missing 

months were inserted as placeholders, and the arrays were paneled. After this manual 

manipulation, the data were treated to a QC of six rainy episodes to ensure they still matched the 

original database. 

 Of the 420,480 rainfall observations in the duration, 57,358 (13.6%) were missing. The 

missing values were filled with an un-weighted average of the two nearest localities in 

opposition. Due to temporal clustering of incompleteness, some observations could not be filled 

in that way. Montezuma has a nearly complete record, and since it is near the center of the basin, 

that station was substituted for the remaining 11,118 values. Due to some incompleteness in even 

Montezuma’s record, seven values remain, which were filled by nearby Americus’s values.      

 Paneling allows each locality to be treated in a similar way. Every station had missing data, 

but, because the localities were paneled, every missing value was able to be filled with a 

spreadsheet formula: the only difference in the formula from panel to panel was that they used 

different sheets for the interpolation. Spreadsheet formulas were also used for the considerable 

averaging needed to derive a final, basin-wide value for each year, and again, the paneling allows 

the formulas to be very similar, differing primarily in the name of locality they are averaging. 
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Table 3. Characteristics of the 40 localities and associated weather stations. Plain identification number (ID); name, 
state, and county; NWS Cooperative Network identification number, alternate Cooperative Station if 

decommissioned; latitude (N); longitude (W); elevation (m); climate sub-region (North, Central, or South);   
% missing observations; average January—June rainfall (mm). 

 
 
 

ID LOCALITY STATE COUNTY COOPID COOPID LAT (°) LON (°) ELEV REGION Missing Rainfall

1 CLAYTON AL BARBOUR 11725  31.88 85.48 152 C 6.4 693
2 EUFAULA AL BARBOUR 12730 13761 32.00 85.08 66 C 4.5 699
3 HEADLAND AL HENRY 13761 31.35 85.33 113 S 4.5 718
4 LAFAYETTE AL CHAMBERS 14502 32.90 85.43 226 C 5.4 765
5 OPELIKA AL LEE 16129 32.67 85.45 195 C 18.3 745
6 SEALE AL RUSSELL 17328 17326 32.30 85.17 119 C 70.3 673
7 UNION SPRINGS AL BULLOCK 18438 32.02 85.75 134 C 2.9 728
8 CHIPLEY FL WASHINGTON 81544 30.78 85.48 40 S 1.8 729
9 FOUNTAIN FL BAY 83230 30.43 85.42 43 S 42.6 745

10 QUINCY FL GADSDEN 87424 87429 30.58 84.58 76 S 5.0 733
11 WEWAHITCHKA FL GULF 89566 30.12 85.20 13 S 16.0 744
12 ALBANY GA DOUGHERTY 90140 31.53 84.13 55 S 0.3 687
13 AMERICUS GA SUMTER 90253 97087 32.05 84.28 149 S 4.3 660
14 ATLANTA HARTSFIELD GA FULTON 90451 33.63 84.43 308 N 0.3 657
15 BAINBRIDGE GA DECATUR 90586 90581 30.80 84.65 58 S 6.9 694
16 BLAKELY GA EARLY 90979 31.37 84.95 82 S 22.9 716
17 BUENA VISTA GA MARION 91372 32.30 84.52 201 C 23.7 666
18 BUTLER GA TAYLOR 91425 32.55 84.23 191 C 9.0 641
19 CAIRO GA GRADY 91463 30.90 84.22 81 S 26.9 707
20 CAMILLA GA MITCHELL 91500 31.18 84.20 53 S 0.1 704
21 CARROLLTON GA CARROLL 91640 33.60 85.08 303 N 1.4 726
22 CLEVELAND GA WHITE 92006 34.58 83.77 485 N 0.9 848
23 COLUMBUS GA MUSCOGEE 92166 32.52 84.95 120 C 1.7 659
24 CORDELE GA CRISP 92266 31.98 83.78 94 S 2.3 608
25 CRISPCOUNTYDAM GA WORTH 92361 31.85 83.95 75 S 50.4 617
26 CUTHBERT GA RANDOLPH 92450 31.77 84.78 141 C 1.0 687
27 DAHLONEGA GA LUMPKIN 92475 34.53 84.00 384 N 12.9 839
28 DALLAS GA PAULDING 92485 33.98 84.75 335 N 1.4 723
29 DONALSONVILLE GA SEMINOLE 92736 31.02 84.88 41 S 36.2 687
30 FRANKLIN GA HEARD 93567 33.28 85.10 204 C 61.7 726
31 GAINESVILLE GA HALL 93621 34.30 83.87 357 N 0.7 737
32 GRIFFIN GA SPALDING 93271 33.27 84.28 282 C 5.5 689
33 HAMILTON GA HARRIS 94033 94028 32.75 84.93 201 C 46.8 669
34 MONTEZUMA GA MACON 95979 32.28 84.03 100 C 0.0 606
35 MORGAN GA CALHOUN 96043 96038 31.60 84.63 83 S 16.3 703
36 NEWNAN GA COWETA 96335 33.45 84.78 280 N 2.9 702
37 NORCROSS GA GWINNETT 96407 33.95 84.23 314 N 4.3 724
38 THOMASTON GA UPSON 98661 32.87 84.32 203 C 15.5 671
39 WOODBURY GA MERIWETHER 99506 32.98 84.60 241 C 1.1 684
40 WOODSTOCK GA CHEROKEE 99524 34.13 84.52 322 N 10.4 706
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3.3 Upper Atmosphere Data 

 The renowned NCEP/NCAR Reanalysis Project (see Kalnay et al. 1996) provides the model 

fitted 700 mbar specific humidity q (the ratio of the mass of water vapor to the total mass of air 

in g/kg) and 700 mbar height (geopotential meters) (source: National Oceanic and Atmospheric 

Administration (NOAA), Earth System Research Laboratory, Physical Sciences Division 

Boulder, Colorado, USA, http://www.cdc.noaa.gov). Reanalysis data is publicly available in 

netCDF format. The geopotential meter is a vertical coordinate that represents the amount of 

work done to raise a parcel from sea level, and, under standard gravitational conditions, it is 

equivalent to the geometric meter (Huschke 1959, s.v. “geopotential meter”). The Reanalysis 

Project generates a global approximation of atmospheric parameters by mathematically fitting a 

surface over available empirical observations. Since they are much less empirical than rain gauge 

observations, there is little to be gained from daily data frequency, and monthly means were 

used. The Reanalysis Project classifies specific humidity, for example, as a class B variable, 

meaning the model has a very strong influence on the value, and there are fewer direct 

observations. The 700 mbar height is a class A variable, meaning the analysis is more strongly 

empirical. Both variables are held in a gridded dataset with 2.5º latitude by 2.5º longitude spatial 

resolution. 

