

Figure 2.3 Temperature changes using simulated BOLD signals. (a) Slice of the head (y
= -12) with indicators of the locations for parts (b)-(d). (b) Equilibrium temperature along
a line through the head. Red lines indicate the brain boundary and the gold line indicates
the blood temperature (37◦C) used for calculations. Inside the brain, a 4-6 mm thick shell is
created where the equilibrium temperature is less than the blood temperature. Within this
shell, (c) the temperature rises with increased brain activity while (d) tissue deeper in the
brain experiences the opposite effect.

17

arterial blood temperature. As a result, when there is an increase in blood flow (increase in

BOLD), the warmer blood will increase the voxel temperature (Fig. 2.3(c)). A separate study

of brain temperature using a full-head model found this region to be as thick as 1 cm [41].

Since single-voxel models approximate voxel conditions, they are unable to account for this

region of tissue.

Conduction is a slow process, so over shorter time scales (less than ∼10 minutes), con-

duction will contribute very little to the temperature change from a change in brain activity.

However, conduction plays an important role in determining the resting-state temperature.

The primary advantage with this model is that it accounts for the contribution of all of

the voxels when determining the temperature, thus the direction of the temperature change

depends on how far away from the surface of the head the voxel is. For voxels within a 4–6

mm shell near the surface of the brain, the temperature increases with increased activity (Fig.

2.3(c)) while voxels deeper within the brain experience the opposite change (Fig. 2.3(d)).

2.3.2 Using Experimental BOLD Data

Data from a previous fMRI study [39] was used to study the characteristics of temperature

changes in a typical experiment. All participants in this experiment were right handed and

between the ages of 23 and 27 years old. Signed informed consent was collected from each

one prior to participating in the study. Institutional Review Boards of Emory University

and Georgia State University approved this experiment. Twelve participants were asked to

tap their right index fingers with rhythms of varying complexity for 320s.

This task resulted in a strong BOLD response in the motor cortex (Fig. 2.4). The

experiment included 20s of rest at the beginning and end of the tapping periods. Here, the

resting state response level is calculated for each voxel by averaging across 40s of resting-

state fMRI data. Using equations Eqs. (2.9), (2.15) and (2.16), the time-dependent change

in blood flow and metabolism can be determined for each voxel. Finally, these values are

used in conjunction with Eq. (2.4) to find the change in temperature throughout the brain.

In this task, a temperature increase of approximately 0.02◦C was observed in the motor

18

0 50 100 150 200 250 300 350
36.68

36.685

36.69

36.695

36.7

36.705

36.71

36.715

Time (s)

T
e

m
p

e
ra

tu
re

 (
C

)

(b)

Figure 2.4 Temperature calculated from a voxel within the motor cortex. (a) A slice (x =
-44) showing the motor cortex warming during a finger-tapping task. (b) Temperature at a
voxel within the motor cortex (-44, -24, 60) with standard error indicated by blue error bars
(Arrows indicate task onset and conclusion, N=24).

19

cortex (Fig. 2.4). This value is well within the range of temperature changes observed in

experimental measurements [10, 11, 12, 13, 14].

The increase rather than decrease in temperature in the motor cortex during a functional

activity is consistent with the idea that the temperature of the blood in the capillaries is

slightly greater than the baseline tissue temperature in superficial cortical regions; however,

single-voxel models would predict the opposite effect.

20

3 Optical techniques for brain activity measurements

The best method for measuring brain temperature is to use a thermocouple probe placed

in direct contact with the tissue. Experimental measurements of brain temperature have

achieved a precision as small as 0.000 3◦C using this method [10]. However, this method

can not be used in humans without damaging the tissue. An optical method would be

ideal for non-invasive measurements. Presently, there does not exist a method for accurately

measuring the temperature of brain tissues optically. However, other optical measurements

methods could be used in conjunction with a temperature model (such as the one proposed

here) to calculate the temperature. The possible application of functional Near-Infrared

Spectroscopy (fNIRS) and its possible use in brain temperature calculations is discussed

along with the possibilities and limitations of a direct measurement technique such as thermal

imaging.

3.1 Functional Near-Infrared fNIR Spectroscopy

As discussed in chapter 1, changes in tissue activity can be detected by measuring the

change in blood oxygenation levels. Functional Magnetic Resonance Imaging (fMRI) is one

technique among several for measuring tissue oxygenation (the BOLD signal).

Blood oxygenation can be determined by measuring the relative concentrations of oxyhe-

fMRI fNIR

Spatial Resolution 8–27 mm3 ∼ 1–10 cm3

Temporal Resolution 1–2 s ∼ 10−3 s
Measurement Parameter blood volume, flow, and O2

metabolism
oxyHb and deoxyHb con-
centrations

Motion Must Remain Stationary Small movements OK
Penetration Whole-head outer 2–4 mm of brain tissue

Table 3.1 Comparison of the capabilities and limitations of fMRI and fNIR techniques.
Compiled from Bunce et al. [44], Elliott [45].

21

600 700 800 900 1000 1100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

A

bs
or

pt
io

n
(c

m
-1
)

Wavelength (nm)

 Water
 oxyHb
 deoxyHb

Figure 3.1 Absorption spectra of water Cope [42], oxyHb and deoxyHb Horecker [43].

moglobin (oxyHb) and deoxyhemoglobin (deoxyHb) [6, 7, 8]. Since oxyHb and deoxyHb have

different absorption spectra as shown in Fig. 3.1. These differences are possible to detect

through optical techniques. Functional Near-Infrared Spectroscopy is a technique which uti-

lizes two or more spectral bands in order to determine blood oxygenation. fNIRS has a high

(millisecond) temporal resolution and a low (∼1 cm3) spatial resolution compared to fMRI

(as low as 1 mm3). Also, fNIRS is limited to only imaging the outer cortex (2–4 mm) [44].

A comparison of fMRI and fNIR is presented in Table 3.1.

fNIRS works by utilizing an array of near-infrared detectors and emitters (typically spaced

2–3 cm apart) placed in contact with the skin [46, 47]. A schematic of a typical fNIRS array

setup is shown in Fig. 3.2. Each dashed line is a detection path. By illuminating the emitters

22

L

Detector

Emitter

Figure 3.2 A Sample arrangement of detectors and emitters in a typical 16-channel fNIRS
setup (based on Izzetoglu et al. [47]). Light coming from emitters (stars) is detected by the
detectors (circles) set at a distance L away.

sequentially, it is possible to have 16 detection channels using the setup shown. The exact

spacing between the emitters and detectors determines the depth the light is detected from.

As shown in Fig. 3.3, the closer the spacing, the higher the resolution but at the expense of

lower penetration. Conversely, in order to detect light passing through deeper tissue, a wider

spacing is used which reduces the resolution. Systems use either two [46, 48, 49] or three [50]

wavelengths selected based on differences in the absorption of oxyHb and deoxyHb. The

exact wavelengths used vary, but all lie within an optical window between 700–1000 nm [46]

where the near-infrared photon absorption in the tissue is low (Fig. 3.1).

Three techniques are used to illuminate the tissue: (i) time domain (or time resolved

spectroscopy, TRS), (ii) frequency domain and, (iii) continuous wave illumination [47]. In

TRS, short pulses of light are incident on the tissue and the temporal distribution of pho-

tons in measured. In frequency domain spectroscopy, the amplitude of the incident light is

modulated at a high frequency (10–100 MHz) and the phase shift and amplitude decay of

the detected light is compared to the incident light [52]. In continuous wave illumination,

the incident light is not modulated so the detected light can only be compared for amplitude

attenuation [47].

All of the techniques use the Beer-Lambert Law [53]

I = I0e
−α(λ)x (3.1)

23

Figure 3.3 Penetration depth of a fNIR detector as a function of the distance between the
NIR emitter and detector. Light emitted by either an LED or fiber optic (red star) from
the left passes through the tissue before it is scattered back to be detected (blue circle).
The path it takes through the tissue is determined by the distance between the emitter and
detector. A larger separation between emitter and detector (L2) allows the light to penetrate
deeper in to the tissue (d2). Modified after [51]

modified to isolate the individual contributions from oxyHb and deoxyHb [42]:

I = GI0e
−(αdeoxyHbCdeoxyHb+αoxyHbCoxyHb)l (3.2)

where G is a factor to adjust for the measurement geometry, I0 is in the incident light

intensity, αoxyHb and αdeoxyHb are the molar extinction coefficients for oxyHb and deoxyHb,

CoxyHb and CdeoxyHb are the chromophore concentrations for oxyHb and deoxyHb, and l is the

path length [47]. By comparing a baseline measurement (Ib) with a new measurement (I),

24

the optical density can be determined [47]

∆OD = log
Ib
I

= αdeoxyHb∆CdeoxyHb + αoxyHb∆CoxyHb (3.3)

As discussed in Izzetoglu et al. [47], at least two wavelengths are utilized in the spectral

window (700–1000 nm) in order to determine the change in concentration of chromophores

∆CdeoxyHb and ∆CoxyHb. With these values, the oxygenation and total blood volume can be

determined:

Oxygenation = ∆CHBO2 −∆CHB

Blood V olume = ∆CHBO2 + ∆CHB (3.4)

Using this method to experimentally measure the blood oxygenation while measuring the

fMRI BOLD response could be used to refine the present model for calculating the metabolism

and blood flow from the BOLD response.

While fNIRS does not provide spatially-precise measurements as fMRI, it should be

possible to modify the existing model for calculating temperature from the BOLD response

to use fNIR data. This would be advantageous because fNIRS systems are cheaper and

less disruptive than fMRI systems, meaning they can be used with a wider range of patients

(children and the elderly). For this reason, developing a model which uses fNIRS data should

be considered in future research.

3.2 Thermal Imaging

The primary challenge in brain temperature research is performing brain temperature exper-

imental measurements. Since it is non-invasive, thermal imaging is appealing as a possible

replacement for damaging thermocouple probes. Unfortunately, this technique is limited by

the high absorption of mid-infrared photons by water.

25

Light absorption by a material is modeled using the Beer-Lambert law

I = I0e
−α(λ)x (3.5)

where I is the intensity at a depth x remaining from light with an incident intensity I0 in a

material with absorption coefficient α. The point at which the intensity has decayed to 1/e

(about 37%) of the incident intensity is called the penetration depth, δp

δp =
1

α(λ)
(3.6)

This equation can be used along with the black-body spectrum at tissue temperatures

(Fig. 3.4) we can estimate the penetration depth of mid-infrared photons passing through

water.

Wien’s Displacement Law is a solution to Planck’s law for the peak light emission wave-

length:

λmax =
b

T
(3.7)

b = 2.897 7721 ∗ 10−3 K m

where b is Wien’s displacement constant and T is the temperature in kelvin. For T = 310 K

(T = 37◦ C), Wien’s law yields a peak black-body emission wavelength of 9.347 652 µm. A

physiologically reasonable temperature change to expect from stimulation is on the order of

0.01◦C which corresponds to a new peak wavelength of 9.347 350 µm (T=310.01 K) or a shift

of 0.302 nm.

