
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

6-27-2007

Structure Pattern Analysis Using Term Rewriting
and Clustering Algorithm
Xuezheng Fu

Follow this and additional works at: http://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Fu, Xuezheng, "Structure Pattern Analysis Using Term Rewriting and Clustering Algorithm." Dissertation, Georgia State University,
2007.
http://scholarworks.gsu.edu/cs_diss/17

http://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


 

 

 

 
 
 
 

Structure Pattern Analysis Using Term Rewriting and 

Clustering Algorithm 

 

By  

XUEZHENG FU  

Under the Direction of Robert W. Harrison 

 
ABSTRACT 

Biological data is accumulated at a fast pace. However, raw data are generally difficult to 

understand and not useful unless we unlock the information hidden in the data. 

Knowledge/information can be extracted as the patterns or features buried within the 

data. Thus data mining, aims at uncovering underlying rules, relationships, and patterns 

in data, has emerged as one of the most exciting fields in computational science. In this 

dissertation, we develop efficient approaches to the structure pattern analysis of RNA and 

protein three dimensional structures. The major techniques used in this work include term 

rewriting and clustering algorithms. Firstly, a new approach is designed to study the 

interaction of RNA secondary structures motifs using the concept of term rewriting. 

Secondly, an improved K-means clustering algorithm is proposed to estimate the number 

of clusters in data. A new distance descriptor is introduced for the appropriate 

representation of three dimensional structure segments of RNA and protein three 

dimensional structures. The experimental results show the improvements in the 

determination of the number of clusters in data, evaluation of RNA structure similarity, 



 

 

 

 
 
 
 

RNA structure database search, and better understanding of the protein sequence-

structure correspondence. 
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Chapter 1 

 Introduction 

Biological data is produced and collected at a growing pace (Berman et al., 2000; 

Berman et al., 1993). However, raw data are generally difficult to understand and not 

useful unless we unlock the information hidden in the data. Knowledge/information can 

be extracted as the patterns or features buried in the data. Thus data mining, aims at 

uncovering underlying rules, relationships, and patterns in data, has emerged as one of 

the most exciting fields in computational science. In this dissertation, we develop new 

efficient algorithms for mining the structure patterns of RNA and protein data. The major 

techniques used in our work include term rewriting (Baader and Nipkow, 1999; Clavel et 

al., 2003) and clustering algorithms (Jain et al., 1999). The application results show the 

improvements in the determination of the number of clusters in data, evaluation of RNA 

structure similarity, RNA structure database search, classification of RNA structures, and 

better understanding of the protein sequence-structure correspondence.   

1.1 Motivation 

Recently, due to the development of X-ray and NMR techniques, the number of 

ribonucleic acid (RNA) and protein three dimensional structures is increasing at a 

growing pace (Berman et al., 2000; Berman et al., 1993). RNA plays a critical role in 

mediating every step of cellular information transfer from genes to functional proteins 

(Batey et al., 1999), and proteins are essential parts of all living organisms and participate 
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in every process within cells (Branden et al., 1998). However, experimental methods to 

determine RNA or protein structures are still highly labor intensive and expensive. 

Therefore, systematic approaches to automatically identify the structure patterns of RNA 

and protein structures are highly desirable. Though much effort has been made in this 

research field, there are still many problems under discussion and no one method is 

widely accepted, especially for RNA structure analysis. In this dissertation, we decide to 

uncover the structure patterns of RNA and protein structures using term rewriting and K-

means clustering algorithm. The hard problems and even open problems we have to solve 

include selection, transformation, and representation of RNA secondary motifs, three-

dimension structure segments, and protein secondary structures; definition of terms, 

equations, and rules in term rewriting system; determination of the number of clusters in 

data; validation measure of clustering, and evaluation of structure similarity.  

1.2 Challenges  

When mining structure patterns from RNA and protein data, it is a big challenge 

to make the algorithms and uncovered hidden information meet the following criteria: 

To an algorithm: 

• Efficient: The algorithm must have low computational complexity.  

• Reliable: The independency of the algorithm on certain parameters or 

initialization conditions should be minimized. The algorithm should generate 

stable results for similar data.         

• Extensible: The algorithm is easy-understanding and flexible to be extended. 

To the uncovered hidden information: 
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• New: The uncovered hidden information must be irredundant. 

• Correct: Correct and meaningful results are highly dependent on appropriate 

selection or representation of data. Thus specific domain experts are needed for 

verification of the data and the uncovered information.    

• Applicable: The uncovered information should be useful. 

 

In this dissertation, we try to reach the above criteria from every step of data 

mining process: data collection, data preprocessing, data mining, and information 

interpretation. The objective of data mining is to uncover underlying rules, relationships, 

and patterns in data (Hand et al., 2001). The diagram of data mining process is shown in 

Figure 1.1 and further explanations of each phase are presented.   

 

 

 
Figure 1.1. Data mining process. 

 

• Data collection: Sometimes huge amounts of raw data are collected from different 

sources using different techniques. But most of them are not that useful. 

Inappropriate selection or representation data will lead to incorrect results. So the 

fields/attributes directly related to the target problem should be carefully selected 

from the raw data. 

• Data preprocessing: Preprocessing is an important step in data mining. It includes 

removal of erroneous data and transformation of data. Erroneous data will lead to 

incorrect results. Transformation of data to a suitable representation, such as 

Data 
collection 

Data 
preprocessing 

Data 
mining 

Information 
interpretation 
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encoding into a vector and reducing the dimensions, will decrease the 

computational complexity and data mining effort.       

• Data mining: At this step, algorithms and models are designed for the data. 

Suitable techniques should be chosen according to a certain task.  

• Information interpretation: The novelty, correctness, and usefulness of the 

information extracted from the data must be interpreted by domain experts.    

1.3 Contributions 

The contributions of our work are broadly summarized as follows: 

• Transformation and representation of data: appropriate transformation and 

representation of sequence and structure information of RNAs and proteins needs 

specific domain knowledge and tools. Correct and useful results are dependent on 

the choice of suitable transformation and representation of data. We show how to 

efficiently interpret the data for further successful process in this dissertation.  

• A new implementation of term rewriting system: To study the relationship 

between the RNA secondary structures and RNA pseudoknots, we define terms, 

equations, and rules for a new implementation of term rewriting using Maude 

system (Clavel et al., 2003). To our knowledge, it is the first time that term 

rewriting is used to study problems related to RNA three dimensional structures.       

• Determination of the number of clusters in data: we propose a new algorithm to 

estimate the reliability of the number of clusters in data based on K-means 

clustering algorithm. Stability with respect to bootstrap sampling is adapted as the 

cluster validation measure for estimating the reliable clustering.  
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• Converting a three dimensional structure to a string: we uncover the high frequent 

structure segments (HFSS) and their similarity from RNA with known structures. 

Thus an RNA three dimensional structure can be converted into a string of HFSS. 

This not only reveals the RNA three dimensional structure elements but also 

simplify many originally hard problems if we try to solve them using graph 

algorithms.    

• Rapid RNA structure database search: we simplify the evaluation of similarity 

between RNA three dimensional structures by converting an RNA three 

dimensional structure into a string of HFSS. It makes the rapid RNA structure 

database search feasible.         

1.4 Organization  

The organization of this dissertation is as follows:  

In chapter 2, a new approach is proposed to uncover the relationship between 

RNA secondary structures and RNA pseudoknots using term rewriting. The Maude term 

rewriting system is chosen for the implementation. The effectiveness of our approach is 

tested on a set of RNA data from PseudoBase (Batenburg et al., 2000).   

 Chapter 3 provide an introduction to K-means clustering algorithm and 

discussion of some general problems on K-means, including the discovery of suitable 

number of clusters in data, initialization of K-means, and evaluation of cluster similarity. 

An improved K-means algorithm is presented for determination of the suitable number of 

clusters in a data.  
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In Chapter 4, the improved K-means clustering algorithm is applied to the 

problem of structure pattern analysis of RNA three dimensional structures. The suitable 

window size for the representation of RNA structure segments is detected. Based on this 

window size, the high frequent structure segments (HFSS) and the similarity between 

different types of HFSS are found. It makes it possible to convert an RNA three 

dimensional structure into a string of HFSS. Many originally hard problems like 

similarity evaluation of RNA three dimensional structures and RNA structure database 

search can be simplified based on this work.    

In Chapter 5, the improved K-means clustering algorithm is used to cluster the 

protein three dimensional structures, including structure segments and sequence 

segments. Six protein structure datasets are tested in the experiment, and the experimental 

results are validated by both biological measure and statistical measure. Though the true 

number of clusters in current available protein structures in unknown, our algorithm 

combined with bootstrap sampling is helpful to estimate the range of number of clusters.    

Chapter 6 summarizes this dissertation and discusses the future works.   
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Chapter 2 

Pattern Analysis Using Term Rewriting 

RNA plays a critical role in mediating every step of cellular information transfer 

from genes to functional proteins. Pseudoknots are functionally important and widely 

occurring structural motifs among most prevalent RNA structures. It is widely recognized 

that RNA secondary structures play an important role in RNA folding. In this 

dissertation, a new method is proposed to uncover the relationship between RNA 

secondary structures and RNA pseudoknots using the concept of term rewriting. The 

method is implemented using the Maude system (Clavel et al., 2003), a formal language 

and tool set based on term rewriting logic. In our implementation, RNA structures are 

treated as terms and equations. Rules are discovered for indicating the relationship 

between RNA secondary structure and RNA pseudoknots. Our method is tested on RNA 

pseudoknots in PseudoBase and the experimental results show that methods based on 

term rewriting have capacity of description of data and properties, representation of 

general rules, and execution of queries using logical inference, and is fit for the 

simulation of complex biological system.   

2.1 Introduction  

2.1.1 RNA Structure  

RNA primary structure is the nucleotide sequence of four bases A(Adenine), 

C(cytosine), G(guanine), U(Uracil). The pattern of base pairing determines the secondary 

structure of RNA. Watson-Crick(A=U and G≡C) and Wobble(G=U) are widely occurring 
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stable base pairs in RNAs while other base pairs are possible but less stable and often 

ignored. The secondary structure can be decomposed into a few types of secondary 

structural motifs: stem, hairpin loop, bulge, internal loop, multi-branched loop, start 

sequence and external sequence, which are shown in Figure 2.1. Three dimensional 

folding of an RNA molecule under appropriate conditions forms the RNA tertiary 

structure. The comprehensive introduction to RNA structures can be seen in (Saenger et 

al., 1984; Batey et al., 1999; Staple and Butcher, 2005). 

 

Figure 2.1. RNA secondary structural motifs. T: stem, H: hairpin loop, I: internal loop, S: 
start sequence, E: external sequence, B: bulge, M: multi-branched loop.  
 

An RNA pseudoknot is a tertiary structural element that occurs in all classes of 

RNA and has shown to be important in many biological functions (Staple and Butcher, 

2005). The topology of pseudoknot can be defined as follows.  

Let S be an RNA sequence naaaaaS ...4321=  where n is the number of bases in the 

RNA sequences. ),( ji aa  and ),( kh aa are two distinct base pairs in the sequence, where 

ji <  and kh < . i, j, h, and k are integers between 1 and n.     

Pseudoknots are formed by base pairing between a secondary loop structure and 
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compliment bases outside the loop. According to the work of Cornelis et al. (Chastain 

and Tinoco Jr., 1991), there are three main types of pseudoknots: I-type pseudoknot, H-

type pseudoknot, and B-type pseudoknot. I-type pseudoknot is formed between the 

secondary motif internal loop and the bases outside the loop (see Figure 2.2(a)); H-type 

pseudoknot is established between the secondary motif hairpin loop and the bases outside 

the loop (see Figure 2.2(b)); B-type pseudoknot is a structure constructed by the 

secondary motif bulge loop and the bases outside the loop (see Figure 2.2(c)). The 

structures of different types of pseudoknots are shown in Figure 2.2.     

 
 

 

(a) (b) 
 
 
 
 
 
 

 

(c) 
 
Figure 2.2. Types of  pseudoknots (Chastain and Tinoco Jr., 1991).  (a) I-type 
pseudoknot. (b) H-type pseudoknot. (c) B-type pseudoknot. 

 

From the above definition of pseudoknots, we can see that the base pairing in 

pseudoknots is not well nested. Since standard dynamic programming algorithms use a 

recursive scoring system to identify paired stems, non-nested base pairs can not be 

5’ 3’

5’ 3’ 5’ 3’

5’ 3’
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detected. It has been proven that pseudoknot prediction problem is NP-complete using 

minimum free energy model (Lyngsø and Pedersen, 2000).   

2.1.2 Term Rewriting 

Term rewriting is a logical formalism (Baader and Nipkow, 1999; MARTI-

OLIET and Meseguer, 2002). It consists of two key ideas: states and the behavior of a 

system. The states of a system are represented as elements of an algebraic data type; and 

the behavior of a system is described by local transitions between states according to a 

predetermined set of rewrite rules. A rewrite rule (also called rewrite law) declares the 

relationship between the states and the transitions between them.  

Term rewriting has a long history in theoretical Computer Science (Baader and 

Nipkow, 1999; MARTI-OLIET and Meseguer, 2002; Robinson and Voronkov, 2001). 

Recently it found a place in bioinformatics applications (Eker et al., 2002, Talcott et al., 

2004) as well. In Carolyn et al., work (Talcott et al., 2004), a model called pathway logic 

was built to simulate the overall state of proteins and protein functional domains and their 

interactions by using a rewriting tool Maude (Clavel et al., 2003). 

2.1.3 Maude Term Rewriting System 
 

Maude, as a term rewriting language, supports both equational and rewriting logic 

computation for a wide range of applications with high performance (Clavel et al., 2003). 

Its high performance is achieved by compiling the rewrite rules into efficient matching 

and replacement automata (Eker, 1996). The advantage of this technique is to make it 

possible to trace every single rewriting step in Maude system. Besides high performance, 
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the naturalness and simplicity of Maude for concurrent computation perfectly match the 

requirements of our application where the computation of concurrent interaction of RNA 

structure motifs is required.   

The following is a brief introduction to the reserved words for the definition of 

terms, equations and rewrite laws in the Maude language.  

 
  sort: sort can be considered as a type of collection. subsort term can be used to 

indicate a belonging relationship between sorts. 

  op: is used to define an operator. It enables the user-definable syntax in Maude. 

Operator declarations may include attributes that provide additional information about 

the operator, like associativity, commutativity et al.      

  eq: stands for equation. It demonstrates a bidirectional equivalent relationship 

between two sorts. Equation can be used to deploy reduction and conversion in 

rewriting logic language by defined rules.   

 ceq: is the shortage of conditional equation. It declares a conditional equation.  

 rl: is used to define a rewrite law. The rewrite laws are different from equations in 

that rewrite laws define the concurrent features while equations are used to define the 

non-concurrent features of the language. Equations are two-directional but rewrite 

laws are irreversible.  One state can transition back to the previous state but any 

particular rewrite rule cannot go backwards.  

 crl: stands for conditional rewrite law. It is used for definition of conditional rewrite 

laws.   
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In this work, we develop a new implementation using the Maude term rewriting 

system to study the relationship between RNA secondary structures and RNA 

pseudoknots. The detailed definitions of terms, equations, and rewrite rules in the 

implementation are introduced in the following sections.  

2.3 Method  

Our method has four steps (see Figure 2.3). In the first step, the RNA secondary 

structure is predicted from RNA sequence. Step 2 parses the secondary structure using 

term rewriting to retrieve motifs. Step 3 performs motif-motif interactions by certain 

rules and a score function is applied to evaluate each motif-motif interaction. Step 4 

outputs the predicted structure.  

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3. Term-rewriting based method for pattern analysis of RNA structures. 

RNA sequences 

1. Generate RNA 
Secondary structures 

2. Parse the secondary 
structure 

3. Motif-motif 
interaction using term 

rewriting 

4. Structure output  
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Here we explain our model step by step by giving an example of Viral 3’-UTR 

RNA pseudoknot (PKB116) (Batenburg et al., 2000). Figure 2.4 shows the procedure of 

pattern analysis. In Figure 2.4, the left part is our method and the right part is the results 

corresponding to each step of the method.   

 
 

 
 

Figure 2.4. Example of pattern analysis of RNA structures. 
 