 The 700 mbar data was retrieved in netCDF format from the Reanalysis Project with 

freeware (Doty 1988) and stored on disc. Eight scripts were used to extract the data. A script is 

specific to a map point, and recalling that the mid-tropospheric data is monthly, a script extracts 

the first six months of the year and then averages them. Considering that it is easy to miss the 

geopotential level and longitude (west is negative), scripts are very helpful to ensure the correct 
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data was extracted. Each script reiterates the process fifty-eight times for 1950–2007. A 

spreadsheet program can be useful to create scripts because months are coded sequentially. 

  

3.4 Drought Index Data 

 A drought index distills environmental data into one dimensionless number that evaluates 

drought severity. At least two indices are useful in the Southeast: the Palmer Drought Severity 

Index and Standardized Precipitation Index. The Palmer Drought Severity Index (PDSI) (Palmer 

1965) is the most familiar of drought indices, and it was a turning point in the evolution of 

drought indices (Heim 2002). It is considered a meteorological drought index and is standardized 

for geographic location (Keyantash and Dracup 2002). Palmer’s definition of drought is 

“prolonged and abnormal moisture deficiency”. Guttman (1998) comments, “. . . it indicates the 

physical severity of drought on soil. It was intended to retrospectively look at wet and dry 

conditions from a water balance perspective.” The PDSI tallies the moisture balance. It is a 

cumulative hydrologic summation: a hydrologic accounting system. The index tracks from the 

beginning of a weather “spell”. The PDSI switches to a different algorithm when a spell reverses. 

Since a spell is difficult to resolve in real time, it is normal for PDSI to revise figures recursively. 

The Modified PDSI (MPDSI) addresses this backtracking problem (Heddinghaus and Sabol 

1991), and the MPDSI is a truly operational, real-time index for water managers (Guttman n.d.). 

  The PDSI makes some assumptions about potential evapotranspiration. It considers 

temperature, latitude, and time of year but does not account for cloudiness, wind speed, relative 

humidity, vegetation, soil type, or moisture exhaustion (see Dai, Trenberth, and Qian 2004; 

Weber and Nkemdirim 1998; Guttman n.d.). 
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  The Standardized Precipitation Index (SPI) was developed by T.B. McKee, N.J. Doesken, 

and J. Kleist (1993). It is a standardized, moving average of the precipitation anomaly for a 

discrete time step. It is a purely supply-sided index, meaning that it describes pure, 

meteorological drought. The SPI is used across North America and is currently favored in 

academic evaluations (Keyantash and Dracup 2002; Hayes et al. 1999; Guttman 1998).  

 Drought index data used in this study include the monthly Palmer Drought Severity Index 

(PDSI) and the Standardized Precipitation Index (SPI). The SPI is acquired in tab delimited text 

format in the twelve-month time-step from 1900–2007 for the climate divisions corresponding to 

Dahlonega and Milford (source: National Climatic Data Center web site keyword: North 

American Drought Monitor Standard Precipitation Index Data Files). The three-month time step 

for the climate division representing the central section of the basin is also acquired. All time 

steps are computed monthly for a monthly data frequency. The PDSI data is obtained in netCDF 

format for 1870–2003 for the two 2.5º latitude by 2.5º longitude grid cells corresponding to the 

northern and southern halves of the basin at a monthly data frequency (fig. 7) (source: NOAA, 

Earth System Research Laboratory, Physical Sciences Division Boulder, Colorado, USA, 

http://www.cdc.noaa.gov). 

 

Figure 7. The Reanalysis Project 2.5º by 2.5º 
grid cells that hold the PDSI data. 
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3.5 Stream Flow Data 

 Average stream flow data (ft3/s) are retrieved from the U.S. Geological Survey (USGS) 

National Water Information System (source: http://waterdata.usgs.gov) at a monthly data 

frequency in text format for stations 02333500 and 02353500 for 1940–2006. These stream 

discharge observations are measured with stream gauges on the Chestatee River near Dahlonega 

and the Ichawaynochaway Creek at Milford. Both are free flowing at these points. 

 

3.6 Ancillary Data 

 Other ancillary datasets include streams and water bodies (source: National Atlas of the 

United States 2005), political boundaries (source: ESRI), climate divisions (source: National 

Atlas of the United States 1991), and the Digital Atlas of Georgia (Alhadeff et al. n.d.). 

The ACF basin is delimited by USGS hydrologic unit boundaries (Watermolen 2005) and 

uniquely identified by huc4 code 313 (region 3, subregion 13). 

 

3.7 Global Climate Model Output 

 GCM output is obtained from NOAA’s CM2.1 coupled climate model under the 

“committed” scenario (source: U.S. Department of Commerce NOAA Geophysical Fluid 

Dynamics Laboratory in Princeton New Jersey; see Delworth et al. 2006). The data frequency is 

monthly and the spatial resolution is 2° latitude by 2.5°. Data is publicly available for download 

in netCDF format. The output is from the CM2.1U-H2_Stable-2000_S1 experiment, which 

stabilizes forcing agents such as CO2 at year 2000 levels.  

 The CM2.1 model is chosen because it is held by the U.S. Department of Commerce, which 

is a highly credentialed source of meteorological expertise and data—housing the National 
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Oceanic and Atmospheric Administration and administering the National Weather Service. The 

CM2.1 was one of the leading models used in the Fourth Assessment Report of the IPCC. 

Additionally, it is provided free of charge online in a format convenient to the freeware provided 

by Brian Doty (1988). The “committed” scenario to 2000 level CO2 concentration is used 

because the model might be more accurate if not complicated by the scenario of rising CO2, 

which is a reasonable non-scenario considering the model is only used out to 2011: not enough 

time to incur considerable CO2 increase. 

 

3.8 Map Coordinate System 

 All geographic data is available in decimal degrees with a datum of NAD 83. For 

cartographic display of the Southeast, a map coordinate system based on the Albers equal-area 

projection with standard parallels at 29.5 degrees and 45.5 works well. Figure 8 uses a central 

meridian of 85° west longitude. 

 

 



 

35 

CHAPTER 4 

METHODS 

 

4.1 Overview 

 The methods for this study are based on measuring time-averaged atmospheric parameters at 

specific map points and relating the resulting variable to time-averaged and spatially smoothed 

regional rainfall. This is a variant on the compositing approach; it uses composite map points, 

not composite maps. The resulting continuous variables avert the inevitable loss of data from 

typing a continuous phenomenon into discrete, non-overlapping intervals. There is no 

classification or map compositing in this study. 

