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Simulated annealing routing and wavelength
lower bound estimation on wavelength-division
multiplexing optical multistage networks

Ajay K. Katangur
Yi Pan
Martin D. Fraser
Georgia State University
Department of Computer Science
Atlanta, Georgia 30303
E-mail: pan@cs.gsu.edu

Abstract. Multistage interconnection networks (MINs) are popular in
switching and communication applications and have been used in tele-
communication and parallel computing systems for many years.
Crosstalk a major problem introduced by an optical MIN, is caused by
coupling two signals within a switching element. We focus on an efficient
solution to avoiding crosstalk by routing traffic through an N3N optical
network to avoid coupling two signals within each switching element us-
ing wavelength-division multiplexing (WDM) and a time-division ap-
proach. Under the constraint of avoiding crosstalk, the interest is on
realizing a permutation that uses the minimum number of passes for
routing. This routing problem is an NP-hard problem. Many heuristic al-
gorithms are already designed by researchers to perform this routing
such as a sequential algorithm, a degree-descending algorithm, etc. The
genetic algorithm is used successfully to improve the performance over
the heuristic algorithms. The drawback of the genetic algorithm is its long
running times. We use the simulated annealing algorithm to improve the
performance of solving the problem and optimizing the result. In addition,
a wavelength lower bound estimate on the minimum number of passes
required is calculated and compared to the results obtained using heu-
ristic, genetic, and simulated annealing algorithms. Many cases are
tested and the results are compared to the results of other algorithms to
show the advantages of simulated annealing algorithm. © 2004 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1690276]

Subject terms: genetic algorithm; heuristic algorithms; lower bound estimate;
multistage interconnection networks; optical networks; routing; simulated anneal-
ing; wavelength-division multiplexing.
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1 Introduction

A multistage interconnection network~MIN ! is very popu-
lar in switching and communication applications. It has
been used in telecommunication and parallel computing
systems for many years. This network consists ofN inputs,
N outputs, andn stages (n5 log2 N). Each stage hasN/2
switching elements~SEs!; each SE has two inputs and two
outputs connected in a certain pattern.1 The most widely
used MINs are the electronic MINs. As optical technology
advances, there is a considerable interest in using optical
technology to implement interconnection networks and
switches.2 In electronic MINs electrical signals are used to
transmit messages, whereas in optical MINs optical signals
are used for this task.

Electronic and optical MINs have many similarities, but
there are some fundamental differences between them such
as the crosstalk problem in the optical switches.2 To avoid
the crosstalk problem, various approaches have been pro-
posed by many researchers. In this paper, the main focus is
on the Omega network, which has a shuffle-exchange con-
nection pattern. To transfer messages from a source address
to a destination address on an optical Omega network with-
out crosstalk, the messages are to be divided into several

groups~independent subsets! and then delivered using one
time slot for each group.3,4 In each independent subset, the
paths of the messages going through the network are
crosstalk free.4

The motivation for this research is to reduce the number
of independent subsets so that the messages can be sent in
as few time slots as possible. Using wavelength-division
multiplexing5 ~WDM! approach, if we have 10 wave-
lengths, for example, and if we obtain 9 independent sub-
sets, we can route all the messages at a single time in one
pass. If we obtain 12 independent subsets, we can route 10
independent subsets in one pass and the next 2 independent
subsets in another pass. Thus, even if all the independent
subsets are sent at the same time, as long as they use dif-
ferent wavelengths,5 there will be no conflicts and hence no
crosstalk will be induced. It is clear that with a fixed num-
ber of wavelengths, a reduction of the number of indepen-
dent sets can also decrease the total number of passes. A
common assumption is that each channel~wavelength! can
be switched independently,5 and there is no constraint that
each switch must be set consistent for all the input/output
channels.
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Previously the genetic algorithm~GA! was used suc-
cessfully to improve the performance over the heuristic al-
gorithms such as the sequential, degree-descending algo-
rithms. The drawback of the GA is its long running time. In
this paper, the main concentration is on the improvement of
the average number of passes considering the bandwidth of
wavelengths available and run-time performance using the
simulated annealing~SA! algorithm.6 Also lower bound es-
timate on the minimum number of wavelengths required is
calculated and compared to the results obtained by heuris-
tic, GA, and SA algorithms. SA~Ref. 6! is an optimization
method used for combinatorial optimization problems.7 The
SA method begins with a nonoptimal initial configuration
and works on improving it by selecting a new configuration
and calculating the cost differential.6 Different types of op-
erators for the SA algorithm are used and different cases are
tested and analyzed in this paper.

We previously2 proposed different methods for avoiding
crosstalk in optical MINs. The window method8 we pro-
posed is used to find the conflicts between messages and to
draw the conflict graph. This research uses our previous
idea of time-division multiplexing, but rather concentrates
on how to minimize the number of passes required for rout-
ing.

The main contribution of this paper is the successful
application of the SA algorithm to the routing problem to
improve the average number of passes and lower bound
estimation on the number of wavelengths required.