The values of the absorption coefficient and the penetration depth of photons in water

is shown in Fig. 3.5. Looking at around 9.3 µm, the absorption coefficient is approximately

700 cm−1 which corresponds to a penetration depth of approximately 14 µm. This depth is

roughly three orders of magnitude smaller than the distance from the surface of the brain to

26

5 10 15 20 25 30
0

1x107

2x107

3x107

4x107

 250 K
 310 K
 314 K
 Peak Position

P
ow

er
 D

en
si

ty
 (W

/m
3)

Wavelength (m)

(a)

8.8 9.0 9.2 9.4 9.6 9.8
3.65x107

3.66x107

3.67x107

3.68x107

(b)

310 K

P
ow

er
 D

en
si

ty
 (W

/m
3)

Wavelength (m)

310.025 K

Figure 3.4 (a) Black-body spectrum at 250, 310 and 350 K calculated using Planck’s Law.
The black dashed line traces the peak in the spectrum as temperature changes. As the tem-
perature increases, differences in temperature translate to smaller shifts in peak wavelength
compared to cooler temperatures. (b) A comparision of the black-body spectrum at 310 K
and 310.025 K. This is the shift in local temperature that would be expected under strong
stimulation.

27

1 10 100
1E-4

1E-3

0.01

0.1

1

10

100

1000

10000

100

10

1

0.1

0.01

1E-3

1E-4

1E-5

1E-6

A

bs
or

pt
io

n
(c

m
-1
)

Wavelength (m)

P
enetration D

epth (m
)

Figure 3.5 The absorptions spectra of water from UV to far-infrared. Modified from Hale
and Querry [54].

the surface of the head. Further, all photons emitted as blackbody radiation (ranging from

3 µm to over 30 µm) have a penetration depth of less than 100 microns. Thus, a thermal

imaging camera is unable to image photons coming from the brain.

When thermal imaging is used, the photons collected come from the skin of the head

rather than from any deeper tissues, thus it is not a viable form of brain activity detection

unless direct line of sight to the brain is available (such as in an open skull surgery). The

noise-equivalent temperature difference (NETD) of currently available cameras is greater

than 14 mK [55, 56] or 7 mK [57] for a camera which is not commercially available, so it would

be limited to only the most extreme of excitations even if line of site to the brain is available.

As a comparison, the finger-tapping task discussed in the results section (section 2.3.2) only

28

induced a peak temperature change of 25 mK after tapping for about 170 seconds. Detection

of this activity would be at the limits of a thermal imaging camera.

While its applications to detecting brain activity are limited, thermal cameras could

be useful in the operating room. It has been found that inducing mild hypothermia in

patients being treated for cerebral ischemia improves the clinical outcome [20]. The same

treatment has been shown to improve the outcome of patients who have experienced a

stroke [22] and even in patients with severe head injuries [19]. The temperature of the brain

is currently inferred from the core body temperature (which is monitored via an invasive

thermistor catheter). If it is possible to directly image the brain (i.e. during surgery) then

the hypothermia treatment can be better monitored through a thermal imaging camera.

This would be especially useful since conductive and radiative heat loss to the air from an

exposed brain could reduce how tightly the brain temperature is regulated by the arterial

blood temperature. Since the tissue will be directly exposed to the surrounding air, Eq. (2.1)

would need to include a term for the radiative heat loss:

Ctissue
dT (t)

dt
= ...+

AσT 4

ρgmV
(3.8)

After rearranging to solve for dT
dt

and substituting values in, it is found that the change in

temperature is approximately 0.07 K/s:

dT

dt
=

AσT 4

ρgmV Ctissue

=
1

6

(6 ∗ 4 10−6 m2)
(
5.6704 10−8 J

s m2 K4

)
(310 K)4(

1035 103 g
m3

)
(8 10−9 m3)

(
3.664 J

g K

)
≈ 0.0690454

K

s
(3.9)

where A and V are the surface area and volume of the voxel, σ is the StefanBoltzmann

constant and ρgm is the density of gray matter. The factor 1/6 is there because only one face

of the voxel is exposed to air. Radiation passing through the other faces will be reabsorbed

29

by the tissue (Fig. 3.5).

Optical detectors face many challenges working with biological tissue, the worst being

infrared light absorption by water. fNIRS works within an optical window in the water

absorption in order to measure changes in blood oxygenation, while thermal imaging is

limited to measuring the temperature of tissue it has direct line of sight with because of the

high absorption of water in the operating window. Despite their limitations, both of these

techniques could be used in future studies to improve our understanding of brain temperature

dynamics.

30

4 Conclusion

It has been shown that by considering the entire head within the model, brain temperature

can be reliably calculated from non-invasive fMRI measurements. Experimental measure-

ments of activity-induced brain temperature changes have shown that a simple relationship

does not exist [10, 11, 12, 13, 14]. Single-voxel brain temperature modeling efforts predict

that an increase in brain activity will induce a decrease in temperature. This one-dimensional

perspective does not account for the spatial distribution of heat throughout the head like a

multi-voxel approach.

Our model of brain temperature changes is able to account for the variability found

in experimental brain temperature measurements. This is accomplished by modeling heat

dynamics throughout the entire head rather than reducing the model to one ROI. It was

found that the variability in experiment measurements is most likely due to differences in

resting state temperatures throughout the brain. Since each voxel is at a slightly different

temperature, the same change in the BOLD response may result in different changes in

temperature. Additionally, it was found through the model that a thin (4–6 mm) region of

outer cortical tissue is at a resting temperature below the blood temperature. In this region,

an increase in brain activity (inducing an increase in CBF) will warm the tissue. Thus, with

the same BOLD response, tissue may either be warmed or cooled depending on it’s proximity

to the surface of the head.

The biggest shortcoming of our model is that we are unable to independently compare

our calculations with experimental measurements of temperature and BOLD response. It

was not possible for us to do this because there is currently not a method for non-invasively

measuring temperature independent of an fMRI. An improvement to the model could also

be gained by a more accurate method of CMRO2 and CBF calculations from the BOLD

response. The current method uses empirically fit formulas, so the accuracy is limited by

31

the data used for the fitting. A model that does not rely on experimental data would be

ideal. The calculations could also be improved by segmenting the head into more tissue

types. We used six tissue types, but the use of more would further improve the calculations

since each tissue type has different physiological parameters (thermal conduction, baseline

heat production, etc.). A separate line of research that could be pursued would be a model

for calculating brain temperature changes from fNIRS data. Both fNIRS and fMRI BOLD

response detect changes in local tissue oxygenation, so it should be possible to adapt our

model to use fNIRS data. If such a model existed, calculations from it and our model could

be compared to refine both models.

Although it is expected that the contribution would be negligible [58], our model does

not take into account the effects of perspiration. It would likely not affect the change in

temperature greatly because it takes place a couple of centimeters away from brain tissue.

Another physiological affect not account for is temperature regulation by the pre-optic nu-

cleus of the anterior hypothalamus [17]. It is responsible for balancing heat production and

dissipation [59] and if the model were applied to cases where extreme brain temperatures

are created then it would be important to account for how this would react.

How human brain temperature is affected by changes in local brain activity is not well

understood because the changes are small and current experimental measurement techniques

may require invasive procedures. Models such as the one proposed here allow for brain

temperature to be understood through non-invasive measurements such as the fMRI BOLD

response.

32

References

[1] Roberto C Sotero and Yasser Iturria-Medina. From Blood Oxygen Level Dependent

(BOLD) signals to brain temperature maps. Bulletin of Mathematical Biology, 73(11):

2731–2747, 2011.

[2] Christopher M. Collins, Michael B. Smith, and Robert Turner. Model of local tem-

perature changes in brain upon functional activation. Journal of Applied Physics, 97:

2051–2055, 2004.

[3] Roberto C Sotero and Nelson J Trujillo-Barreto. Modeling the role of excitatory and

inhibitory neuronal activity in the generation of the BOLD signal. NeuroImage, 35:

149–165, 2007.

[4] Herman Y Carr and E M Purcell. Effects of diffusion on free precession in nuclear

magnetic resonance experiments. Physical Review, 94:630–638, 1954.

[5] Paul Lauterbur. Image formation by induced local interactions: Examples employing

nuclear magnetic resonance. Nature, 242:190–191, 1973.

[6] Seiji Ogawa, David W. Tank, Ravi Menon, Jutta M . Ellermann, Seong-Gi Kim, Hellmut

Merkle, and Kamil Ugurbil. Intrinsic signal changes accompanying sensory stimulation:

Functional brain mapping with magnetic resonance imaging. Proceedings of the National

Academy of Science, 89:5951–5955, 1992.

[7] Kenneth K. Kwong, John W. Belliveau, David A. Chesler, Inna E. Goldberg, Robert M.

Weisskoff, Brigitte P. Poncelet, David N. Kennedy, Bernice E. Hoppel, Mark S. Cohen,

Robert Turner, Hong-Mind Cheng, Thomas J. Brady, and Bruce R. Rosen. Dynamic

magnetic resonance imaging of human brain activity during primary sensory stimulation.

Proceedings of the National Academy of Science, 89:5675–5679, 1992.

33

[8] Peter T. Fox and Marcus E. Raichle. Focal physiological uncoupling of cerebral blood

flow and oxidative metabolism during somatosensory stimulation in human subjects.

Proceedings of the National Academy of Science, 83:1140–1144, 1986.

[9] Jan Karbowski. Thermodynamic constraints on neural dimensions, firing rates, brain

temperature and size. Journal of Computational Neuroscience, 27:415–436, 2009.

[10] J. G. McElligott and R Melzack. Localized thermal changes evoked in the brain by

visual and auditory stimulation. Experimental Neurology, 17:293–312, 1967.

[11] Eugene A. Kiyatkin, P. Leon Brown, and Roy A. Wise. Brain temperature fluctuation:

a reflection of functional neural activity. European Journal of Neuroscience, 16:164–168,

2002.

[12] G. Zeschke and V. G. Krasilnikov. Decreases of local brain temperature due to convec-

tion (local brain blood flow) and increases of local brain temperature due to activity.

Acta Biologica et Medica Germanica, 35:935–941, 1976.

[13] J. S. George, J. D. Lewine, A. S. Goggin, R. B. Dyer, and E. R. Flynn. IR thermal

imaging of a monkey’s head: local temperature changes in response to somatosensory

stimulation. Optical Imaging of Brain Function and Metabolism, 333:125–136, 1993.

[14] Shunro Tachibana. Local temperature, blood flow, and electrical activity correlations

in the posterior hypothalamus of the cat. Experimenal Neurology, 16:148–161, 1966.

[15] Dmitriy A. Yablonskiy, Joseph J. H. Ackerman, and Marcus E. Raichle. Coupling be-

tween changes in human brain temperature and oxidative metabolism during prolonged

visual stimulation. Proceedings of the National Academy of Science, 97(13):7603–7608,

2000.