    This project was completed in four main legs. In the first, historical datasets of drought and 

rainfall were acquired and analyzed to develop a characterization of drought in the region. In the 

second, a dependent variable was compiled from nearly half a million daily rainfall observations 

from dispersed localities over the region to generate a fifty-eight-season, basin-wide time series. 

In the third, atmospheric predictor variables were compiled into eight time series representing 

eight map points around the basin. Finally, the dependent variable was fitted to the upper 

atmospheric predictor variables with a linear regression. 

 

4.2 Characterization of Drought in the ACF Basin 

 Time series of PDSI, stream discharge, and SPI were plotted and compared. These time 

series are comparable because they are all from monthly data frequency. The purpose for this 

comparison was to explore the regionality and concurrency of drought types. Further goals were 

to characterize hydrologic drought as a summertime phenomenon, to assess the hazard of future 
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drought in the region, and to explore evidence for drought feedback mechanisms. The two PDSI 

time series, which are in netCDF format, were generated in the freeware from  Doty (1988) and 

exported as graphics files. The time series were not superposed, but rather presented side-by-side 

because the freeware does not seem to have a provision for superposition. The stream discharge 

data and twelve-month SPI values were imported from text format to a spreadsheet program, 

columned with data labels, and charted with automated spreadsheet functions. Different time 

series for the north and the south were superposed to see if cycles are synchronous. The three-

month SPI time series for the  climate division representing the central section was queried for 

September for those years with the driest first six months of the year. The purpose for this was to 

see if the driest first six months of the year were followed by subsequent summertime rainfall 

deficiency, indicating a feedback. The stream discharge data and SPI series were compared with 

a two-tailed Pearson’s product-moment correlation coefficient (α = 0.05). The reason for doing 

that was to see if meteorological drought, which is what SPI represents, could be correlated with 

hydrologic drought, which is what stream discharge represents. The Pearson’s product-moment 

test is warranted because the variables are normally distributed. It may seem obvious that rainfall 

and streamflow are related, but there might be a long lag time, making hydrologic drought an 

offset phenomenon rather than a salient summer event (see Allen 1995; Rose 1998). 

 

4.3 Regionalization 

 The less a model has to generalize across disparate conditions, the better it should be able to 

fit a relationship. Consequently, across the meridionally extensive and heterogeneous ACF 

Basin, models should be specialized for climate sub-regions. This might create tighter and more 

accurate modeling. 
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 To this end, a factor analysis was used to identify the unique factors contained within the 40 

precipitation time series. A data matrix consisting of forty variables across fifty-eight seasons 

were loaded into an S-mode principal components analysis (PCA) to generate the factors, and the 

ones that had the highest eigenvalues were selected as principal components. Variables were 

grouped by which component they maximally loaded on. Variables represent localities, and since 

nearby stations tend to have similar rainfall behavior, i.e., congruent time series, they load on the 

same component and usually are spatially cohesive. These groupings of localities are zones of 

quasi-homogenous rainfall behavior; thus, they are called climate sub-regions. 

 Choices made during PCA can have a substantial effect on the outcome. The orthogonal 

rotation technique VARIMAX distributed the blend more evenly across the components. To 

impede mountain stations from being sharply cohesive, the correlation matrix ensures that 

stations with similar timings were grouped, not similar rainfall magnitude. An eigenvalue and 

scree-plot criterion were used to select the principal components that explain most of the 

variance in rainfall behavior. The maximum loadings rule was used with no alteration, meaning 

that a station was associated with the rotated component that it had the most loading with. The 

groups were then mapped to identify the climate sub-regions.  

 

4.4 Trends in Precipitation 

 To explore trends in precipitation that might impart a certain backdrop or sense of urgency to 

drought prediction, precipitation time series for the overall basin and the three sub-regions were 

plotted. These time series were loaded into a spreadsheet program and columned for data 

labeling. The post 1980 time series were regressed on year (T) to look for a significant F statistic 

(α = 0.05). Only post-1980 data was explored for trend because there was a change point just 
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prior to 1980, which is consistent with the reports of a global shift in climate during the 1970s  

(see Trenberth and Hurrell 1994).  

   

4.5 Least Squares Regression 

   This work uses a stepwise, least-squares, multiple linear regression trained on fifty-eight 

seasons of observations to estimate a linear approximation of the true slope and y-intercept of the 

rainfall-to-atmosphere relationship in nature. A single, more-generalized, basin-wide model was 

generated  as well as the three individual equations for each climate sub-region for a total of four 

different regression models. All models are static, meaning that lagged factors are not 

considered. 

 

4.5.1 Dependent Variable 

   The dependent “predicted” variable (y) is an average of paneled (longitudinal) localities, each 

with its own fifty-eight-year time series. The time series are not continuous; they are six-month 

aggregates: January thru June. There are actually four independent variables corresponding to the 

four regression models. One is a basin-wide average for each season. The other are sub-regional 

averages. Each season is a case: the spatially averaged, six-month precipitation. There are fifty-

eight cases of y: one for each year of the epoch, which is 1950-2007. Since each case is a mean 

of forty members, y has a sample size of forty. 

 The rationale for using the basin-wide, six-month, January–June approach is that droughts of 

all types are regionally concurrent and synchronous in the basin and that socioeconomic drought  

is a summertime phenomenon because that is the time when stream flows are at their nadir and 

human demand is highest. Moreover, the aforementioned feedback mechanisms with dry, hot 
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soil might also play a role with the relationship between 1 July deficit and the successive 

deficiency later into the summer. Water resource managers need an outlook of the rainfall 

deficiency over the six-months prior to summer to prepare for the kind of drought impact that the 

Georgia Drought Management Plan and the Flint River Drought Prediction Act are designed to 

mitigate. Also, rainfall deficit is conveniently reported by the local media as rainfall deficit for 

the year. For these reasons, the January–June six-month rainfall deficiency is used as a proxy for 

summer drought in the basin.  

 

4.5.2 Predictor Variables 

   The eight independent “predictor” variables (x1, x2, x3… x8 ) are standardized, six-month-

averaged 700 mbar geopotential height Z and 700 mbar specific humidity q taken from eight 

map-point locations. The eight locations generate eight variables (four points for Z and four 

points are dedicated to q ) with fifty-eight cases (seasons) each. All independent variables were 

standardized with respect to their mean and standard deviation (i.e. z-scores) because higher 

latitude points, with their higher variance, could have a disproportionate influence on the 

regression. 