The rest of the paper is organized as follows. Section 2
presents a formal description of optical MINs. Section 3
presents the different heuristic algorithms available for
routing. Section 4 discusses the SA algorithm in general.
Section 5 gives a detailed description of how the SA algo-
rithm is applied to the routing problem. Section 6 provides
simulation results to evaluate the performance of the pro-
posed algorithm. Section 7 presents the lower bound esti-
mate calculation. Section 8 concludes this paper.

2 Optical MIN

2.1 MIN

MINs consists ofN inputs andN outputs, which are inter-
connected byn (n5 log2 N) stages of switching elements.1

There are two inputs and two outputs for each SE. Each
stage consists1 of N/2 SEs.

In this paper, the interest is on the Omega network,
which has a shuffle-exchange connection pattern. It hasN
inputs,N outputs, andn stages, wheren5 log2 N. To con-
nect the source address to the destination address, the ad-
dress is shifted 1 bit to the left circularly in each connection
such as source to the first stage, one stage to the next stage,
etc. For example, in an 838 network, the inputs and out-
puts are 000, 001, 010, 011, 100, 101, 110, and 111, which
forms a permutation. Each connection between the stages is
shuffle-exchanged, as shown in Fig. 1.

Permutation8 is an important problem in parallel com-
puter systems since it is a popular data movement opera-
tion. An N3N MIN with N inputs andN outputs where
N52n is considered. A permutation of a network8 is a pair-
ing such that each input and output appears in exactly one
pair. The source-destination permutation can be regarded as
a one-to-one mapping. For instance, the eight inputs and

eight outputs form a permutation. In general the destina-
tions can be randomly permuted~the message 000→101, it
may also go to 110 or 001 or any of the other outputs, and
this is the reason why it is termed ‘‘the destinations can be
randomly permuted’’!, as shown in Fig. 1. To route this
permutation in the Omega network, the shuffle exchange
connection pattern is considered. Sending all the inputs to
outputs in one time slot~pass! can be done as shown in Fig.
2. From Fig. 2, we can see that there will be crosstalk in all
the switching elements if all the inputs are routed to the
outputs in one pass.

2.2 Crosstalk in Optical-MIN

Crosstalk2 occurs when two signal channels interact with
each other. When crosstalk happens, a small fraction of the
input signal power may be detected at another output al-
though the main signal is detected at the right output. For
this reason, when a signal passes many switching elements,
the input signal will be distorted at the output due to the
loss and crosstalk introduced on the path.2 There are two
ways in which optical signals can interact in a planar
switching network. The channels carrying the signals could
cross each other in order to embed a particular topology.
Alternatively, two paths sharing an SE will experience
some undesired coupling from one path to another2 within
an SE. This is shown in Fig. 3. Each SE can be in two
connecting schemes, as shown in Fig. 3. Since these two
ways in Fig. 3 will cause crosstalk, a necessity arises to
avoid these situations to happen in all the SEs.

2.3 Approaches to Avoid Crosstalk

Many approaches have been proposed to reduce the nega-
tive effect of crosstalk. One way to solve crosstalk is to use
a 2N32N regular MIN to provide theN3N connection,3,9

Fig. 1 Shuffle exchange.

Fig. 2 Permutation in an 838 Omega network.
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which is the space domain approach. But half the inputs
and outputs are wasted in this approach. Another more ef-
ficient solution, which is the method used in this paper is to
route the traffic through anN3N optical network to avoid
coupling of two signals within each SE. This idea can be
implemented using the time domain approach8 and in the
legal passing ways are as shown in Fig. 4.

2.4 Avoiding Crosstalk in Omega Network

To avoid crosstalk, the time domain approach4 can be used,
which is to partition the set of the connections into several
subsets10 such that the connections in each subset can be
established simultaneously in the network without
crosstalk, i.e., to route all the inputs in several groups~in-
dependent subsets!, such that there will be no crosstalk be-
tween messages in each independent subset. Another ap-
proach is to use WDM technology. To utilize the large
available bandwidth in optical fibers, a single fiber can be
partitioned into multiple communication channels using
WDM technology. By using WDM approach,5 each such
independent subsets of groups can be routed in a single
time slot or in a reduced number of time slots, depending
on the number of different wavelengths available. For ex-
ample, using the WDM approach,5 if we have 10 wave-
lengths, for example, and if we obtain 9 independent sub-
sets, we can route all the messages at a single time in one
pass. If we obtain 12 independent subsets, then because we
have only 10 wavelengths available we can route 10 inde-
pendent subsets in one pass and the next 2 independent
subsets in another pass. Thus, even if all the independent
subsets are sent at the same time, as long as we have dif-
ferent wavelengths,5 there will be no conflicts and hence no
crosstalk will be induced. Thus, from the performance as-
pect, using WDM, messages are separated without conflicts
with other messages even in the same group, resulting in
the reduction in the total number of passes. We use a com-
bined approach that uses both time-domain and WDM-
domain approaches. If the number of independent subsets
found is smaller than the number of available wavelengths,
we can simply send all the messages in one time slot. Oth-
erwise, we may sendw subsets of messages in each time
slot, wherew is the number of wavelengths available, and
use several time slots to finish the transmission. The re-
search described here aims to reduce the number of inde-
pendent subsets, thus effectively reducing the number of
passes in a WDM network. In an SE as shown in Fig. 4,
there is no way to realize a permutation in a single pass