 

RNA sequence 

1. Generate RNA 
secondary structure 

2. Parse the secondary 
structure 

3. Motif-motif interaction 
using term rewriting 

4. Structure 
output 

 

   .{{{{....[[[[[.}}}}........]]]]].

CAGUGUUUUGAAGUCCACUUAAAUAGAACUUCU

.........[[[[[ ... [[.....]].]]]]].

S(CAGUGUUUU)T(GAAGU)I(CCA)T(CU)H(UAAAU)T(AG)I(A)T(ACUU

S(CAGUGUUUU)H(CCACUUAAAUAGA)E(U)

S(CAGUGUUUU)T(GAAGU)H(CCACUUAAAUAGA)T(ACUUC)E(

1. A motif never interacts with itself. 
2. H or B motifs can interact with any other motifs. 
3. I or S motifs can interact with motifs behind itself towards to  
the end of the structure until encounters an H motif. 
4. E motif can interact with motifs before itself towards to the 
beginning of the structure until encounters an H motif. 
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Step 1: 

The step 1 generates pseudoknot-free secondary structure from an RNA sequence. The 

secondary structure of RNA molecules can be predicted by calculating the minimum free 

energies structure for all possible combinations of base pairs. There are many tools for 

RNA secondary structure prediction, in which Mfold (Zuker, 2003) and RNAfold 

(Hofacker et al., 1994; Hofacker, 2003) package are most widely used in literature. In our 

practice, Mfold is used with default parameters. The output secondary structure of step 1 

is a dot-bracket string in which corresponding brackets stand for base pairs of nucleic 

bases. 

.........[[[[[ ... [[.....]].]]]]]. 

 

Step 2: 

Step 2 retrieves secondary structural motifs (see Figure 2.1) from the dot-bracket string. 

Here, multi-branched loop is treated as independent internal loops. The motifs in the 

example of Figure 2.4 are as follows: 

S(CAGUGUUUU)T(GAAGU)I(CCA)T(CU)H(UAAAU)T(AG)I(A)T(ACUUC)E(U) 

 

Where S(CAGUGUUUU) is a start sequence; T(GAAGU), T(CU), T(AG), and 

T(ACUUC) are stems; I(CCA) and  I(A) are internal loops; H(UAAAU) is a hairpin loop; 

E(U) is an external sequence. 

Additional modifications on the stems are necessary for pseudoknot prediction 

because nucleic bases in a stem may be involved in the pseudoknot establishing. Hence, 

the base pairs in a stem whose length is less than a predefined value will be separated. 
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After separating certain stems, motifs need to be parsed again. It is noticeable that the 

bases pairs in stems T(CU) and T(AG) are separated. Now the dot-bracket string is:  

.........[[[[[.............]]]]]. 

 

Parsing this string, we get motifs:  

S(CAGUGUUUU)T(GAAGU)H(CCACUUAAAUAGA)T(ACUUC)E(U) 

 

Definition: 

• ‘ and ’: to facilitate retrieving motifs from the dot-bracket string, we add ‘ and ’  

symbols into the dot-bracket string to label the beginning and ending of the string.  

• sorts: sorts defined in our model.(see Figure 2.5, Figure 2.6) 

 

 

 

 

 

 

 

 

Figure 2.5. Definition of sorts used in the Step 2. 
 

In this step, motifs are retrieved as follows: 

• Find start motif and external motif, i.e. S(), E(). 

MotifSet InputSet

StemSet NonStemSet DotSet BracketSet 

MotifSet: contains NonStemSet and 
StemSet 
NonStemSet: contains 
{H(),B(),I(),S(),E()} 
StemSet: contains {L(),R(),T()} 

InputSet: contains DotSet,BrackSet, ‘, and ‘ 
DotSet: {. (m) | I≤m≤n} 
Bracket:{[(i) + ](j) | I≤i,j≤n} 

Subsort of Subsort ofSubsort of Subsort of 
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The S motif has a pattern that it must begin with a start symbol ( ‘ ), followed by one or 

more dot ( .) and  ended with a left bracket ( [  ). This pattern can be outlined by the 

following Maude code: 

11 op .:→DotSet . 

12 ops [ ]:→BracketSet . 

13 op __:DotSet DotSet→DetSet . 

14 op ‘_[:DotSet→MotifSet . 

15 vars D D1:DotSet . 

16 eq ‘D[=S(D)[ . 

The pattern of E motif is that it must begin with a  right bracket ( ] ), followed by one or 

more dot ( .) and  ended with a end symbol ( ’  ). It can be deployed in Maude as: 

17 op ]_’:DotSet→MotifSet . 

18 eq ]D’=]E(D) . 

 

• Find hairpin loop motif, i.e. H().  

  The hairpin loop motif begins with a left bracket  

  ( [ ), followed by one or more dot ( .) and  ended  with a right bracket ( ] ).  

19 op [_]:DotSet→MotifSet . 

20 eq [D]=[H(D)] . 

 

• Find bulge motif and internal loop motif, i.e. B(),I().  

These two motifs have something in common. They must contain a part having a pattern 

as either [. (m) [ or ] . (m)] (excluding multi-branched case, which we will discuss below), 

where m ≥ 1. For a bulge loop motif, a right scans of [. (m) [ part will encounter the first 
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right bracket immediately followed by another right bracket, whereas an internal loop 

motif will see the first right bracket directly followed by something but a right bracket 

symbol. The difference distinguishes a bulge motif from an internal loop motif. The same 

thing holds for a ] . (m)] part if some direction changes are taken. 

Hence, the Maude code for bulge motif is: 

21  var M M1:MotifSet . 

22  op [_[_]]:DotSet MotifSet→MotifSet . 

23  eq [D[M]]=L([)B(D)L([)MR(])R(]) . 

And the code for internal loop motif is: 

24 op [_[_]_:DotSet MotifSet DotSet→MotifSet . 

25 eq [D[M]D1=[I(DL([)MR(])D1 . 

26 op [_[_]_:DotSet MotifSet MotifSet→MotifSet . 

27 eq [D[M]M1=[I(DL([)MR(])M1 . 

 

The code for ] . (m)] part is skipped here. An internal loop motif in multi-branched 

introduce another pattern which is: ] .(m) [. It can be recognized by the following code: 

28  op _]_[_:MotifSet DotSet MotifSet→MotifSet . 

29  eq M]D[M1=M]I(D)[M1 . 

 

• Other reduction steps for the parsing 

Besides parsing individual motif, more operators and equations are necessary to reduce 

brackets such that the dot-bracket string can be correctly parsed into motifs we need.   

(1) Bracket reduction 
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Nested continuous pairs of brackets can be described in a pattern like [[MotifSet]]. The 

inner pair of brackets will not have any impact on the motif determination. Thus, they can 

be reduced.  

30 op [[_]]:MotifSet →MotifSet . 

31 eq [[M]] =[L()MR()] . 

Similarly, the brackets in a pattern like ‘[MotifSet]’can be reduced as follows:  

32 op ‘[_] ’:MotifSet →MotifSet . 

33 eq ‘[M] ’ =’L()MR()’ . 

 
(2)  Stem Motif concatenation 

Nested continuous pairs of stem motifs can be further concatenated if they fall into 

certain pattern like L()L()MotifSetR()R(). The Maude code is: 

34  op _ _ _ _ _:MotifSet MotifSet MotifSet MotifSet   

MotifSet → MotifSet . 

35 eq L(loop)L(loop1)MR(loop2)R(loop3)= 

       L(looploop1)MR(loop2loop3) . 

36  op _ _ :MotifSet MotifSet→MotifSet (commu) . 

 

Finally, convert all L() and R() motifs into T() motifs using the following code:  

37 var t : StemSet . 

38 eq t( )M = T()M . 

 

The code from line1 to line28 parses the dot-bracket string into motifs. The code for re-
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parsing the dot-bracket string after separating stems is skipped here. Finally we get the 

motifs used in next step by removing all stems: 

S(CAGUGUUUU)H(CCACUUAAAUAGA)E(U) 

 

Step 3: 

This Step performs permissible motif-motif interaction based on our rules. A score 

function is applied to evaluate each motif-motif interaction.  

 

• Permissible motif-motif interactions 

We enforce motif-motif interactions by the following rules; 

(a) A motif never interacts with itself. 

(b) Each H or B motif can interact with all other motifs.  

(c) Each I or S motif can interact with the motifs behind itself towards the end of the 

structure until encounters an H motif.  

(d) The E motif can interact with the motifs before itself towards the beginning of the 

structure until encounters an H motif. 

 

•  Score function 

Each motif-motif interaction is scored by taking the weight of base pair region and the 

distance penalty of the base pair region into consideration. The weights in the score 

function are chosen to reflect the physical chemistry of nucleic acids (Bloomfield et al., 

1999). A base pair region is defined as: 



 

 

 

20
 
 
 
 

)},),...(1,1(),,{( mjmijijiregion +−+−=  
(3.1) 

 

where )(,,2,1 regionlengthmjimotifjmotifi =<∈∈  and each base pair in this region 

belongs to the set of },,,,,{ UGGUUAAUGCCG . 

The weight of region is defined as:   

∑
∈

=
regionj)(i,

region j)weight(i,W  
(3.2) 

Where weight(CG/GC):weight(AU/UA):weight(GU/UG) =3:2:1. The weights are 

approximate values that indicate the trends in base pair energy. 

The distance penalty of the base pair region is defined as  

Disregion  =   i-j (3.3) 

where j)(i,  is the closest base pair in the region and i<j. Then, score function can be 

defined as: 

)Dis)1(WMax( Score regionregionmotif-motif ×−+×= αα  (3.4) 

 

where α is a constant and ].1,0[∈α  The constant α  is a heuristic parameter adjusting the 

significance of  regionW  and regionDis  in the score function. In our experiment, α  is set to 

0.8.      

• Format of motifs  

A motif has a format like MotifType(seq:String,max:Int), where MotifType∈{H,I,B,S,E}; 

seq is a variable storing the nucleotide sequence of a motif; max is a variable storing the 
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maximal score of each motif when it interacts with other motifs. Each motif has an initial 

max score 0. The motifs we will deal with are:  

S(CAGUGUUUU,0)H(CCACUUAAAUAGA,0)E(U,0) 

Figure 2.6 shows the sorts defined in Step3. 

 

 

 

 

 

 

 

 

Figure 2.6. Definition of sorts used in the Step 3. 
 

Maude code for motif-motif interaction is as follows:  

***(a) Operators and variables 

1 op _(_,_):Hairpin String Int→HMotif . 

2 op _(_,_):NonHairPin String Int→NonHMotif . 

3 op _ _:NonHMotifSet NonHMotif→NonHMotifSet . 

4 op _ _: MotifSet MotifSet→MotifSet . 

5 op _ _ _:Motif MotifSet Motif→MotifSet . 

6 op _ _ _:NonHMotif NonHMotifSet NonHMotif→NonHMotifSet . 

 

motifType 

HairPin NonHairPin 

motifType: contains HairPin, 
NonHairPin,HBType, and ISType 
HairPin: contains {H} 
NonHairPin:contains {B,I,S,E} 
HBType: contains {H,B} 
ISType: contains {I,S}

HBType ISType 

Subsort of Subsort of

Subsort of Subsort of

MotifSet 

HMotifSetNonHMotifSet 

MotifSet: contains NonHMotifSet and 
HMotifSet 
NonHMotifSet: contains NonHMotif  
HMotifSet: contains HMotif 
NonHMotif: contains {B(),I(),S(),E()} 
HMotif: contains {H()} 

NonHMotif HMotif

Subsort of Subsort of 
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Line1 defines the operator to recognize hairpin loop motifs. Line2 defines the operator to 

recognize non-hairpin loop motifs. Line3 to line6 define the operators which deal with 

multiple continuous motifs.   

7 vars seq seq1:String .   ***sequence of a motif 

8 vars max max1:Int .      *** maximal score  

9 vars mSet:MotifSet NonHSet:NonHMotifSet . 

10 var M:MotifType .         ***M is H,I,S,E, or B 

11 var Z:NonHairpin .         ***Z is I,S,E, or B 

12 var X:HBtype .             ***X is H or B 

13 var Y:IStype .               ***Y is I or S 

 

Line7 to line13 define variables used by line14 - 21. 

 ***(b) H and B motifs 

14 ceq X(seq,max)M(seq1,max1)= 
     X(seq,MAX(seq,seq1))M(seq1,max1)if MAX(seq,seq1)>max . 
                                                    

15 ceq X(seq,max)mSetM(seq1,max1)= 
X(seq,MAX(seq,seq1))mSetM(seq1,max1) if MAX(seq,seq1)>max .              
 

Line14 and line15 let the X motif interact with the motifs towards to the end of the 

structure. 

16 ceq M(seq1,max1)X(seq,max)= 
    M(seq1,max1)X(seq,MAX(seq,seq1)) if MAX(seq,seq1)>max . 

                                                          

17 ceq M(seq1,max1)mSetX(seq,max)= 
 M(seq1,max1)mSetX(seq,MAX(seq,seq1))if MAX(seq,seq1)>max .  
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Line16 and line17 let the X motif interact with the motifs towards to the beginning of the 

structure. 

***(c) I and S motifs 

18 ceq Y(seq,max)Z(seq1,max1)= 
    Y(seq,MAX(seq,seq1))Z(seq1,max1) if MAX(seq,seq1)>max . 

 

19 ceq Y(seq,max)NonHSetZ(seq1,max1)= 
    Y(seq,MAX(seq,seq1)) NonHSet Z(seq1,max1)   
    if MAX(seq,seq1)>max .                                                

 

Line18 and line19 let the Y motif interact with the motifs towards to the end of the 

structure. 

***(d) E motif 

20 ceq Z(seq1,max1)E(seq,max)=   
Z(seq1,max1)E(seq,MAX(seq,seq1)) if MAX(seq,seq1)>max . 

 

21 ceq Z(seq1,max1)NonHSetE(seq,max)=  
Z(seq1,max1)NonHSetE(seq,MAX(seq,seq1)) 

 if MAX(seq,seq1)>max . 
 

Line20 and line21 let the Y motif interact with the motifs towards to the beginning of the 

structure. 

In the above code, MAX(seq:String, seq1:String) is a module which calculates the 

score of each motif-motif interaction by implementing the score function. seq and seq1 

are variables storing the nucleotide sequences of two motifs. Maude provides convenient 

string processing operators such as find, substr et al.  It is easy to implement the MAX 

module in Maude.         
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       Finally, the global maximal score of all motif-motif interactions is found. The 

potential pseudoknot is located between the two motifs with the global maximal score. 

 

Step 4: 

The motifs with the highest score are considered as the candidates forming the potential 

Pesudoknot. The stems separated in step 2 may or may not be recovered before 

outputting the final structure. The effect of this recovery operation will be discussed in 

the data analysis section. The pseudoknot in the final output structure is labeled with ‘{’ 

and ‘}’ 

.{{{{....[[[[[.}}}}........]]]]]. 

 

Figure 2.7 shows three structures of the example. (A) is the secondary structure 

predicted by Mfold, (B) is our prediction, and (C) the experimental structure. Comparing 

our prediction with the experimental structure, the accuracy we get is 93.94%. 

 

Figure 2.7. Final output results. (A) Mfold predicted structure (B) Our predicted 
structure. (C) Experimental structure. 
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2.4 Experiment results 

2.4.1 Evaluation Criteria 

For each nucleic base ia  in the sequence, assume ja  and ka  are the partners of 

ia  in the predicted structure and reference structure respectively with nkj ≤≤ ,0  

and ni ≤≤1 . If the partner of ia  is 0a , ia  is unpaired. For ia , our prediction has two 

possible results:   

 (1) Correct if kj ==    (2) Wrong if kj ≠  

 Accuracy is defined as follows:  

n
CorrectAccuracy #%100 ×=  

(3.5) 

 

2.4.2 Data Analysis 

Our method is tested on 211 single-strand pseudoknots in PseudoBase (Batenburg 

et al., 2000) with length varies from 21 to 137. These pseudoknots are classified into 13 

classes by PseudoBase according to Tabaska’s work (Tabaska et al., 1998). The 

classification is shown in Table 2.1.  
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Table 2.1. Data  in PseudoBase. 