 With strong spatial autocorrelation in the atmosphere, the eight map points need to be 

separated by some distance to be independent and suitable for statistical analysis, yet the 

measurement scale needs to be smaller than the geographic scale, which in this case is the 

synoptic scale: 1000—6000 km. In response to this need, and considering that points closest to 

home should be the most important (Klein and Bloom 1987), this study strikes a measurement 

compromise with an interval of 1000—1400 km centered directly over the region (fig. 8). These 

points should be dense enough to capture the synoptic scale, the scale that inertial and frictional 
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terms are an order of magnitude smaller than the Coriolis and pressure forces (Carlson 1991, 

1,6,16, 33), yet far enough apart to be independent. If they are not independent, the corruption 

will show up as multicollinearity in the regression statistics. The points are placed equidistant to 

not interject any preconceived notion.  

 

Figure 8. The location of the eight sampling points (decimal degrees) for upper atmospheric data.  
Tic marks for map coordinate system are in meters. 

     

 Both geopotential height and specific humidity were compiled at the 700 mbar level as others 

(q.v. Klein and Bloom 1987) have done. Also, general circulation models are better at predicting 

mid-tropospheric processes (Yarnal et al. 2001). While geopotential height is an obvious 

parameter for circulation, the four most inward points, C, D, E, and F, capture only specific 
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humidity because of the importance of water vapor transport in precipitation processes 

(Trenberth et al. 2003). Yarnal et al. (2001, 1933) comment, “. . . it is useful to include a 

predictor of atmospheric moisture because changes in the hydrologic cycle are likely to be the 

underlying cause of future changes in precipitation.” Cavazos and Hewitson (2005) reported that 

mid-tropospheric geopotential heights and mid-tropospheric humidity were the two most relevant 

controls of daily precipitation at 15 different locations across diverse climate regimes. Crane and 

Hewitson (1998) found that including specific humidity improved correlations. Hanssen-Bauer et 

al. (2003) thought they could have modeled warm-season rainfall better with the inclusion of 

humidity as a predictor and expected that accelerations in the hydrologic cycle with climate 

change would make humidity an important factor. 

 

4.5.3 Suitability of Data for Least Squares Regression  

   The fifty-eight cases of x1-8 and y were screened for suitability for linear regression. Scatter 

plots were used to screen for any large gaps in values across their ranges. Outliers were reported 

and possibly dropped because they can have an anomalous influence on the regression line; 

although, since the models cannot be used outside the range of y, marginal outliers in y might be 

allowed. The independent variables were inspected for any salient curvilinear relationship to y 

because, implicit to all linear regression is the existence of some true linear relationship in 

nature. A non-linear relationship—an exponential one for example—could be treated by 

substituting the log of y. Some researchers (e.g. Crane and Hewitson 1998) address this problem 

with artificial neural nets (ANN) as a kind of non-linear multiple regression. 

   As for time trends, linear trends in y should be sought and reported because there might be a 

better way to compute R-squared (see Woolridge 2000, 339). Otherwise, it is not a violation for 
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any input variable to have a time trend, but if both y and x are trending, it might be because there 

is some more comprehensive factor affecting both. The null hypothesis that y has no time trend is 

tested by comparing the t statistic of the slope coefficient of a regression of  y on year (T) to the 

critical value of ±2.00 needed for a two-tailed test with N-1=57 degrees of freedom at α = 0.05. 

The test is two-tailed because the trend could be negative or positive.  

 y is screened for a standard normal distribution and the results are reported with Skewness 

and Kurtosis index. A skewed distribution of y is commonly addressed with a ladder-of-powers 

transformation, though the transformation is not straightforward to undo. 

 A primary assumption of many statistical techniques is that the data are independent, and 

data become independent by originating from dispersed measurements. Clustering can make 

observations redundant and biased towards some background condition. This study uses the 

systematic sampling technique, so the points are expected to be dispersed. Recalling that even a 

geometrically random distribution could be clustered, the null hypothesis that the nearest 

neighbor index ≤ 1 is tested by comparing the Z statistic of a nearest neighbor analysis to the 

critical value of 1.65 needed for a one-tailed test at α = 0.05. The alternative hypothesis is that 

the points are more dispersed than random ( 1 < nearest neighbor index  ≤ 2.15). 

 

4.5.4 Performing the Regresssion 

 The dependent and independent variables were loaded into a competitive statistical software 

package and entered into a multiple linear regression. The stepwise option was used, meaning 

that the software includes variables with a significant slope (α = 0.05) but might drop them later 

if their slopes became insignificant (α = 0.10). These are the default tolerances for this software. 

The software provides the coefficients and y-intercepts and reports the t-statistics for the 
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coefficients along with the F-statistic for the entire model and its R-squared. The beta 

coefficients are also provided by the software. The error terms are provided and the option to 

save them was chosen. It is recommended to chose the descriptive statistics option to confirm 

that all fifty-eight cases are always picked up in the analysis. 

 

4.5.5 Compliance to Mathematical Assumptions 

    All multiple, linear equations—especially those based on time series—are subject to 

mathematical assumptions: mostly manifested in the error term (u). The error term must (a) have 

a standard, normal distribution, (b) have a mean of zero, (c) not have variance related to the 

independent variables, (d) not be correlated with the independent variables, and (e) not have 

serial autocorrelation. If condition (a) is violated, the model is asymmetrical in how it handles 

high and low values. If condition (b) is violated, the model is said to be biased. If condition (c) is 

violated, the model is said to be heteoroskedastic. Heteoroskedasticity invalidates the 

significance of the t score of the slope coefficients and the F statistics that rate the model. 

Evidence of heteroskedasticity suggests that heteroskedasticity-robust t and F statistics will be 

needed in future work. If condition (d) is fulfilled, the model is said to be exogenous, which 

makes the model easier to test for serial autocorrelation. If condition (e) is violated, the model is 

said to have serial autocorrelation, which is a serious condition. Time series typically suffer from 

serial autocorrelation (Kleinbaum et at. 1998, 43). The presence of serial autocorrelation in u 

invalidates the t score of the slope coefficients 

 The models were tested for compliance to the mathematical assumptions. The error term (u) 

was inspected for normal distribution (a) and a mean of zero (b) and reported with Skewness and 

Kurtosis by using descriptive statistics in the software package. The null hypothesis that the 
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model is homoskedastistic (c) is tested with the significance of the F statistic from regressing u2 

on the independent variables (α = 0.05) according to (Woolridge 2000, 257). This regression was 

an enter regression, meaning all the independent variables were forced with the enter technique. 

The null hypothesis that u has no contemporaneous correlation to the independent variables (d) is 

tested by entering all nine variables into two-tailed Pearson’s correlation coefficient (α = 0.05). 

