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Simulated annealing routing and wavelength
lower bound estimation on wavelength-division
multiplexing optical multistage networks

Ajay K. Katangur Abstract. Multistage interconnection networks (MINS) are popular in
Yi Pan switching and communication applications and have been used in tele-
Martin D. Fraser communication and parallel computing systems for many years.
Georgia State University Crosstalk a major problem introduced by an optical MIN, is caused by
Department of Computer Science coupling two signals within a switching element. We focus on an efficient
Atlanta, Georgia 30303 solution to avoiding crosstalk by routing traffic through an N X N optical
E-mail: pan@cs.gsu.edu network to avoid coupling two signals within each switching element us-

ing wavelength-division multiplexing (WDM) and a time-division ap-
proach. Under the constraint of avoiding crosstalk, the interest is on
realizing a permutation that uses the minimum number of passes for
routing. This routing problem is an NP-hard problem. Many heuristic al-
gorithms are already designed by researchers to perform this routing
such as a sequential algorithm, a degree-descending algorithm, etc. The
genetic algorithm is used successfully to improve the performance over
the heuristic algorithms. The drawback of the genetic algorithm is its long
running times. We use the simulated annealing algorithm to improve the
performance of solving the problem and optimizing the result. In addition,
a wavelength lower bound estimate on the minimum number of passes
required is calculated and compared to the results obtained using heu-
ristic, genetic, and simulated annealing algorithms. Many cases are
tested and the results are compared to the results of other algorithms to
show the advantages of simulated annealing algorithm. © 2004 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1690276]

Subject terms: genetic algorithm; heuristic algorithms; lower bound estimate;
multistage interconnection networks; optical networks; routing; simulated anneal-
ing; wavelength-division multiplexing.

Paper WDM-02 received Nov. 6, 2002; revised manuscript received Sep. 24,
2003; accepted for publication Oct. 16, 2003.

1 Introduction groups(independent subsetand then delivered using one

A multistage interconnection netwotKIIN) is very popu-  time slot for each group? In each independent subset, the

lar in switching and communication applications. It has Paths of the messages going through the network are
been used in telecommunication and parallel computing crosstalk fre€.

systems for many years. This network consistdlanputs, The motivation for this research is to reduce the number

N outputs, andnh stages (=log, N). Each stage hahl/2 of independent subsets so that the messages can be sent in
switching element$SES; each SE has two inputs and two as few time slots as possible. Using wavelength-division
outputs connected in a certain pattérthe most widely multiplexing® (WDM) approach, if we have 10 wave-
used MINs are the electronic MINs. As optical technology lengths, for example, and if we obtain 9 independent sub-
advances, there is a considerable interest in using opticalsets, we can route all the messages at a single time in one
tec_hnolcs)gy to implement interconnection networks and pass. If we obtain 12 independent subsets, we can route 10
switches. In electronic MINs electrical signals are used 10 jndependent subsets in one pass and the next 2 independent
transmit messages, whereas in optical MINs optical signals g psets in another pass. Thus, even if all the independent
areElIJescet?o];c?(r: tz;lrlsjtgps)'t(iéal MINs have many similarities, but subsets are sent at the same time, as long as they use dif-
there are some fundamental differences between them Sucﬁerent wave-_lengthéxhere W'".be no confllct_s and _hence no
crosstalk will be induced. It is clear that with a fixed num-

as the crosstalk problem in the optical switch& avoid X i
the crosstalk problem, various approaches have been pro_ber of wavelengths, a reduction of the number of indepen-

posed by many researchers. In this paper, the main focus isdent sets can also decrease the total number of passes. A
on the Omega network, which has a shuffle-exchange con-common assumption is that each chanmedvelength can
nection pattern. To transfer messages from a source addresge switched independenflyand there is no constraint that

to a destination address on an optical Omega network with- each switch must be set consistent for all the input/output
out crosstalk, the messages are to be divided into severakchannels.
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Previously the genetic algorithfGA) was used suc- 000 — 101
cessfully to improve the performance over the heuristic al- 001 — 010
gorithms such as the sequential, degree-descending algo-
rithms. The drawback of the GA is its long running time. In 010 — 111
this paper, the main concentration is on the improvement of 011 - 000
the average number of passes considering the bandwidth of 100 = 011
wavelengths available and run-time performance using the
simulated annealingSA) algorithm® Also lower bound es- 101 - 110
timate on the minimum number of wavelengths required is 110 — 001
calculated and compared to the results obtained by heuris- 111 = 100
tic, GA, and SA algorithms. SARef. 6 is an optimization
method used for combinatorial optimization problefifhe Fig. 1 Shuffle exchange.

SA method begins with a nonoptimal initial configuration

and works on improving it by selecting a new configuration

and calculating the cost differenti@Different types of op- eight outputs form a permutation. In general the destina-
erators for the SA algorithm are used and different cases aretions can be randomly permutéithe message 000101, it

tested and analyzed in this paper. - may also go to 110 or 001 or any of the other outputs, and
We preylousl_ﬁ proposed different methods for avoiding  this is the reason why it is termed “the destinations can be
crosstalk in optical MINs. The window methdeave pro- randomly permuted), as shown in Fig. 1. To route this

posed is used to find the conflicts between messages and tpermutation in the Omega network, the shuffle exchange
draw the conflict graph. This research uses our previous connection pattern is considered. Sending all the inputs to
idea of time-division multiplexing, but rather concentrates outputs in one time sldpas$ can be done as shown in Fig.

on how to minimize the number of passes required for rout- 2. From Fig. 2, we can see that there will be crosstalk in all
ing. the switching elements if all the inputs are routed to the

The main contribution of this paper is the successful outputs in one pass.
application of the SA algorithm to the routing problem to
improve the average number of passes and lower bound2.2 Crosstalk in Optical-MIN
estimation on the number of wavelengths required.