through an optical network without crosstalk. The reason is
at least the two input links on an input switch or the two
output links on an output switch cannot be active in the
same pass.2 Thus, at least two passes are required to realize
a permutation.5 For example, the permuation shown in Fig.
5 is considered. The eight messages shown in Fig. 5 can be
routed in two passes, as shown in Fig. 6. If more than two
wavelengths are available they can be sent at a single time
in one pass. Our goal is to minimize the number of wave-
lengths required to route all the inputs to the outputs with-
out crosstalk for randomly generated permutations.

3 Different Heuristic Routing Algorithms

3.1 Window Method

Since the messages to be sent to the network are to be
distributed into several groups, a method is to be used to
determine which messages should not be in the same group
because they will cause crosstalk. The window method8 is
used to find conflicts among all the messages to be sent.
This method, which has already been proved to be correct
by other researchers,8 can be described precisely as fol-
lows. Given a permutation, combining each source address
and its corresponding destination address produces a
matrix.8 The optical window size ism21, where m
5 log2 N and N is the size of the network. We use this
window on the produced matrix from left to right except on
the first and the last columns. If two messages have the
same bit pattern in any of the optical window, they will
cause conflict in the network. That means they cannot be in
the same group, hence, they have to be routed in different
wavelengths. To see how the window method works, con-
sider the example shown in Fig. 7 where the network size is
8 and the source addresses and the destination addresses are
as shown in Fig. 5. The optical window can be applied on
the permutation shown in Fig. 5 as shown in the figure,
where example messages 000 and 100 in step 1~window 0!
have the same bit pattern of 00 inside the window and
hence have a conflict. The bit patterns can be any of the
four combinations of 00, 01, 10, and 11, and hence are
shaded using different colors.

3.2 Conflict Graph

After using the window method, we can draw a conflict
graph.11 The number of the nodes is the size of the network.
Each node represents a source address. If two nodes have

Fig. 3 Two types of switching connections.

Fig. 4 Legal passing ways in a SE at a time.

Fig. 5 Shuffle exchange.
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conflict during routing, they are connected using an edge.
For the example of Fig. 7, the conflict graph is shown in
Fig. 8.

3.3 Previous Five Routing Algorithms

The previous five algorithms are the sequential increasing,
sequential decreasing, degree increasing, degree
descending12 and the GA~Ref. 13!. The purpose of these
routing algorithms is to schedule the messages in different
independent subsets to avoid the path conflicts in the
network.12 The more efficient the algorithm is, the fewer
independent subsets it will generate, and depending on the
bandwidth of wavelengths, available messages can be
routed accordingly using WDM approach.5 The order of the
messages to be picked for scheduling is an essential cause
for generating the different results. The basic idea of the
routing algorithm is as follows:
while (not end of messages list)

Select one of the left messages;
Schedule the message in a time slot with no conflict with

other messages that have been already scheduled.
There are many ways to decide the order of the scheduling.
The four heuristic algorithms choose the message in the
following manner:

1. Choose a message in increasing order of the message
source address.

2. Choose a message in decreasing order of the message
source address.

3. Choose a message based on the order of increasing
degrees in the conflict graph.

4. Choose a message based on the order of decreasing
degrees in the conflict graph.

The degree of each message in the conflict graph is the
number of conflicts it has with other messages in the con-
flict graph. Scheduling the messages in decreasing degrees
of the message conflicts will result in the best performance
among these four algorithms. The GA is not as easy and
straightforward, but it can be successfully used to reduce
the number of passes in an optical MIN~OMIN!. A brief
introduction on how GAs are used for OMINs to reduce the
number of independent subsets is provided in Sec. 3.3.1.
More about how GAs are applied to OMIN can be found in
Refs. 13 and 14.

3.3.1 GA

GAs are a part of evolutionary computing.15,16 The GA is
initialized with a set of solutions, which are represented by
chromosomes. These solutions are called the population.
Solutions from the initial population are taken and used to
form a new population. This procedure is motivated by the
expectation, by analogy with biological population, that the
new population will be ‘‘better’’ than the old one. To select
new solutions~offspring! to form a new population, the
fitness of the original solution is the important criterion. If
the fitness value is greater, they get more chances to repro-
duce. This is repeated generation by generation until some
condition is satisfied such as the number of populations
reaches the limit or the improvement of the best solution
found so far is good enough for the research or there is no
more improvement possible.

Fig. 6 Two passes for a specific permutation in an 838 Omega network.

Fig. 8 Conflict graph.Fig. 7 Window method example.
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3.3.2 Performance of the GA over the other heuristic
algorithms

The GA improves the performance in terms of the average
number of wavelengths required. It requires one or two
fewer wavelengths13 than that of the degree-descending al-
gorithm, and requires two wavelengths fewer than that of
the remaining algorithms. The GA was time consuming: it
took hours to calculate the number of passes for large net-
work sizes.