The test is two-tailed because some correlations are positive, some negative. The Pearson’s 

product-moment test is warranted because all variables approximate a normal distribution. The 

null hypothesis that there is no serial autocorrelation (e) in u is tested with the significance of the 

F statistic from regressing u on uT-1 (α = 0.05). To accommodate this, the error term was copied 

and pasted into a second column but off set forward by one year. This provides the previous 

year’s error term in the same row. Then, u was regressed on lagged u (uT-1). This test is merited 

because the model has been shown above to be contemporaneously exogenous (Woolridge 2000, 

320, 381). 

 

4.5.6 Model Characteristics 

    In the interest of the most parsimonious model, the null hypothesis that the slope coefficient 

for any variable is zero in the real world (i.e., the variable is irrelevant in nature) is tested with 

the t statistic at α = 0.05. The test is two-tailed because the coefficient need only be non-zero. 

This is done by inspecting the significance of the coefficients from the regression statistics. It is 

assumed these significances are reported by the software as two-tailed. A failure to reject the null 

means the predictor is dropped. This is mostly an academic exercise; with the stepwise option, it 

is unlikely that any insignificant variables would remain, though presumably, with the default 

setting, any coefficient with a significance < 0.10 could remain. The amount of variance in y 
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explained by the models is reported with a coefficient of determination R-squared sometimes 

called “goodness of fit”. Finally, an overall “trial by fire” for the regression model is that it 

predicts the dependent variable better than the mean of the dependent variable. The null 

hypothesis that it cannot do this is tested by comparing the significance of the F statistic for the 

entire model to the α = 0.05 significance level. This means P-value of F statistic should be less 

than 0.05. 

 

4.5.7 Model Validation 

 A model that complies well with the mathematical assumptions of multiple linear regression 

could be acceptable for inference yet still not be accurate enough for the rigors of scientific 

research. Since all measurements are used to train this model, a subset approach to validation is 

not available. A leave-one-out-cross-validation approach is taken to recursively generate 

predictions that can be compared to observed values. This means that fifty-eight quasi-modes of 

the original model were generated, and this was reiterated for the northern model, the central 

model, and the southern model. None of the fifty-eight versions will resemble the inducted 

model because they are all trained on N-1 cases, the left out season being rotated out through the 

iterations. The fifty-eight equations are then used to predict the season that each was not trained 

on. This series of predictions is then compared to the independent data. Validation statistics used 

to assess the model as “accurate” or “inaccurate” include (a) the percent error (PE), which should 

be less than 10%, (b) the mean bias error (MBE), which should be zero, and (c) the index of 

agreement (D), which should be 0.9 or greater. 
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4.5.8 Multicollinearity 

    Multicollinearity is a common problem with multiple linear regression in geography because 

social and climate variables are always linked to some degree. It artificially makes the F statistic 

look better than it really is (as can small sample size). As long as the independent variables are 

not perfectly correlated, however, the situation is not a violation of any assumption of ordinary 

least-squares regression. A strong correlation does suggest, however, that not all the variables are 

freestanding factors in their own right (see Woolridge 2000, 196). There might be less factors 

than variables. 

 Multicollinearity was handled by inspecting multicollinearity statistics reported by the 

software. The stepwise option should drop highly correlated predictor variables, but the 

multicollinearity of the ones that remain can still be inspected. If any remaining variables are 

found to have a variance inflation factor (VIF) > 10, one will be dropped. If two variables seem 

moderately collinear, but within tolerance, they will be combined, but if the combination is 

deleterious to the model, this would indicate the model is requesting both sets of information, 

and they would be retained separately. 

 

4.6 Extrapolation of Trends in Predictor Variables 

 In light of Ross and Elliot (2001) indicating a statistically significant increase in surface–500 

mbar precipitable water in the eastern United States, a second set of predictors was compiled by 

extrapolating trends from the historical measurements. Since Trenberth and Hurrell (1994) noted 

a pronounced shift in North Pacific atmospheric and oceanic trends starting in about 1976, and 

since the empirical time series did indeed have change points just prior to 1980, the trends from 

1980 were the trends used in the extrapolations. The slope and y-intercept of a time series was 
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determined by regressing the variable on year (T) where T ≥ 1980. If the F statistic was not 

significant (α = 0.10), then the variable was considered to have no trend, and the mean was used. 

When there was a trend, the resulting regression equation was used to compute what the value 

would be for a future year. 

  

4.7 Invoking the Models for Future Seasons 

  There are many GCMs to choose from (see Randall et al. 2007, 596). There are half a dozen 

from the Geophysical Fluid Dynamic Laboratory alone. This study downscales the CM2.1 model 

(assuming year 2000 CO2 concentration) from the Geophysical Fluid Dynamics Laboratory. 

Other sources of GCMs include the Earth System Grid (ESG). Both these sources are available 

for public download. Randell et al. (2007), exhaustively provide their account of GCMs. They 

conclude that, in general, global climate models are an important and credible tool. GCMs are 

more reliable at general scales (thus downscaling) and suffer from uncertainly in the role of 

clouds in climate change, but they show an ability to successfully simulate current and past 

climates. Monsoons, storm tracks, and hemispheric oscillations have all been successfully 

simulated. Future researchers are encouraged to use the specification provided in this work on 

other GCMs. 

 GCM output was extracted with freeware from Doty (1988). Eight scripts were used: specific 

to a map point. The 700 geopotential level was set with the script, and recall that longitude is 

negative in the western hemisphere. The script then extracts the first six months of the year and 

averages them. It is useful to have a script reset all settings at the end to ensure the new script 

inherits a fresh environment. 
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 The downscaled rainfall forecast is generated with spreadsheet formulas. All four regression 

equation are formulated into a spreadsheet program. Additionally, a tool to pre-standardize 

incoming values to 1950–2007 means is programmed in. The input data need only be entered 

into the correct, prearranged spreadsheet cells, and the four equation clusters look to those cells 

and display the rainfall output. Two identical arrays are needed: one for GCM driven data and 

one for empirically driven data. Finally, a fifth output variable is derived as a weighted blend of 

the three regional outputs. The blend is (a) 9/40 for the north, (b) 16/40 for the central, and (c) 

15/40 for the south. 
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CHAPTER 5 

RESULTS 

 

5.1 Regionalization 

 The S-mode PCA decomposition results in the selection of three principal components that 

explain 81.8 percent of the variance in the rainfall localities. The fourth largest component 

contributed less than one eigenvalue. Nine contiguous localities in the northern basin load up 

maximally on one component, 16 central stations loaded on another, and the 15 southern stations 

loaded maximally on the other (fig. 9). 