Classification #RNA Length 

1. Viral ribosomal frameshifting signals 15 39-73 

2. Viral ribosomal readthrough signals 6 61-63 

3. Viral tRNA like structures 54 37-137 

4. Other viral 5'-UTR 1 35 

5. Other viral 3'-UTR 80 21-96 

6. Viral others 20 24-77 

7. rRNA 3 46-51 

8. mRNA 7 28-120 

9. tmRNA 10 30-90 

10. Ribozymes 3 73-89 

11. Aptamaers 6 33-57 

12. Artificial molecules 1 26 

13. Others 4 35-121 

 

In Table 2.1, the first column is the names of 13 classes of RNA pseudoknots in 

PseudoBase (Batenburg et al., 2000). The second column is the number of RNA 

pseudoknots in each class. The third column is the length range of RNA pseudoknots in 

each class. From Table 2.1, We can see that the number of RNA pseudoknots in each 

class of 1, 3, 5, 6, and 9 is no less than 10. Since these classes cover most of the data, 

more attention should be paid to these classes when analyzing the accuracy of the results.      

During the procedure of pattern analysis of pseudoknots, the bases of the stems 

are separated according to the length of stems in Step 2 (See Figure 2.4). To specify the 

effect of stems on pseudoknots, we test the 211 pseudoknots by adjusting two parameters 
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in our method: stem-length(L) and recovery. If a stem with a length less than L, the base 

pairs in the stem will be separated. When recovery is ‘yes’, any stem separated in step 2 

will be recovered if no base in this stem is involved in pseudoknot. The experimental 

results on the effect of stem-length and recovery are shown in Table 2.2.  

Table 2.2.  Effect of stem-length and recovery 

 

 

 

 

 

 

 

From the Table 2.2, we can see that each case (a)-(d) has higher accuracy than 

case (e) in which no stem is separated. This indicates that small stems have effect on 

pseudoknots. Comparing case (a) with (b) and case (c) with (d), we can see that simply 

recovering stems based on the secondary structure does not contribute to the pseudoknot 

prediction. The highest accuracy is obtained in (d). Other combinations of the two 

parameters are tested but cannot result in as good prediction as that when L is 3 or 4 and 

recovery is ‘no’.  

Testing the 211 pseudoknots using parameters that stem-length is 4 and recovery 

is ‘no’, our model achieves an average accuracy of 74.085%. 36 pseudoknots reach 100% 

accuracy. Only six pseudoknots have accuracy lower than 30%. The Figure 2.8 shows the 

accuracy distribution. 

Case Stem-length(L) Recovery Average Accuracy (%) 

(a) 3 yes 72.412 

(b) 3 no 72.707 

(c) 4 yes 73.277 

(d) 4 no 74.085 

(e) N/A N/A 70.878 
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Figure 2.8. Accuracy Distribution. 

 
 

We compare our method with the algorithm introduced in (Ruan et al., 2004). 

Their method was implemented in their web server (http://cic.cs.wustl.edu/RNA/) which 

supports thermodynamic and comparative analysis for prediction of RNA secondary 

structure with pseudoknots. We tested the 211 pseudoknots on this web server by using 

their default parameters. The result is described in Table 2.3. 

In Table 2.3, there are 211 pseudoknots in 13 classes. The accuracies of class 1, 3, 

5, 6, and 9 are more indicative than other classes because they cover most of the data in 

the PseudoBase. In Table 2.3, the first column is the classification of pseudoknots in 

PesudoBase. The second column is the number of  pseudoknots in each class. The third 

column is the accuracy of different methods, including Mfold (Zuker, 2003), our method 

(Fu et al., 2005), and Ruan’s method (Ruan et al., 2004). According to accuracy 

described 2.4.1, the accuracy of each method on 211 pseudoknots are demonstrated in 

Table 2.3.  
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Table 2.3. Comparison of accuracy 

  Accuracy (%) 

Classification #RNA Mfold 
(Zuker, 2003) Our method Ruan’s server 

(Ruan et al., 2004) 
1 15 54.983 63.136 56.317 

2 6 31.388 38.1 51.89 

3 54 59.459 63.745 53.014 

4 1 71.429 100 37.143 

5 80 66.94 88.257 31.822 

6 20 65.745 77.13 36.552 

7 3 51.161 55.843 36.676 

8 7 51.362 60.04 40.66 

9 10 56.316 61.849 36.356 

10 3 45.02 57.94 36.94 

11 6 70.976 79.443 40.029 

12 1 79.923 100 38.462 

13 4 65.715 70.036 46.248 

Average accuracy (%)  61.6107 74.085 41.264 

 

From Table 2.3, we can see that our method obtains much higher average 

accuracy than both Mfold (Zuker, 2003) and Ruan’s server (Ruan et al., 2004). Mfold is 

specially designed to predict RNA pseudoknot-free secondary structures, and the base 

pair accuracy is therefore an example of a random expectation. 
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2.5. Conclusion 

Exploring the rules and patterns of RNA structures can be treated as a problem in 

logic programming under constraint of limited knowledge. We have shown how to make 

the implementation using Maude rewriting langue. Our method was tested on 211 

pseudoknots in PseudoBase and achieves an average accuracy of 74.085% compared to 

the experimentally determined structure. A paper (Fu et al., 2005) is published based on 

this work. The experimental results show that Maude is effective for building and 

analyzing a complex biological system, defining new data and rules, and executing 

reduction and queries using logical derivation. The combination of simple rules and 

rigorous logical derivation appears to be a powerful tool for predicting complex 

structures.  
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Chapter 3   

Improved K-means Algorithm 

Clustering refers to the task of partitioning the similar samples of a dataset into 

meaningful groups (clusters). It is a useful tool in data mining processes for revealing 

hidden patterns and underlying knowledge from a dataset which is poorly understood. 

Clustering algorithms have been widely used in various fields, such as information 

retrieval, text classification, image segmentation, and bioinformatics.     

The purpose of our work is to explore the structure patterns of both RNA and 

protein structures using K-means clustering algorithm. Our work centers on finding 

solutions to the following hard problems: 

• How to initialize the clustering algorithms; 

• How to determine the suitable number of clusters for a specific dataset; 

• How to speed up K-means; 

The chapter is arranged as follows. In section 3.1, the traditional K-means 

algorithm and its drawbacks are introduced. Section 3.2 gives the definition of cluster 

similarity which is used for finding the most reliable clustering for a dataset. The 

pseudocode of the improved K-means clustering algorithm is given in section 3.3. The 

concept of bootstrap sampling, cluster similarity and reliable clustering are explained in 

detail. Section 3.4 introduces the random number generator used in our implementation. 

In section 3.5, we discuss how to initialize the K-means algorithm. Section 3.6 gives the 

definition on how to speed up K-means by triangle inequality. To verify the effectiveness 

of our algorithm and show how to use it, an experiment on synchronized data is done in 
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section 3.7. The discussion and conclusion are given in section 3.8.   

3.1 K-means Clustering Algorithm  

K-means (MacQueen, 1967) is a widely used unsupervised learning algorithm 

that solves the clustering problem. Given a dataset, the traditional K-means algorithm 

works as follows. It begins with defining K centroids, at random or using some heuristic 

data, as the initial centers of K clusters, one for each cluster. The second step is to assign 

each point of the dataset to the cluster with the nearest centroid. The third step is to take 

each point in the dataset and compute its distance from the centroids of al clusters. If a 

point is not currently in the cluster with the closest centroid, switch this point to that 

cluster and update the centroid of the cluster. The third step is repeated until convergence 

is achieved, that is no point assignment occurs. 

K-means algorithm is a very popular clustering method widely used in scientific 

and industrial applications (Jain et al., 1999; Xu and Wunsch, 2005). However, its 

robustness is heavily affected by the initial number of clusters K, and in general, there is 

no reliable algorithm for predicting K. A variety of methods have been proposed on how 

to initialize the K or on how to let the clustering depend less on the initial K. All these 

efforts try to discover the suitable number of clusters for a dataset. Since stability has 

been widely used as a validation measure and proved to have good performance (Ben-

Hur et al., 2002; Bryan et al., 2004; Dudoit and Fridlyand, 2002), in this work we 

investigate the stability-based measure formulated by Ben-hur et al., (Ben-Hur et al., 

2002) for reliable clustering of protein structures. We proposed a new descriptor for 

representation of the protein structures and compared it with the descriptor used by Chen 
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et al., (Chen et al., 2006).  

3.2 Cluster Similarity 

Cluster similarity is the estimation of similarity between any two clustering 

solutions on the same dataset. It is given by  

Let X is the dataset to be clustered, X={x1, x2,…, xN} where xi is Rd ,N is the 

number of samples in the dataset. X is clustered into k clusters. We use an NxN matrix C 

to indicate whether any two samples in X are in the same cluster. If xi and xj are in the 

same cluster and i is not equal to j, Cij is 1. Otherwise Cij is 0.  

For two datasets P and Q, their matrix representations of clustering solutions are 

respectively CP and CQ . The number of common joined pairs in clustering solutions of P 

and Q can be described the following dot product  

∑=><=
ji

Q
ji

P
ji CC

,
,,

QP    C ,C  r  (3.1) 

The cluster similarity proposed by Fowlkes and Mallows (Fowlkes and Mallows, 1983) is 

then defined as  

||||
),(

QP CC
rQPS
×

=  (3.2) 

where >=< PPP CCC ,|| .  

According to Cauchy-Schwartz inequality: ><×><>≤< QQPPQP CCCCCC ,,, , the 

similarity is between 0 and 1.  1 represents that two clustering solutions are identical. 

Equation (3.2) is the cluster similarity used in this experiment.          
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3.3 Detecting the Number of Clusters 

Our method of determining the suitable number of clusters in a dataset relies on 

the stability of clustering. The meaning behind of the stability is that a meaningful cluster 

should appear on all bootstrap samplings of the data. In bootstrap sampling data are 

drawn from the dataset with replacement thus preserving the underlying distribution. The 

introduction to bootstrap sampling is as follows.  

3.3.1 Bootstrap Sampling 
 

The bootstrap is a resampling method for statistical inference. It is generally used 

to estimate confidence intervals, but it can also be used to estimate bias and variance of 

an estimator. The literature on the bootstrap is extensive. Major survey papers on the 

bootstrap and its applications can be found in (DiCiccio and Romano, 1988; Young et al., 

1994; DiCiccio and Efron, 1996; Davison et al., 1997). Bootstrap methods are based on 

two main assumptions. First, the sample is a valid representative of the population. 

Second, bootstrap method will take sampling with replacement from the original sample. 

Each sub-sampling is independent and the subsamples come from the same distribution 

of the population. To determine the number of clusters in data, in this dissertation we 

decide to use the concept of bootstrap sampling in clustering analysis.  

The most significant strength of bootstrap sampling is that it needs minimum 

assumptions. It is most useful when the sample distribution is unknown. But several 

problems must be carefully considered in this procedure, such as the random number 

generator and initialization of the clustering algorithm. We will explain how to solve 

these problems in the following sections. 
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3.3.2 Algorithm of Detecting Stable Clustering 
 

Estimating the number of clusters in data is an ill-posed problem in cluster 

analysis (Jain and Dubes, 1988) because the definition of what a cluster is is unclear. 

Various algorithms have been proposed and can be roughly categorized into two groups: 

the approaches based on the dispersion of clusters (Tibshirani et al., 2001; Maulik and 

Bandyopadhyay, 2002; BelMufti et al., 2005) and approaches based on the concept of 

stability of the clustering (Levine and Domany, 2001; Monti et al., 2003; Law and Jain, 

2003; Lange et al., 2004).    

The approaches based on the dispersion of clusters reply on validation measures 

to decide the stable clustering. The widely used validation measures include 

compactness, isolation, and within-cluster and between-cluster dispersion. However, each 

validation measure favors certain shape of clusters. If clusters are in very different 

shapes, the validation measure is not that useful. So to use these kinds of methods to 

determine the suitable number of clusters, we have to assume the shape of the clusters. 

On the contrary, the approaches based on stability of clustering do not imply any 

assumption on the shape or size of clusters. By considering the data we have to deal with, 

especially the RNA tertiary structures, we have little information available. Approaches 

based on stability of clustering are more appropriate for our problems. The algorithm of 

determining the suitable number of clusters is outlined in Table 3.1.   

As it is shown in Table 3.1, the algorithm requires two parameters Kmax and 

Smax. Kmax is the user-defined maximum number of clusters and Smax is the user-

defined maximum number of bootstrapping. Kmax gives a range where the reliable 



 

 

 

36
 
 
 
 

clustering possibly exit. Smax defines the number of subsets of the original dataset used 

for bootstrapping.  

Table 3.1.  Algorithm of detecting stable clustering 

Input:  

    Kmax{user-defined maximum number of clusters}, 

    Smax{user-defined maximum number of bootstrap sampling} 

Output: Clustering results with stable K  

Requirements: K-means algorithm, cluster similarity measure 

 

1. Generate the average cluster similarity for each k  

    For k=2 to Kmax do 

       For s=1 to Smax do 

1.1 Bootstrap two subsets from the original dataset; 

1.2 Cluster points in each subset into k clusters; 

1.3 Compute cluster similarity of two subsets; 

 End For 

 1.4 Compute the average cluster similarity for each k; 

    End For 

2. Determine the suitable number of clusters 

 2.1 The maximum average similarity occurs at k1; 

 2.2 The second maximum average similarity occurs at k2; 

 2.3 Detect the stable k   

    If isStable(k1) is true, K=k1 

    Elseif isStable(k2) is true, K=k2 

    Else K=0,return  

3. Cluster the points in original dataset into K clusters. 

 

The algorithm includes three stages. The first two stages are responsible to 
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generate the distribution of average cluster similarity of each k. Bootstrap sampling, 

clustering of each subset using K-means algorithm, and cluster similarity evaluation are 

done during the two stages. The K which gives the most stable clustering is detected from 

the distribution of average cluster similarity. In the third stage, the original dataset is 

clustering into K clusters.    

The explanation of each stage is given as follows:  

Stage 1: 

The stage is to generate the average cluster similarity for each k (k is from 2 to Kmax).  

The step 1.1 is to obtain two subsets from the original dataset by bootstrap sampling 

which is introduced in section 3.3.1. With the subsets available, K-means algorithm is 

applied onto the subsets in step 1.2. In step 1.3, the similarity between two clustering 

results of subsets is calculated. These first three steps are repeated Smax times. The 

average of the similarities is computed as the stability of the clustering under k in step 

1.4. The distribution of average similarities is further used to determine the reliable 

clustering in the stage 3. 

 

Stage 2: 

Stage 2 clarifies the criteria of determining the reliable clustering and the reliable k for 

the dataset. This stage consists of three steps. Since a meaningful cluster should appear 

on all bootstrap samplings of the data, the most reliable clustering should results in the 

maximum average cluster similarity. So the maximum and the second maximum average 

cluster similarities are found in step 2.1 and 2.2. The third step is to identify the reliable k 

which is shown in the table. In step 2.3, isStable(k) is a function to judge whether 
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the clustering at k is reliable. Given the k, if the distribution of average cluster 

similarities before k is in increasing trend while the distribution after k is in decreasing 

trend, isStable(k)is true. If the return value is 0, it indicates that there is no structure 

in the dataset and the algorithm returns. The cluster similarity mentioned in the Table 3.1 

is defined in section 3.2. If the K is not 0 after stage 2, the algorithm precedes to stage 3. 

 

Stage 3: 

From the stage 2, we find the K which is believed to yield the most reliable clustering in 

the range of k=2 to Kmax. In this stage, all the samples in the original dataset are clustered 

using K-means algorithm with the stable K, and the clustering results are returned.  

3.4 Random Number Generator  

In bootstrap sampling, data points are randomly drawn with replacement from the 

original dataset. The quality of randomness directly affects the clustering results and 

further the determination of suitable number of clusters. So a good random number 

generator is required for bootstrap sampling.  

There are two major methods of random number generation. One obtains the 

random numbers by measuring some physical phenomena which is expected to be 

random such as sound samples taken in a noisy environment and radioactive decay. The 

other is called pseudo-random number generators which use computational algorithms to 

produce long sequences of random results.  

Usually, library routines of random number generators can be found in most of 

the computer programming languages.  However, such library functions often have poor 
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statistical properties. They are often initialized using a computer's real time clock as the 

seed or key. These functions are unsuitable for statistics or numerical analysis when high-

quality randomness is required. There is a tradeoff between the reliability and speed when 

designing random generators. The more reliable the generator is, the more slowly it runs. 