[16] Hubert K. F. Trübel, Laura I. Sacolick, and Fahmeed Hyder. Regional temperature

34

changes in the brain during somatosensory stimulation. Journal of Cerebral Blood Flow

& Metabolism, 26:68–78, 2006.

[17] Gianluca Bertolizio, Linda Mason, and Bruno Bissonnette. Brain temperature: heat

production, elimination and clinical relevance. Pediatric Anesthesia, 21(4):347–358,

2011.

[18] Hubert Trübel, Peter Herman, Christoph Kampmann, Ralf Huth, Paul K Maciejewski,

Edward Novotny, and Fahmeed Hyder. A novel approach for selective brain cooling:

implications for hypercapnia and seizure activity. Intensive care medicine, 30(9):1829–

33, 2004.

[19] Jens Soukup, Alois Zauner, Egon M.R. Doppenberg, Matthias Menzel, Charlotte

Gilman, Harold F. Young, and Ross Bullock. The importance of brain temperature

in patients after severe head injury: Relationship to intracranial pressure, cerebral per-

fusion pressure, cerebral blood flow, and outcome. Journal of Neurotrauma, 19(5):

559–571, 2002.

[20] J Maher and V Hachinski. Hypothermia as a potential treatment for cerebral ischemia.

Cerebrovascular and brain metabolism reviews, 5(4):277–300, 1993.

[21] M D Ginsberg, L L Sternau, M Y Globus, W D Dietrich, and R Busto. Therapeutic

modulation of brain temperature: relevance to ischemic brain injury. Cerebrovascular

and brain metabolism reviews, 4(3):189–225, 1992.

[22] Derk W. Krieger, Michael A. De Georgia, Alex Abou-Chebl, John C. Andrefsky,

Cathy A. Sila, Irene L. Katzan, Marc R. Mayberg, and Anthony J. Furlan. Cooling

for acute ischemic brain damage (cool aid). Stroke, 32(8):1847–1854, 2001.

[23] Troy E. Dominguez, Gil Wernovsky, and J. William Gaynor. Cause and prevention

of central nervous system injury in neonates undergoing cardiac surgery. Seminars in

Thoracic and Cardiovascular Surgery, 19(3):269 – 277, 2007.

35

[24] Eiichi Suehiro, Yuji Ueda, Enoch P. Wei, Hermes A. Kontos, and John T. Povlishock.

Posttraumatic hypothermia followed by slow rewarming protects the cerebral microcir-

culation. Journal of Neurotrauma, 20(4):381–390, 2003.

[25] M A Baker, R A Stocking, and J P Meehan. Thermal relationship between tympanic

membrane and hypothalamus in conscious cat and monkey. Journal of applied physiol-

ogy, 32(6):739–742, 1972.

[26] K. Shiraki, S. Sagawa, F. Tajima, A. Yokota, M. Hashimoto, and G. L. Brengelmann.

Independence of brain and tympanic temperatures in an unanesthetized human. Journal

of Applied Physiology, 65(1):482–486, 1988.

[27] Mark M Stecker, Albert T Cheung, Alberto Pochettino, Glenn P Kent, Terry Patterson,

Stuart J Weiss, and Joseph E Bavaria. Deep hypothermic circulatory arrest: I. effects

of cooling on electroencephalogram and evoked potentials. The Annals of Thoracic

Surgery, 71(1):14 – 21, 2001.

[28] Christopher S Rumana, Shankar P Gopinath, Masahiko Uzura, Alex B Valadka, and

Claudia S Robertson. Brain temperature exceeds systemic temperature in head-injured

patients. Critical Care Medicine, 26(3), 1998.

[29] Bruno Bissonnette, Helen M Holtby, Annette J Davis, Hweeleng Pua, Fay J Gilder,

and Michael Black. Cerebral Hyperthermia in Children after Cardiopulmonary Bypass.

Anesthesiology, 93(3), 2000.

[30] H H Pennes. Analysis of tissue and arterial blood temperatures in the resting human

forearm. Journal of Applied Physiology, 1(2):93–122, 1948.

[31] Greggory H. Rothmeier, A. G. Unil Perera, and Mukeshwar Dhamala. Brain tissue

temperature dynamics during functional activity. Society for Neuroscience Abstract,

Prog. No. 823.09, 2011.

36

[32] Greggory H. Rothmeier, A. G. Unil Perera, and Mukeshwar Dhamala. Determining

brain tissue temperature from fmri blood-oxygen level dependent response. With Re-

viewers, 2012.

[33] Richard B. Buxton, Kâmil Uludağ, David J. Dubowitz, and Thomas T. Liu. Modeling

the hemodynamic response to brain activation. NeuroImage, 23, Supplement 1(0):S220–

S233, 2004.

[34] Richard B. Buxton, Eric C. Wong, and Lawrence R. Frank. Dynamics of blood flow

and oxygen changes during brain activation: The Balloon Model. Magnetic Resonance

in Medicine, 39:855–864, 1998.

[35] PT Fox, ME Raichle, MA Mintun, and C Dence. Nonoxidative glucose consumption

during focal physiologic neural activity. Science, 241(4864):462–464, 1988.

[36] Christoph Leithner, Georg Royl, Nikolas Offenhauser, Martina Fuchtemeier, Matthias

Kohl-Bareis, Arno Villringer, Ulrich Dirnagl, and Ute Lindauer. Pharmacological un-

coupling of activation induced increases in CBF and CMRO2. Journal of Cerebral Blood

Flow & Metabolism, 30(2):311–322, Sep 2009.

[37] Ai-Ling Lin, Peter T. Fox, Jean Hardies, Timothy Q. Duong, and Jia-Hong Gao. Non-

linear coupling between cerebral blood flow, oxygen consumption, and ATP production

in human visual cortex. Proceedings of the National Academy of Sciences, 107(18):

8446–8451, 2010.

[38] Timothy L. Davis, Kenneth K. Kwong, Robert M. Weisskoff, and Bruce R. Rosen.

Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proceedings

of the National Academy of Sciences, 95(4):1834–1839, 1998.

[39] Mukeshwar Dhamala, Giuseppe Pagnoni, Kurt Wiesenfeld, Caroline Zink, Megan Mar-

tin, and Gregory Berns. Neural correlates of the complexity of rhythmic finger tapping.

NeuroImage, 20:918–926, 2003.

37

[40] K. J. Friston, A. Mechelli, R. Turner, and C. J. Price. Nonlinear response in fMRI: The

Balloon Model, Volterra Kernels, and other hemodynamics. NeuroImage, 12:466–477,

2000.

[41] D. A. Nelson and S. A. Nunneley. Brain temperature and limits on transcranial cooling

in humans: quantitative modeling results. European Journal of Applied Physiology, 78

(4):353–359, August 1998.

[42] M Cope. The development of a near infrared spectroscopy system and its application for

non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infants.

PhD thesis, London University, 1991.

[43] B L Horecker. The absorption spectra of hemoglobin and its derivatives in the visible

and near infra-red regions. The Journal of Biological Chemistry, 1942.

[44] S.C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei. Functional near-

infrared spectroscopy. Engineering in Medicine and Biology Magazine, IEEE, 25(4):54

–62, July–August 2006. ISSN 0739-5175. doi: 10.1109/MEMB.2006.1657788.

[45] Mark Elliott. Functional imaging with diffuse optical tomography. URL http://www.

mmrrcc.upenn.edu/mediawiki/images/3/30/FNIR.ppt.

[46] Arno Villringer and Britton Chance. Non-invasive optical spectroscopy and imaging of

human brain function. Trends in Neurosciences, 20(10):435–442, 1997. ISSN 01662236.

doi: 10.1016/S0166-2236(97)01132-6.

[47] Kurtulus Izzetoglu, Scott Bunce, Banu Onaral, and Kambiz Pourrezaei. Functional

optical brain imaging using near-infrared during cognitive tasks. International Journal

of Human-Computer Interaction, 17(2):211–227, 2004.

[48] Meltem Izzetoglu, Scott Bunce, and Banu Onaral. Single trial hemodynamic response

38

http://www.mmrrcc.upenn.edu/mediawiki/images/3/30/FNIR.ppt
http://www.mmrrcc.upenn.edu/mediawiki/images/3/30/FNIR.ppt

estimation in event related fnir spectroscopy. In Biomedical Topical Meeting, page WF9.

Optical Society of America, 2004.

[49] Hiroki Sato, Masashi Kiguchi, Fumio Kawaguchi, and Atsushi Maki. Practicality of

wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy. Neu-

roImage, 21(4):1554 – 1562, 2004.

[50] Yoko Hoshi. Functional near-infrared optical imaging: utility and limitations in human

brain mapping. Psychophysiology, 40(4):511–20, July 2003.

[51] L.M. Head and R.M. Pierson. Functional near infrared spectroscopy for Hb and HbO2

detection using remote sensing. In Sensors Applications Symposium (SAS), 2010 IEEE,

pages 166 –169, Feb. 2010. doi: 10.1109/SAS.2010.5439393.

[52] David A. Boas, Maria Angela Franceschini, Andy K. Dunn, and Gary Strangman.

Noninvasive imaging of cerebral activation with diffuse optical tomography. In Ron D.

Frostig, editor, In-vivo optical imaging of brain function, pages 193–221. 2002.

[53] Beer. Bestimmung der absorption des rothen lichts in farbigen flssigkeiten (determi-

nation of the absorption of red light in colored liquids). In Ludwig Wilhelm Gilbert,

editor, Annalen der Physik und Chemie, volume 86, pages 78–88. 1852.

[54] George M. Hale and Marvin R. Querry. Optical constants of water in the 200-nm to

200-µm wavelength region. Appl. Opt., 12(3):555–563, Mar 1973. doi: 10.1364/AO.12.

000555.

[55] FLIR Advanced Thermal Solutions: FLIR GF335 Broadband Infrared Cameras for

Research & Science, February 2012. URL http://www.flir.com/thermography/

americas/us/view/?id=46792&collectionid=519&col=4586.

[56] Mirage Infrared Camera - Infrared Cameras Inc, February 2012. URL http://www.

infraredcamerasinc.com/infrared-camera-Mirage.html.

39

http://www.flir.com/thermography/americas/us/view/?id=46792&collectionid=519&col=4586
http://www.flir.com/thermography/americas/us/view/?id=46792&collectionid=519&col=4586
http://www.infraredcamerasinc.com/infrared-camera-Mirage.html
http://www.infraredcamerasinc.com/infrared-camera-Mirage.html

[57] Sarath D. Gunapala, Sumith V. Bandara, John K. Liu, S. B. Rafol, C. A. Shott,

Richard W. Jones, Stanley Laband, James T. Woolaway II, J. M. Fastenau, and Amy W.

Liu. 9-µm cutoff 640x512 pixel gaas/alxga1−xas quantum well infrared photodetector

handheld camera. volume 4721, pages 144–150. SPIE, 2002. doi: 10.1117/12.478841.

URL http://link.aip.org/link/?PSI/4721/144/1.