 

 

Figure 9. Results from the S-mode PCA decomposition of 40 time series. 
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5.2 Trends in Precipitation 

 The rainfall time series for the different sub-regions are presented in figure 10. None of the 

time series had a significant trend from 1980 or even 1990. This is due to the high variance. 

Interestingly, even with very high variance, the three sub-regions are remarkably in phase in 

recent years. 
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Figure 10. Time series of semiannual precipitation for the entire basin (A),  
and the PCA decomposed sub-regions (B). 
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5.3 Least Squares Regression 

  

5.3.1 Suitability of data for Regression 

 The data is suitable for linear regression. There are no missing cases (seasons) in any 

variable. There is a fairly-continuous spread across the range of each variable. As for outliers, the 

“A” series of  700 mbar Z exhibits a pair of suppressed cases in the mid 1970s (three standard 

deviations), and the “H” series has less-severe suppressions in the 1950s, however, since they 

occur in consecutive years, these are accepted as naturally occuring. None of the q series have 

outliers. Scatter plots do not reveal any salient curvilinear relationships with y. The observed t 

statistic for a regression of y on T is -0.283, which does not fall outside the range of critical 

values; thus, we conclude there is no time trend in y, and this is true of the sub-regional rainfall 

time series also. Probably owing to the fact each case has a sample size of forty, y meets the 

assumption of normality. The distribution is only slightly negatively skewed (Skewnwess = -

0.134) and slightly flatted (Kurtosis = -0.255). A transformation of y is not needed (see 

Kleinbaum et al. 1998, 46, 219). The Z statistic of the nearest neighbor analysis of the N=40 

localities is 2.03. Since this exceeds the critical value of 1.65, the null hypothesis is rejected, and 

we conclude the points are more dispersed than random. The most proximate members are 22 km 

apart. 

 

5.3.2 Compliance with Mathematical Assumptions 

    The error term for the regional model and the three sub-regions has a mean of zero, 

indicating that the models are not biased in their ability to fit a line to the data. The residuals for 

all four models are negatively skewed and flattened. The sub-regional models are less skewed. 
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The negative skewing is due to over-predictions in the mid-dry years that are not balanced by 

equivalent under-predictions in the moist years. There is no obvious reason for why the residuals 

should be negatively skewed; basin-wide rainfall is normally distributed, and wet and dry years 

are of about equal magnitude, The problem is not necessarily limited to the very driest seasons; 

in fact, the very dry seasons of 1954, 1986, and 2007 were handled better, and the very dry 

season of 2000 was handled much better. It is the mid-dry seasons that are the problem. A scatter 

plot of u on y for the regional model illustrates the trouble fitting moderately dry years (fig 11). 
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Figure 11. Residuals from the model plotted against observed rainfall (mm). A negative value is an overestimate. 
Mean rainfall is 703 mm. 

 
 

   The null hypothesis of homoscedasticity is not rejected for any model, and we conclude that 

there is no evidence of heteroskedasticity. The variance of the residuals is not dependent upon 
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the independent variables. Future researchers may not need to worry about heteroskedasticity-

robust t and F statistics in future work, and it is not needed here. 

 Since none of the observed Pearson’s correlation coefficients comparing u to the independent 

variables were significant for any of the models, the null hypothesis of an exogenous model is 

not rejected, and we conclude there is no evidence of a non-compliance to contemporaneously 

exogenous. It does not look like rainfall residuals tend to be correlated to predictor variables. 

Had the models not been exogenous, a more complex test for serial autocorrelation would be 

needed. 

   The test for serial autocorrelation is simply the observed F statistic for a regression of u on 

uT-1.  This statistic was not significant for any of the models. The null hypothesis of zero serial 

autocorrelation is not rejected, and we conclude there is no temporal autocorrelation in the error 

term. This is important; serial autocorrelation adds considerable complication to linear 

regression. The six-month separation between cases likely helped, possibly because the first of 

the year is a kind of hydrologic reset, whereas the ground is nearly always moist due to heavy 

rains and cool temperatures, and the circulation has no way to remember past rainfall yields. It 

may be that the tendency to forget past rainfall is a global atmospheric proclivity, yet future 

researchers might consider putting a six-month interlude between observations in the ACF Basin. 

Results of the tests for mathematical assumptions are summarized in table 4. 
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Table. 4 Assessment for compliance to the mathematical assumptions of least squares regression. 
 

Mµ Skµ Kµ Hsk Exnous SerAuto

Basin 0 -0.414 -0.374 0.787 0.116 0.264
North 0 -0.202 -0.496 0.284 0.201 0.678
Central 0 -0.048 -0.554 0.819 0.058 0.616
South 0 -0.238 -0.378 0.338 0.079 0.700  

 Mµ = mean of residuals.  
 Skµ = Skew of residuals.  
 Kµ = Kurtosis of residuals.  
 Hsk = the significance of the F statistic of the test of the null hypothesis that the model is homoskedastic. 
 Exnous = the most significant Pearson’s Product-moment correlation of the residuals to independent variables. 
 SerAuto = the significance of the F statistic of the test of the null hypothesis that there is no serial 
 autocorrelation. 

 

 

5.3.3 Model Characteristics 

   The four models were quite different (table 5). The regressions dropped various predictors 

for insignificant coefficients, and none of them used the same set of predictors. What the models 

did have in common was a poor R-squared, which was the problem that the sub-regional models 

were designed to solve. None of the models could explain half the variance in the rainfall data 

they trained on. The models all had a significant F statistic: meaning that they were better than 

using the mean of the dependent variable. Again, this would be expected with a stepwise 

regression, or there would be no output at all. 
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Table 5. Characteristics of the linear regression models. 
 

Az Bz Cq Dq Eq Fq Gz Hz y-intercept R-squared
Basin N/A N/A N/A -35.584 55.938 N/A -79.112 98.740 702.756 0.461
North -73.85 N/A N/A N/A N/A N/A N/A 51.576 739.945 0.269
Central -43.14 N/A N/A N/A N/A N/A -58.977 99.654 687.567 0.311
South N/A N/A N/A N/A 50.385 N/A -109.133 147.039 696.606 0.465  

 Az = coefficient for 700 mbar geopotential height at 45N 105W 
 Bz = coefficient for 700 mbar geopotential height at 45N 65W 
 Cq = coefficient for 700 mbar specific humidity at 40N 85W 
 Dq = coefficient for 700 mbar specific humidity at 32.5N 95W 
 Eq = coefficient for 700 mbar specific humidity at 32.5N 75W 
 Fq = coefficient for 700 mbar specific humidity at 22.5N 85W 
 Gz = coefficient for 700 mbar geopotential height at 17.5N 97.5W 
 Hz = coefficient for 700 mbar geopotential height at 17.5N 72.5W 

 

5.3.4 Model Validation 

 The models are fundamentally sound, but their cross-validation is lackluster, and an attempt 

to improve accuracy by breaking the domain down into specialized sub-regions seems ineffective 

(table 6).  While the predictions are symmetrical—meaning that over-predictions and under-

predictions are of equal magnitude—they are somewhat erroneous. The proportion of systematic 

error (PSE), for example, would be expected to be closer to 0.10, and percent error (PE) should 

be less than 10%. The index of agreement (D) should be closer to 0.9. The model does not seem 

to follow the variations in observed rainfall very closely, being off by 115–134 mm on average. 