By taking these two factors into consideration, we choose the Mersenne Twister random 

generator (MTRG) (Matsumoto and Nishimura et al., 1998; Matsumoto and Kurita, 1992; 

Knuth, 1992; Eddelbuettel, 2007) which has been proved to be superior to most of 

random number generator algorithms. It has an astronomical period of 219937 – 1 while no 

other generator has achieved this. Its output is free of long-term correlations when 

considered from a viewpoint of 623 dimensions. It is essentially a large linear-feedback 

shift register, and thus the output has excellent statistical properties. There are a number 

of implementations of MTRG in different programming languages like C, C++, java et al. 

It facilitates the implementation of bootstrap sampling.  

3.5 Initialization of K-means  

The initialization of K-means is to set k cluster centroids for a dataset. It has been 

reported that results obtained from the K-means are dependent on the initialization of the 

cluster centroids (Pena et al., 1999).   

Two simple approaches to initialize K-means can be seen in various applications.  

One is to set the initial centroids randomly. The other is to choose the first k samples of 

the dataset. Since the two methods do not make use of any information about the data, it 

is highly possible for them to choose inappropriate initial centroids such that the lead to 

results far from suitable.  An alternative method is to select multiple sets of initial 
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centroids first, then to choose the set which is closet to the suitable. However, testing 

multiple initial sets is sometime impractical, especially for large dataset.      

In this work, we initialize the K-means using an algorithm which tries to make the 

initial centroids separated as far as possible. Thus the coverage of these centroids is 

extended as large as possible.  

The method works as follows. Let X is the dataset with size NxM. N is the 

number of samples and M the number of attributes for each sample. Let K be the number 

of clusters.   

(1) Select a sample from the dataset randomly as the first initial centroid; 

(2) Search for the second sample which is farthest from the first centroid and take it as 

the second centroid; 

(3) Search the next sample which is farthest from the previous centroids; 

(4) Repeat step (3) till K centroids are found.  

3.6 Speed up K-means  

 More and more data is produced and accumulated at a fast pace with the 

development of new techniques. It is required that the standard K-means clustering 

algorithm should be as fast as possible to deal with large datasets without losing any 

clustering quality. In this dissertation, large datasets are used in our experiments with 

high dimensions. So it is necessary to speed up the standard K-means algorithm. K-

means algorithm is an iterative procedure. At each iteration, a lot of calculations are 

needed to assign every data point to the cluster whose centroid is nearest to the data 

point. However, according to triangle inequality, many calculations are redundant. Based 
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on the triangle inequality, we give the following definition: 

Let x be the data point and let c1 and c2 be the two different centroids. If the 

distance between x and c1 is no greater than half of the distance between c1 and c2, then 

x is closer to c1 than to c2. 

From the above the definition, if the distance between x and c1 is no greater than 

half of the distance between c1 and c2, it is unnecessary to compute the distance between 

x and c2. Otherwise, the calculation has to be done.   

The proof is given as follows:  

To prove that if d(x,c1)≤ ½ * d(c1,c2), then d(x,c1)≤d(x,c2).  

From triangle inequality, we know      

                    d(c1,c2) ≤ d(x,c1) + d(x,c2)                       

Then            d(c1,c2)- d(x,c1) ≤ d(x,c2)                           

if     d(x,c1)≤ ½ * d(c1,c2), that is d(c1,c2) ≥ 2d(x,c1), then 

                    d(c1,c2) - d(x,c1) ≥ 2d(x,c1) - d(x,c1) = d(x,c1)       

From (b) and (c), we get     d(x,c1) ≤ d(x,c2)                                                       

 

(a)  

(b)  

 

(c)  

(d) 

3.7 Validation Using Synchronized Data 

The purpose of algorithm is to discover the suitable number of clusters in a 

dataset. This suitable number reveals the structure of dataset and the high-quality hidden 

structural patterns could be further extracted based on the understanding of the dataset. 

To validate the effectiveness of the algorithm, we set up an experiment to test our 

algorithm on synchronized data. Two datasets are used in the experiment. One has no 

structure (only one cluster) while the other contains four clusters. By observing the 
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distribution of the mean similarities of two different datasets, we are supposed to detect 

the suitable number of clusters. This experiment is also helpful for us to see the 

relationship between the number of clusters (K) and the mean similarity of each 

clustering with number K. The discussion about the experimental results and observations 

is given in this section.     

3.7.1 Dataset   

Dataset 1:  

This dataset has 200 points which are in uniform distribution. Thus no structure exists in 

the dataset.  

Dataset 2:   

This dataset also has 200 points which are in four obviously isolated clusters.  

The datasets are shown in Figure 3.1.  
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Figure 3.1. Datasets. (a) Dataset without structure. (b) Dataset with four clusters. 
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3.7.2 Experiment Setup 

3.7.2.1 Environment 

We implement the algorithm and perform the experiment on a PC with a P4-

2.8MHz CPU and 512M memory in Matlab (Matlab, 1994) and C languages. We use 

Matlab for data preprocessing and visualization. The K-means clustering algorithm is 

written in C for better computational speed. The simulations in Chapter 4 and 5 are also 

done under the same environment. We will not explain it again in the following Chapters.    

3.7.2.2 Experiment Parameters 

The major parameters in this experiment are the number of clusters (K) and the 

number of similarities to be calculated for each clustering with number K. In this 

experiment, we set the number of clusters K change from 2 to 50 and 20 similarities are 

calculated for each clustering with number K.  

3.7.2.3 The Suitable Number of Clusters  

The change between adjacent average cluster similarities and the overall 

distribution of average cluster similarities demonstrate the stability of the clustering. As it 

is mentioned above, the average cluster similarity is between 0 and 1 and larger average 

cluster similarity value indicates higher similarity clustering with k. We assume the 

suitable number is K for a distribution. This suitable number should simultaneously 

satisfy all of the three criteria: 

(1) The average cluster similarity at K is the largest value of all average cluster 

similarities. 
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(2) The average cluster similarities before K and after K follow an increasing distribution 

and a decreasing distribution respectively.  

(3) K is unique. 

 

The three criteria above are equally important and must be satisfied. If no average 

cluster similarity in a distribution meets the requirements, we can come to two 

conclusions. One is that it fails in discovering the structure of the dataset. The other is 

that there is no structure inside the dataset.        

3.7.3 Experimental Results 

The distribution of average cluster similarities of dataset without structure is 

shown in Figure 3.2.  
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Figure 3.2. Experimental results of dataset without structure. 
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In Figure 3.2, the number of clusters changes from 2 to 50. The average cluster 

similarity of each k is marked with a circle. We can see that the maximum average cluster 

similarity is obtained when k is 2. Other average cluster similarities are far from the 

largest one. The overall trend of the distribution is that the average cluster similarities 

decrease with the increasing of k without big change.   From the distribution, no average 

cluster similarity satisfies the requirements described in section 3.6.2.3.  So we come to 

the conclusion that the dataset has no structure. 

The distribution of average cluster similarities of dataset with four clusters is 

shown in Figure 3.3. 
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Figure 3.3. Experimental results of dataset with four clusters. 

 

The distribution of average cluster similarities in Figure 3.3 is much different of 

that in Figure 3.2.  It is obvious to see that the largest average cluster similarity occurs 
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when k is 4. The average cluster similarities before k=4 is in increasing distribution while 

the average cluster similarities after k=4 is in decreasing distribution with little 

fluctuation. What is more, the value at k=4 is much larger than others. From these 

observations, we can draw a conclusion that the suitable number of clusters is 4. 

3.7.4 Summary 

In this experiment, our algorithm is tested on two simulated datasets, one without 

structure and the other with four clusters. The purpose of the experiment is to see whether 

our algorithm is able to handle both datasets with and without structures. The 

experimental results show much difference which further verifies the ability of our 

algorithm. It not only can detect the suitable number of clusters in a dataset which indeed 

has a structure but also can identify that a dataset has no structure.  This is the major 

advantage of our algorithm over traditional K-means algorithm. Another valuable 

advantage is its reliability of performance. Unlike model-based methods, the suitable 

number is determined by our algorithm is based on the distribution of average cluster 

similarities instead of predefined models. Therefore, it is more suitable for the data with 

little available knowledge. 

3.8 Conclusion  

In this Chapter, an improved K-means clustering algorithm is introduced for the 

determination of the suitable number of clusters in data using bootstrap sampling. 

Additionally, other major issues are also discussed, such as how to set the initial centroids 

of K-means, random number generator, and cluster similarity. We demonstrate how to 
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use the proposed algorithm to analyze the suitable number of clusters in a synchronized 

dataset. The experimental results show the effectiveness of our algorithm. Further 

applications will be made by applying our algorithm to the structure pattern analysis of 

RNA and protein data in Chapter 4 and 5.    
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Chapter 4  

Pattern Analysis on RNA structures  

Structure analysis of the RNA complexes is essential to the complete 

understanding of RNA folding and interaction, thus contributes to the development of 

new drugs. With the increasing number of RNA structures available, a systematic 

approach to automatically identify the RNA three dimensional structure patterns is 

required. Since the mechanism of RNA three dimensional folding is poorly understood to 

date and the RNA structure patterns is still under discussion (Batey et al., 1999), we 

decide to utilize clustering algorithms in our work. Clustering is an unsupervised learning 

technique, which learns the structure in data without using labeled class, feedback signal 

or any prior knowledge but the raw data and group principles. This is exactly what the 

RNA structure pattern analysis requires.  

In order to cluster the three dimensional structures, we propose a new descriptor 

to represent three dimensional structure segments. This descriptor is tested on both RNA 

and protein datasets. During the pattern analysis of RNA structures, we find the HFSS 

and their similarity. The definition of HFSS is given in section 4.2.5. Based on these 

HFSS, an RNA three dimensional structure can be converted into a string of HFSS. It is 

well known that comparison of molecule structure similarity is a problem of searching 

the maximum common substructure (also called graph Isomorphism problem) which is 

NP-complete if the molecule structure is described as a graph. By converting a three 

dimensional molecule structure into a string, many problems become practically solvable, 

such as the comparison of molecule structure similarity, mining known and novel motifs, 



 

 

 

49
 
 
 
 

rapid structure database search.  

This chapter is organized as follows. Section 4.1 explains the objective of this 

experiment. Section 4.2 demonstrates all the experimental procedures and results of RNA 

pattern analysis, including large-sized and small-sized types of structure segments, the 

types of HFSS in the RNA dataset, and the similarities among different types HFSS. Our 

clustering algorithm and experimental results can be used for rapid RNA structure 

database search. The framework of rapid RNA structure database search is introduced in 

Section 4.3. The discussion and conclusions are given in section 4.4.  

4.1 Objective   

It is important to assess the structure similarity of RNA molecules and identify the 

known and novel tertiary motifs in RNA three dimensional structures. With more and 

more RNA structures available, efficient algorithms are highly desired for solving these 

problems.  To date, the classification of RNA tertiary structures or motifs is still under 

discussion. The representation of RNA structures is the basis of mining structure patterns 

from them. To study the structure patterns of RNA three dimensional structures, the first 

task is to develop new method of appropriate representation of RNA structures. Based on 

the suitable representation of RNA structures, structure patterns are extracted using K-

means clustering algorithm.     

4.2 Experiments on RNA Structures 

In this section, we demonstrate the experiments of pattern analysis using 

clustering algorithms on RNA three dimensional structures. The flowchart of pattern 
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analysis on RNA structures is firstly given in section 4.2.1. Then the dataset chosen for 

our experiment is explained in section 4.2.2. The details about experiment parameters and 

setup are introduced in section 4.2.3 and section 4.2.4. In section 4.2.5, we show how to 

find the appropriate window size for the description of RNA structure segments. Our 

experimental results prove that window size 4 is most suitable for RNA structure 

segments description. Section 4.2.6 contains all details about the definitions of HFSS, the 

types of the HFSS, and the similarities of different types of HFSS. The improved K-

means algorithm described in Chapter 3 is used in this section to find different types of 

HFSS. The summary of this chapter is given in section 4.2.7. 

4.2.1 Flowchart of RNA Structure Pattern Analysis 
 

The flowchart of pattern analysis of RNA structures used in our experiment is 

composed of 4 steps. It is shown in Figure 4.1. The purpose and function of each step is 

explained as follows:      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.1. The flowchart of RNA structure pattern analysis. 
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Step 1:  

Step 1 is data collection. At present, the PDB (Berman et al., 2000) and NDB (Berman et 

al., 1993) serve as a repository for raw structural data of molecules, including RNA. 

However, neither of these databases contains a complete representation of all available 

RNA structures. What is more, the data in them is in essentially raw form with few 

annotations and structures in PDB files often have exceptions like missing data in 

sequence or in the structure. Therefore manual work is required to select the suitable data 

for study.  

 

Step 2: 

Step 2 is data preprocessing including sliding window and distance matrix. To transform 

the raw data into suitable representations for further processing, we use a sliding window 

method to separate an RNA three dimensional structure into structure segments by 

moving the sliding window along the backbone of the sequence. These structure 

segments are the targets of pattern analysis. The structure segments are three 

dimensional. To facilitate the calculation of similarity between two structure segments, 

we use a distance matrix to describe a structure segment. The distance matrix contains the 

Euclidean distances between any two adjacent nucleic acids in a sliding window.   

 

Step 3: 

Step 3 is the core part of our pattern analysis experiment. In our work, an improved K-

means clustering algorithm is introduced in Chapter 3. It is used to group structure 

segments obtained in step 2 into clusters in this experiment. The structure segments in the 
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same cluster are regarded to share common characteristics.  

 

Step 4: 

Step 4 is the interpretation of pattern analysis results produced by step 2. In this step, the 

features of different structure patterns are analyzed, including consensus distance matrix 

and deviation. Based on the consensus distance matrix of each structure pattern, the 

similarity of any two different structure patterns is calculated. This knowledge can be 

used to convert an RNA three dimensional structure into a string of structure patterns, 

and the similarity between RNA three dimensional structures can be rapidly computed by 

the evaluation of similarity of their strings of HFSS.      

4.2.2 Dataset    

Numerous studies have shown that metal ions play a crucial role in stabilizing 

RNA three dimensional folding (Pyle, 1993; Lilley, 1999; Hanna and Doudna, 2000; 

DeRose, 2003). That is why RNA-metal binding structures are relatively numerous in the 

RNA structures available now. In order to study the RNA three dimensional structure 

patterns, RNA-metal binding structures with more than 4 nucleic acids and complete 

structures are extracted from PDB and NDB. Currently there are 256 RNA-metal binding 

structures in PDB formats. However, not all these 256 structures are fit for our pattern 

analysis. We first remove the structures that have less than 4 nucleic acids. We then 

eliminate the structures whose three dimensional structures are incomplete. There are also 

some duplicate sequences in these 256 structures. 115 out of 256 structures are suitable 

for study.  
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In these 115 structures, there are 48 structures with a single chain folding to itself 

and 67 structures that have multiple chains with each chain folding with another chain. 

When a chain folds with another chain, almost all of such structures form a long stack 

(continuous base pairs). In such simple structures, there are no three dimensional motifs 

we are interested in. So the single-chain-folding structures become the targets of our 

research.  The names of single-chain-folding structures are shown in Table 4.1.   

Table 4.1. RNA structures with single-chain folding 

1b23 

1cx0 

1d4r 

1dk1 

1duh 

1ehz 

1f1t 

1f27 

1f7y 

1ffy 

1fir 

1g2j 

1gax 

1gid 

1h4q 

1hc8 

1hq1

1i9v 

1j1u 

1j2b 

1jbr 

1jbs 

1jbt 

1jid 

1jj2 

1kog 

1l3z 

1m5p

1q2r 

1q93

1qf6 

1qu3

1s03 

1u8d

283d

2bbv

333d 

486d 

1a1t 

1ajf 

1c0o 

1drz 

1f6u 

1f78 

1jtw 

1u9s

1xst 

1xsu

 

In the above 48 RNA structures, 1xst and 1xsu have the same sequences and 

structures. To avoid redundancy, 1xsu is removed from the final dataset used for our 

research. So the final dataset we use in the following experiment has 47 independent 

single-chain-folding RNA structures.      

4.2.3 Data Preprocessing  

An RNA structure is divided into structural segments by moving a sliding window 

along the backbone of an RNA sequence. Each time the sliding window moves one base. 