4 SA Algorithm

4.1 What is SA?

SA originated in the annealing processes found in thermo-
dynamics and metallurgy.6,15,16SA was introduced by Me-
tropolis and is used to approximate the solution of very
large combinatorial optimization problems7 ~e.g., NP-hard
problems!. It is based on the analogy between the annealing
of solids and solving optimization problems. When SA was
first proposed,16 it was most known for its effectiveness in
finding near-optimal solutions for large-scale combinatorial
optimization problems,17 such as the traveling salesperson
problem,6 buffer allocation in production lines,18 and chip
placement problems in circuits14 ~finding the layout of a
computer chip that minimizes the total area!. But recent7

uses of SA demonstrated that this class of optimization
methods could be considered competitive with other ap-
proaches when there are optimization problems to be
solved.

SA was derived from physical characteristics of spin
glasses.6,16 The principle behind SA is analogous to what
happens when metals are cooled at a controlled rate. The
slowly falling temperature enables the atoms in the molten
metal to line up and form a regular crystalline structure that
has high density and low energy. But if the temperature
goes down too quickly, the atoms do not have time to orient
themselves into a regular structure and the result is a more
amorphous metal with higher energy~see Figs. 9 and 10!.

In SA, the value of an objective function19 that we want
to minimize is analogous to the energy in a thermodynamic

system. At high temperatures, SA enables function evalua-
tions at faraway points and it is likely to accept a new point
with higher energy. This corresponds to the situation in
which high-mobility atoms are trying to orient themselves
with other nonlocal atoms and the energy state can occa-
sionally go up. At low temperatures, SA evaluates the ob-
jective function only at local points and the likelihood of it
accepting a new point with higher energy is much lower.
This is analogous to the situation in which the low-mobility
atoms can only orient themselves with local atoms and the
energy state is not likely to go up again.6

Obviously, the most important aim of SA is to avoid
trapping in a local minimum and obtain a globally better
solution by employing the so-called annealing schedule16 or
cooling schedule, which specifies how rapidly the tempera-
ture is lowered from high to low values. This is usually
application specific and requires some experimentation by
trial and error.

The following fundamental terminology16 concerning
SA is useful before going to a detailed description.

Objective function. An objective functionf (•) maps an
input vector x into a scalarE5 f (x), where eachx is
viewed as a point in an input space. The task of SA is to
sample the input space effectively to find anx that mini-
mizesE.

Generating function. A generating functiong(• , •)
specifies the probability density function of the difference
between the current point and the next point to be visited.
Specifically, Dx5(xnew2x) is a random variable with
probability density functiong(Dx,T), whereT is the tem-
perature. For common SA used in combinatorial optimiza-
tion applications,g(• , •) is a function independent of tem-
peratureT. For our problem, we use the move set approach
to generate the next solution.

Acceptance function. After a new pointxnew has been
evaluated, SA decides whether to accept or reject it based
on the value of the acceptance functionh(• , •). The most
commonly used acceptance function is the Boltzmann dis-
tribution function

h~DE,T!5exp~2DE/T!,

DE5 f ~xnew!2 f ~x!,

whereT is the temperature, andDE is the energy difference
betweenxnew andx.

The common practice is to acceptxnew with probability
h(DE,T). Note that whenDE is negative, SA accepts the
new point because it reduces the energy. WhenDE is posi-
tive, SA may accept the new point and end up in a higher
energy state or it may not accept the point. The lower the
temperature, the less likely SA is to accept any significant
high-energy states.

Annealing schedule. An annealing schedule regulates
how rapidly the temperatureT goes from high to low val-
ues. The easiest way of setting an annealing schedule is to
decrease the temperatureT by a certain percentage at each
iteration.

Fig. 9 Perfect is the condition where all atoms lined up on crystal
lattice sites, there are no defects, and this is the lowest energy
‘‘state’’ for this set of atoms.

Fig. 10 To reach the ‘‘low energy state,’’ ‘‘anneal’’ the material. Get
it very hot: gives atoms energy to move around. Cool it very slowly.
This gently restricts the range of motion until everything freezes into
a low-energy configuration.
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To find the next legal point, we usually define a move
set,16 denoted byM (x), as a set of legal points available
for exploration afterx. Usually the move setM (x) repre-
sents a set of neighboring points of the current pointx in
the sense that the objective function at any point of the
move set will not differ too much from the objective func-
tion at x.
The basic simulated annealing algorithm includes the fol-
lowing steps.14

1. Start: Select an initial value ofx from the input
space. Select a large starting value for the tempera-
ture T, a value for the final temperatureTfinal , a
value for the stopping conditionts for example that
is chosen as 10, and a suitable value for the tem-
perature reducing parametera. The ts value is used
because it will stop the algorithm if there are no
changes to the solution afterts iterations. We also
choose a variableM so thatM iterations are per-
formed for each temperature.

2. Initialize the current energyE, to be equal to the
energy of the initial solution, which is the initial
value ofx, andts to some valuetstop.