[58] E. R. Nadel, J. W. Mitchell, B. Saltin, and J. A. Stolwijk. Peripheral modifications

to the central drive for sweating. Journal of Applied Physiology, 31(6):828–833, 1971.

URL http://jap.physiology.org/content/31/6/828.short.

[59] H B Simon. Hyperthermia. The New England journal of medicine, 329(7):483–487,

1993.

40

http://link.aip.org/link/?PSI/4721/144/1
http://jap.physiology.org/content/31/6/828.short

Appendix A Code

The following sections include the code used. It was written for Matlab R2011b and requires

SPM8 to run. Additionally, it is recommended that you have at least 4 GB of RAM in order

to work with the large datasets that are produced. For information about how to visualize

the data produced, see appendix B. All of the code is available through the temptools github

page (https://github.com/greggroth/temptools). Additionally, many of the tasks can

be completed using the temptools gui (Figs. (A.1) - (A.4)) which can be invoked by running

temptools

at the Matlab command prompt (make sure the temptools directory and subdirectories have

been added to the Matlab path). The procedure used is explained in section 2.2 and a

graphical representation is available in Fig. 2.1.

41

https://github.com/greggroth/temptools

Figure A.1 The main window of temptools. From here, you can go through the calculation
steps and launch the visualization tool.

42

Figure A.2 This is the interface for calculating the equilibrium temperature (method ex-
plained in appendix A.3) under certain conditions.

43

Figure A.3 The interface for calculating temperature changes when blood flow and
metabolism are time dependent. This can be achieved by either loading metabolism and
blood flow datasets or by using generated activity.

44

Figure A.4 Visualize your data using the temptools visualization window. This loads all of
the required data and launches a slice browser or tsliceplot (see appendix B for more details).

45

A.1 Creating the Head Matrix

Before any calculations can be done, a matrix containing tissue-specific parameters must be

created. First, a T1 contrast image should be segmented using SPM8 (http://www.fil.

ion.ucl.ac.uk/spm/software/spm8/). For ease of consistency, the one provided by SPM8

in ./canonical/ is best to use. Using SPM’s “New Segmentation” algorithim will segment the

image into five different tissue types (gray matter, white matter, cerebral spinal fluid, soft

tissue and bone). Once this is complete, run ImportSegmentedT1() within this directory and

it will return a matrix that has been populated with the tissue-specific parameters required

for accurate temperature calculations. The functions fillAir() (A.1.2), fillHoles() (A.1.3),

build skin() (A.1.4) and repair headdata() (A.1.5) are functions required by BulkImport-

NII(). More information about this procedure is in section 2.2.1.

A.1.1 ImportSegmentedT1()

1 function [total] = ImportSegmentedT1(varargin)

2 % ImportSegmentedT1 Import NII files from a directory

3 % Must be run within the directory containing the files

4 %

5 % Output: head data as single with variables stored in the 4th

6 % dimension.

7 %

8 % Author: Greggory Rothmeier (greggroth@gmail.com)

9 % Georgia State University

10 % Created: 5/31/11

11

12 statusbar = waitbar(0,’Initializing ’);

13

14 if size(varargin) == 1

15 oldFolder = cd(varargin {1});

46

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

16 end

17

18

19 % =====================

20 % = Tissue Parameters =

21 % =====================

22 % Each tissue type is assigned an integer index (i.e. gray matter

-> 11)

23 % such that tissue -specific parameters can be found by looking at

24 % that element within the corresponding storage matrix

25 % (i.e. QmSTORE (11) -> gray matter Qm)

26

27 % Parameters taken from Colins , 2004

28

29 tisorder = [11 15 5 13 3]; % Using: [GM WM CSF Muscle Bone]

30

31 QmSTORE = [0 0 26.1 11600 0 26.1 697 0 0 302 15575 0 697 1100

5192];

32 cSTORE = [1006 4600 2110 3640 3800 1300 3720 3000 4200 2300 3680

3500 3720 3150 3600];

33 rhoSTORE = [1.3 1057 1080 1035.5 1007 1850 1126 1076 1009 916

1035.5 1151 1041 1100 1027.4];

34 kSTORE = [0.026 0.51 0.65 0.534 0.5 0.65 0.527 0.4 0.594 0.25 0.565

0.4975 0.4975 .342 .503];

35 wSTORE = [0 1000 3 45.2 0 1.35 40 0 0 2.8 67.1 3.8 3.8 12 23.7];

36

37 % =====================================

38 % = Import the pre -segmented T1 files =

39 % =====================================

47

40 % The T1 contrast image sould be segmented using SPM8.

41 % This loop needs to complete before the next one can begin

42 % Import all of the datat and store as ’cdat1 ’,’cdat2 ’, etc.

43 for i = 1:5

44 eval(strcat(’dat’,num2str(i),’ = loadNII(’’rc’, num2str(i), ’

single_subj_T1.nii’’);’))

45 % Preallocate

46 eval(strcat(’out’, num2str(i),’ = zeros(cat(2,size(dat’,

num2str(i),’) ,7));’))

47 end

48

49 % ============================

50 % = Populate the head matrix =

51 % ============================

52 % For each data file , it fills in the data from the data storage

53 % arrays for that particular type of tissue. It picks which

54 % ever tissue is the most likely candidate for that voxel based

55 % on the segmented data

56

57 % PROBLEM: It returns 0 (later filled with air) if there is

58 % equal probability of a voxel being two or more different types

59 % of tissue.

60 % SOLVED BY fillHoles ()

61

62

63 for i = 1:5

64 % Preallocate

65 holder = zeros(cat(2,size(dat1) ,7),’single ’);

66 mask = zeros(size(dat1));

48

67 final = zeros(size(holder),’single ’);

68

69 % Create a mask that indicates whether it is the mostly likely

tissue type

70 guide = [1 2 3 4 5 1 2 3 4 5]; % This guides it through the

data correctly

71 eval(strcat(’mask = (dat’,num2str(i),’>dat’,num2str(guide(i+1))

,’) & (dat’,num2str(i),’>dat’,num2str(guide(i+2)),’) & (dat’,

num2str(i),’>dat’,num2str(guide(i+3)),’) & (dat’,num2str(i),’

>dat’,num2str(guide(i+4)),’) & (dat’,num2str(i),’~=0);’))

72 % move structure data to new matrix

73 holder (:,:,:,1) = mask;

74 % get indicies of tissues

75 a = find(holder (:,:,:,1) == 1);

76 % gets coordinates from index

77 [x y z t] = ind2sub(size(holder),a);

78

79 % go to each tissue point and store the info

80 for j = 1: length(a)

81 final(x(j),y(j),z(j) ,:) = [tisorder(i) 0 QmSTORE(tisorder(i

)) cSTORE(tisorder(i)) rhoSTORE(tisorder(i)) kSTORE(

tisorder(i)) wSTORE(tisorder(i))];

82 end

83

84 % Saves the result to a unique output variable (out1 , out2 ,

etc)

85 eval(strcat(’out’,num2str(i),’= final;’))

86

87 clearvars a x y z t holder final;

49

88 waitbar(i/6,statusbar ,sprintf ([’File ’,num2str(i),’ Import

Compete ’]));

89 end

90

91 % The filleAir () function checks for any voxels which were not

92 % assigned a tissue type and fills them in with air

93 almostthere = fillAir(out1+out2+out3+out4+out5);

94 % The fillHoles () function corrects for a voxel having two

95 % equally -probable tissue types

96 total = single(buildskin(fillHoles(dat1 ,dat2 ,dat3 ,dat4 ,dat5 ,

almostthere)));

97 waitbar(1,statusbar ,’Saving Data’)

98

99 cd(oldFolder);

100 close(statusbar);

101

102 end

A.1.2 fillAir()

1 function [output] = fillAir(tissue)

2 % fillAir () fills gaps in data with air

3 % Once you import all of the data using loadNII (), run it though

4 % this to fill in the remaining spaces with air.

5

6 airdata = [1 0 0 1006 1.3 0.026 0];

7

8 % Picks out air spots

9 a = find(tissue (:,:,:,1) == 0);

10 [x y z t] = ind2sub(size(tissue),a);

50

11

12 for i = 1: length(a)

13 tissue(x(i),y(i),z(i) ,:) = airdata;

14 end

15

16 output = tissue;

17 end

A.1.3 fillHoles()

1 function [out_head] = fillHoles(in1 ,in2 ,in3 ,in4 ,in5 ,headin)

2 % fillHoles () checks for misassigned voxels

3 %

4 % Solves an issue where a voxel with two equally probable tissue

5 % types resulted in being assigned as air. This checks for air

6 % voxels that are surrounded by tissue and decides a tissue it

7 % it would be best suited as

8

9 % I only need the tissue indices so this makes things easier down

the line

10 head = squeeze(headin (:,:,:,1));

11

12 %% Data Storage

13 QmSTORE = [0 0 26.1 11600 0 26.1 697 0 0 302 15575 0 697 1100

5192];

14 cSTORE = [1006 4600 2110 3640 3800 1300 3720 3000 4200 2300 3680

3500 3720 3150 3600];

15 rhoSTORE = [1.3 1057 1080 1035.5 1007 1850 1126 1076 1009 916

1035.5 1151 1041 1100 1027.4];

51

16 kSTORE = [0.026 0.51 0.65 0.534 0.5 0.65 0.527 0.4 0.594 0.25 0.565

0.4975 0.4975 .342 .503];

17 wSTORE = [0 1000 3 45.2 0 1.35 40 0 0 2.8 67.1 3.8 3.8 12 23.7];

18

19 %% Get locations of holes

20 % Where two tissue types have the same probability

21

22 idx1 = (in1==in2 | in1 == in3 | in1==in4 | in1==in5) & logical(in1)

;

23 idx2 = (in1==in2 | in2 == in3 | in2==in4 | in2==in5) & logical(in2)

;

24 idx3 = (in1==in3 | in2 == in3 | in3==in4 | in3==in5) & logical(in3)

;

25 idx4 = (in1==in4 | in2 == in4 | in3==in4 | in4==in5) & logical(in4)

;

26 idx5 = (in1==in5 | in2 == in5 | in3==in5 | in4==in5) & logical(in5)

;

27 % This array will have a zero anywhere there were two or more

28 % common elements between any of the five arrays.

29 idx = idx1|idx2|idx3|idx4|idx5;

30

31 [xmax ymax zmax] = size(in1)

32 [x y z] = ind2sub(size(in1),find(idx)); % get x, y and z

coordinates of the holes

33

34 for i = 1: length(x) % go to each hole and do work

35 if (x(i)~=1) &&(y(i)~=1) &&(z(i)~=1) &&(x(i)~=xmax)&&(y(i)~=ymax)

&&(z(i)~=zmax)&&(headin(x(i),y(i),z(i) ,1)==1) % keeps away

from the edge and only looks at voxels that were assigned air

52

36 [commonesttissue nouse secondbest] = mode([head(x(i)+1,y(i)

,z(i)) head(x(i)-1,y(i),z(i)) head(x(i),y(i)+1,z(i)) head

(x(i),y(i) -1,z(i)) head(x(i),y(i),z(i)+1) head(x(i),y(i),

z(i) -1)]);

37 % if air and something else are equally common , it’ll

choose air. This forces it to pick the tissue if

possible.