The indications are that the models need more information, the nature of which is difficult to 

speculate. Many climate downscaling projects use surface data, but GCMs are known to predict 

mid-troposphere patterns better.  
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Table 6. Cross validation statistics for all models. 

n MBE RMSE D PSE PE
Basin 58 1.51 115.10 0.74 0.53 16.40
North 58 1.30 132.85 0.58 0.71 18.00
Central 58 -0.03 134.17 0.63 0.69 19.50
South 58 0.57 132.28 0.75 0.53 19.00  

   n = number of cases 
   MBE = mean bias error (mm) 
   RMSE = root mean square error (mm) 
   D = coefficient of agreement 
   PSE = proportion of systemic error   
   PE = percent error (%) 
 

5.3.5 Multicollinearity 

 No variable in any model was dropped for multicollinearity, however, multicollinearity 

statistics for the models that used data point G and H indicate that the two series might be 

partially overlapping functions of the same factor. Since the variance inflation factors for these 

variables was less than 10 (around 2), and since an attempt to combine them degrades the R-

squared considerably, they are retained.  

 

 5.4 Extrapolation of Trends in Predictor Variables 

 The time series with the associated slopes and y-intercepts of the mid-tropospheric data are 

presented in figure 12. Several time series did not have significant trends, but D and G did (C 

was not used by any regression equation). A qualitative inspection of data point A evokes a 

trend, but it is not statistically significant due to the high variance. Note, for the aforementioned 

reasons, all slope and y-intercepts are calculated from 1980. 
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Figure 12. Time series of 700 mbar geopotential height in meters (ABGH) and specific humidity in g/kg (CDEF). 
Slope and y-intercept since 1980 is provided where a significant trend exists. 

 
 

5.5 Invoking the Model 
 

 The regression models are invoked with both GCM input and extrapolations of empirical 

data for years 2008–2011. The results are presented in table 7. This table presents a considerable 

amount of information, but one of the easiest points to realize is that empirical trends are for 

increasing drought, especially in the south. GCM driven predictions do not necessarily depict 

this trend. The reason that GCM driven forecasts depart from empirically driven forecasts is that 

GCMs do not predict trends in the atmosphere; they predict processes.  

 
Table 7. Invoking the models. Empirically extrapolated 700 mbar specific humidity (q) geopotential height (Z) for 
2008–2011, the GCM model output, the corresponding l July rainfall, the 1950–2007 average (AVE), and standard 

deviation (SDEV). 
 

D E A G H ACF sub(N) sub(C) sub(S) weighted

2008 2.960 2.677 3015.99 3165.13 3160.91 557.28 739.91 599.74 534.13 606.67
2009 2.980 2.677 3015.99 3165.45 3160.91 550.64 739.91 596.74 528.57 603.39
2010 2.993 2.677 3015.99 3165.77 3160.91 544.91 739.91 593.74 523.02 600.11
2011 3.006 2.677 3015.99 3166.09 3160.91 539.18 739.91 590.74 517.47 596.83

2008 3.170 2.281 3002.69 3149.84 3154.13 492.01 745.78 663.18 522.54 629.02
2009 2.839 2.669 3016.51 3146.79 3152.08 647.40 656.74 614.57 620.73 626.37
2010 2.885 2.462 3023.93 3148.69 3151.25 544.60 611.41 560.07 513.60 554.19
2011 2.810 2.756 3009.20 3147.98 3151.20 645.41 685.92 609.64 599.31 622.93
AVG 2.749 2.677 3015.99 3155.77 3160.91 702.81 739.99 687.63 696.69 702.81
SDEV 0.271 0.198 14.51 6.29 5.66 143.82 148.25 151.26 167.82

q Z

GCM Driven

Empirically Driven

 
   
 q = 700 mbar specific humidity (g/kg). 
 Z = 700 mbar geopotential height (m). 
 ACF = precipitation output (mm) for the basin-wide model. 
 sub(N) = precipitation output (mm) for the north sub-regional model. 
 sub(C) = precipitation output (mm) for the central sub-regional model. 
 sub(S) = precipitation output (mm) for the southern sub-regional model. 
 weighted = a weighted average of the three sub-regional models (mm). 
        D, E, A, G, H are map points. 
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CHAPTER 6 

DISCUSSION AND CONCLUSION 

                   

6.1 Accuracy  

 The validation of the regression models in this study all show lackluster accuracy with 

Percent Errors in the 15–20% range. The literature indicates that spatial averaging and temporal 

smoothing are important factors in the research design, as well as staying within the middle 

latitudes and within the cool season, and this project has those characteristics. Moreover, there is 

a special effort to fit models to specialized climate regions so as not to overburden them with a 

broad range of conditions. Nevertheless, the results of the validation indicate that something is 

missing from the models, and it is difficult to speculate on what that might be. It is noteworthy 

that several downscaling studies cited in this research use surface data, and surface data was not 

used in this study, but other literature indicates that GCMs are better at predicting mid-

tropospheric processes; thus, there seems to be precedent for not using surface data. 

   

6.2 Inference 

 Though the models developed in this project may not be accurate enough to be used under 

the rigors of scientific research for prediction, they do comply well with the mathematical 

assumptions of multiple linear regression, and therefore can be used for inference. The most 

salient inference to be taken from these models is that low-latitude data points seem to be a 

dominant influence. Only one data point at higher latitudes was ingested. Two high latitude 

points (B and C) were not used at all. The basin-wide model, which used the most data points, 

used none of the higher latitude points. Only the north basin and central basin models used the 
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lone higher latitude point. Klein and Bloom (1987), specifying 700 mbar height to spatially-

averaged precipitation in the U.S., also noted the importance of low-latitude points (20º–25º N). 

If the variables were unstandardized, the more northern ones would have likely been ingested 

because they have higher variance.  