The rest of the paper is organized as follows. Section 2
presents a formal description of optical MINs. Section 3
presents the different heuristic algorithms available for
routing. Section 4 discusses the SA algorithm in general.
Section 5 gives a detailed description of how the SA algo-
rithm is applied to the routing problem. Section 6 provides
simulation results to evaluate the performance of the pro-
posed algorithm. Section 7 presents the lower bound esti-
mate calculation. Section 8 concludes this paper.

Crosstalk occurs when two signal channels interact with
each other. When crosstalk happens, a small fraction of the
input signal power may be detected at another output al-
though the main signal is detected at the right output. For
this reason, when a signal passes many switching elements,
the input signal will be distorted at the output due to the
loss and crosstalk introduced on the paffhere are two
ways in which optical signals can interact in a planar
switching network. The channels carrying the signals could
cross each other in order to embed a particular topology.
. Alternatively, two paths sharing an SE will experience
2 Optical MIN some undesired coupling from one path to andthethin

21 MIN an SE. This is shown in Fig. 3. Each SE can be in two

. ) . . connecting schemes, as shown in Fig. 3. Since these two
MINs consists ofN inputs andN outputs, which are inter-  yays in Fig. 3 will cause crosstalk, a necessity arises to
connected by (n=log, N) stages of switching elements.  ayoid these situations to happen in all the SEs.
There are two inputs and two outputs for each SE. Each

stage consists of N/2 SEs. 2.3 Approaches to Avoid Crosstalk

e e e etonacge Sommeaton v, eea’ Many approaches haue been poposed ( reduce the ega
9 P ' tive effect of crosstalk. One way to solve crosstalk is to use

inputs, N outputs, anch stages, wher@=1log, N. To con- 5 : y; 39
nect the source address to the destination address, the ad’j—1 2N> 2N regular MIN to provide thelx N connectior,

dress is shifted 1 bit to the left circularly in each connection
such as source to the first stage, one stage to the next stage,
etc. For example, in an>88 network, the inputs and out-
puts are 000, 001, 010, 011, 100, 101, 110, and 111, which
forms a permutation. Each connection between the stages is
shuffle-exchanged, as shown in Fig. 1.

Permutatiofl is an important problem in parallel com-
puter systems since it is a popular data movement opera-
tion. An NXN MIN with N inputs andN outputs where
N=2"is considered. A permutation of a netwbik a pair-
ing such that each input and output appears in exactly one
pair. The source-destination permutation can be regarded as
a one-to-one mapping. For instance, the eight inputs and Fig. 2 Permutation in an 8 X8 Omega network.

000
oo

010
011

100
101

110
111
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000 — 100

< 001 — 001

010 - 010

Straight connection Cross connection 011 —» 011

Fig. 3 Two types of switching connections 100 — 000

e R ° | 101 > 101

110 - 110

which is the space domain approach. But half the inputs 111 > 111

and outputs are wasted in this approach. Another more ef-

ficient solution, which is the method used in this paper is to Fig. 5 Shuffle exchange.

route the traffic through aN X N optical network to avoid
coupling of two signals within each SE. This idea can be
implemented using the time domain apprdaehd in the

: . through an optical network without crosstalk. The reason is
legal passing ways are as shown in Fig. 4.

at least the two input links on an input switch or the two
. . output links on an output switch cannot be active in the
2.4 Avoiding Crosstalk in Omega Network sarrrl)e paséThus, at Ieagt two passes are required to realize
To avoid crosstalk, the time domain approachn be used,  a permutatiorf. For example, the permuation shown in Fig.
which is to partition the set of the connections into several 5 is considered. The eight messages shown in Fig. 5 can be
subset¥ such that the connections in each subset can berouted in two passes, as shown in Fig. 6. If more than two
established simultaneously in the network without wavelengths are available they can be sent at a single time
crosstalk, i.e., to route all the inputs in several gro(ips in one pass. Our goal is to minimize the number of wave-
dependent subseisuch that there will be no crosstalk be- lengths required to route all the inputs to the outputs with-
tween messages in each independent subset. Another apeut crosstalk for randomly generated permutations.
proach is to use WDM technology. To utilize the large

available bandwidth in optical fibers, a single fiber can be _ . . :

partitioned into multiple communication channels using 3 Different Heuristic Routing Algorithms

WDM technology. By using WDM approacﬁ”ueach such_ 31 Window Method

independent subsets of groups can be routed in a single
time slot or in a reduced number of time slots, depending Since the messages to be sent to the network are to be
on the number of different wavelengths available. For ex- distributed into several groups, a method is to be used to
ample, using the WDM approachif we have 10 wave- determine which messages should not be in the same group
lengths, for example, and if we obtain 9 independent sub- because they will cause crosstalk. The window mefthisd
sets, we can route all the messages at a single time in oneused to find conflicts among all the messages to be sent.
pass. If we obtain 12 independent subsets, then because wéhis method, which has already been proved to be correct
have only 10 wavelengths available we can route 10 inde- by other researchefscan be described precisely as fol-
pendent subsets in one pass and the next 2 independerlows. Given a permutation, combining each source address
subsets in another pass. Thus, even if all the independen@nd its corresponding destination address produces a
subsets are sent at the same time, as long as we have difmatrix® The optical window size ism—1, where m