38 if commonesttissue == 1 && length(secondbest {1}) >=2

39 commonesttissue = secondbest {1}(2);

40 end

41 headin(x(i),y(i),z(i) ,:) = [commonesttissue 0 QmSTORE(

commonesttissue) cSTORE(commonesttissue) rhoSTORE(

commonesttissue) kSTORE(commonesttissue) wSTORE(

commonesttissue)];

42 end

43 end

44

45 out_head = headin;

46

47 end

A.1.4 build skin()

1 function [head_out] = build_skin(head_in)

2 % build_skin () Creates a layer of skin around the head

3 %

4 % This will check all voxels that were previously labeled

5 % as soft tissue and checks if it has a neighbor which is air.

6 % If so , then it is reassigned as skin.

7

53

8 if ndims(head_in)==4

9 head_in = head_in (:,:,:,1);

10 end

11

12 % Git a list of all voxels labeled as muscle

13 muscle_voxels = find(head_in ==13);

14

15 % Go through each of them and check for neighboring air voxels

16 for i=1: length(muscle_voxels)

17 [x y z] = ind2sub(size(head_in), muscle_voxels(i));

18 % makes sure we’re not at a voxel at the boundry of the dataset

19 if (x~=1) && (x~=size(head_in ,1)) && (y~=1) && (y~=size(head_in

,2)) && (z~=1) && (z~=size(head_in ,3))

20 % Looks for neighboring voxels that are air

21 if ((head_in(x+1,y,z)==1) || (head_in(x-1,y,z)==1) || (head_in

(x,y+1,z)==1) || (head_in(x,y-1,z)==1) || (head_in(x,y,z+1)

==1) || (head_in(x,y,z-1) ==1))

22 head_in(x,y,z) = 14;

23 end

24 end

25 end

26

27 head_out = repair_headdata(head_in);

28

29 end

A.1.5 repair headdata()

This function will go through the dataset and make sure the tissue-specific parameters are

correct for the tissue type assigned for that voxel. fillAir(), fillHoles() and build skin() all

54

correct mislabeled voxels, but they only correct the tissue assignment. After using any

of these functions, the data must be passed through repair headdata to update the stored

parameters.

1 function [head_out] = repair_headdata(head_in)

2 % repaid_headdata repopulates the headdata matrix

3 % If any changes are made to the index column in the headdata

4 % matrix , use this function to repopulate and correct the

5 % parameter values before running any other functions.

6 % head_in can be either 3 or 4 dimenisions

7

8

9 % =====================

10 % = Parameter Storage =

11 % =====================

12

13 QmSTORE = [0 0 26.1 11600 0 26.1 697 0 0 302 15575 0 500 1100

5192];

14 cSTORE = [1006 4600 2110 3640 3800 1300 3720 3000 4200 2300 3680

3500 3010 3150 3600];

15 rhoSTORE = [1.3 1057 1080 1035.5 1007 1850 1126 1076 1009 916

1035.5 1151 978.5 1100 1027.4];

16 kSTORE = [0.026 0.51 0.65 0.534 0.5 0.65 0.527 0.4 0.594 0.25 0.565

0.4975 0.3738 .342 .503];

17 wSTORE = [0 1000 3 45.2 0 1.35 40 0 0 2.8 67.1 3.8 3.3 12 23.7];

18

19 if ndims(head_in)==4

20 head_in = head_in (:,:,:,1);

21 end

22

55

23 % Reassign the parameter values

24 head_out = cat(4,head_in , zeros(size(head_in)), QmSTORE(head_in),

cSTORE(head_in), rhoSTORE(head_in), kSTORE(head_in), wSTORE(

head_in));

25

26 end

56

A.2 Loading the fMRI Data

The following sections details the processing required to convert the BOLD data (in NIFTI

format) to metabolism and blood flow time-courses that can then be used to calculate tem-

perature.

A.2.1 sample bold import()

The following code automates the procedure of processing and doing all the calculations on

the dataset reported in Dhamala et al. [39]. It’s is written for my data on my machine, but it

can be used to gain a better understanding of the procedure. For a conceptual explanation,

see section 2.2.3.

1 %%==

2 %% How to process preprocessed BOLD data to calculate temperature

3 %%==

4

5 % This Matlab script was used to automate the the process of using

6 % BOLD data stored in NIFTI (*.nii) format to calculate temperature

7 % changes. The particulars of the code may be specific to this

8 % case , but the procedure should be the same when doing these

9 % calculations on other datasets. All required functions are

10 % included as an attachment to my thesis and are available on my

11 % github (https :// github.com/greggroth/tempcalc)

12

13 cd(’/Users/Greggory/Documents/Data/fmri_rhythmic_tapping01/NIFTI’)

14

15 directories = dir(’*01’);

16

17 %% Move coregistered files to new Directory

18 for i = 1: length(directories)

57

19 dir_name = directories(i).name;

20 main_path = cd([dir_name filesep dir_name ’_NIFTI_1 ’]);

21 mkdir ’Coregistered ’

22 movefile(’r*.nii’,’Coregistered ’)

23 main_path = cd([dir_name filesep dir_name ’_NIFTI_2 ’]);

24 mkdir ’Coregistered ’

25 movefile(’r*.nii’,’Coregistered ’)

26 cd(main_path)

27 end

28

29 %% Calculate Rest State

30 disp(’Calculating Rest State’)

31 for i = 1: length(directories)

32 dir_name = directories(i).name;

33 avg_NII_rest ([dir_name filesep dir_name ’_NIFTI_1 ’ filesep ’

Coregistered ’]);

34 avg_NII_rest ([dir_name filesep dir_name ’_NIFTI_2 ’ filesep ’

Coregistered ’]);

35 end

36

37

38 %% Normalize to Rest and Mask

39 disp(’Normalize to Rest and Mask’)

40 for i = 1: length(directories)

41 dir_name = directories(i).name;

42 avg_NII_normalize ([dir_name filesep dir_name ’_NIFTI_1 ’ filesep

’Coregistered ’], fullfile(dir_name , [dir_name ’_NIFTI_1 ’], ’

Coregistered ’, ’RestState ’, ’RestStateAvg.nii’), ’

fullBrainMask.nii’);

58

43 avg_NII_normalize ([dir_name filesep dir_name ’_NIFTI_2 ’ filesep

’Coregistered ’], fullfile(dir_name , [dir_name ’_NIFTI_2 ’], ’

Coregistered ’, ’RestState ’, ’RestStateAvg.nii’), ’

fullBrainMask.nii’);

44 end

45

46

47 %% Calculate metabolism and blood flow change

48 disp(’Calculate metabolism and blood flow change ’)

49 for i = 1: length(directories)

50 dir_1 = [directories(i).name filesep directories(i).name ’

_NIFTI_1 ’ filesep ’Coregistered ’ filesep ’Normalized_to_rest ’

];

51 dir_2 = [directories(i).name filesep directories(i).name ’

_NIFTI_2 ’ filesep ’Coregistered ’ filesep ’Normalized_to_rest ’

];

52 BOLDtoMF(dir_1);

53 BOLDtoMF(dir_2);

54 end

55

56

57 %% Calculate the change in temperature based on metabolism and

58 % blood flow

59

60 % load(’equil.mat ’); % equillibriumT

61 % load(’tt_headdata.mat ’); % headdata

62 mask = loadNII(’fullBrainMask.nii’);

63

64 for i = 1: length(directories)

59

65 disp([int2str(i) ’-1 started ’])

66 tic

67 % Part I

68 actResult.dat = tempCalcDynMF(headdata , 37, 24, 720, 360,

equillibriumT , ...

69 fullfile(directories(i).name ,[directories(i).name ’_NIFTI_1

’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -Sep

-2011’, ’m.mat’), ...

70 fullfile(directories(i).name ,[directories(i).name ’_NIFTI_1

’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -Sep

-2011’, ’f.mat’), ...

71 4, mask);

72 % Store the parameters used for the calculations for reference

in the future

73 [c lmax] = max(actResult.dat(:));

74 [likelymax x y z] = ind2sub(size(actResult.dat),lmax);

75 actResult.likelymaxslice = round(likelymax /2);

76 actResult.bloodT = 37;

77 actResult.airT = 24;

78 actResult.tmax = 360;

79 actResult.stepf = 2;

80 actResult.savestepf = 4;

81 actResult.metabandflowdata = ’From Dataset ’;

82 save(fullfile(directories(i).name ,[directories(i).name ’

_NIFTI_1 ’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -

Sep -2011’,’tt_act_res.mat’), ’actResult ’);

83 old = cd([directories(i).name ,filesep ,[directories(i).name ’

_NIFTI_1 ’],filesep ,’Coregistered ’, filesep ,’

Normalized_to_rest ’, filesep ,’Output_18 -Sep -2011 ’]);

60

84 writeT_to_nii(actResult , equillibriumT , exp_nii);

85 cd(old)

86 clear actResult

87 % Part II

88 disp([int2str(i) ’-2 started ’])

89 actResult.dat = tempCalcDynMF(headdata , 37, 24, 720, 360,

equillibriumT , ...

90 fullfile(directories(i).name ,[directories(i).name ’_NIFTI_2

’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -Sep

-2011’, ’m.mat’), ...

91 fullfile(directories(i).name ,[directories(i).name ’_NIFTI_2

’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -Sep

-2011’, ’f.mat’), ...

92 4, mask);

93 [c lmax] = max(actResult.dat(:));

94 [likelymax x y z] = ind2sub(size(actResult.dat),lmax);

95 actResult.likelymaxslice = round(likelymax /2);

96 actResult.bloodT = 37;

97 actResult.airT = 24;

98 actResult.tmax = 360;

99 actResult.stepf = 2;

100 actResult.savestepf = 4;

101 actResult.metabandflowdata = ’From Dataset ’;

102 save(fullfile(directories(i).name ,[directories(i).name ’

_NIFTI_2 ’],’Coregistered ’, ’Normalized_to_rest ’, ’Output_18 -

Sep -2011’,’tt_act_res.mat’), ’actResult ’);

103 old = cd([directories(i).name ,filesep ,[directories(i).name ’

_NIFTI_2 ’],filesep ,’Coregistered ’, filesep ,’

Normalized_to_rest ’, filesep ,’Output_18 -Sep -2011 ’]);

61

104 writeT_to_nii(actResult , equillibriumT , exp_nii);

105 cd(old)

106 clear actResult

107 disp([int2str(i) ’ finished in ’ num2str(toc)])

108 end

A.2.2 avg NII rest()

1 function [] = avg_NII_rest(varargin)

2 % Collects datasets which are part of the

3 % resting state and averages them together to

4 % give a resting -state image

5 %

6 % THIS MUST BE EDITED TO WORK

7 % This is written for my data and you should read

8 % and understand what it is doing before you use it.