3. While (tstop.0 andT.Tfinal).
4. For i 51 to M do steps 5 through 9.
5. Generate a new solution using the present solution.
6. Calculate the new energy of the new solution. If the

new energy is less than the current energy accept the
new solution, otherwise use the following strategy
to decide.
R5random number~0,R,1!,

Y5exp~2DE/T!,

If ~R,Y!, then accept the solution,

else reject it.

7. If the move is accepted then the current energy will
be set to the new energy and the new solution is
kept, otherwise the old solution is kept.

8. If the new solution is accepted, assigntstop5ts , else
decrementtstop by 1 (tstop5tstop21).

9. Change the temperature by a factora, T5T3a.
10. End of while.

5 SA Algorithm Used in This Research

5.1 Move Sets in SA

The move sets are the most important operators in simu-
lated annealing approach. We used three types of move sets
for SA in this research. They are inversion, translation, and
switching.

5.1.1 Inversion

We have a sorted vertex and we apply inversion to this
sorted list of vertices to generate a new solution. For ex-
ample if we have a sorted vertex, as shown in Fig. 11.

Then we generate two random points and then replace
that section in the opposite order. For example, if we gen-
erate the random points as 4 and 11, then we invert the
numbers from 11 to 4 and store them in this order as shown
in Fig. 12.

5.1.2 Translation

Here we randomly generate two points and then that sec-
tion of the vertex is stored in between two randomly gen-
erated points. For example, if we generate 1 and 3 for the
section to be replaced, and then 14 and 15, the section
1–2–3 isplaced in between 14 and 15, as shown in Fig. 13.
This is applied on the sorted list of vertices obtained after
inversion is applied.

5.1.3 Switching

Here we randomly generate two points and then switch the
points at those positions. Suppose if we generate 0 and 15,
then 0 and 15 are interchanged in the previous sorted list of
vertices, as shown in Fig. 14.

We used these three techniques and found out that inver-
sion is mostly suitable for application in SA to generate a
new solution. This is so because translation required more
time when compared to inversion because of the random
number generations and switching move set tends to rup-
ture the solution.16

5.1.4 Initial solution for the SA algorithm

Initially we need a solution to proceed with the SA
algorithm.16 This is because SA cannot proceed without
having any arbitrary solution to generate the next solution.
For this purpose, the sorted list of vertices is formed with
vertices taken in the increasing order. The number of inde-

Fig. 11 Sorted vertex.

Fig. 12 Numbers inverted from 11 to 4.
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pendent subsets required with this sorted list of vertices is
calculated. We assign the current energy to the number of
independent subsets we got initially with vertices taken in
the increasing order and proceed to the SA algorithm.

5.2 Parameters of SA Algorithm

The parameters14 used in the algorithm are the starting tem-
perature, the final temperature, the temperature-cooling rate
~a!, the number of iterations~M! for a particular tempera-
ture value, and the stopping value (ts). The starting tem-
perature is used for the algorithm to start at a particular
value of temperature. The value of cooling rate~a! is cho-
sen in between 0 and 1. This value regulates how rapidly
the temperature goes from high to low. The final tempera-
ture value is chosen because after reaching this point, the
algorithm terminates and the solution is returned. We must
generate solutions at a particular temperature and see
whether or not they are accepted. For this purpose, we it-
erate at a particular temperature depending on theM value
chosen. The value ofts is chosen as 10 and is fixed. It is
used to stop the algorithm when there have been no
changes to the solution afterts iterations. In this way, the
algorithm terminates either on reaching the final tempera-
ture or afterts iterations. We use a random number genera-
tor to generate random numbers between 0 and 1. This
is used for comparing the random number value
to exp(2DE/T).

5.3 Application of the SA Algorithm to the Problem

A sorted list of vertices is taken in ascending order as the
initial solution to the problem. The number of independent
subsets using this sorted list of vertices is calculated and
then assigned to the current energy. Then we start at the
initial temperature. We generate a new solution using one
of the move set approaches. Then we calculate the number
of independent subsets required with this sorted list of ver-
tices and assign it to a variable called new energy. If the
new energy is less than or equal to the current energy, then
the solution is accepted. If the new energy is more than the
current energy, then we calculate exp(2DE/T) and then
generate a random number. If the random number gener-
ated is less than exp(2DE/T), then the solution is accepted,
otherwise the solution is rejected. If the solution is ac-
cepted, then the new energy is assigned to current energy
and the new sorted vertex is used for generating the next
solution. If the solution is not accepted, then the current
energy does not change and the sorted vertex will remain
the same. We performM iterations for each temperature
value, and after theseM iterations, the value of the tem-

perature is changed toT5a3T. Then we repeat the pro-
cess ifT is greater than the final temperature andtstop is
greater than 0 (tstop.0). Finally, the algorithm stops when
any of the two conditions are met. At this point, the number
of independent subsets is returned, which corresponds to
the final solution obtained after applying the SA algorithm.
Using the value obtained, we can then determine in how
many passes the permutation can be routed using the avail-
able wavelengths by WDM method.5

6 Analysis of the Test Results

6.1 Examples

Improved results are obtained using simulated annealing in
many cases. The following example is for an 838 net-
work. The randomly generated adjacency matrix is as fol-
lows:

0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

The solution of sequential algorithm has four colors: 1 1 2
2 3 3 4 4. Thesolution of the degree-descending algorithm
has four colors: 4 4 3 3 2 2 1 1.Using the SA algorithm
with starting temperature51000, final temperature50.05,
cooling rate50.9, number of iterations per temperature
520, and rounds number5100, we get the result with three
colors20 ~independent subsets! as 1 2 2 1 2 1 1 2. The SA
algorithm reduced one color compared to the other two
algorithms.