ferent wavelengthsthere will be no conflicts and hence no  =log,N and N is the size of the network. We use this
crosstalk will be induced. Thus, from the performance as- window on the produced matrix from left to right except on
pect, using WDM, messages are separated without conflictsthe first and the last columns. If two messages have the
with other messages even in the same group, resulting insame bit pattern in any of the optical window, they will
the reduction in the total number of passes. We use a com-cause conflict in the network. That means they cannot be in
bined approach that uses both time-domain and WDM- the same group, hence, they have to be routed in different
domain approaches. If the number of independent subsetsvavelengths. To see how the window method works, con-
found is smaller than the number of available wavelengths, sider the example shown in Fig. 7 where the network size is
we can simply send all the messages in one time slot. Oth-8 and the source addresses and the destination addresses are
erwise, we may send subsets of messages in each time as shown in Fig. 5. The optical window can be applied on
slot, wherew is the number of wavelengths available, and the permutation shown in Fig. 5 as shown in the figure,
use several time slots to finish the transmission. The re- where example messages 000 and 100 in si@yridow 0)
search described here aims to reduce the number of indehave the same bit pattern of 00 inside the window and
pendent subsets, thus effectively reducing the number ofhence have a conflict. The bit patterns can be any of the
passes in a WDM network. In an SE as shown in Fig. 4, four combinations of 00, 01, 10, and 11, and hence are
there is no way to realize a permutation in a single pass shaded using different colors.

3.2 Conflict Graph

| - _/_ _\_ After using the window method, we can draw a conflict
graph!! The number of the nodes is the size of the network.
Fig. 4 Legal passing ways in a SE at a time. Each node represents a source address. If two nodes have

1082 Optical Engineering, Vol. 43 No. 5, May 2004
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Fig. 6 Two passes for a specific permutation in an 8 X8 Omega network.

conflict during routing, they are connected using an edge. 2. Choose a message in decreasing order of the message
For the example of Fig. 7, the conflict graph is shown in source address.

Fig. 8. 3. Choose a message based on the order of increasing
3.3 Previous Five Routing Algorithms degrees in the conflict graph. )
. _ ) o ) 4. Choose a message based on the order of decreasing
The previous five algorithms are the sequential increasing, degrees in the conflict graph.
sequential decreasing, degree increasing, degree
descendintf and the GA(Ref. 13. The purpose of these The degree of each message in the conflict graph is the
routing algorithms is to schedule the messages in different number of conflicts it has with other messages in the con-
independent subsets to avoid the path conflicts in the flict graph. Scheduling the messages in decreasing degrees
network!? The more efficient the algorithm is, the fewer of the message conflicts will result in the best performance
independent subsets it will generate, and depending on theamong these four algorithms. The GA is not as easy and
bandwidth of wavelengths, available messages can bestraightforward, but it can be successfully used to reduce
routed accordingly using WDM approatithe order of the  the number of passes in an optical MI®MIN). A brief
messages to be picked for scheduling is an essential causéntroduction on how GAs are used for OMINSs to reduce the
for generating the different results. The basic idea of the humber of independent subsets is provided in Sec. 3.3.1.
routing algorithm is as follows: More about how GAs are applied to OMIN can be found in
while (not end of messages list) Refs. 13 and 14.
Select one of the left messages
Schedule the message in a time slot with no conflict with
other messages that have been already scheduled 331 GA
There are many ways to decide the order of the scheduling.™ ™"
The four heuristic algorithms choose the message in the GAs are a part of evolutionary computift® The GA is
following manner: initialized with a set of solutions, which are represented by
chromosomes. These solutions are called the population.
1. Choose a message in increasing order of the messag&olutions from the initial population are taken and used to
source address. form a new population. This procedure is motivated by the
expectation, by analogy with biological population, that the
new population will be “better” than the old one. To select
Step | (window () Step 2 (window 1) Step 3 (window 2) new solutions(offspring to form a new population, the
fithess of the original solution is the important criterion. If

g : ll] 3 ? g g 2 g []' g g ? L ? the fitnes_s \_/alue is greater, they get more che}nces to repro-
0 l 010 01 10 010 0 duce. This is repeated generation by generation until some
0 011 01 11 011 1 condition is satisfied such as the number of populations

I[job@dooo 10 00 100 0 reaches the limit or the improvement of the best solution

1 ro1 10 01 10 1)1 1 found so far is good enough for the research or there is no
t |l } ? : : 01 } ? 1 : ? I ? more improvement possible.

Message Conflicts  Message Conflicts  Message Conflicts

000 and 100 W) and 110 000 and 101
001 and 101 001 and 011 001 and 100
011 and 111 101 and 111 1ldand 111
010 and 110 010 and 100 010 and 011
Fig. 7 Window method example. Fig. 8 Conflict graph.

Optical Engineering, Vol. 43 No. 5, May 2004 1083



Katangur, Pan, and Fraser: Simulated annealing routing . . .

_'.

o
O

L]

Fig. 9 Perfect is the condition where all atoms lined up on crystal
lattice sites, there are no defects, and this is the lowest energy
“state” for this set of atoms.

3.3.2 Performance of the GA over the other heuristic
algorithms

The GA improves the performance in terms of the average
number of wavelengths required. It requires one or two
fewer wavelengths than that of the degree-descending al-
gorithm, and requires two wavelengths fewer than that of
the remaining algorithms. The GA was time consuming: it

took hours to calculate the number of passes for large net-

work sizes.

4 SA Algorithm

4.1 Whatis SA?

SA originated in the annealing processes found in thermo-
dynamics and metallurdy*>*¢ SA was introduced by Me-
tropolis and is used to approximate the solution of very
large combinatorial optimization problefmge.g., NP-hard
problems. It is based on the analogy between the annealing
of solids and solving optimization problems. When SA was
first proposed? it was most known for its effectiveness in
finding near-optimal solutions for large-scale combinatorial
optimization problemé&’ such as the traveling salesperson
problem® buffer allocation in production line$ and chip
placement problems in circuts(finding the layout of a
computer chip that minimizes the total are8ut recent
uses of SA demonstrated that this class of optimization
methods could be considered competitive with other ap-
proaches when there are optimization problems to be
solved.