The sequence in the sliding window is called subsequence and the structure in the 

window is called a structure segment. These structure segments are to be used for pattern 

analysis using clustering algorithms. The structure segment in a sliding window is 
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described using distance matrix. The stability of RNA three dimensional structures is 

determined by the base pairing interaction of nucleic acids. Thus base pairing, as one of 

the most important information related to RNA three dimensional structures, is 

indispensable for pattern analysis of RNA structures.  The distance matrix and 

classification of RNA base pairs are defined as follows.   

4.2.3.1 Distance Matrix 

In this work, structural clustering is to group similar structure segments obtained 

from RNA three dimensional structures into clusters. How to evaluate the similarity of 

structure segments is the key point. Since structure segments are three dimensional, we 

can see the structure segment as a three dimensional graph. There are various algorithms 

available for three dimensional graph comparison. However, three dimensional graph 

comparison is computationally expensive and unsuitable for efficient processing of large 

dataset. We can also convert a structure segment into a tree or two dimensional graph. 

Most of the research efforts have been made for tree comparison and graph similarity 

evaluation. However, some information is missed during the process of converting three 

dimensional to three dimensional tree or graph. Tree-based algorithms are still complex 

and computationally expensive. In this work, we prefer a descriptor which can represent 

the structure segment without putting too much overhead onto the clustering. We find 

that the distance matrix is a suitable descriptor meeting our requirements. It represents the 

Euclidean distance between any two adjacent nucleic acids in a sliding window. The 

definition of distance matrix is described as follows: 

Let the sliding window size is w. The subsequence in the sliding window is 
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S=X1X2…Xw. The coordinates of an RNA backbone are known.  The distance matrix 

(DM) is  

⎩
⎨
⎧

>=

<=<
=

jiif

wjiifd
DM ij

,0

,

 
(4.1) 

where dij is the Euclidean distance between nucleic acids i and j; w is the sliding window 

size.  

The DM can be further simplified into a vector which only contains dij where 

i<j<=w. Consequently, a structure segment is finally described as a vector as follows:  

w}ji0|{dV ij <=<<=  (4.2) 

4.2.3.2 RNA Base Pair Classification 

The RNA base pair information of each structure segment must be considered in 

pattern analysis. The major reason is that an RNA sequence folds itself to form secondary 

structures by base pairing interaction. RNA secondary structure is an important 

transitional step to the formation of a functional three dimensional structure. 

Consequently, the base pair information should be taken into consideration in structure 

pattern analysis of RNA three dimensional structures.              

The available RNA structures to date show a great diversity of base pairing 

interaction (Batey et al., 1999; Nagaswamy et al., 2002). Leontis and Westhof (Leontis 

and Westhof, 2001) gave the criteria of base pairs classification.  This classification is 

adapted by NDB (Berman et al., 1993) and widely used in the literature.  The 

classification is based on two major requirements: (a) the planar edge-edge hydrogen 

bond interactions between two bases involve one of the three distinct edges: Watson-
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Crick edge, Hoogsteen edge, and Sugar edge (see Figure 4.2). (b) a base pair has at least 

two hydrogen bonds.  The relative orientation of the two bases is also considered in the 

classification as trans and cis. A line is drawn parallel to and between the two connecting 

H-bonds. The relative orientation of the two bases is called trans if the glycosidic bonds 

of the interacting nucleotides lie on opposite sides of the line. Otherwise it is called cis. 

This is described in Figure 4.2.  

 

 
 

(a) (b) 

 
Figure 4.2. Base pair classification. (a) Hytrogen bond edges in RNA bases. (b) Cis 
versus trans orientation of glycosidic bonds. The three edges are Waston–Crick, 
Hoogsteen and Sugar (Leontis and Westhof, 2001). 
 

In this dissertation, we use the classification defined by Leontis and Westhof 

(Leontis and Westhof, 2001) when analyzing RNA structure segments. The classification 
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gives 12 classes of base pairs with the base pair orientation as in Table 4.2 shows.  

Table 4.2. 12 families of base pairs. 

Base pair 
relative orientation 

Interaction edges 

Watson-Crick/ Watson-Crick 

Watson-Crick/Hoogsteen 

Watson-Crick/sugar 

Hoogsteen/ Hoogsteen 

Hoogsteen/sugar 

cis 

Sugar/sugar 

Watson-Crick/ Watson-Crick 

Watson-Crick/Hoogsteen 

Watson-Crick/sugar 

Hoogsteen/ Hoogsteen 

Hoogsteen/sugar 

trans 

Sugar/sugar 

 
In Table 4.2, the first column is the relative orientations of the glycosidic bonds of 

the interaction bases and the second column is the interaction edges. 

 

4.2.4 Experiment Setup  

We have introduced the major parameters of the improved K-means algorithm 

and the criteria on how to determine the suitable number of clusters in section 3.6.2.3. In 

this experiment, the same criteria are used to identify the suitable number of clusters. The 
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number of clusters (K) is set from 2 to 50 to observe the changes of mean similarities 

with K. For each K, 20 iterations of similarity calculation are performed. We further 

compute the mean of the 20 similarities which indicates the stability of the clustering 

under cluster number K. In this experiment, F, the fraction of dataset for sampling, is 0.7. 

The window sizes of 3 to 20 are tested.         

4.2.5 Appropriate Window Size   

Our objective is to discover the most appropriate window size for the description 

of structure segments. The window size is important because it directly determines the 

clustering results of our pattern analysis. With an appropriate window size, the pattern of 

structure segments can be detected with ease. On the contrary, a too small window size or 

a too large window size may lead to the failure of clustering that no structure can be 

found. To find the most suitable window size, in this work we try window sizes from 3 to 

20 using the single-chain-folding structures. The number of structure segments of the 

dataset with different window sizes is shown in Table 4.3. 

Table 4.3. The number of structure segments with different window size 3 to 20 

Window size # of structure
segments 

Window size # of structure 
segments 

3 2183 12 1771 
4 2136 13 1728 
5 2089 14 1686 
6 2042 15 1644 
7 1995 16 1603 
8 1948 17 1562 
9 1902 18 1522 
10 1858 19 1482 
11 1814 20 1443 
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To find the most appropriate window size for RNA structure segment 

representation, in this experiment we test the window sizes from 3 to 20 with K from 2 to 

50. The distribution of mean similarity under different window sizes is shown in Figure 

4.3. 
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Figure 4.3. Distribution of average cluster similarities with different window sizes. 

 

In Figure 4.3, there are eighteen figures showing the distribution of average 

cluster similarities under window sizes of 3 to 20. In each figure, the horizontal axis is the 

number of clusters (K) and the vertical axis is the average cluster similarity.   

According to the criteria of the suitable number of clusters determination (see 

section 3.6.2.3), we expect to see a distribution that has a unique maximum average 
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cluster  similarity value and the average cluster  similarity values before the maximum 

are in an increasing distribution and the average cluster  similarity values after the 

maximum are in an decreasing distribution. From Figure 4.3, we can see that only the 

distribution whose window size is 4 meets our requirements. When the window size is 4 

and K is 4, the maximum average cluster similarity is 1 and the distribution before K=4 is 

in an increasing trend and the distribution after K=4 is a decreasing distribution.  

Besides window size 4, the distribution at window size 17 shows some desiring 

characteristics that the second maximum average cluster  similarity value is 0.985 at K=4 

and the distribution before and after the second maximum average cluster  similarity 

value are in increasing and decreasing trends respectively. It is worth mentioning that our 

algorithm generally gives relatively high average cluster similarity value at K=2. The 

maximum value at K=2 could be ignored if the second maximum average cluster 

similarity value is close to 1.  

Compared with the distribution at window size 4 and 17, other distributions do 

not show any desiring characteristics matching our criteria of determining the suitable 

number of clusters. Firstly, the maximum average cluster similarity value occurs at K=2 

and the second maximum value is much less than 1. Secondly, the distribution before or 

after the second maximum average cluster similarity value does not follow the trend we 

expect.  

Although the distribution under window size 17 shows desiring characters, it is 

too large for description of a small RNA structural segment. What is more, the 

distribution of window size 4 is better than that of window size 17 according to our 

criteria. So we adopt 4 as the most appropriate window size to describe small RNA 
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structural segments.  

Based on the above experimental results, we cluster the structure segments of 

window size 4 with setting K=4. Compactness of each cluster is a widely used measure 

for evaluation of clustering quality. The compactness of each cluster could be observed 

by the standard deviation of structure segments of each cluster. The standard deviation of 

structure segments in each cluster is show in Table 4.4.  

Table 4.4. Clustering results (window size =4 and K=4) 

Index Size  Standard deviation   

1 1237 0.1029    0.2020    0.4207    0.1021    0.2262    0.1126 

2 553 0.3003    0.6303    0.6267    0.1770    0.7894    0.3598 

3 180 0.4100    1.4566    3.0631    0.8012    1.5766    0.7836 

4 166 0.8596    1.9026    2.1140    0.5201    0.7084    0.2589 

   

In Table 4.4, the first column is the index of clusters from 1 to 4. There are four 

clusters. The second column is the size of each cluster. The third column is the standard 

deviation of structure segments in each cluster. As the window size is 4, the standard 

deviation vector has six elements. From left to right, the elements in the standard 

deviation vector correspond to the pairs of bases (1,2), (1,3), (1,4), (2,3), (2,4), (3,4).  

From Table 4.4, we can see that the first two clusters cover 83.80% of the whole 

dataset and have very low standard deviations.  The third cluster has a larger standard 

deviation but acceptable. Only the forth cluster has relatively high standard deviation but 

it is a small-sized cluster with 7.77% of the whole data. Consequently, the clustering has 

good compactness. According to Duarte et al. (Duarte, 2003), the length of four-
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nucleotide segments was successfully used to search RNA motifs from a set of RNA 

three dimensional structures. Our result matches the direct observations.      

4.2.6 HFSS 

To integrate the base pair information into the HFSS representation, we define 

three symbols for HFSS description. It is described in Table 4.5. 

Table 4.5. Symbols for HFSS description 

Symbols Name Definitions 

( left parenthesis A base that is paired with another base after  
itself along the sequence 

) right parenthesis A base that is paired with another base before  
itself along the sequence 

: colon An unpaired base 
 

The above clustering analysis reveals that window size 4 is most suitable for the 

description of structure segments. With window size 4 and 3 possible symbols at each 

position, there are totally 81 types of combinations. To find the HFSS, we statistically 

analyze all types of structure segments. The structure segments with quantity larger than 

20 are shown in Table 4.6 while the structure segments with quantity no more than 20 are 

shown in Table 4.7. The types in Table 4.6 are called large-sized types while the types in 

Table 4.7 are called small-sized types. The standard deviation of each type of structure 

segments is also displayed in Table 4.6.  

As we know, the window size 4 and 3 possible symbols at each position, there 

should be totally 81 types of structure segments. Actually, 53 types of structures 

segments are found in our dataset. That the structure segments do not exist in this dataset 
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does not mean that they could not occur beyond the dataset used in this experiment.    

Table 4.6. Standard deviation of large-sized types 

ID Structure 
segment 

Num Standard Deviation  

1 (((( 301   0.249   0.373   0.675   0.203   0.350   0.229 

2 (((: 116   0.225   0.452   1.297   0.270   0.711   0.420 

3 ((:( 21   0.342   0.478   1.876   0.300   1.544   0.744 

4 ((:: 104   0.274   0.695   1.459   0.466   0.924   0.483 

5 (::: 81   0.463   0.970   2.179   0.495   1.473   0.753 

6 )))) 333   0.219   0.418   0.647   0.209   0.362   0.220 

7 ))): 78   0.227   0.354   0.909   0.270   0.786   0.828 

8 )):: 65   0.290   0.869   1.483   0.914   1.278   0.315 

9 )::: 53   0.993   1.358   2.106   0.289   1.636   0.693 

10 :((( 70   0.719   1.740   2.105   0.373   0.574   0.230 

11 :))) 106   0.643   1.157   1.545   0.245   0.491   0.254 

12 ::(( 58   0.696   2.036   3.104   0.736   1.837   0.404 

13 ::)) 105   0.647   1.724   2.398   0.656   1.201   0.247 

14 :::( 45   0.708   1.872   3.018   0.783   2.102   0.773 

15 :::) 82   0.696   1.505   2.523   0.701   1.874   0.684 

16 :::: 322   0.670   1.635   2.475   0.751   1.637   0.750 

        

In Table 4.6, the first column is the ID of structure segments of each type. There 

are 16 types of structure segments which are high frequent in this dataset. The second 
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column is the structure segments represented in the symbols defined by Table 4.5. The 

column Num is the number of structure segments of each type. The last column is the 

standard deviation of distance matrix of the same type of structure segments.    

For each type of structure segment in Table 4.6, the standard deviation which is 

larger than 1 is underlined. From the standard deviation, we can get some clue about the 

variation of the structure segments in each type. Larger standard deviation indicates 

larger variation of the structure segments in the same type. If the types with 2 or more 

standard deviation values larger than 1 are considered as regular types, only type 1, 2, 4, 

6, and 7 are regular while others are irregular, especially type 9, 12, 13, 14, 15, and 16.   

Table 4.7. Consensus distance vectors of small-sized types 

ID Structure 
segment 

Num Consensus Distance Vector 

17 ((() 4    6.180   11.826   16.636    6.316   11.788    6.203 

18 (()) 5    6.300   10.962   15.156    5.621   11.054    6.223 

19 ((): 1    6.782   12.657   18.339    6.426   12.345    6.270 

20 ((:) 2    6.489   10.733   14.624    6.181   11.793    6.180 

21 ())) 2    5.110   10.562   15.952    6.430   12.310    6.242 

22 ()): 3    5.962   11.383   15.605    6.086   11.216    6.416 

23 ():: 3    5.882   11.002   13.517    5.553    9.690    5.951 

24 (:(( 18    6.382   10.551   14.726    5.753   10.597    6.281 

25 (:(: 4    6.318   11.171   15.513    5.591   10.586    5.939 

26 (:)) 1    6.313   12.289   17.423    6.232   11.872    6.182 

27 (:): 1    6.049   11.297   17.936    6.127   12.758    7.290 

28 (::( 15    5.973   11.160   14.869    6.041   10.623    6.086 

29 (::) 14    6.371   10.757   13.895    6.041   10.811    5.905 

30 )((( 10    5.955   10.647   15.258    6.185   11.751    6.275 

31 ))(( 7    6.186   11.668   16.079    6.531   12.056    6.160 
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32 )))( 7    6.218   11.743   15.736    6.186   11.668    6.531 

33 )):( 3    6.076   11.583   16.016    6.113   11.693    6.253 

34 )):) 11    6.276   11.591   16.380    6.122   11.852    6.185 

35 ):(( 3    6.113   11.693   16.268    6.253   11.886    6.329 

36 ):)( 1    6.467   12.089   16.611    6.245   10.641    4.617 

37 ):)) 9    5.988   11.788   16.482    6.257   11.762    6.277 

38 ):): 3    6.119   11.535   15.209    6.041   10.987    5.988 

39 )::( 2    6.657   11.624   14.639    6.598   11.050    5.452 

40 )::) 16    6.190   11.224   15.134    6.169   11.212    5.863 

41 :(() 2    6.660   12.078   15.295    6.507   10.157    4.861 

42 :((: 10    5.722   10.630   15.281    6.402   11.730    5.903 

43 :(): 2    6.771   11.849   15.701    5.610   10.330    5.194 

44 :(:( 1    5.083   10.226   15.906    6.119   11.287    6.207 

45 :(:: 6    5.789   10.930   15.560    5.851   11.093    6.110 

46 :)(( 3    5.058    9.124   10.460    4.610    7.360    6.243 

47 :)): 6    5.895   10.944   15.114    6.216   11.470    6.052 

48 :):) 2    5.303   10.129   15.476    5.688   11.203    6.324 

49 :):: 7    6.162   11.457   15.100    6.360   10.402    5.961 

50 ::() 2    4.377   10.455   14.858    6.771   11.849    5.610 

51 ::(: 3    5.725   10.420   14.542    5.819   11.154    5.823 

52 ::)( 2    6.273   10.036   12.822    4.465    8.366    4.607 

53 ::): 5    6.194   11.346   15.627    5.897   10.947    6.128 

 

The layout of Table 4.7 is similar to Table 4.6, but the last column is the 

consensus distance vector instead of standard deviation. The consensus distance vector is 

the mean of all distance vectors whose structure segments belong to the same type. Since 

the each type of structure segments in Table 4.7 has a small quantity, all distance vectors 
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of the same type have to be considered.  However, for a large-sized type, to emphasize 

the majority of the structure segments the minority should be ignored as noise. The steps 

to compute the consensus distance vector for a type with large quantity is explained 

below.    