 Geopotential height at low-latitude appears to drive rainfall in the ACF basin. The inference 

from the coefficients is that, of the two low-latitude geopotential height points, the southeastern 

one needs to be high and the southwestern one needs to be low to encourage precipitation. This 

may evoke a return flow process from the Gulf of Mexico (Kara, Elsner and Ruscher 1998), but 

the reader is cautioned that moisture flow from the Gulf of Mexico also depends on ocean 

temperature, the depth of transport, time spent over the water, soil moisture at coastal locations, 

and may not necessarily result in increased precipitation; therefore, a process is not necessarily 

implied from the relationship. 

 Specific humidity is not regarded by the models to be as important as geopotential height; the 

coefficients were smaller and two specific humidity points (E and F) were completely 

disregarded by all the models. Having made that point, the coefficients still evoke a process, and 

again, this process involves return flow from the Gulf of Mexico. This time, however, it seems to 

be that the situation of a lack of moisture to the west of the ACF Basin favors rainfall. Could it 

be that, in wet years, moisture is flowing directly over the ACF Basin instead of being shunted to 

the west? 

 One might protest that coefficients cannot be compared in such a way—that only the beta 

coefficients can be directly compared across variables in different units. Recall, however, that the 

predictors are all standardized; thus, comparison is merited. A cursory inspection of the beta 

coefficients did show the same pattern.  
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6.3 The Predictions 

 An overarching and gripping conclusion to be drawn from table 7 is that no model at any 

time, using any data, forecasts above normal precipitation: except for in the north in 2008. All 

other times and data result in below-average precipitation. If these four consecutive seasons of 

below-normal rainfall come to pass on the heels of the second driest year in history (2007), it 

will be an unusual and costly episode in the climate history of the Southeast. Enduring, 

unrelenting drought is not the norm (see figure 3), yet these models seem to depict a status quo 

of drought over the entire period. The empirically driven forecasts, since they are starting from 

dry conditions and trending downward, forecast a steady deterioration in conditions as the years 

progress. No (used) atmospheric variable is significantly trending in a direction that would favor 

precipitation, and two of them are trending in a direction that disfavors precipitation. The GCM 

driven forecasts, however, are based on atmospheric processes that jump from year to year, so 

one might expect at least one wet year to be juxtaposed among the dry years. A 

dendrochronology study by Stahle and Cleaveland (1992) suggested that decade-long regimes in 

spring rainfall are possible in the Southeast; perhaps we are entering one. 

 There is opportunity, at the late writings of this work, for a pseudo-validation of the 2008 

forecasts. The forecast can be summarized as such: normal to above normal rainfall in the north, 

below normal rainfall in the central, and much below normal rainfall in the south. The overall 

models depict overall drought for the basin. At the time of this writing, (mid June) the basin is 

experiencing overall drought, especially in the south, where Apalachicola is experiencing a 135 

mm deficit for the year. Even rainfall in the north is not achieving normal yields. The Gwinnett 

Daily Post reported on 12 June 2008 that the Chattahoochee River upstream of Lake Lanier at 

Cornelia, Georgia was flowing at 28 percent its normal discharge. 
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 The 2009 forecasts are for continued below normal rainfall, however, unlike the other three 

years that strike the southern basin particularly hard, in 2009 the drought conditions shift more 

into the central section. Though the ACF river system is managed as one body of water, most of 

Georgia’s agriculture is in the south. Consequently, a meteorological drought in the central 

sections might incur less social cost. 

 The hydrological outlook is grim for 2010. That year is predicted to see drought, especially 

in the south. All the different approaches show this to be the case. There is a chance the north 

might escape this drought, but if the south sees severe drying, the issue of water release from 

Lake Sidney Lanier will become contentious again.  

 In 2011 the outcomes begin to diverge. Of course, by this time, empirical trends in the 

atmosphere predict worsening drought: especially in the south. This is due to the fact that 

circulation parameters at map points D and G, which are influential points, are trending in favor 

of drought and, by this time, overwhelm the output. The GCMs, however, reverse the empirical 

trends and relax these predictors; thus, the GCM forecasts are for improved yet still sub-optimal 

conditions in all sections. 

  

6.4 Summary of Findings 

The major points and findings of this study are: 

 (1) There is increasing risk of basin-wide, meteorological, hydrological, and 

 socioeconomic drought in the region. 

(2) All three types of drought are concurrent and regionally synchronous, and hydrologic and 

socioeconomic drought are a summertime phenomenon.  
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(3) There have been climate downscalings elsewhere, and there have been drought 

predictions in the ACF Basin, but there have been no predictions from climate downscaling 

for the ACF Basin. 

 (4) Future researchers should give attention to improved accuracy. 

 (5) The medium-dry years seem most difficult to predict. 

 (6) Future researchers can expect that their models will be mathematically sound. 

 (7) The six-month interlude between cases might help. 

 (8) Mid-tropospheric, geopotential heights at lower latitudes are important. 

 (9) Higher pressure to the southeast and lower pressure to the southwest favor rainfall. 

 (10) Drier air to the west and moist air to the east favor rainfall. 

 (11) Several atmospheric variables are trending in favor of drought; none are trending in 

 favor of precipitation. 

 (12) The basin seems to have three climate regions. 

 (13) The prediction is for prevailing drought conditions throughout the 2008–2011 period, 

 especially in the south, with particularly strong drought in 2010. 

 

6.5 Avenues for Future Research 

  We need more assimilation between public policy and climate science. One avenue towards 

this goal is to provide a more practical interpretation of climate data for decision makers. As one 

example, Steinemann (2003) has added a probabilistic approach to drought forecasting by 

transforming the categories of the two popular drought indexes (SPI and PDSI) into probabilistic 

brackets. (An interval of SPI in the high range of magnitude represents less shift in the 

probability of occurrence). Decision makers need to know the actual probability that an event 
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will occur. This will help them develop actionable thresholds. Key events that managers might 

be concerned with are depleted flow in the Flint River and pool levels on Lake Sidney Lanier. To 

meet those managerial needs, scientists should develop standardized, accessible, trustworthy, and 

practical statistics to compliment raw scientific data. 

 Georgia, like other states such as South Carolina (Carbone and Dow 2005), has been slow to 

reconcile climate science with water management policy. To improve progress, the challenge for 

climatologists now is to make policymakers aware of their new tools, to make the tools relevant 

and tailored to user needs, and to provide a convincing case for reliability. “Pulling the trigger” 

on drought mitigation protocols is naturally an uncomfortable commitment for a politician 

because it can affect his/her prospects of re-election. Agricultural decisions are particularly 

irreversible. Perhaps an isolated bad call might have the benefit of unveiling true economic 

consequences so that planners can hedge the risk, but repeated misuse or misunderstanding will 

diminish the credibility of climate science. If we cannot cushion political risk, the best climate 

data in the world might go completely unused. 
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