SA was derived from physical characteristics of spin
glasse$:'® The principle behind SA is analogous to what

system. At high temperatures, SA enables function evalua-
tions at faraway points and it is likely to accept a new point
with higher energy. This corresponds to the situation in
which high-mobility atoms are trying to orient themselves
with other nonlocal atoms and the energy state can occa-
sionally go up. At low temperatures, SA evaluates the ob-
jective function only at local points and the likelihood of it
accepting a new point with higher energy is much lower.
This is analogous to the situation in which the low-mobility
atoms can only orient themselves with local atoms and the
energy state is not likely to go up ag&in.

Obviously, the most important aim of SA is to avoid
trapping in a local minimum and obtain a globally better
solution by employing the so-called annealing sche§ule
cooling schedule, which specifies how rapidly the tempera-
ture is lowered from high to low values. This is usually
application specific and requires some experimentation by
trial and error.

The following fundamental terminolod$y concerning
SA is useful before going to a detailed description.

Objective function. An objective functionf(-) maps an
input vector x into a scalarE=f(x), where eachx is
viewed as a point in an input space. The task of SA is to
sample the input space effectively to find arthat mini-
mizesE.

Generating function. A generating functiong(-, -)
specifies the probability density function of the difference
between the current point and the next point to be visited.
Specifically, AX=(Xpew—X) iS a random variable with
probability density functiorg(Ax,T), whereT is the tem-
perature. For common SA used in combinatorial optimiza-
tion applicationsg(- , -) is a function independent of tem-
peratureT. For our problem, we use the move set approach
to generate the next solution.

Acceptance function. After a new pointx,.,, has been
evaluated, SA decides whether to accept or reject it based
on the value of the acceptance functioft , -). The most
commonly used acceptance function is the Boltzmann dis-
tribution function

happens when metals are cooled at a controlled rate. The

slowly falling temperature enables the atoms in the molten
metal to line up and form a regular crystalline structure that
has high density and low energy. But if the temperature
goes down too quickly, the atoms do not have time to orient

h(AE,T)=exp —AE/T),

AE=f(Xpew — f(X),

themselves into a regular structure and the result is a more

amorphous metal with higher ener@see Figs. 9 and 10
In SA, the value of an objective functibhthat we want
to minimize is analogous to the energy in a thermodynamic

_Q@Do"l 0B8o
00 Q 0
QOAD 0000
3O Q000

Fig. 10 To reach the “low energy state,” “anneal” the material. Get
it very hot: gives atoms energy to move around. Cool it very slowly.
This gently restricts the range of motion until everything freezes into
a low-energy configuration.

1084 Optical Engineering, Vol. 43 No. 5, May 2004

whereT is the temperature, antlE is the energy difference
betweenx,e,, and x.

The common practice is to acceqt.,, with probability
h(AE,T). Note that whemE is negative, SA accepts the
new point because it reduces the energy. Whénis posi-
tive, SA may accept the new point and end up in a higher
energy state or it may not accept the point. The lower the
temperature, the less likely SA is to accept any significant
high-energy states.

Annealing schedule. An annealing schedule regulates
how rapidly the temperatur€ goes from high to low val-
ues. The easiest way of setting an annealing schedule is to
decrease the temperatufeby a certain percentage at each
iteration.
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9 10 |11 |12 |13 |14 |15

Fig. 11 Sorted vertex.

To find the next legal point, we usually define a move 5 SA Algorithm Used in This Research

set!® denoted byM(x), as a set of legal points available
for exploration afterx. Usually the move sei (x) repre-
sents a set of neighboring points of the current pait

the sense that the objective function at any point of the
move set will not differ too much from the objective func-

tion atx.

5.1 Move Sets in SA

The move sets are the most important operators in simu-
lated annealing approach. We used three types of move sets
for SA in this research. They are inversion, translation, and
switching.

The basic simulated annealing algorithm includes the fol- 5.1.1 Inversion

lowing steps-*

1. Start: Select an initial value of from the input
space. Select a large starting value for the tempera-
ture T, a value for the final temperatur&;,,, a
value for the stopping conditiory for example that

We have a sorted vertex and we apply inversion to this
sorted list of vertices to generate a new solution. For ex-
ample if we have a sorted vertex, as shown in Fig. 11.
Then we generate two random points and then replace
that section in the opposite order. For example, if we gen-
erate the random points as 4 and 11, then we invert the

is chosen as 10, and a suitable value for the tem- numbers from 11 to 4 and store them in this order as shown

perature reducing parameter Thetg value is used
because it will stop the algorithm if there are no
changes to the solution aftéy iterations. We also
choose a variablé/ so thatM iterations are per-

formed for each temperature.

2. Initialize the current energf, to be equal to the
energy of the initial solution, which is the initial

value ofx, andts to some valué .
. While (tstop>0 andT>Tﬁna|).
. Fori=1 toM do steps 5 through 9.

o0k W

. Generate a new solution using the present solution.
. Calculate the new energy of the new solution. If the

in Fig. 12.

5.1.2 Translation

Here we randomly generate two points and then that sec-
tion of the vertex is stored in between two randomly gen-
erated points. For example, if we generate 1 and 3 for the
section to be replaced, and then 14 and 15, the section
1-2-3isplaced in between 14 and 15, as shown in Fig. 13.
This is applied on the sorted list of vertices obtained after
inversion is applied.

5.1.3 Switching

new solution, otherwise use the following strategy POINts at those positions. Suppose if we generate 0 and 15,

to decide.

R=random numbern0<R<1),

Y =exp—AE/T),

If (R<Y), then accept the solution,

else reject it.

7. If the move is accepted then the current energy will

then 0 and 15 are interchanged in the previous sorted list of
vertices, as shown in Fig. 14.

We used these three techniques and found out that inver-
sion is mostly suitable for application in SA to generate a
new solution. This is so because translation required more
time when compared to inversion because of the random
number generations and switching move set tends to rup-
ture the solutiort®

be set to the new energy and the new solution is 5.1.4 Initial solution for the SA algorithm

kept, otherwise the old solution is kept.