 

Consensus Distance Vector  

In this work, the special features of a structure segment are described using a distance 

vector. So we use a consensus distance vector to interpret the special features of a 

specific type of structure segments. For a type with low standard deviation or small size, 

we directly calculate the mean of all distance vectors of structure segments belong to the 

same type. However, for a large-sized type with high standard deviation, we have to 

extract the consensus distance vector through clustering analysis. It includes two steps. In 

step 1, find the suitable number of clusters in the structure segments of a specific type. In 

step 2, partition the distance vectors of the structure segments and compute the consensus 

distance vector by only considering significant clusters. Based on the statistical results of 

Table 4.6, the types 3, 5, 9, 12, 13, 14, 15, and 16 should be analyzed by the two steps 

before calculating their consensus distance vectors.   The results are demonstrated as 

follows.  

 

Step1. Find the suitable number of clusters 

The large-sized types of 3, 5, 9, 12, 13, 14, 15, and 16 have high standard deviations and 

should be analyzed to find the suitable number of clusters. The distribution of average 

cluster similarities of each type of structure segments is shown in Figure 4.4. 
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Figure 4.4. Distribution of average cluster similarities of structure segments with high 
standard deviation. 
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Figure 4.4 shows the distributions of average cluster similarities for the structure 

segment types 3, 5, 8, 9, 10, 12, 13, 14, 15, and 16.  From the distribution, we can easily 

determine the suitable number of clusters of each type. The suitable numbers are 6, 5, 3, 

5, 4, 7, 5, 10, 6, and 7 respectively.   

Step 2. Calculate the consensus vector   

In step 1, the suitable number of clusters for each type of structure segments has been 

discovered. Using the suitable numbers, we cluster the structure segments type by type. 

When calculating the consensus distance vectors, the clusters whose sizes are fewer than 

10% of the whole set of structure segments are ignored. The consensus distance vectors 

of types with high standard deviations are shown in Table 4.8. 

Table 4.8. Consensus distance vectors of large-sized types 

ID Structure segments Num Consensus Distance Vector 

1 (((( 301    6.245   11.959   16.823    6.242   11.971    6.251
2 (((: 116    6.229   11.888   16.554    6.251   11.760    6.198
3 ((:( 21    6.306   12.126   15.823    6.307   10.664    5.505
4 ((:: 104    6.255   11.713   16.154    6.132   11.276    6.057
5 (::: 81    6.150   11.590   15.768    6.167   11.133    5.953
6 )))) 333    6.235   11.939   16.937    6.233   11.972    6.244
7 ))): 78    6.231   11.948   16.999    6.244   11.951    6.222
8 )):: 65    6.230   11.937   16.790    6.243   11.695    6.185
9 )::: 53    6.105   11.618   16.265    6.158   11.390    5.982
10 :((( 70    6.082   11.316   15.874    6.244   11.848    6.221
11 :))) 106    5.983   11.185   15.980    6.232   11.827    6.229
12 ::(( 58    6.069   10.353   13.629    5.886   10.588    6.239
13 ::)) 105    5.976   10.558   14.769    5.987   11.249    6.239
14 :::( 45    5.938   10.354   14.508    5.843   10.945    5.979
15 :::) 82    6.003   10.667   13.987    5.925   10.546    6.032
16 :::: 322    5.984   10.563   14.065    5.931   10.445    5.919
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Now we have found the consensus distance vectors of all 53 types of structure 

segments. The structural similarity of any two types of structure segments can be 

assessed using the distance between the corresponding consensus distance vectors. With 

the 53 types of structure segments and their similarities, given a three dimensional RNA 

structure and the base pair information, we can convert the structure into a string of 

structure segments. Using the similarities among different types of structure segments, 

we can efficiently evaluate the similarity of any two RNA molecules and rapid search 

known and novel motifs from the strings. These hard problems if representing an RNA as 

a graph becomes much easier to be solved by using structure segment definition and 

similarities of different types of structure segments.    

 If our results are used to serve for rapid substructure search or mining known and 

novel motifs, all the definitions and experimental results are good enough for solving 

these problems. If the objective is to make the comparison of RNA structure similarity as 

efficient as possible, more work needs to be done.    

By observing the size and consensus distance vector of each type in Table 4.7 and 

4.8, we find that there are many small-sized types whose consensus distance vectors are 

very close to those of some large-sized types, and many small-sized types have similar 

consensus distance vectors with each other. The small-sized types with similar consensus 

distance vectors with large-sized types are unnecessary to exist independently because 

even though they are independently treated they can not bring much performance to 

estimate the similarity of RNA structures. On the one side, they do not appear frequently. 

On the other side, it is highly possible for them to be compared with similar consensus 

distance vectors of different types. So we decide to simplify the 53 types into a smaller 
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set of types of structure segments through clustering analysis. Before clustering, we have 

to find the suitable number of clusters in the 53 consensus distance vectors.  The 

distribution of average cluster similarities is shown in Figure 4.5. 
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Figure 4.5. Distribution of average cluster similarities of clustering 53 types of structure 
segments. 

 

From the Figure 4.5, we can see that the suitable number of clusters in the 53 

types of structure segments is 8. Based on the result, we partition the 53 types into 8 

clusters. The distribution of the 53 types is shown in Table 4.9. 

Table 4.9. Eight clusters 

Index Num SS Name SS ID 

1 3 A 19    26    27 
2 4 B 21    44    48    50 
3 7 C 12    14    15    16    23    24    29 
4 16 D 1      2      4      6      7       8      9      10     

11    17    31    32    33    34   35     37 
5 4 E 3    36    41    43 
6 11 F 5    18    22    25    28    38    39    40    45    49    53
7 6 G 13   20   30    42    47    51 
8 2 H 46   52 
 

In Table 4.9, the first column is the index of clusters from 1 to 8. The second 
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column is the number of types in each cluster. The third column is the names of each 

cluster. The names are used to represent the 8 types of structure segments. The last 

column is the SS ID which matches the column SS ID in Table 4.7 and 4.8. 

The consensus distance vector and standard deviation of each cluster is shown in 

Table 4.10.  

Table 4.10. Eight types of HFSS 

SS Name Consensus distance vector and Standard Deviation 

6.381  12.081  17.899   6.262  12.325   6.581 A 
0.371   0.704   0.459     0.152   0.443   0.616 

4.968  10.343  15.548   6.252  11.662   6.096 B 
0.406   0.200   0.507     0.461   0.518   0.328 

6.090  10.607  14.047   5.847  10.517   6.044 C 
0.204   0.229   0.439     0.157   0.402   0.154 

6.165  11.712  16.373   6.235  11.775   6.220 D 
0.094   0.223   0.391     0.097   0.206   0.117 

6.551  12.036  15.858   6.167  10.448   5.044 E 
0.206   0.126   0.551     0.388   0.247    0.388 

6.165  11.307  15.289   6.038  10.937   6.011 F 
0.225   0.239   0.353     0.297   0.275    0.242 

5.960  10.655  14.931   6.132  11.525   6.079 G 
0.281   0.176   0.327     0.202   0.276    0.185 

5.665   9.580  11.641   4.537   7.863   5.425 H 
0.859   0.645  1.670     0.102   1.157   0.711 

 

In Table 4.10, the italic numbers are standard deviations of each cluster. Above each 

line of standard deviation, it is the consensus distance vector of each cluster. We can see 
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that the standard deviations of all clusters except of H are very small with most fewer 

than 0.5. Only the standard deviations of cluster H is a little large but acceptable.  The 

results indicate that 8 types are good enough to represent 53 types. These eight clusters 

are the HFSS we want. 

The similarity of any two different types of HFSS is measured by the distance 

between the corresponding consensus distance vectors. Smaller distance indicates higher 

similarity. The distances between different types of structure segments are shown in 

Table 4.11.  

Table 4.11. Distances between eight different types of HFSS. 

SS Name A B C D E F G H 

A 0 3.350 4.563 1.716 3.177 3.124 3.454 8.376 

B  0 2.249 2.004 2.838 1.734 1.223 5.844 

C   0 2.898 2.577 1.501 1.378 4.021 

D    0 1.915 1.457 1.825 6.783 

E     0 1.482 2.313 5.838 

F      0 0.977 5.347 

G       0 5.334 

H        0 

 
In Table 4.11, the first row and the first column contain the eight types of HFSS. 

The eight types of HFSS are described in Table 4.9 and 4.10. With the similarity of 

different types of HFSS, the similarity of any two RNA three dimensional structures can 

be obtained by assessing the similarity of their corresponding HFSS strings. 
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4.3 Conclusion       

  The contribution of our work is that we discover the HFSS in RNA three 

dimensional structures by clustering algorithms. Using these HFSS, a complex RNA 

three dimensional structure can be converted into a string of HFSS. Since a string of 

HFSS describes a specific RNA structure, the subtle structural differences between 

molecules can be obtained by directly comparing their strings of HFSS. Our clustering 

algorithm and experimental results can be used for evaluation of similarity of RNA three 

dimensional structures and rapid RNA structure database search.  
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Chapter 5 

  Pattern Analysis on Protein Structures 

5.1 Objective  

The effectiveness of our improved K-means clustering algorithm and structure 

descriptor has been tested on RNA structures and successfully verified by the 

experimental results. In this chapter, we will test the algorithm and new descriptor on 

protein structures. The objective is to see whether our algorithm and structure description 

are useful for protein structure pattern analysis. We are also interested in the difference 

between RNA and protein structure patterns.   

  Since we propose a new structure descriptor in this work, the targets of clustering 

are the three dimensional structure segments instead of sequence segments. Through 

grouping similar structure segments into clusters, the protein sequence-structure 

correspondence is uncovered and is further used for protein structure research. We 

compare our new descriptor with the descriptor used in Chen’s work (Chen et al., 2006). 

The experimental results of protein dataset show that our new descriptor is more effective 

for the protein pattern analysis.  

This chapter is organized as follows. Section 5.2 gives an introduction to protein 

structures. Section 5.3 demonstrates all of the details and results of this experiment, 

including the six datasets used in this experiment, experiment setup, the suitable number 

of clusters of each dataset analyzed using the improved K-means clustering algorithm, 

experimental results validation by the measures of secondary structure similarity and the 
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population analysis. The discussion and conclusion are drawn in section 5.4.    

5.2 Background Knowledge    

Proteins are molecules performing a wide variety of functions in living systems. 

(Lesk, 2004). Proteins are composed of amino acids linked together by covalent peptide 

bonds. There are 20 different standard amino acids, also referred to as residues 

(Creighton, 1993). Proteins have multiple levels of structure, including primary structure, 

secondary structure, three dimensional structure, and quaternary structure (Branden and 

Tooze, 1998). The number of released protein structures is increasing at a growing pace. 

Thus many databases have been built for protein three dimensional structures repository 

and research. PDB (Berman et al., 2000) is the largest one. As of January 2007, PDB 

contains 37,537 protein structures with around 90% determined by X-ray crystallography 

and about 9% of the protein structures obtained by NMR. The protein structures used in 

our experiment are retrieved from PDB, which are determined by X-ray crystallography.  

The protein functions are highly related to their structures. So obtaining protein 

structures is very important for understanding their functions. However, experimental 

determination of protein three dimensional structures is still time-consuming and 

expensive. As a result, computational approaches to the prediction of protein structures 

from their amino acid sequences are required (Han and Baker, 1995; Rost, 2001; Petrey, 

2005; Zhong et al., 2005; Zhang et al., 2005). The methods those predict the structure for 

an unknown protein relying on the homologous proteins with known structures are called 

homology based methods. For homology based methods, uncovering the protein 

sequence-structure correspondence is crucial for the success of protein structure 
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prediction. Clustering algorithms have been successfully used to study the sequence-

structure correspondence for protein secondary structure prediction problem (Han and 

Baker, 1995; Zhong et al., 2005; Chen et al., 2006). In this chapter, we show how to 

improve the performance of clustering by efficient representation protein structure 

segments and determination of the suitable number of clusters in a set of protein 

structures.  

5.3 Experiments on Protein Structures    

In this section, we describe the procedure of pattern analysis of protein structures 

and validate the experiment results using both biological and statistical measures. This 

section is organized as follows. The protein structures used for protein pattern analysis 

are introduced in Section 5.2.1. Section 5.2.2 explains the details of experiment setup. In 

Section 5.2.3, we show how to find the suitable number of clusters in each dataset (there 

are six datasets) using the improved K-means clustering algorithm. To show the 

effectiveness our algorithm, the experimental results are verified using the measures of 

secondary structure similarity analysis and population analysis respectively in Section 

5.2.4 and 5.2.5.      

5.3.1 Dataset   

Six datasets are used in this experiment and each dataset includes 100 protein 

structures. The protein structures are randomly selected from Protein Sequence Culling 

Server (Wang and Dunbrack, 2003), a public server for culling sets of protein sequences 

from the PDB through certain sequence identity and structural quality criteria. In Chen’s 
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work (Chen et al., 2006), the protein sequences are separated into segments using sliding 

window with a window size 9. To compare with their work, we keep using 9 as the 

window size. The protein structures in the six datasets are represented in two descriptors. 

Our descriptor generates structure segments while the descriptor (Chen et al., 2006) 

produces sequence segments. The definitions of structure segments and sequence 

segments are explained as follows.  

5.3.1.1 Representation of structure segments   

A good descriptor should contain enough information and keep as easy-

understanding and each-using as possible for study. Keeping this goal in mind, we 

propose a new descriptor for the protein structure segments. The descriptor is based on a 

distance matrix which consists of the Euclidean distance between any two amino acids in 

a sliding window. The definition of distance matrix is described as follows: 

Let the sliding window size is w. The subsequence in the sliding window is 

S=X1X2…Xw. The coordinates of a protein backbone are known.  The distance matrix 

(DM) is  

⎩
⎨
⎧

>=

<=<
=

jiif

wjiifd
DM ij

,0

,

 
(5.1) 

where dij is the Euclidean distance between amino acids i and j; w is the sliding window 

size.  

The DM can be further simplified into a vector which only contains dij where 

i<j<=w. Consequently, a structure segment is finally described as a vector:  

w}ji0|{dV ij <=<<=  (5.2) 
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Based on the above definition, a structure segment with window size is 

represented by a 36-demension vector in which each element is the Euclidean distance of 

any two amino acids in this sliding window.     

5.3.1.2 Representation of sequence segments 

We use the frequency profile from the HSSP (Sander and Schneider, 1991) to 

represent the sequence segments. HSSP is a database of homology-derived secondary 

structure of proteins. The frequency profile from HSSP is constructed based on the 

alignment of each protein sequence from the homologous sequences in PDB. Since there 

are 20 standard amino acids and the window size used in this experiment is 9, each 

position in the window has 20 possible frequencies corresponding to 20 different amino 

acids. Consequently, a sequence segment is represented by a 180-demension vector.  

5.3.1.3 Secondary Structure   

The secondary structures of each protein sequence are obtained from DSSP 

(Kabsch and Sander, 1983), a database of secondary structure assignments for all protein 

entries in the PDB. DSSP originally assigns the secondary structure to eight different 

classes. In this work, we combine the eight classes into three classes: H, G and I to H 

(Helices); B and E to E (Sheets); all others to C (Coils). The secondary structures of 

protein sequences are used to evaluate the clustering quality in our experiment.     

5.3.2 Experiment Setup  

In this experiment, we set the number of clusters (K) change from 2 to 50. For 

each K, 20 iterations of similarity calculation are performed. The average of the 20 
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similarities is used to indicate the stability of the clustering under cluster number K. F, 

the fraction of samples, is 0.7.  The criteria mentioned in section 3.6.2.3 are used to 

determine the suitable number of clusters.  According to Chen’s work (Chen et al., 2006), 

window size 9 is appropriate size for sequence segment. To compare with their work, we 

keep using it in this experiment.  