9 % It will almost certainly require some editing

10 % to select the right range of data.

11

12 %% Setup

13 switch length(varargin)

14 case 0

15 fold_name = uigetdir;

16 if ~fold_name % Cancel Button

17 return

18 end

19 case 1

20 fold_name = varargin {1};

21 otherwise

22 end

62

23

24 % Go to the folder containing the files

25 oldfold = cd(fold_name);

26 file_list = dir(’*.nii’);

27

28 % Select resting state images

29 % (first and last 10 steps in my case).

30 % EDIT THIS TO FIT YOUR CASE

31 file_list = file_list ([1:10 170:180]);

32 file_count = length(file_list);

33

34 % Cell array to store all of the datasets in.

35 datHolder = cell(file_count ,1);

36

37 statusbar = waitbar(0,’Initializing ’);

38

39 for j=1: file_count

40 try

41 waitbar(j/file_count ,statusbar ,sprintf(’%d%%’,round((j/

file_count)*100)));

42 catch err

43 return

44 end

45 fi = load_nii(file_list(j).name);

46 datHolder{j} = fi.img;

47 end

48

49 %% Calculate the mean

50 ymax = size(datHolder {1} ,2);

63

51 zmax = size(datHolder {1} ,3);

52 output = zeros(size(datHolder {1}));

53

54 for i=1: ymax

55 try

56 waitbar(i/ymax ,statusbar ,sprintf(’%d%%’,round((i/ymax)*100)

));

57 catch err

58 return

59 end

60 for k=1: zmax

61 excStr = cell(length(datHolder) ,1);

62 for l=1: length(datHolder)

63 excStr{l} = [’,datHolder{’ int2str(l) ’}(:,’ int2str(i)

’,’ int2str(k) ’)’’’];

64 end

65 comb = eval([’cat(1’ cell2mat(excStr ’) ’)’]);

66 output(:,i,k) = mean(comb);

67 end

68 end

69

70 close(statusbar)

71

72 fi.img = output;

73 mkdir(’RestState ’)

74 save_nii(fi,fullfile(’RestState ’,’RestStateAvg.nii’));

75

76 cd(oldfold)

77 end

64

A.2.3 avg NII normalize()

1 function [] = avg_NII_normalize(varargin)

2 % Uses the resting -state image calculated using

3 % avg_NII_rest () to normalize the rest of the data

4

5 % If no inputs are given , the "open file ..." UI will

6 % prompt for the required information.

7

8 %% Setup

9 switch length(varargin)

10 case 0

11 fold_name = uigetdir(’Directory Containing Data’);

12 if ~fold_name % Cancel Button

13 return

14 end

15

16 [rest_file rest_path rest_index]= uigetfile(’*.nii’,’

Resting State NIFTI File’);

17 switch rest_index

18 case 0

19 return

20 case 1

21 rest_dat = load_nii(fullfile(rest_path ,rest_file));

22 rest_dat = double(rest_dat.img);

23 otherwise

24 error(’An error has occured loading the resting

state data’)

25 end

65

26

27 [mask_file mask_path mask_index] = uigetfile(’*.nii’,’Mask’

);

28 switch mask_index

29 case 0

30 return

31 case 1

32 mask_dat = load_nii(fullfile(mask_path , mask_file))

;

33 mask_dat = logical(mask_dat.img);

34 if max(size(mask_dat) ~= size(rest_dat))

35 error(’The Mask and Resting State files must

have the same size’)

36 end

37 otherwise

38 error(’An error has occured loading the resting

state data’)

39 end

40 case 1

41 fold_name = varargin {1};

42 [rest_file rest_path rest_index]= uigetfile(’*.nii’,’

Resting State NIFTI File’);

43 switch rest_index

44 case 0

45 return

46 case 1

47 rest_dat = load_nii(fullfile(rest_path ,rest_file));

48 rest_dat = double(rest_dat.img);

49 otherwise

66

50 error(’An error has occured loading the resting

state data’)

51 end

52 case 2

53 fold_name = varargin {1};

54 rest_dat = loadNII(varargin {2});

55 [mask_file mask_path mask_index] = uigetfile(’*.nii’,’Mask’

);

56 switch mask_index

57 case 0

58 return

59 case 1

60 mask_dat = load_nii(fullfile(mask_path , mask_file))

;

61 mask_dat = logical(mask_dat.img);

62 if max(size(mask_dat) ~= size(rest_dat))

63 error(’The Mask and Resting State files must

have the same size’)

64 end

65 otherwise

66 error(’An error has occured loading the resting

state data’)

67 end

68 case 3

69 fold_name = varargin {1};

70 rest_dat = loadNII(varargin {2});

71 mask_dat = loadNII(varargin {3});

72 otherwise

73 return

67

74 end

75

76 % Go to the folder containing the files

77 oldfold = cd(fold_name);

78 file_list = dir(’*.nii’);

79 file_count = length(file_list);

80

81 % Make a directoy to save the normalized data to

82 saveDir = ’Normalized_to_rest ’;

83 if ~isdir(saveDir)

84 mkdir(saveDir);

85 end

86

87 statusbar = waitbar(0,’Initializing ’);

88

89 % for each file: load it, devide by the rest state and save it

90 for i=1: file_count

91 try

92 waitbar(i/file_count ,statusbar ,[fold_name sprintf(’%d%%’,

round((i/file_count)*100))]);

93 catch err

94 return

95 end

96 [file_path file_name file_ext] = fileparts(file_list(i).name);

97 file_hold = load_nii(file_list(i).name);

98 file_hold.img = double(file_hold.img)./ rest_dat - 1;

99 file_hold.img(~ mask_dat) = 0; % set everything

outside the mask to 0

100 file_hold.img(isnan(file_hold.img)) = 0; % set all NaN ’s to 0

68

101 file_hold.img(isinf(file_hold.img)) = 0; % set all inf ’s to 0

102 file_hold.img(file_hold.img == -1) = 0; % correct these for

voxels that are giving me problems

103 file_hold.hdr.dime.datatype = 16; % set the datatype to single

104 file_hold.hdr.dime.bitpix = 16;

105 save_nii(file_hold ,fullfile(saveDir ,[file_name ’_rn’ file_ext])

)

106 end

107

108 close(statusbar)

109 cd(oldfold)

110

111 end

A.2.4 BOLDtoMF()

1 function [] = BOLDtoMF(varargin)

2 %BOLDtoMF Calculate metabolism and blood from from BOLD reponse

3 %

4 % Input: Directory containing a series of *.nii files of the BOLD

5 % response.

6 %

7 % Output: Two new files will be created in a new subdirectory

8 % with a variable for each time step.

9 %

10 % Usage:

11 % BOLDtoMF

12 % BOLDtoMF(directory)

13 %

14 % If a directory is not provided , one will be requested.

69

15 %

16 % Method from Sotero , et. al. 2011

17

18 % =========

19 % = Setup =

20 % =========

21 % if a folder isn ’t an argument , it’ll prompt for one

22 switch length(varargin)

23 case 0

24 fold_name = uigetdir;

25 if ~fold_name % Cancel Button pressed

26 return

27 end

28 case 1

29 fold_name = varargin {1};

30 otherwise

31 error(’Input is not understood ’)

32 end

33

34 % Go to the folder containing the files

35 oldfold = cd(fold_name);

36 file_list = dir(’*.nii’);

37 file_count = length(file_list);

38

39 % Set up a directory for the outputs

40 newFolder = [’Output_ ’,datestr(clock ,1)];

41 mkdir(newFolder)

42

43 % Make *.mat files to append the data to

70

44 m0001 = 0; f0001 = 0;

45 save([’./’ newFolder ’/m.mat’],’m0001’);

46 save([’./’ newFolder ’/f.mat’],’f0001’);

47

48 s = loadNII(file_list (1).name);

49 norm = ones(size(s));

50

51 % ===========

52 % = Do Work =

53 % ===========

54 % This will calculate the metabolism and blood flow. The output is

55 % appended to ’m.mat ’ and ’f.mat ’ within a new folder created

56 % within the directory containing the data.

57

58 statusbar = waitbar(0,’Initializing ’);

59

60 maxBOLD = 0.22;

61

62 % Required Parameters

63 % [alpha beta a b c A]

64 p = [0.4 1.5 0.1870 0.1572 -0.6041 maxBOLD];

65

66 % Calc flow and metabolism for when BOLD = 1

67 s = 0;

68 y = -((p(4)*p(2))/(p(1)+p(2)*p(5)))*((p(6)-s)/(p(6)*p(3)^p(2)))

^(1/(p(1)+p(2)*p(5)));

69 fNOACT = -((p(1)+p(2)*p(5))/(p(4)*p(2)))*lambertw(y);

70 mNOACT = p(3)*fNOACT ^(p(5) +1)*exp(-p(4)*fNOACT);

71

71

72

73 %% Calc flow and metabolism

74 disp(fold_name)

75 for j=1: file_count

76 try

77 waitbar(j/file_count , statusbar , sprintf(’%d%%’, round((j/

file_count)*100)));

78 catch err

79 return

80 end

81 s = loadNII(file_list(j).name); % Load up the file

82 s(isnan(s)) = 1;

83 s(isinf(s)) = 1;

84 y = -((p(4)*p(2))/(p(1)+p(2)*p(5))).*((p(6)-s)./(p(6)*p(3)^p(2)

)).^(1/(p(1)+p(2)*p(5)));

85 if (size(y,1) ==91) &&(size(y,2) ==109) &&(size(y,3) ==91)

86 f = -((p(1)+p(2)*p(5))/(p(4)*p(2))).* lambw_mex(real(y));

87 else

88 f = -((p(1)+p(2)*p(5))/(p(4)*p(2))).*lambw(y);

89 end

90 m = p(3)*f.^(p(5)+1).*exp(-p(4)*f);

91 % Clean up NaNs that may have popped up

92 m(isnan(m))=1;

93 f(isnan(f))=1;

94 % Normalize to resting m and f

95 m = m./ mNOACT;

96 f = f./ fNOACT;

97

98 % Rename and save the data

72

99 eval([’m’ sprintf(’%04d’,j) ’ = m;’]);

100 eval([’f’ sprintf(’%04d’,j) ’ = f;’]);

101 eval([’save(’’./’ newFolder ’/m.mat’’, ’’m’ sprintf(’%04d’,j) ’

’’,’’-append ’’);’]);

102 eval([’save(’’./’ newFolder ’/f.mat’’, ’’f’ sprintf(’%04d’,j) ’

’’,’’-append ’’);’]);

103 clear m0* f0*

104 end

105

106 close(statusbar)

107 cd(oldfold)

108 end

A.2.5 lambw() and lambw mex()

The lambw() function is a wrapper for the wapr() function available on Matlab FileExchange

(http://www.mathworks.com/matlabcentral/fileexchange/3644-real-values-of-the-lambert-w-function/

content/Lambert/wapr.m). A compiled version of this function (lambw mex()) runs much

faster and is recommended. This function is used over Matlab’s built-in Lambert-W function

for the sake of performance.