8. If the new solution is accepted, assigp~ts, else

decrementgy, by 1 (tsiop=tsop—1)-

9. Change the temperature by a factQIT=T X «.

10. End of while.

Initially we need a solution to proceed with the SA

algorithm?® This is because SA cannot proceed without
having any arbitrary solution to generate the next solution.
For this purpose, the sorted list of vertices is formed with
vertices taken in the increasing order. The number of inde-

Fig. 12 Numbers inverted from 11 to 4.

Optical Engineering, Vol. 43 No. 5, May 2004 1085
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0 I {10 |9 |8 |7 |6 |3 4 12 (13 |14 |1 2 L 15

Fig. 13 Section 1-2-3 placed between 14 and 15.

pendent subsets required with this sorted list of vertices is perature is changed b= a X T. Then we repeat the pro-
calculated. We assign the current energy to the number ofcess if T is greater than the final temperature agg), is
independent subsets we got initially with vertices taken in greater than Ot(,,;>0). Finally, the algorithm stops when

the increasing order and proceed to the SA algorithm. any of the two conditions are met. At this point, the number
. of independent subsets is returned, which corresponds to
5.2 Parameters of SA Algorithm the final solution obtained after applying the SA algorithm.

The parameteté used in the algorithm are the starting tem- Using the value obtained, we can then determine in how
perature, the final temperature, the temperature-cooling ratemany passes the permutation can be routed using the avail-
(), the number of iterationéM) for a particular tempera-  able wavelengths by WDM methad.

ture value, and the stopping valug)( The starting tem-

perature is used for the algorithm to start at a particular 6 Analysis of the Test Results

value of temperature. The value of cooling réte is cho-
sen in between 0 and 1. This value regulates how rapidly 6-1 Examples

the temperature goes from high to low. The final tempera- Improved results are obtained using simulated annealing in
ture value is chosen because after reaching this point, themany cases. The following example is for aix8 net-
algorithm terminates and the solution is returned. We must work. The randomly generated adjacency matrix is as fol-
generate solutions at a particular temperature and sedows:;

whether or not they are accepted. For this purpose, we it-
erate at a particular temperature depending orMhealue 0
chosen. The value df, is chosen as 10 and is fixed. Itis o
used to stop the algorithm when there have been nog
changes to the solution aftey iterations. In this way, the
algorithm terminates either on reaching the final tempera-
ture or aftertg iterations. We use a random number genera-
tor to generate random numbers between 0 and 1. ThisO
is used for comparing the random number value O
to exp(—AE/T). 0

o
O OO O0OO0OO0OOoOOo
O OO O0OO0OO0OOoR
cNeoNeolNoNolNol el
OO OOr OO0OFPF
OO O0OOkr o
OO OFr OFr Fk O
OO Fr OPFr OOk

0

5.3 Application of the SA Algorithm to the Problem The solution of sequential algorithm has four coidksl 2

; - - : - 2 3 3 4 4. Thesolution of the degree-descending algorithm
A sorted list of vertices is taken in ascending order as the . .
initial solution to the problem. The number o?independent h"?‘s four polors4 433221 1.U_smg the SA algorithm
subsets using this sorted list of vertices is calculated andW'th_Startlng temperatUFelooo_, fma_l temperature0.05,
then assigned to the current energy. Then we start at theC00ling rate=0.9, number of iterations per temperature
initial temperature. We generate a new solution using one =20, and rounds number100, we get the result with three
of the move set approaches. Then we calculate the numbercolors® (independent subsgtas 1 221 2 1 1 2. The SA
of independent subsets required with this sorted list of ver- algorithm reduced one color compared to the other two
tices and assign it to a variable called new energy. If the algorithms.
new energy is less than or equal to the current energy, then
the solution is accepted. If the new energy is more than the6.2  Test Cases Analysis
current energy, then we calculate exg{E/T) and then  |n our research, many cases were tested with different com-
generate a random number. If the random number gener-binations and values of parameters. We know that among
ated is less than exp(AE/T), then the solution is accepted, the four heuristic algorithms, the degree-descending algo-
otherwise the solution is rejected. If the solution is ac- rithm gives the best result. From Ji's papéme see that
cepted, then the new energy is assigned to current energythe GA produces better results when compared to the four
and the new sorted vertex is used for generating the nextheuristic algorithms, but it was time consuming. For the
solution. If the solution is not accepted, then the current purpose of testing the SA algorithm with the other algo-
energy does not change and the sorted vertex will remainrithms, first we tested the ways of generating a solution
the same. We perfornM iterations for each temperature using different types of move set approaches. We employed
value, and after thes®! iterations, the value of the tem- inversion, translation, and switching move set approaches

S| |9 (8 |7 |6 (5 (4 12 |13 |14 |1 2 |3 |0

Fig. 14 Switching randomly generated points.
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Comparisions of average no.of indepandent subsats for differont Comparision of average no.of independent subsets
. with varying starting temperature values
T
i H
5
k] 4 —— Seq
g 3 SeqDn
E : —#— Degrea Ascend
] 3 T . 4 . B —¥— Degres Descend
[ee— 2 28 343 | 4% | 508 | 577 | —8—GA
Tramlslin| 2 278 | 373 | 448 | 838 | &az2 +—SA
Swdiching F3 2.7 373 4432 54 823
Network Size:2™"" THNMTNE RO S N® T D
N*100 starting temperature values

Fig. 15 Comparison of average number of independent subsets for

different move sets. Fig. 17 Tested 16X 16 network with 1000 rounds and different start-

ing temperature values.