6.2 Test Cases Analysis

In our research, many cases were tested with different com-
binations and values of parameters. We know that among
the four heuristic algorithms, the degree-descending algo-
rithm gives the best result. From Ji’s paper,13 we see that
the GA produces better results when compared to the four
heuristic algorithms, but it was time consuming. For the
purpose of testing the SA algorithm with the other algo-
rithms, first we tested the ways of generating a solution
using different types of move set approaches. We employed
inversion, translation, and switching move set approaches

Fig. 13 Section 1–2–3 placed between 14 and 15.

Fig. 14 Switching randomly generated points.
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and then generated the sorted list of vertices and calculated
the number of independent subsets, and the time taken by
each approach by varying the parameters.

After many careful observations and the testing of many
cases the number of rounds was set at 100, starting tem-
perature at 1000, final temperature at 0.05, cooling rate at
0.9, and the number of iterations per temperature at 20. Too
low values for these parameters resulted in high values for
the average number of independent subsets. When the val-
ues of these parameters were made too high, there was no
improvement in the average number of independent subsets
and the time complexity increased. Therefore, after many
careful observations with different network sizes, the pre-
ceding values were chosen to be optimum for generating a
good average value for the number of independent subsets
with a good low-time complexity. The inversion process
was used to generate the move sets for our SA algorithm to
be compared with the other five algorithms. Let us analyze
more results by comparing the average number of indepen-
dent subsets with different move set approaches and by
comparing the running times of different move set ap-
proaches.

Further from Figs. 15 and 16, we can conclude that the
inversion move set approach performs better than the other
move set approaches because a lower number of indepen-
dent subsets is obtained with the inversion approach. The
running time using inversion is similar to that of switching
approach, but because of the advantage of fewer indepen-
dent subsets obtained with inversion we employ inversion
move set approach. We shall see how the SA algorithm
performs by comparing it to the other algorithms. We com-

pare the SA algorithm with the other algorithms using dif-
ferent combinations of the starting temperature, final tem-
perature, cooling rate, and number of iterations per
temperature values on different network sizes and then ana-
lyze the results.

To see how the starting temperature affects the result of
the SA algorithm, we tested many cases using different val-
ues for the starting temperature. Here we use a 16316
network, varying the starting temperature and employing
the optimum values of 0.05 for the final temperature, 0.9
for the temperature cooling rate, and 20 iterations per tem-
perature. The number of rounds was set at 1000. The results
are shown in Fig. 17. From Fig. 17, we see that the GA
provides the smallest number of independent subsets. The
SA algorithm has almost the same number of independent
subsets as the GA when the starting temperature value
reaches around 1000. Also, the average number of number
of independent subsets decreases when the temperature val-
ues grow larger, because the SA algorithm has more search
space to search for an optimal solution with increasing tem-
perature values. The decreasing line shows that the result
becomes better with increasing starting temperature values.
But as we see from Fig. 17 after a certain point even if the
temperature increases there is not much if any change in the
value of the average number of independent subsets.

To determine how the final temperature affects the re-
sults we tested some other cases with different values of
final temperature. We used a 16316 network, varying the
final temperature and employing the optimum values of
1000 for the starting temperature, 0.9 for the temperature
cooling rate, and 20 iterations per temperature. The number
of rounds was set at 1000. The results are shown in Fig. 18.
From Fig. 18, we can again see that the GA provides the
smallest number of average number of independent subsets.
The SA algorithm has almost the same average number of
independent subsets as that of the GA when the final tem-
perature value reaches around 0.04. Also, the average num-
ber of independent subsets decreases when the final tem-
perature values grow smaller. This is because, when we
evaluate exp(2DE/T) and compare it with the value gener-
ated by the random number generator, as the temperature is
getting low, exp(2DE/T) evaluates to a much smaller
value, which in many cases is less than the random number
generated. Thus, at this point only solutions that are strictly
better than the original solution are accepted and the others

Fig. 15 Comparison of average number of independent subsets for
different move sets.

Fig. 16 Comparison of running times for different move sets.

Fig. 17 Tested 16316 network with 1000 rounds and different start-
ing temperature values.
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are rejected. Thus, as the temperature is decreased, the
chances of getting a better solution is increased and this is
the reason that the average number of independent subsets
is reduced as the temperature is lowered. The decreasing
line shows that the result is getting better with the decreas-
ing values of the final temperature. But as we see from Fig.
18, after a certain point even if the final temperature is
decreased there is not much if any change in the value of
the average number of independent subsets.