1 function [array_out] = lambw(array_in)

2 % lambw Wrapper for wapr()

3 % Available: http ://www.mathworks.com/matlabcentral/fileexchange

/3644 -real -values -of -the -lambert -w-function/content/Lambert/wapr.

m

4 % Dwapr () doesn ’t work any arrays over Nx1 , so this steps through

5 % the full matrix and gives the rows to wapr. Works pretty fast.

6 %#codegen

7

8 if ndims(array_in) ~= 3

73

http://www.mathworks.com/matlabcentral/fileexchange/3644-real-values-of-the-lambert-w-function/content/Lambert/wapr.m
http://www.mathworks.com/matlabcentral/fileexchange/3644-real-values-of-the-lambert-w-function/content/Lambert/wapr.m

9 error(’This only works (for now) with a three dimensional array

.’)

10 end

11

12 xmax = size(array_in ,1);

13 ymax = size(array_in ,2);

14

15 array_out = zeros(size(array_in));

16 for ix=1: xmax

17 for iy=1: ymax

18 array_out(ix,iy ,:) = wapr(array_in(ix,iy ,:));

19 end

20 end

21 end

74

A.3 Calculating the Equilibrium Temperature

In order to determine the temperature fluctuations due to changes in activity, the baseline

temperature must first be established for each voxel. The function tempCalcEquilibrium()

will update the temperature using the Penne’s bioheat equation (Eq. (2.4)) until the change

in temperature for each voxel falls below a certain threshold. Details about this procedure

are available in section 2.2.2.

A.3.1 tempCalcEquilibrium()

1 function temperature_Out = tempCalcEquillibrium(tissue ,bloodT ,airT ,

nt,tmax ,pastCalc ,printprogress)

2 % tempCalcEquillibrium Find the equillibrium values

3 % tissue: holds all of the strucual information

4 % bloodT: Temperature of the blood

5 % airT: Temperature of the surrounding ait

6 % nt: Max number of time steps

7 % tmax: Total amount of time the simulation should run over

8 %

9 % This is based off of tempCalc () but loops until the rate of

10 % change of a each voxel is sufficiently small then outputs

11 % what ’s calculated. If if takes too long to do all at once ,

12 % split it up into smaller time chunks and use the last step

13 % from the previous dataset as pastCalc in order to resume.

14 %

15 % Note: This does not save the time corse because it can take

16 % a lot of step to find the equillibrium. It outputs the last

17 % time step.

18 %

19 % Writen by Greggory Rothmeier (greggroth@gmail.com)

75

20 % Georgia State University Dept. Physics and Astronomy

21 % May , 2011

22 tic

23 %% Default Values

24 if nargin <2, bloodT = 37; end

25 if nargin <3, airT = 24; end

26 if nargin <4, nt = 100; end

27 if nargin <5, tmax = 50; end

28 if nargin <6, pastCalc = 0; end

29 if nargin <7, printprogress = 1; end

30

31 % These rescue the data if the calculation is interrupted.

32 global temperature

33 global dirty

34

35 c = onCleanup(@InterCatch);

36 dirty = 1;

37

38 dx = 2*10^ -3; % Voxel size (m)

39

40 if nt <(2* tmax),

41 warning(’Time step size is not large enough. Results will be

unreliable. Consider increasing the number of steps or

reducing tmax.’)

42 end

43

44

45 % Constants used that aren ’t already stored in tissue

46 [xmax ymax zmax t] = size(tissue);

76

47 clear t;

48 dt = tmax/(nt -1);

49 % rhoBlood = 1057;

50 % wBlood = 1000;

51 % cBlood = 3600;

52

53 % =========

54 % = Setup =

55 % =========

56 % Starts all tissue voxels at bloodT (default 37) and maintains

57 % air at airT (default 24)

58 % The condition squeeze(tissue (:,:,:,)~= airIndex picks out the

59 % elements that are tissue

60

61 temperature = ones(3,xmax ,ymax ,zmax ,’single ’)*airT;

62 if pastCalc == 0

63 temperature (1,squeeze(tissue (:,:,:,1))~=1) = bloodT;

64 else

65 temperature (1,:,:,:) = pastCalc;

66 end

67 numElements = numel(temperature (1,:,:,:));

68

69 % ===========

70 % = Do Work =

71 % ===========

72 % This is a vectorized version of the next section. For the love

73 % of god don ’t make any changes to this without first looking below

74 % to make sure you know what you ’re changing. This is [nearly]

75 % impossible to understand , so take your time and don ’t break it.

77

76 % data is stored in ’tissue ’ as such :

77 % [tissuetype 0 Qm c rho k w]; <-- second element is blank for

all.

78 % [1 2 3 4 5 6 7

79

80 averagedk = (circshift(tissue (:,:,:,6) ,[1 0 0])+circshift(tissue

(:,:,:,6) ,[-1 0 0])+circshift(tissue (:,:,:,6) ,[0 1 0])+circshift(

tissue (:,:,:,6) ,[0 -1 0])+circshift(tissue (:,:,:,6) ,[0 0 1])+

circshift(tissue (:,:,:,6) ,[0 0 -1])+tissue (:,:,:,6))/7;

81 rhoblood = 1057;

82 cblood = 3600;

83

84 %% Specify Percision Goal

85 tolerence = 1; % fraction of voxels have a slope less than ’

zeropoint ’

86 zeropoint = 2.5e-7; % point at which the slope between two *steps*

is considered essentially zero

87

88

89 goal = numElements - tolerence*numElements;

90 goon = numElements; % Forces the while loop to run the first time

91 format shortG;

92 % temperature (1,:,:,:) = Current Temperature

93 % temperature (2,:,:,:) = Next Temperature

94 % Resets after each update

95 if printprogress

96 disp([’Goal: ’, num2str(goal),’ remaining voxels ’])

97 end

98 t2 = 1;

78

99 while goon (1)>goal && t2 <=nt % runs until either ’goal ’ elements

have a slope greater than ’zeropoint ’ or it exceeds nt

100 if printprogress

101 disp([t2 goon (1) ((numElements -goon (1))/numElements)*100]) %

progress

102 end

103 temperature (2,:,:,:) = squeeze(temperature (1,:,:,:)) + ...

104 dt/(tissue (:,:,:,5).* tissue (:,:,:,4)).* ...

105 ((averagedk/dx^2) .*...

106 (circshift(squeeze(temperature (1,:,:,:)) ,[1 0 0]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[-1 0 0]) +... % shift along x

107 circshift(squeeze(temperature (1,:,:,:)) ,[0 1 0]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[0 -1 0]) +... % shift along y

108 circshift(squeeze(temperature (1,:,:,:)) ,[0 0 1]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[0 0 -1]))... % shift along z

109 -(1/6000)*rhoblood*tissue (:,:,:,7)*cblood .*(squeeze(

temperature (1,:,:,:))-bloodT)+tissue (:,:,:,3));

110 % resets the air temperature back since it’s also modified

111 % above , but it needs to be kept constant throughout the

112 % calculations

113 temperature (2,squeeze(tissue (:,:,:,1))==1) = airT;

114 % checks how quickly the temperature is changing and if it is

115 % close enough to zero to be considered stopped (’zeropoint ’)

116 goon = size(temperature(abs(squeeze(temperature (2,:,:,:)-

temperature (1,:,:,:)))>zeropoint));

117 temperature (1,:,:,:) = temperature (2,:,:,:);

79

118 t2 = t2 + 1;

119 end

120

121 temperature_Out = temperature (2,:,:,:);

122 dirty = 0;

123

124 % equilTemperature = temperature_Out;

125 % save(’equil.mat ’,’equilTemperature ’);

126

127 %% To Combine Datasets

128 % use this technique if there are seperate datasets that need

129 % combining

130 % vertcat(squeeze(res1(:,:,:,:)),squeeze(res2 (2:end ,:,:,:)))

131 % Where for all by the first dataset , you need to do the time from

132 % 2:end so that there are no repeats (remember that the last

133 % timestep from the previous dataset serves as the first for the

134 % new one)

135

136

137 time = toc;

138 end

139

140 % Recovers the data if calculation was interrupted

141 function InterCatch

142 global dirty

143 if dirty

144 disp(’Interupt Intercepted. Inprepretating Interworkspace Data

Interfaces.’)

145 global temperature

80

146 equillibriumT = temperature;

147 save(’equiltempAbortDump.mat’,’equillibriumT ’);

148 % setappdata(0,’InterpOut ’,temperature);

149 end

150 end

81

A.4 Calculating the Temperature Change

The following function takes as inputs the head data matrix (appendix A.1), the metabolism

and blood flow time courses (appendix A.2) and the equilibrium temperatures (appendix A.3)

and calculates the temperature time-course. More details about this algorithm can be found

in section 2.2.4.

A.4.1 tempCalcDynMF

1 function temperatureOut = tempCalcDynMF(tissue ,bloodT ,airT ,nt,tmax ,

pastCalc ,metab ,flow ,savesteps ,region)

2 % tempCalcDynMF How does changing metabolism and blood flow

3 % affect things?

4 %

5 % tissue: holds all of the structual information

6 % bloodT: Temperature of the blood

7 % airT: Temperature of the surrounding air

8 % nt: Number of time steps

9 % tmax: Amount of model time the simulation should span

10 %

11 % region: logical matrix same size as head that is used

12 % as a mask

13 %

14 % Writen by Greggory Rothmeier (greggroth@gmail.com)

15 % Georgia State University Dept. Physics and Astronomy

16 % May , 2011

17

18 statusbar = waitbar(0,’Initializing ’);

19

20 %% Default Values

82

21 if nargin <2, bloodT = 37; end

22 if nargin <3, airT = 24; end

23 if nargin <4, nt = 3; end

24 if nargin <5, tmax = 1; end

25 if nargin <6, pastCalc = 0; end

26

27

28 % Length of one side of a voxel (m)

29 dx = 2*10^ -3;

30

31 if nt <(2* tmax),

32 warning(’Time step size is not large enough. Results will be

unreliable. Consider increasing the number of steps or

reducing tmax.’)