and then generated the sorted list of vertices and calculated
the number of independent subsets, and the time taken bypare the SA algorithm with the other algorithms using dif-
each approach by varying the parameters. ferent combinations of the starting temperature, final tem-
After many careful observations and the testing of many perature, cooling rate, and number of iterations per
cases the number of rounds was set at 100, starting tem-temperature values on different network sizes and then ana-
perature at 1000, final temperature at 0.05, cooling rate atlyze the results.
0.9, and the number of iterations per temperature at 20. Too  To see how the starting temperature affects the result of
low values for these parameters resulted in high values forthe SA algorithm, we tested many cases using different val-
the average number of independent subsets. When the values for the starting temperature. Here we use X 1
ues of these parameters were made too high, there was n@etwork, varying the starting temperature and employing
improvement in the average number of independent subsetghe optimum values of 0.05 for the final temperature, 0.9
and the time complexity increased. Therefore, after many for the temperature cooling rate, and 20 iterations per tem-
careful observations with different network sizes, the pre- perature. The number of rounds was set at 1000. The results
ceding values were chosen to be optimum for generating aare shown in Fig. 17. From Fig. 17, we see that the GA
good average value for the number of independent subsetsgrovides the smallest number of independent subsets. The
with a good low-time complexity. The inversion process SA algorithm has almost the same number of independent
was used to generate the move sets for our SA algorithm tosubsets as the GA when the starting temperature value
be compared with the other five algorithms. Let us analyze reaches around 1000. Also, the average number of number
more results by comparing the average number of indepen-of independent subsets decreases when the temperature val-
dent subsets with different move set approaches and byues grow larger, because the SA algorithm has more search
comparing the running times of different move set ap- space to search for an optimal solution with increasing tem-
proaches. perature values. The decreasing line shows that the result
Further from Figs. 15 and 16, we can conclude that the becomes better with increasing starting temperature values.
inversion move set approach performs better than the otherBut as we see from Fig. 17 after a certain point even if the
move set approaches because a lower number of indepentemperature increases there is not much if any change in the
dent subsets is obtained with the inversion approach. Thevalue of the average number of independent subsets.
running time using inversion is similar to that of switching To determine how the final temperature affects the re-
approach, but because of the advantage of fewer indepensults we tested some other cases with different values of
dent subsets obtained with inversion we employ inversion fina| temperature. We used a 186 network, varying the
move set approach. We shall see how the SA algorithm fina| temperature and employing the optimum values of
performs by comparing it to the other algorithms. We com- 1000 for the starting temperature, 0.9 for the temperature
cooling rate, and 20 iterations per temperature. The number
of rounds was set at 1000. The results are shown in Fig. 18.

Comparislon of running time for different move sets From Fig. 18, we can again see that the GA provides the
] smallest number of average number of independent subsets.
L] .
3500 _ e The SA algorithm has almost the same average number of
g i Ak independent subsets as that of the GA when the final tem-
E 2500 - - — i Irrenrsion
5 2000 / B Traslaten perature value reaches around 0.04. Also, the average num-
! bt ¥ | Swiiching ber of independent subsets decreases when the final tem-
3 e B perature values grow smaller. This is because, when we
; L o o o — - evaluate exp{ AE/T) and compare it with the value gener-
lmwrsion | 15 | 18 | w1 | = | e | ases ated by the random number generator, as the temperature is
[Tronelation| 21 | 17 | 3 | Mo [ Se | J6w getting low, exp-AE/T) evaluates to a much smaller
Pekbing | S 1 W | o | wn | O | e value, which in many cases is less than the random number
Matwark Sios:2™" . . . .
generated. Thus, at this point only solutions that are strictly
Fig. 16 Comparison of running times for different move sets. better than the original solution are accepted and the others
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Comparision of average no.of independent subsets Comparision of average no.of independent subsets
with varying final temperature values with varying iterations/temp. values

——5eq —i—Seq
SeqDn Seqln
—— Diegree Ascend —#— Degree Ascend
—#— Degree Descond —#— Dagros Descend
—a—GA —a—0GA
; ——5A —f—5A
3.2 : d
FNH*H‘]MI‘-WWE:{JI‘;}#‘;E
20/2" final temperature values
Fig. 18 Tested 16X 16 network with 1000 rounds and different final Fig. 20 Tested 16x16 network with 1000 rounds and different
temperature values. iterations/temperature values.

are rejected. Thus, as the temperature is decreased, thgihm o search for a good solution. The decreasing line
chances of getting a better solution is increased and this iSghows that the result becomes better with increasing
the reason that the average number of independent subsetg,ynerature-cooling rate values. But as we see, after a cer-
is reduced as the temperature is lowered. The decreasinggi, point, even if the final temperature-cooling rate is in-

!ine shows that thg result is getting better with the decree;s- creased there is not much if any change in the value of the
ing values of the fmal temperature. But as we see from Fig. average number of independent subsets.

18, after a certain point even if the final temperature is 14 determine how the number of iterations per tempera-
decreased there is not much if any change in the value ofyre affects the results, we tested some other cases with
the average number of independent subsets. different values of iterations per temperature. We used a

" To deI‘:ermlnte htOW the tttre]mperature-'ct:ﬁ((njl_lgg raie alffects [16x 16 network, varied the temperature cooling rate, and
€ results, we test some other cases with ditierent values o employed the optimum values of 1000 for the starting tem-
the temperature-cooling rate. We used ax16 network,

, - perature, a final temperature of 0.05, and a temperature-
and varied the temperature cooling rate and employed thecqo|ing rate of 0.9. The number of rounds was set at 1000.