5.3.3 Detecting the Number of Clusters     

We test our algorithm on both structure segments and sequence segments. The 

distribution of average cluster similarities of each dataset is shown as follows.  
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Figure 5.1. Distribution of average cluster similarities of dataset 1. Distribution of 

clustering on structures (in blue); (b) Distribution of clustering on sequences (in red) 
 
 

From Figure 5.1, we can see that there is a unique maximum average cluster 

similarity in both (a) and (b).  For (a), the maximum is at K= 4 and the maximum is at 

K=7 for (b). The distribution in (a) follows the increasing trend before K=4 and 
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decreasing trend after K=4. Thus it is clear that the suitable number of clustering of this 

dataset is 4 from (a). Compared with (a), the distribution in (b) has no decreasing trend 

after the maximum average cluster similarity value. In addition, most of the average 

cluster similarity values are very close to the maximum value with different less than 

0.005. So there is no strong evidence to decide the suitable number of clusters.     
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Figure 5.2. Distribution of average cluster similarities of dataset 2. Distribution of 

clustering on structures (in blue); (b) Distribution of clustering on sequences (in red) 
 

 
From Figure 5.2, we can see that there is a unique maximum average cluster 

similarity in both (a) when K is 7 and (b) when k is 9. In (a), the average cluster 

similarities from K=2 to K=12 have no much change. Before the maximum value, there 

is no obvious increasing trend. However, after the maximum value the distribution 

follows a decreasing trend. It is hard to decide the definite suitable number but we can 
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give estimation that it is fewer than 12. Although (b) has unique maximum average 

cluster similarity value, there are many average cluster similarities very close to the 

maximum with difference less than 0.005. It is hard to decide the suitable number of 

clusters from (b).  
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Figure 5.3. Distribution of average cluster similarities of dataset 3. (a) Distribution of 
clustering on structures (in blue); (b) Distribution of clustering on sequences (in red) 

 

In Figure 5.3, there is a unique maximum average cluster similarity in both (a) 

when K is 12 and (b) when K is 8. The distribution in (a) matches our distribution 

requirements very well. So it is easy to determine the suitable number of clusters of 

dataset 3 is 4 from (a). Although (b) has unique maximum average cluster similarity 

value, there are many average cluster similarities very close to the maximum (the 

difference is less than 0.005) after K=8. The distribution in (b) does not meet our 

requirements of suitable number of clusters. So it is hard to determine the suitable 
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number of clusters from (b).      
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Figure 5.4. Distribution of average cluster similarities of dataset 4. (a) Distribution of 
clustering on structures (in blue); (b) Distribution of clustering on sequences (in red) 

 

In Figure 5.4, there is a unique maximum average cluster similarity in (b) when k 

is 18. In (a), the average cluster similarity value at K=2 is larger than that at K=14. The 

value at K=2 could ignored since in general the average cluster similarity value is 

relatively high at K=2. It is resulted by the features of K-means algorithm and dataset.  

The distribution in (a) meets our distribution requirements pretty well. So the suitable 

number of clusters of dataset 3 is 14 In (b), there are many values very close to the 

maximum (the difference is less than 0.005) after K=18. Additionally, the distribution in 

(b) is far from our distribution criteria. So we cannot determine the suitable number of 

clusters from (b). 
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Figure 5.5. Distribution of average cluster similarities of dataset 5.(a) Distribution of 
clustering on structures (in blue);(b) Distribution of clustering on sequences (in red) 

 

The distributions in Figure 5.5 are similar to those in Figure 5.1. From (a), the 

suitable number of clusters is 9.  The distribution in (b) does not meet the requirements. 

Thus it is hard to determine the suitable number of clusters in dataset 5.    
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Figure 5.6. Distribution of average cluster similarities of dataset 6. (a) Distribution of 
clustering on structures (in blue); (b) Distribution of clustering on sequences (in red) 

The distributions in Figure 5.6 are similar to those in Figure 5.5. From (a), we can 
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see that the suitable number of clusters is 7.  The distribution in (b) does not meet the 

requirements. Thus it is hard to decide the suitable number in dataset 6.    

 We have analyzed the distributions of six protein datasets using both structure 

segments and sequence segments. We observe the following advantages of structure 

segments over sequence segments: 

(1) Compared with average cluster similarities from structure segments clustering, the 

average cluster similarities from sequence segments clustering scatter in a small range. 

From dataset 1 to dataset 6, the average cluster similarities from sequence segments 

clustering range in [0.976, 1], [0.969, 1], [0.977, 1], [0.971, 1], [0.973, 1], [0.959, 1] 

respectively. By structure segments clustering, the average cluster similarities range in 

[0.806, 1], [0.811, 1], [0.761, 1], [0.750, 1], [0.741, 1], [0.743, 1] respectively. Larger 

range of average cluster similarities favors the determination of suitable number of 

clusters in data.     

(2) Unique maximum average cluster similarity is found in every dataset no matter using 

sequence segments or structure segments. 

(3) It is more reliable to find the suitable number of clusters using structure segments 

than using sequence segments. In our experiment, clustering on structure segments works 

well for all datasets while clustering on sequence segments works for none of the six 

datasets. 

(4) Representation of structure segments needs fewer dimensions than that of sequence 

segments. For window size 9 in our experiment, the former requires 36 dimensions while 

the later needs 180 dimensions.          
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5.3.4 Secondary Structure Similarity Analysis    

To verify the effectiveness of our clustering analysis, a biological evaluation 

criterion is used to evaluate the suitable number of clusters found by our algorithm. The 

suitable number of clusters for each protein dataset has been found for the clustering of 

structure segments. For the clustering of sequence segments, the K where the maximum 

average cluster similarity occurs is adapted as the suitable number of clusters. The 

biological evaluation criterion is called secondary structure similarity (Sander and 

Schneider, 1991) which is used in many literatures. For each cluster, the secondary 

structure similarity of a cluster is given by                           

ws

ppp
ws

i
CiEiHi∑

== 1
,,, ),,max(

  Similarity StructureSecondary  
(5.3) 

Where ws is the window size and Hip , shows the frequency of occurrence of helix among 

the segments of a cluster at position i. Eip ,  and Cip ,  are defined in a similar way.  

According to Sander and Schneider (Sander and Schneider, 1991), if the 

secondary structure similarity of a cluster is larger than 70%, the cluster can be 

considered structurally identical. In Zhong’s work (Zhong et al., 2005), if the secondary 

structure similarity of a cluster is over 60% and lower than 70%, the cluster can be 

considered weakly structurally homologous. 

According to the definition of secondary structure similarity above, we calculate 

the secondary structure similarity of all segments of each dataset. It is shown in Table 

5.1.  
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Table 5.1. Secondary structure similarity of each protein dataset 

Datasets 1 2 3 4 5 6 

# of segments (window size =9) 18797 16138 17866 16365 17454 16490

SSS of all segments  0.392 0.420 0.389 0.397 0.384 0.388 

   SSS: Secondary Structure Similarity 

In Table 5.1, the fist row is the index of six datasets used in the experiment; the 

second row is the number of structure segments of each dataset with window size 9; the 

third row is the secondary structure similarity of all structure segments in each dataset.  

From Table 5.1, we can see that the secondary structure similarity of the six datasets 

ranges from 0.384 to 0.420.   

We do experiments by clustering both structure segments and sequence segments. 

The average secondary structure similarity of each protein dataset is shown in Table 5.2.  

Table 5.2. The average secondary structure similarity of each protein dataset 

Datasets  1 2 3 4 5 6 

Suitable K 4 7 12 14 9 7 Structure segments  
Arg. SSS 0.616 0.622 0.631 0.615 0.623 0.624

Suitable K 7 9 8 18 20 20 Sequence segments  
Arg. SSS 0.410 0.420 0.398 0.411 0.401 0.407

     Arg. SSS: Average Secondary Structure Similarity 

In Table 5.2, the fist row is the index of six datasets used in the experiment; the 

second row is the experimental results using the representation of structure segments; the 

third row is the experimental results using the representation of sequence segments. 

Suitable K indicates the suitable number of clusters found in each dataset. Arg.SSS 

represents the average secondary structure similarity of each dataset.  
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To obtain the average secondary structure similarity of each dataset, we first 

cluster the samples in the dataset using the suitable number of clusters which are shown 

in the row of suitable K. Then the secondary structure similarity of each cluster and the 

average secondary structure similarity are calculated. From the Table 5.2, we can see that 

the average secondary structure similarity of each dataset from structure segments 

clustering is above 0.6. However, clustering sequence segments gives an average 

secondary structure similarity about 0.4. According to Zhong’s work (Zhong et al., 2005), 

the clusters found by structure segments clustering have meaningful secondary structural 

similarity. The experimental results show that the representation of structure segments is 

more effective than the representation of sequence segments. Our algorithm works well 

with the representation of structure segments for protein structure analysis. 

5.3.5 Population Analysis 

The total population can be estimated by extracting and tagging a subset of a 

population, releasing the tagged subset and then estimating the probability of recovering 

the tagged individual when a new sample is drawn from the population.   Since the 

probability of recovering a tagged individual is: 

sample

sampleintagged

total

tagged

N
N

N
N

IndividualTaggedP ≈=)(  (5.4)

Where Ntagged is the number of tagged individuals in the total population and the Ntotal is 

the number of total population; Nsample is the number of individuals in a sample and 

Ntagged_in_sample is the number of tagged individuals in a sample. That is, Ntagged in sample is the 

number of coincidence between Ntagged and Nsample. 
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From the above equation 5.4, Ntotal can be derived as:  

sampleintagged

sampletaggedtagged
total N

NN
IndivudalTaggedP

N
N ≈=

)(
 (5.5)

In our experiment, we have found the number of clusters for each protein dataset. 

Based on the information, we can estimate the range of how many clusters are in a larger 

or even the whole set of protein structures. The number of clusters in two different 

datasets can be seen as Ntagged and Nsample respectively. The number of coincidences 

between clusters of two different datasets is Ntagged in sample.  

Consequently, individual estimates for the total population size can be made by 

counting the number of coincidences between clusters of different datasets.  To determine 

the coincidence between clusters, we need to know the distance between clusters of 

different datasets. RMSD (Root Mean Square Deviation) is a widely-used measure of 

difference between structures. In this experiment, we use it to measure the distance of 

two clusters. The smaller the RMSD between any two clusters, the closer the two clusters 

is. Since the size of different clusters is different and the individual matching information 

between two clusters is unknown, the RMSD is derived from the centroids of clusters. 

The definition of RMSD is given by: 

n

VU
n

i
ii∑

=

−
= 1

2)(
V)RMSD(U,  

(5.6) 

Where U,V are the centroids of the two clusters. In this experiment, U and V are 36-

dimension vectors. So n is 36.  

    The RMSD between any two clusters of different datasets is shown in Table 5.3-
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5. 17. It is measured in unit Å. In each table, the clusters indexes of two datasets are in 

the first column and top two rows (in grey shade). The smallest distance from one 

dataset’s cluster to all clusters in another dataset is underlined. The two clusters with the 

underlined RMSD distance are believed to matching each other in relative to the two 

datasets. Since different datasets may have different number of clusters in them, the 

matching of clusters is always from the dataset with fewer clusters to the dataset with 

more clusters.     

Table 5.3. RMSD between any two clusters of datasets 1 and 2. 
 

Dataset 2 Dataset 1 
 1 2 3 4 
1 2.127 14.790 29.726 14.771 
2 20.961 7.698 12.137 15.397 
3 31.916 20.953 2.378 21.238 
4 11.119 13.792 22.459 3.721 
5 21.466 14.565 10.385 8.956 
6 7.577 17.159 32.476 15.812 
7 10.090 5.105 23.336 13.623 

 
 

Table 5.4. RMSD between any two clusters of datasets 1 and 3. 
 

Dataset 3 Dataset 1 
 1 2 3 4 
1 2.390 15.278 30.225 15.208 
2 15.572 17.892 23.257 5.490 
3 14.002 10.159 16.660 4.907 
4 6.230 10.942 24.189 8.601 
5 34.452 23.474 4.933 23.570 
6 7.845 8.969 24.813 13.521 
7 9.088 18.942 32.121 14.157 
8 23.897 16.762 9.308 11.139 
9 13.719 4.921 23.232 16.247 
10 20.361 6.967 13.027 15.288 
11 9.683 14.991 32.370 18.483 
12 27.380 15.926 3.115 17.725 
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Table 5.5. RMSD between any two clusters of datasets 1 and 4. 
 

Dataset 4 Dataset 1 
 1 2 3 4 
1 7.314 9.393 25.251 13.661 
2 34.255 23.061 4.787 23.643 
3 9.831 15.903 33.274 19.201 
4 2.390 15.358 30.365 15.324 
5 17.924 4.017 17.051 15.717 
6 28.355 18.364 2.524 17.053 
7 11.545 18.360 28.299 9.469 
8 8.529 19.258 33.576 16.078 
9 14.631 7.593 15.682 7.376 
10 15.928 15.373 19.379 2.693 
11 24.879 12.252 7.710 17.156 
12 6.934 12.402 24.050 8.614 
13 22.481 15.623 10.088 9.727 
14 8.021 9.723 24.851 11.013 

 
Table 5.6. RMSD between any two clusters of datasets 1 and 5. 

 
Dataset 5 Dataset 1 

 1 2 3 4 
1 10.093 8.929 19.914 6.073 
2 16.442 16.326 20.036 3.542 
3 33.654 22.558 4.138 22.953 
4 9.675 18.587 30.687 12.269 
5 9.416 15.736 32.796 18.424 
6 22.384 9.313 10.624 15.991 
7 12.317 4.011 22.674 14.990 
8 1.937 14.670 29.677 14.706 
9 24.187 16.065 7.536 12.014 

 
Table 5.7. RMSD between any two clusters of datasets 1 and 6. 

 
Dataset 6 Dataset 1 

 1 2 3 4 
1 2.020 14.620 29.569 14.617 
2 22.583 9.475 10.503 16.153 
3 21.743 15.011 10.506 9.029 
4 11.192 3.870 22.233 13.525 
5 32.627 21.685 3.083 21.840 
6 10.991 13.946 22.807 4.058 
7 7.956 17.030 32.585 16.228 
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Table 5.8. RMSD between any two clusters of datasets 2 and 3. 
 

Dataset 3 Dataset 2 
 1 2 3 4 5 6 7 
1 0.578 21.662 32.489 12.355 22.233 9.712 11.317 
2 16.374 20.372 25.399 5.225 12.968 15.940 17.318 
3 14.515 12.037 18.917 6.879 8.175 16.452 11.327 
4 6.817 16.387 26.523 6.253 15.668 10.389 8.525 
5 34.518 16.599 2.584 27.114 14.758 37.279 28.125 
6 8.269 15.636 27.006 12.130 18.408 11.892 5.548 
7 10.864 25.074 34.408 10.657 22.822 4.460 15.183 
8 24.126 13.201 11.223 14.821 2.630 26.368 20.011 
9 14.438 11.761 25.393 15.808 18.870 15.731 4.315 
10 20.586 0.931 15.066 17.193 12.276 23.446 12.026 
11 11.478 22.461 34.650 15.868 25.191 6.366 10.277 
12 27.508 9.166 5.092 20.971 9.835 30.297 20.624 

 
 
 
 

Table 5.9. RMSD between any two clusters of datasets 2 and 4. 
 

Dataset 4 Dataset 2 
 1 2 3 4 5 6 7 
1 7.659 16.058 27.452 12.138 18.732 11.692 5.843 
2 34.315 16.092 2.440 27.144 14.907 37.126 27.766 
3 11.600 23.416 35.549 16.488 26.037 6.296 11.111 
4 0.696 21.767 32.631 12.455 22.370 9.664 11.366 
5 18.237 5.067 19.103 16.782 14.931 20.905 8.793 
6 28.498 12.410 4.320 20.611 8.244 31.079 22.657 
7 12.825 23.036 30.549 6.298 18.298 10.072 15.949 
8 10.352 25.827 35.877 12.566 24.578 2.956 15.077 
9 15.216 9.547 17.964 9.120 8.731 16.966 9.627 
10 16.535 16.869 21.551 5.149 9.078 17.362 15.796 
11 25.024 4.809 9.542 19.905 11.040 27.925 17.232 
12 7.150 17.363 26.297 6.503 15.491 11.413 10.304 
13 22.754 12.593 12.133 13.408 1.195 24.889 18.707 
14 8.867 15.599 27.216 9.159 17.123 10.799 7.169 

 
 
 
 
 
 



 

 

 

93
 
 
 
 

Table 5.10. RMSD between any two clusters of datasets 2 and 5. 
 