33 end

34

35 [xmax ymax zmax t] = size(tissue);

36 clear t;

37 dt = ones([xmax ymax zmax])*(tmax/(nt -1));

38

39 %% Determine Metabolism/Blood Flow Data Storage System

40 if ischar(metab)&& ischar(flow)

41 % if file locations are given rather than data

42 option = 1;

43 else

44 % Preallocate matrices for holding metabolism and blood flow data

45 metabMulti = ones([xmax ymax zmax],’single ’);

46 flowMulti = ones([xmax ymax zmax],’single ’);

47 option = 0;

83

48 end

49

50 %% Maps

51 % Creates a map that identifies where there is tissue

52 % the condition squeeze(tissue (:,:,:,)~= airIndex picks out the

53 % elements that are tissue

54

55 tmax = ceil((nt -1)/savesteps);

56 temperatureOut = ones(tmax ,xmax ,ymax ,zmax ,’single ’);

57 temperature = ones(2,xmax ,ymax ,zmax ,’single ’)*airT;

58 if pastCalc == 0

59 temperature (1,squeeze(tissue (:,:,:,1))~=1) = bloodT;

60 else

61 % Starts everything off at the pre -determined equilibium

temperatures

62 temperature (1,:,:,:) = pastCalc(end ,:,:,:);

63 end

64 temperatureOut (1,:,:,:) = temperature (1,:,:,:);

65

66

67 % ===========

68 % = Do Work =

69 % ===========

70 % This is a vectorized version of the next section. For the love

71 % of god don ’t make any changes to this without first looking below

72 % to make sure you know what you ’re changing. This is [nearly]

73 % impossible to understand because it’s been vectorized , so take

74 % your time and don ’t break it. Data is stored in ’tissue ’ as such

:

84

75 % [tissuetype 0 Qm c rho k w] <-- second element is blank for all

.

76 % [1 2 3 4 5 6 7]

77

78 averagedk = (circshift(tissue (:,:,:,6) ,[1 0 0])+circshift(tissue

(:,:,:,6) ,[-1 0 0])+circshift(tissue (:,:,:,6) ,[0 1 0])+circshift(

tissue (:,:,:,6) ,[0 -1 0])+circshift(tissue (:,:,:,6) ,[0 0 1])+

circshift(tissue (:,:,:,6) ,[0 0 -1])+tissue (:,:,:,6))/7;

79 rhoblood = 1057;

80 cblood = 3600;

81

82 %% Only saves every 4 steps to reduce the final matrix size

83 for t2 = 1:nt -1

84 waitbar(t2/(nt -1),statusbar ,sprintf(’%d%%’,round(t2/(nt -1) *100))

);

85

86 % if a variable needs to be used multiple times for the same time

step.

87 t3 = floor((t2 -1) /4) +1; % 1 1 1 1 2 2 2 2 3 3 . . .

88

89 % if a file is specified , pulls the data from the file for each

step

90 if option

91 eval(strcat(’load(fullfile(metab),’’-mat’’,’’m’,sprintf(’%04

d’,t3),’’’);’));

92 eval(strcat(’load(fullfile(flow),’’-mat’’,’’f’,sprintf(’%04d

’,t3),’’’);’));

93 eval(strcat(’metabMulti = m’,sprintf(’%04d’,t3),’;’));

94 eval(strcat(’flowMulti = f’,sprintf(’%04d’,t3),’;’));

85

95 eval(strcat(’clear f’, sprintf(’%04d’,t3),’ m’,sprintf(’%04d

’,t3)))

96 else

97 metabMulti(region) = metab(t2);

98 flowMulti(region) = flow(t2);

99 end

100

101 temperature (2,:,:,:) = squeeze(temperature (1,:,:,:)) + ...

102 dt./(tissue (:,:,:,5).* tissue (:,:,:,4)).* ...

103 ((averagedk/dx^2) .*...

104 (circshift(squeeze(temperature (1,:,:,:)) ,[1 0 0]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[-1 0 0]) +... % shift along x

105 circshift(squeeze(temperature (1,:,:,:)) ,[0 1 0]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[0 -1 0]) +... % shift along y

106 circshift(squeeze(temperature (1,:,:,:)) ,[0 0 1]) -2*squeeze

(temperature (1,:,:,:))+circshift(squeeze(temperature

(1,:,:,:)) ,[0 0 -1]))... % shift along z

107 -(1/6000)*rhoblood*flowMulti .* tissue (:,:,:,7)*cblood .*(

squeeze(temperature (1,:,:,:))-bloodT)+metabMulti .*

tissue (:,:,:,3));

108 % resets the air temperature back since it’s also modified

above ,

109 % but it needs to be kept constant throughout the calculations

110 temperature (2,squeeze(tissue (:,:,:,1))==1) = airT;

111 temperatureOut(ceil(t2/savesteps) ,:,:,:) = temperature (2,:,:,:)

;

112 temperature (1,:,:,:) = temperature (2,:,:,:);

86

113 clear metabMulti flowMulti

114 end

115 close(statusbar);

116

117 % ============

118 % = Old Code =

119 % ============

120 % This is what used to be used. It’s much slower (~60 times

121 % slower), but it’s much easier to understand compared to the

122 % above code. If any changes need to be made above , first look

123 % through this code to ensure you understand it before making

124 % changes. It’s reallyeasy to mess up the code above and nearly

125 % impossible to figure out where.

126 %

127 % good luck.

128

129 % for t2 = 1:nt -1

130 % for x2 = 2:xmax -1

131 % for y2 = 2:ymax -1

132 % for z2 = 2:zmax -1

133 % if tissue(x2,y2,z2 ,1) ~= 1,

134 % temperature(t2+1,x2,y2,z2) = temperature(t2,

x2,y2,z2) + (dt/(tissue(x2,y2,z2 ,5)*tissue(x2,y2,z2 ,4)))*((tissue

(x2,y2,z2 ,6)/dx^2) *...

135 % (temperature(t2,x2+1,y2,z2) -2* temperature(

t2,x2,y2,z2)+temperature(t2,x2 -1,y2,z2)+...

136 % temperature(t2,x2,y2+1,z2) -2* temperature(t2

,x2,y2,z2)+temperature(t2,x2,y2 -1,z2)+...

87

137 % temperature(t2,x2,y2,z2+1) -2* temperature(t2

,x2,y2,z2)+temperature(t2,x2,y2,z2 -1))...

138 % -(1/6000)*rhoBlood*wBlood*cBlood *(

temperature(t2,x2,y2,z2)-bloodT)+tissue(x2,y2,z2 ,3));

139 % end

140 % end

141 % end

142 % end

143 % end

144

145 end

88

Appendix B Visualization Tools

The temperature data is a four dimensional dataset (time, x, y and z), so good visualizations

tools are necessary to analyzing the results. The primary tool I use is a modification of

SliceBrowser (http://www.mathworks.com/matlabcentral/fileexchange/20604) and is

provided as part of temptools (https://github.com/greggroth/temptools/tree/master/

lib/SliceBrowser). In working with this, I also created a function (TempPlot()) to act as

a wrapper and handle possible plotting situations depending on the number of inputs.

B.1.1 TempPlot()

1 function [] = TempPlot(head , tempdata , highlightRegion , slice ,

equil ,threshold ,point)

2 %TempPlot Plot data from tempCalc () or BulkImportNII ()

3 % INPUT TempPlot(structuredata)

4 % TempPlot(structuredata ,temperaturedata)

5 % TempPlot(structuredata ,temperaturedata ,highlightRegion)

6 % TempPlot(structuredata ,temperaturedata ,highlightRegion ,

slice)

7 % TempPlot(structuredata ,temperaturedata ,highlightRegion ,

slice ,EquillibriumData)

8 %

9 % This function with determine which type of data it is and then

10 % plot it appropiately.

11 %

12 % equil - Equillibrium state data

13 % threshold - threshold value for being displayed as an overlay

14 % REQUIRES: SliceBrowser (http ://www.mathworks.com/matlabcentral

/fileexchange /20604)

89

http://www.mathworks.com/matlabcentral/fileexchange/20604
https://github.com/greggroth/temptools/tree/master/lib/SliceBrowser
https://github.com/greggroth/temptools/tree/master/lib/SliceBrowser

15 %% Error checking and data restructuring where necessary

16 if ndims(head) == 4

17 head = head(:,:,:,1);

18 elseif ndims(head) ~= 3

19 error(’Input ’’head’’ must have either 3 or 4 dimensions ’);

20 end

21

22 if nargin > 1

23 if ndims(tempdata) == 3 % should only happen when comparing

two equilibrium datasets

24 temp = tempdata;

25 tempdata = zeros ([1 size(temp)]);

26 tempdata (1,:,:,:) = temp;

27 elseif ndims(tempdata) ~= 4

28 error(’Input ’’tempdata ’’ must have either 3 or 4 dimensions ’

);

29 end

30 tempdataShort = squeeze(tempdata(end ,:,:,:));

31 end

32

33 if nargin > 2

34 if ndims(highlightRegion) ~= 3

35 error(’Input ’’highlightRegion ’’ must have 3 dimensions ’);

36 end

37 if size(highlightRegion) ~= size(head)

38 error(’Input ’’highlightRegion ’’ must be of the same size as

’’head’’’);

39 end

40 tempdataShort = squeeze(tempdata(end ,:,:,:));

90

41 end

42

43 if nargin > 3

44 if slice > size(tempdata ,1)

45 error(’Input ’’slice ’’ must be less or equal to the length of

the first dimension of ’’tempdata ’’’);

46 end

47 tempdataShort = squeeze(tempdata(slice ,:,:,:));

48 end

49

50 if nargin > 4

51 if ndims(equil) == 3

52 eq = equil;

53 elseif ndims(equil) == 4

54 eq = squeeze(equil (1,:,:,:));

55 else

56 error(’Input ’’equil’’ must have either 3 or 4 dimensions ’)

;

57 end

58 clear ’equil’;

59 end

60

61 %% Pick how to format the call of SliceBrowser ()

62 switch nargin

63 case 1

64 SliceBrowser(head ,1,head);

65 colormap(gray);

66 case 2

67 SliceBrowser(tempdataShort ,tempdata ,head);

91

68 case 3

69 SliceBrowser(tempdataShort ,tempdata ,head ,highlightRegion);

70 case 4

71 SliceBrowser(tempdataShort ,tempdata ,head ,highlightRegion);

72 case 5

73 SliceBrowser(tempdataShort -eq ,tempdata ,head ,highlightRegion);

74 case 6

75 SliceBrowserOverlay(tempdataShort -eq ,tempdata ,head ,

highlightRegion ,threshold);

76 case 7

77 imgoverlay(head ,tempdataShort -eq,point ,threshold)

78 end

79

80 end

B.1.2 tsliceplot

This is a visualization tool I wrote that allows you to view the change in temperature versus

time for a line passing through the head. Screenshots of the tool can be seen in Figs. B.1

and B.2.

Usage:

tsliceplot(temperature_data , equilibrium_temperature_data)

or

tsliceplot(change_in_temperature_data)

The inputs temperature data and change in temperature data should be four dimen-

sional matrices (time, x,y,z) and equilibrium temperature data is also a four dimensional

matrix (1,x,y,z).

The script is available as part of temptools (https://github.com/greggroth/temptools/

tree/master/lib/tsliceplot).

92

https://github.com/greggroth/temptools/tree/master/lib/tsliceplot
https://github.com/greggroth/temptools/tree/master/lib/tsliceplot

Figure B.1 Experimental data for activity in the motor cortex visualized with tsliceplot.

93

Figure B.2 The same data as is presented in Fig. B.1, but viewed flat-on along the z vs.
time plane.

94