To determine how the temperature-cooling rate affects
the results, we test some other cases with different values of
the temperature-cooling rate. We used a 16316 network,
and varied the temperature cooling rate and employed the
optimum values of 1000 for the starting temperature, 0.05
for the final temperature, and 20 iterations per temperature.
The number of rounds was set at 1000. The results are
shown in Fig. 19. From Fig. 19, we can again see that the
GA provides the smallest number of average number of
independent subsets. The SA algorithm has almost the same
average number of independent subsets as that of the GA
when the temperature-cooling rate reaches around 0.09.
Also, the average number of independent subsets decreases
when the temperature cooling rate values grow larger. This
is becauseT5a3T, wherea is the temperature cooling
rate. As the value ofa becomes larger, the next temperature
at which the SA algorithm searches for a solution is more
than when the temperature-cooling rate is less. In this way,
more temperature values will be available for the SA algo-

rithm to search for a good solution. The decreasing line
shows that the result becomes better with increasing
temperature-cooling rate values. But as we see, after a cer-
tain point, even if the final temperature-cooling rate is in-
creased there is not much if any change in the value of the
average number of independent subsets.

To determine how the number of iterations per tempera-
ture affects the results, we tested some other cases with
different values of iterations per temperature. We used a
16316 network, varied the temperature cooling rate, and
employed the optimum values of 1000 for the starting tem-
perature, a final temperature of 0.05, and a temperature-
cooling rate of 0.9. The number of rounds was set at 1000.
The results are shown in Figure 20. From Fig. 20, we can
again see that the GA provides the smallest number of av-
erage number of independent subsets. The SA algorithm
has almost the same average number of independent sub-
sets as that of the GA when the iterations/temperature value
reaches around 20. Also, the average number of indepen-
dent subsets decreases when the iterations/temperature val-
ues grow larger. This is because at the same temperature,
we iterate for some time to find the best solution. If this
value is high, then the chance of obtaining a good solution
is also high. The decreasing line shows that the result be-
come better with increasing iterations/temperature values.
But as we see, after a certain point, even if the iterations/
temperature is increased there is not much if any change in
the value of the average number of independent subsets.

If we keep trying values less than the optimum values
for the parameters, then the average number of independent
subsets obtained is not good. Even too greater values too
much longer would result in increased running time without
much improvement in the value of the average number of
independent subsets. Thus, from this series of test results,
we can conclude that the SA algorithm gives the best solu-
tions when the starting temperature is around 1000, final
temperature is around 0.05, temperature-cooling rate is
around 0.9, and the number of iterations per temperature is
around 20. The algorithm performance for different size
networks is shown in Fig. 21. From Fig. 21, we see that the
degree-ascending algorithm performs the worst. This was
also concluded by Miao12 in his research. More information
can be obtained about Miao’s research and about the four
heuristic algorithms from Ref. 12. From Fig. 21 it is clear
that GA is the best. The results obtained by the SA algo-

Fig. 18 Tested 16316 network with 1000 rounds and different final
temperature values.

Fig. 19 Tested 16316 network with 1000 rounds and different tem-
perature cooling rate values.

Fig. 20 Tested 16316 network with 1000 rounds and different
iterations/temperature values.

Katangur, Pan, and Fraser: Simulated annealing routing . . .

1088 Optical Engineering, Vol. 43 No. 5, May 2004



rithm very closely match those of the GA. But as already
discussed, since the GA takes very long times to compute a
solution, the SA algorithm can be considered more appro-
priate for finding the average number of independent sub-
sets for a given network.

By analyzing the test results we have that the largest
difference between the sequential~ascending! algorithm
and the SA algorithm is 0.768, the largest difference be-
tween descending algorithm and the SA algorithm is 0.617,
the largest difference between the degree-ascending algo-
rithm and the SA algorithm is 0.746, and the largest differ-
ence between the degree-descending algorithm and the SA
algorithm is 0.157. Compared to the GA, the SA algorithm
sometimes performs better than the GA. In other words, the
SA algorithm can improve the performance 0.768 passes in
average over the sequential algorithm, 0.617 passes in av-
erage over the descending algorithm, 0.746 passes over the
degree-increasing algorithm, and 0.157 passes over the
degree-descending algorithm. Based on the test cases in
this paper, the SA algorithm could reduce the number of
independent subsets by 0, 1, or 2 in each round over the
basic four heuristic algorithms other than the GA. The dif-
ference in average number of independent subsets of SA to
the other algorithms is as shown in Table 1.