optimun_1 values of 1000 for the $tarting temperature, 0.05 The results are shown in Figure 20. From Fig. 20, we can
for the final temperature, and 20 iterations per temperature. 5qain see that the GA provides the smallest number of av-
The number of rounds was set at 1000. The results aregrage number of independent subsets. The SA algorithm
shown in Fig. 19. From Fig. 19, we can again see that the 55" gimost the same average number of independent sub-
GA provides the smallest number of average number of ge(s as that of the GA when the iterations/temperature value
independent subsetsf. The SA algorithm has almost the sameg5ches around 20. Also, the average number of indepen-
average number of independent subsets as that of the GAyent subsets decreases when the iterations/temperature val-

when the temperature-cooling rate reaches around 0.09.,65 grow larger. This is because at the same temperature,
Also, the average number of independent subsets decreasege jterate for some time to find the best solution. If this

when the temperature cooling rate values grow larger. This gy is high, then the chance of obtaining a good solution
is becausel =aXT, wherea is the temperature cooling s also high. The decreasing line shows that the result be-
rate. As the value ofr becomes larger, the next temperature come better with increasing iterations/temperature values.
at which the SA algorithm searches for a solution is more Byt as we see, after a certain point, even if the iterations/
than when the temperature-cooling rate is less. In this way, temperature is increased there is not much if any change in
more temperature values will be available for the SA algo- the value of the average number of independent subsets.
If we keep trying values less than the optimum values
for the parameters, then the average number of independent
subsets obtained is not good. Even too greater values too
much longer would result in increased running time without
much improvement in the value of the average number of

Comparision of average no.of indepandent subsets
with varying temp. cooling rate values

i ;: s independent subsets. Thus, from 'ghis sgries of test results,
S 37 SeqDn we can conclude tha_t the SA algorlthm gives the best splu-
35 3¢ Degres Ascend tions when the starting temperature is around 1000, final
3 15 —#%— Diegree Descend temperature is around 0.05, temperature-cooling rate is
34 —8—GA around 0.9, and the number of iterations per temperature is
Eaa —+—5A around 20. The algorithm performance for different size
% a2 - networks is shown in Fig. 21. From Fig. 21, we see that the
it adekadonaealc B R Je degree-ascending algorithm performs the worst. This was
R 00N Mpasinn. SRy fen also concluded by Middin his research. More information
values can be obtained about Miao’s research and about the four
Fig. 19 Tested 16X 16 network with 1000 rounds and different tem- heuristic algorithms from Ref. 12. From Fig. 21 it is clear
perature cooling rate values. that GA is the best. The results obtained by the SA algo-
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Performance on different sizes of networks Table 2 Permutations of an 8 X8 network.

T Sources Destinations
i ; —+—Saq 000 101
& —&— SaqDn 001 100
E 4 Dagree Ascend 010 010
3 =e=Dree Dewowd 011 110
E C o 100 001

' TR

< 1 101 011
0 110 111
! & 3 A 3 111 000

Metwork size: 2%

Fig. 21 Average number of independent subsets with different net-

work stzes of vertices, each pair of which is connected by an edge in

E. The size of the clique is the number of vertices it con-

rithm very closely match those of the GA. But as already tains. The clique problem is the optimization problem of
discussed, since the GA takes very long times to compute afinding a clique of maximum size in a graph. An algorithm
solution, the SA algorithm can be considered more appro- for determining whether a grapg=(V,E) with [V| verti-
priate for finding the average number of independent sub- ces has a clique of sizeis to list all k subsets oV, and
sets for a given network. check each one to see whether it forms a clique. The run-
By analyzing the test results we have that the largest ning time of the algorithm is polynomial K is a constant.
difference between the sequenti@scending algorithm Note thatk could be proportional t¢V|, in which case the
and the SA algorithm is 0.768, the largest difference be- algorithm runs in superpolynomial time. We can find the
tween descending algorithm and the SA algorithm is 0.617, clique by using an algorithm that tests for a particular
the largest difference between the degree-ascending algoclique siz& by traversing through all the nodes in the con-
rithm and the SA algorithm is 0.746, and the largest differ- flict graph. For example, a clique of size 4 on a graph
ence between the degree-descending algorithm and the Shaving eight nodes can be found using the following four
algorithm is 0.157. Compared to the GA, the SA algorithm |oops:
sometimes performs better than the GA. In other words, thefor (i=0; i<5;i++) {
SA algorithm can improve the performance 0.768 passes in for (j=i+1;j<6;j++){
average over the sequential algorithm, 0.617 passes in av- for (k=j+1; k<7: k++) {
erage over the descending algorithm, 0.746 passes over the for (1= |;+ 1- I’<8' l++) 1
degree-increasing algorithm, and 0.157 passes over the check i;‘ verti,cesV- V. V. andV
degree-descending algorithm. Based on the test cases in f i f 1 41’ ke '
this paper, the SA algorithm could reduce the number of orm a clique ot size
independent subsets by 0, 1, or 2 in each round over the }
basic four heuristic algorithms other than the GA. The dif-
ference in average number of independent subsets of SA to} }

the other algorithms is as shown in Table 1. Similarly, we can find the clique of different sizes. As we

7 Lower Bound Estimate can see, this algorithm has a very high time complexity
because finding the clique of a graph is a NP-complete
problem?! The number of possible combinations for find-
ing a clique of size&k with n nodes can be found using the
combination formulanc,. This method of finding the
cligue may not be an efficient implementation, but we are
not concerned with the clique problem but with the prob-
lem of finding a lower bound estimate on the number of
Table 1 Maximum number of independent subsets reduced by the independent SUbsetS' and thus depending on the number of
SA algorithm for 1000-round cases. wavelengths available, the number of passes in which the
messages can be routed.

Here we will find the clique of a conflict grapfhwhich is
obtained after applying the window method to a given net-
work. We find the number of cliqu&sand use this value as

a lower bound on the number of independent subsets. A
cligue in an undirected grapB=(V,E) is a subseV’'CV

Degree Degree
Nodes Segq—SA Seq Dn—SA Ascend—SA Descend—SA

8 2 2 2 2
16 2 2 2 2
32 2 2 2 2
64 2 2 2 1

128 2 2 2 1
256 2 2 2 1

Fig. 22 Conflict graph for the permutation in Table 2.
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Table 3 Comparison of maximum numbers of independent subsets and time with the clique size.