Dataset 5 Dataset 2 
 1 2 3 4 5 6 7 
1 10.631 13.093 22.218 5.772 11.672 13.274 8.492 
2 17.089 17.825 22.174 5.543 9.725 17.588 16.636 
3 33.724 15.656 1.776 26.463 14.203 36.499 27.231 
4 11.304 24.239 32.970 8.765 21.090 6.392 15.286 
5 11.281 23.165 35.075 15.673 25.397 5.390 11.009 
6 22.570 1.681 12.591 18.325 11.481 25.454 14.356 
7 12.969 11.567 24.860 14.506 17.890 14.852 2.378 
8 0.239 21.082 31.946 11.886 21.707 9.450 10.708 
9 24.407 11.911 9.564 15.651 3.070 26.750 19.652 

 
Table 5.11. RMSD between any two clusters of datasets 2 and 6. 

 
Dataset 6 Dataset 2 

 1 2 3 4 5 6 7 
1 0.214 21.001 31.837 11.814 21.599 9.549 10.696 
2 22.775 1.871 12.449 18.503 11.555 25.625 14.527 
3 22.043 12.304 12.601 12.705 0.513 24.116 17.999 
4 11.898 11.549 24.462 12.966 16.873 13.835 1.286 
5 32.707 14.881 0.755 25.356 13.082 35.465 26.313 
6 11.894 17.750 25.081 0.495 12.961 12.153 12.740 
7 10.011 24.020 34.895 13.002 24.177 0.895 12.571 

 
Table 5.12. RMSD between any two clusters of datasets 3 and 4. 

 
Dataset 4 Dataset 3 

 1 2 3 4 5 6 7 8 9 10 11 12 
1 8.14 16.91 11.63 7.836 29.96 0.75 13.59 21.20 9.917 15.50 11.06 22.74 

2 34.81 27.75 21.28 28.91 0.93 29.20 36.77 13.51 27.43 17.00 36.87 7.19 

3 11.70 20.46 18.64 12.97 38.05 11.53 10.69 28.54 13.05 22.68 1.21 30.74 

4 0.19 16.78 15.16 7.361 35.15 8.838 10.95 24.72 14.86 21.18 11.55 28.15 

5 18.70 20.42 12.50 14.27 21.54 12.67 22.64 16.73 6.96 4.212 18.44 14.10 

6 28.99 21.12 15.07 22.80 6.539 23.91 30.46 6.973 22.89 13.24 31.37 4.26 

7 13.04 6.794 12.84 9.558 32.87 14.94 6.76 20.32 19.12 22.66 15.11 26.87 

8 10.38 15.52 17.21 11.27 38.33 13.71 2.62 26.98 18.23 25.25 9.210 31.55 

9 15.74 12.63 3.22 9.729 20.46 10.47 17.02 11.30 11.61 9.437 17.29 13.51 

10 16.93 4.04 7.317 10.45 23.77 15.78 15.32 10.80 18.25 16.81 20.33 18.44 

11 25.52 22.05 13.96 19.91 11.90 19.55 28.45 11.57 16.45 5.71 26.77 4.734 

12 7.583 11.39 8.130 3.79 28.76 8.403 11.03 17.88 13.95 16.99 13.94 22.13 

13 23.22 13.38 9.288 16.64 14.27 19.52 23.69 1.53 19.90 13.05 26.25 9.87 

14 9.242 13.21 11.12 4.688 29.77 9.143 12.02 19.39 9.415 14.91 11.09 22.56 
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Table 5.13. RMSD between any two clusters of datasets 3 and 5. 
 

Dataset5 Dataset 3 
 1 2 3 4 5 6 7 8 9 10 11 12 

1 11.14 10.57 4.06 4.93 24.73 8.18 13.12 14.21 11.64 12.76 14.66 17.86 

2 17.47 3.29 8.24 11.13 24.35 16.55 15.33 11.30 19.11 17.77 20.77 19.20 

3 34.22 27.05 20.63 28.28 0.97 28.66 36.11 12.81 26.95 16.56 36.30 6.67 

4 11.45 10.75 14.51 9.78 35.36 14.05 2.56 23.32 18.55 23.77 12.19 28.97 

5 11.40 19.62 17.94 12.40 37.57 11.28 9.72 27.91 13.14 22.45 1.42 30.31 

6 23.07 20.95 12.68 17.64 15.00 17.06 26.29 12.56 13.40 2.56 23.99 7.64 

7 13.40 18.92 12.38 10.55 27.36 7.35 17.40 20.18 2.53 10.79 11.75 19.85 

8 0.73 16.31 14.44 6.73 34.47 8.13 10.73 24.08 14.29 20.50 11.28 27.45 

9 24.88 15.92 10.78 18.44 11.73 20.62 25.79 2.09 20.53 12.52 27.71 7.56 

 
Table 5.14. RMSD between any two clusters of datasets 3 and 6. 

 
Dataset6 Dataset 3 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.76 16.24 14.34 6.65 34.36 8.12 10.80 23.97 14.28 20.42 11.38 27.34 

2 23.27 21.12 12.81 17.85 14.84 17.24 26.47 12.61 13.54 2.74 24.14 7.51 

3 22.51 12.86 8.47 15.93 14.79 18.77 22.95 2.34 19.28 12.73 25.48 10.08 

4 12.36 17.48 10.94 9.12 26.99 6.18 16.12 19.24 3.82 10.82 11.36 19.48 

5 33.20 25.93 19.57 27.22 1.85 27.72 35.04 11.70 26.11 15.78 35.34 5.82 

6 12.28 5.21 7.16 6.32 27.45 12.11 10.25 15.18 15.86 17.46 15.61 21.31 

7 10.11 16.51 16.68 10.78 37.38 11.87 5.17 26.65 15.44 23.38 5.64 30.36 

 
Table 5.15. RMSD between any two clusters of datasets 4 and 5. 

 
Dataset 4 Dataset 5 

 1 2 3 4 5 6 7 8 9 
1 8.345 16.650 29.117 13.882 11.216 17.491 7.702 7.524 20.984 
2 24.587 24.539 2.719 35.352 37.315 14.478 26.959 34.269 11.921 
3 15.368 21.479 37.204 12.389 1.164 24.952 12.614 11.408 28.578 
4 11.279 17.574 34.364 11.458 11.347 23.180 13.448 0.814 25.029 
5 12.068 18.475 20.601 22.173 19.298 6.703 7.153 18.134 15.778 
6 18.515 17.889 5.970 28.931 31.732 11.077 22.215 28.451 5.264 
7 11.215 9.488 32.252 4.222 14.599 24.004 17.992 12.737 21.343 
8 14.220 17.526 37.590 5.051 8.144 27.139 17.274 10.221 27.503 
9 5.069 10.550 19.667 16.029 17.519 10.329 10.237 15.119 10.867 
10 8.586 1.081 23.232 13.171 20.274 17.326 17.097 16.481 12.078 
11 16.075 19.126 10.956 27.400 27.390 3.152 16.177 24.955 9.872 
12 4.892 11.355 28.028 10.361 13.730 18.486 12.311 7.116 18.218 
13 12.759 10.138 13.774 21.899 26.463 12.117 18.972 22.708 2.594 
14 7.680 13.236 28.961 11.488 11.584 17.016 8.818 8.745 19.708 
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Table 5.16. RMSD between any two clusters of datasets 4 and 6. 
 

Dataset 4 Dataset 6 
 1 2 3 4 5 6 7 
1 7.519 17.680 19.097 6.561 28.174 12.119 11.708 
2 34.160 14.319 14.970 26.622 1.834 27.490 37.216 
3 11.522 25.100 26.328 12.220 36.247 16.224 5.554 
4 0.866 23.385 22.653 12.422 33.346 12.380 10.063 
5 18.076 6.850 15.390 7.598 19.824 16.988 20.768 
6 28.341 10.996 8.305 21.625 4.850 20.960 31.232 
7 12.725 24.190 18.323 16.564 31.147 5.886 10.751 
8 10.310 27.314 24.747 16.126 36.537 12.194 3.624 
9 15.039 10.453 9.123 8.969 18.649 9.352 17.059 
10 16.391 17.490 9.016 15.703 22.111 5.429 17.833 
11 24.862 2.993 11.422 16.033 10.244 20.228 27.922 
12 7.011 18.657 15.750 10.793 26.976 6.597 11.830 
13 22.598 12.185 0.852 17.976 12.655 13.764 25.174 
14 8.711 17.236 17.413 7.815 27.930 9.183 11.013 

 

Table 5.17. RMSD between any two clusters of datasets 5 and 6. 
 

Dataset 5 Dataset 6 
 1 2 3 4 5 6 7 
1 10.458 14.318 11.985 8.477 22.908 5.993 13.530 
2 16.949 18.420 9.620 16.577 22.715 5.761 18.080 
3 33.569 13.901 14.263 26.096 1.127 26.808 36.595 
4 11.224 25.557 21.184 16.117 33.597 8.341 7.114 
5 11.196 24.823 25.678 12.107 35.768 15.395 4.612 
6 22.407 0.314 11.916 13.150 13.304 18.624 25.421 
7 12.808 13.361 18.311 1.695 25.589 14.562 14.621 
8 0.161 22.696 21.994 11.750 32.660 11.816 9.833 
9 24.250 11.155 3.072 18.797 10.094 16.007 26.984 

 

Only if the distance between two clusters from different datasets is less than 

certain threshold, the two clusters are called a coincidence. In protein structure similarity 

study, structures with distance no more than 1 or 2 angstroms are considered to be similar 

structures. Therefore, we use the same threshold in the determination of coincidence of 
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clusters. Table 5.18 shows the number of coincidences between different datasets when 

clusters are defined to be identical when the RMSD between them is less than 1Å. Table 

5.19 displays the number of coincidences the number of coincidences between different 

datasets with a criterion of RMSD less than 2Å.  

Table 5.18. The number of coincidences between clusters (less than 1 Å) 

Datasets 1 2 3 4 5 6 

1 4 0 0 0 0 0 

2  7 2 1 1 5 

3   12 3 2 1 

4    14 1 2 

5     9 2 

6      7 

 

Table 5.19. The number of coincidences between clusters (less than 2 Å) 

Datasets 1 2 3 4 5 6 

1 4 0 0 0 1 0 

2  7 2 2 3 7 

3   12 5 3 2 

4    14 3 3 

5     9 4 

6      7 

 

Comparing Table 5.18 and Table 5.19, we can see that there are more 

coincidences with the looser criteria (less than 2 Å), and therefore there will be a lower 

total population size when the looser criterion is used.  

According to equation 5.5, we now calculate the Ntotal for each pair of different 
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datasets. Let’s take the dataset 2 and 3 as an example. Ntagged is 7. Nsample is 12. 

Ntagged_in_sample is 2 in Table 5.18. Ntotal=7*12/2=42. Computing in this way, we get the 

total estimate from each pair of datasets. Finding the mean and standard deviation of 

these individual estimates determines a statistical confidence interval.  The mean value of 

total estimate is 62 and the standard deviation is 30.8 with the 1Å criterion.  Thus the 

three-sigma estimate for the maximum number of 9-mers is 154.  When the larger 2Å 

criterion is used the mean value of total estimate is 32.5 with a standard deviation of 12.7.  

Thus the three-sigma estimate for the maximum number of 9-mers is 71.   

For comparison, Zhong et al (Zhong et al., 2005) found 211-253 clusters of 9-

mers with >60% secondary structure similarity and 80-92 clusters with >70% secondary 

structure similarity when using different K-means algorithms. Thus our statistical 

estimates are consistent with direct observation. 

5.4 Discussion and Conclusion  

Clustering algorithms have been successfully used to study the sequence-structure 

correspondence for protein secondary structure prediction problem (Chen et al., 2006). 

They use sliding window method to separate protein sequences into sequences segments. 

Through grouping the similar sequence segments into clusters, consensus sequence 

segments and structures could be extracted from each cluster, which are used for the 

prediction of protein secondary structure. In this chapter, we present a new descriptor for 

the representation of protein structures and an algorithm for detecting stable clustering. 

To test our algorithm and descriptor, six datasets of protein three dimensional structures 

are randomly drawn from PDB.  The algorithm converges in each case to a unique set of 
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stable clusters. Since these clusters are drawn randomly from the total current set of 

chains, counting the number of coincidences and using basic sampling theory provides a 

rigorous statistical estimate of the number of unique clusters in the dataset. The 

effectiveness of our algorithm with the new descriptor is verified by the secondary 

structure similarity analysis.  The population estimates derived from sampling are 

consistent with the direct observation in Zhong’s wrok (Zhong et al., 2005). Our 

algorithm, experiments results, and conclusions are to be published in paper (Fu et al., 

2007).     



 

 

 

99
 
 
 
 

Chapter 6 

Conclusions and Future Work 

In this dissertation, we explore the pattern analysis on RNA and protein structures 

using term rewriting and clustering algorithm. Our work can be summarized as two major 

parts. In the first part, we make a new implementation for the computation of concurrent 

interaction of RNA secondary structure motifs. This application is helpful for better 

understanding of the relationship between the RNA secondary structures and 

pseudoknots.  The method propose in this dissertation can be used to model more 

complex RNA tertiary interactions. In the second part, we present an improved K-means 

clustering algorithm for structure pattern analysis of both RNA and protein three 

dimensional structures.  

In regard to the specific area considered in this research, a possible way for 

continued work would be in RNA structure database search. RNA structure database 

search involves two major tasks: one is to search similar structures against RNA structure 

database; the other is the substructure search. The HFSS and their similarities uncovered 

using our improved K-means clustering algorithm from the RNAs with known structures 

can be used for rapid RNA structure database search. That is, given a structure, to find 

the structures which contain the given structure as substructures. Since the HFSS and 

their similarities information are available, an RNA three dimensional structure can be 

converted into a string of HFSS and the similarity between any two strings of HFSS can 

be obtained with ease. Combined with the process of uncovering high frequent structure 

segments and their similarities, we give the framework of rapid RNA structure database 
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search. It is shown in Figure 6.1. 

    

       

Figure 6.1. The framework of rapid RNA structure database search. 
 

 
As it is shown in the Figure 6.1, the framework is composed of a serial of steps. 

The purpose and function of each step is explained as follows: 

 

Data collection 

Data collection is the first step in this work. To date, the PDB (Berman et al., 2000) and 

NDB (Berman et al., 1993) serve as a repository for raw structural data of molecules, 

including RNA. However, neither of these databases contains a complete representation 

of all available RNA structures. What is more, the data in them is in essentially raw form 

with few annotations and structures in PDB files often have exceptions like missing data 
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in sequence or missing data in the structure. Therefore manual work is necessary to select 

the appropriate data for study.  

Structure segments using sliding window  

After collecting the RNA three dimensional structures, we begin considering how to 

extract hidden structural patterns from the currently available RNA three dimensional 

structures. We have to transform the data into an appropriate representation. A structure 

is split into a set of structure segments by sliding window method. These structure 

segments are the targets that our algorithm will work on.        

Distance matrix description 

The structure segments are in three dimensional. To facilitate the calculation of similarity 

between two structure segments, we use a distance matrix to describe a structure 

segment. The distance matrix contains the Euclidean distances between any two nucleic 

acids in a window.   

Improved K-means clustering 

The improved K-means clustering algorithm is introduced in detail in Chapter 3. It is 

responsible for grouping structure segments into a suitable number of clusters. HFSS are 

extracted from the clusters.        

Database setup 

With the HFSS and their similarities available, we can set up a RNA structure database. It 

contains the RNA sequences, three dimensional structures, and strings of HFSS of each 

RNA three dimensional structure. The database will be used for substructure search and 

structure similarity evaluation, analysis of RNA structures, and mining new RNA tertiary 

motifs.  
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Rapid substructure search and structure similarity evaluation  

Given a structure, we first convert it into a string of HFSS. By calculating the similarity 

between the given string and the strings of HFSS in the database, we can quickly filter 

out the structures similar to the given structure. RNA sequences are also determent to its 

structure and function. So the similarity of RNA sequences and related heuristic 

knowledge can be integrated into the final similarity evaluation for better performance.  
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