7 Lower Bound Estimate

Here we will find the clique of a conflict graph,11 which is
obtained after applying the window method to a given net-
work. We find the number of cliques21 and use this value as
a lower bound on the number of independent subsets. A
clique in an undirected graphG5(V,E) is a subsetV8,V

of vertices, each pair of which is connected by an edge in
E. The size of the clique is the number of vertices it con-
tains. The clique problem is the optimization problem of
finding a clique of maximum size in a graph. An algorithm
for determining whether a graphG5(V,E) with uVu verti-
ces has a clique of sizek is to list all k subsets ofV, and
check each one to see whether it forms a clique. The run-
ning time of the algorithm is polynomial ifk is a constant.
Note thatk could be proportional touVu, in which case the
algorithm runs in superpolynomial time. We can find the
clique by using an algorithm that tests for a particular
clique size21 by traversing through all the nodes in the con-
flict graph. For example, a clique of size 4 on a graph
having eight nodes can be found using the following four
loops:
for ( i 50; i ,5; i 11) $

for ( j 5 i 11; j ,6; j 11) $
for (k5 j 11; k,7; k11) $

for ( l 5k11; l ,8; l 11) $
check if verticesVi , Vj , Vk , and Vl
form a clique of size 4

%
%

%
%
Similarly, we can find the clique of different sizes. As we
can see, this algorithm has a very high time complexity
because finding the clique of a graph is a NP-complete
problem.21 The number of possible combinations for find-
ing a clique of sizek with n nodes can be found using the
combination formulanck . This method of finding the
clique may not be an efficient implementation, but we are
not concerned with the clique problem but with the prob-
lem of finding a lower bound estimate on the number of
independent subsets, and thus depending on the number of
wavelengths available, the number of passes in which the
messages can be routed.

Fig. 22 Conflict graph for the permutation in Table 2.

Table 2 Permutations of an 838 network.

Sources Destinations

000 101

001 100

010 010

011 110

100 001

101 011

110 111

111 000

Fig. 21 Average number of independent subsets with different net-
work sizes.

Table 1 Maximum number of independent subsets reduced by the
SA algorithm for 1000-round cases.

Nodes Seq—SA Seq Dn—SA
Degree

Ascend—SA
Degree

Descend—SA

8 2 2 2 2

16 2 2 2 2

32 2 2 2 2

64 2 2 2 1

128 2 2 2 1

256 2 2 2 1
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Since finding the clique has a very high time complexity,
we avoid finding all the cliques equal to the number of
nodes in the graph. This can accomplished by finding the
maximum number of independent subsets required for rout-
ing a given permutation11 using heuristic algorithms.12

Then using this value as the upper bound, we can find the
clique of a given conflict graph. For any conflict graph the
minimum clique value will be 2. So starting from a clique
value of 2, we find higher clique values until we reach the
upper bound value. If we obtain a new clique value, then
we update the value of the clique. This is done until the
upper bound is reached. We stop at this point because there
is no point in searching for a higher clique value, as we
have already found the maximum number of independent
subsets required. If a higher clique value existed, then the
maximum number of independent subsets value would
have been different. Hence, the clique value found is the
correct value. If the clique value found for a given permu-
tation is equal to the number of independent subsets ob-
tained using any algorithm discussed so far, then the algo-
rithm has worked well in routing that permutation.

The clique value calculated is used as a lower bound on
the number of independent subsets value, which can be
used to find the passes required, depending on the wave-
length bandwidth available to route a given permutation. In
other words, the maximum number of independent subsets
can never be less than the clique size. Some times, how-
ever, a given permutation can never be routed using the
value of maximum clique size as the number of passes if a
single wavelength is available. For instance, let us consider
a permutation in an 838 network, as shown in Table 2.
The conflict graph for the permutation in Table 2 can be
drawn11 as shown in Fig. 22.

For this example, the maximum clique value is 2, but
there is no way we can route this permutation in two passes
by any method we employ when a single wavelength is
available. Thus, sometimes we may not get an accurate
lower bound~LB! estimate and this is not the tightest lower
bound on the number of passes in which we can route a
given permutation.

Now we compare the number of independent subsets
obtained and the running times using the degree-
descending algorithm~better than the other heuristic algo-
rithms!, the GA~Refs. 15 and 16!, and the SA algorithm.7

From Table 3 the number of independent subsets obtained
with SA algorithm is very close to the clique size. For
network sizes up to 6, SA performs better than GA, but as
the network size increases GA performs better than the SA.

But the running time of GA is very high as compared to
that of SA, and therefore SA can be used as a very good
algorithm in routing. From Table 3 we can see that the
difference between maximum number of cliques and maxi-
mum number of independent subsets obtained with SA for
100 rounds is very small. As discussed, the clique is not the
tightest LB in some cases. Hence, the real difference may
be even smaller than what we have obtained. We can con-
clude that the SA algorithm can be used effectively for
routing in WDM OMIN.

8 Conclusion

The SA algorithm has successfully improved the perfor-
mance for routing and scheduling in WDM OMIN. We
used different operators and parameters of the SA algo-
rithm. The SA algorithm successfully reduced the number
of passes we use to send messages on a WDM OMIN with-
out crosstalk. The most obvious advantages of using the SA
algorithm over the other four heuristic algorithms is that it
reduces the average number of independent subsets, thus
reducing the number of passes, depending on the wave-
lengths available. When compared to the GA, the SA algo-
rithm has almost the same number of independent subsets
as that of the GA, and, for small network sizes, it is better
than the GA. The big advantage of the SA algorithm over
GA is its running time. In the future, inversion, translation,
and switching move set techniques can be implemented in
parallel to obtain better solution.
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