Difference between

Number of Number of Number of  Time Time for Time for Time for SA Number

Stage Subsets with  Subsets Subsets for cligue Deg-desc GA SA of
Size Nodes Rounds LB Estimate Deg-desc with GA with SA (s) (s) (s) (s) Subsets and LB

3 8 100 2.56 2.61 2.6 2.6 0.01 0.06 2.02 0.17 0.04

4 16 100 3.35 351 3.39 3.36 0.02 0.08 9.55 0.27 0.01

5 32 100 4.07 4.23 4.13 4.09 0.89 0.31 61.2 0.43 0.02

6 64 100 4.79 5.05 5.01 4.85 197.6 1.214 337 1.78 0.06

7 128 100 5.42 5.66 5.49 5.51 739.3 3.682 1588 3.56 0.09

Since finding the clique has a very high time complexity, But the running time of GA is very high as compared to
we avoid finding all the cliques equal to the number of that of SA, and therefore SA can be used as a very good
nodes in the graph. This can accomplished by finding the algorithm in routing. From Table 3 we can see that the
maximum number of independent subsets required for rout- difference between maximum number of cliques and maxi-
ing a given permutatidh using heuristic algorithm¥: mum number of independent subsets obtained with SA for
Then using this value as the upper bound, we can find the100 rounds is very small. As discussed, the clique is not the
cliqgue of a given conflict graph. For any conflict graph the tightest LB in some cases. Hence, the real difference may
minimum clique value will be 2. So starting from a clique be even smaller than what we have obtained. We can con-
value of 2, we find higher clique values until we reach the clude that the SA algorithm can be used effectively for
upper bound value. If we obtain a new clique value, then routing in WDM OMIN.
we update the value of the clique. This is done until the
upper bound is reached. We stop at this point because ther8 Conclusion

Is no point in searching for a higher clique value, as we o g gigorithm has successfully improved the perfor-
have already found the maximum number of independent mance for routing and scheduling in WDM OMIN. We
subsets required. If a h_|gher cligue value existed, then theused different operators and parameters of the SA algo-
maximum number of independent subsets value would jnn The SA algorithm successfully reduced the number
have been different. Hence, the clique value found is the passes we use to send messages on a WDM OMIN with-
tcofrrect_ value. Ilftth(tahcllque \t/)alueffqugd forda gévenbpe:mu—b out crosstalk. The most obvious advantages of using the SA
ation 1S €qual o the number of Independent SUDSELS 0D~ 4qrthm over the other four heuristic algorithms is that it
tained using any algorithm discussed so far, then the algo- o ,ces the average number of independent subsets, thus
rithm has worked well in routing that permutation. reducing the number of passes, depending on the wave-
The clique value calculated is used as a lower bound on g ihq available. When compared to the GA, the SA algo-
the numper of independent §ubsets valu_e, which can berithm has almost the same number of independent subsets
used to find the passes required, depending on the wave,q w4t of the GA, and, for small network sizes, it is better

Ier;lgth bar&dwugth available to rom;)te a?!vzn per?utatlog. IN than the GA. The big advantage of the SA algorithm over
other words, the maximum number of independent su SetsGA is its running time. In the future, inversion, translation,

can never be less thtart\_ the clique 5|zeb. Somte ctjlme_s, h?r‘:v'and switching move set techniques can be implemented in
ever, a given permutation can never be routed using the o )16 to obtain better solution.

value of maximum clique size as the number of passes if a
single wavelength is available. For instance, let us consider
a permutation in an 88 network, as shown in Table 2.

The conflict graph for the permutation in Table 2 can be 1. A varma and C. S. Raghavendmaterconnection Networks for Mul-

drawn* as shown in Fig. 22. tiprocessors and Multicomputers: Theory and PractifEEE Com-
- . . . puter Society Press, Piscataway, (4994.

FOI’_ this example, the maximum C“que_ Vallue is 2, but 2 ¥ pan, C. Qiao, and Y. Yang, “Optical multistage interconnection
there is no way we can route this permutation in two passes g%tgorgg gg(vilgggallenges and approachd&EE Commun. Mag.
by ‘T’my method we em_ploy when a single wavelength is 3. K. Padmanabhan and A. N. Netravali, “Dilated networks for photonic
available. Thus, sometimes we may not get an accurate  switching,” IEEE Trans. Commur85(12), 1357—13651987.

lower bound(LB) estimate and this is not the tightest lower 4. C. Qiao, R. Melhem, D. Chiarulli, and S. Levitan, “A time domain

: - approach for avoiding crosstalk in optical blocking multistage inter-
bound on the number of passes in which we can route a connection networks,”J. Lightwave Technol12(10), 1854-1862

given permutation. (1994.

Now we compare the number of independent subsets 5 Q-P. Gu and S. Peng, "Wavelengths requirement for permutation
routing in all-optical multistage interconnection networks,” Boc.

obtained and the running times using the degree- 2000 Int. Parallel and Distributed Processing Sympp. 761-768,
descending algorithnibetter than the other heuristic algo- Cancun, Mexicq2000.

; ; 6. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
rltth), the GA(RefS' 15 and 1)3 and the SA algorlthrﬁ. Numerical Recipes in C: The Art of Scientific Computi@gmbridge

From Table 3 the number of independent subsets obtained  university Press, New York1992. _ o

with SA algorithm is very close to the clique size. For 7. gmﬁllgzztg%egh% ch?Lar:tc e%rz'dagglMé?g(\{%%%hl' “Optimization by
network sizes up to 6, SA performs better than GA, but as g % "ghen, F. Yang, and Y. Pan, “Equivalent permutation capabilities
the network size increases GA performs better than the SA.  between time division optical omega networks and non-optical extra-
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