
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

6-28-2007

Rethinking Consistency Management in Real-time
Collaborative Editing Systems
Jon Anderson Preston

Follow this and additional works at: http://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Preston, Jon Anderson, "Rethinking Consistency Management in Real-time Collaborative Editing Systems." Dissertation, Georgia
State University, 2007.
http://scholarworks.gsu.edu/cs_diss/18

http://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

RETHINKING CONSISTENCY MANAGEMENT IN REAL-TIME

COLLABORATIVE EDITING SYSTEMS

by

JON A PRESTON

Under the Direction of Sushil K Prasad

ABSTRACT

Networked computer systems offer much to support collaborative editing of

shared documents among users. Increasing concurrent access to shared documents by

allowing multiple users to contribute to and/or track changes to these shared documents is

the goal of real-time collaborative editing systems (RTCES); yet concurrent access is

either limited in existing systems that employ exclusive locking or concurrency control

algorithms such as operational transformation (OT) may be employed to enable

concurrent access. Unfortunately, such OT based schemes are costly with respect to

communication and computation. Further, existing systems are often specialized in their

functionality and require users to adopt new, unfamiliar software to enable collaboration.

This research discusses our work in improving consistency management in

RTCES. We have developed a set of deadlock-free multi-granular dynamic locking

algorithms and data structures that maximize concurrent access to shared documents

while minimizing communication cost. These algorithms provide a high level of service

for concurrent access to the shared document and integrate merge-based or OT-based

consistency maintenance policies locally among a subset of the users within a subsection

of the document – thus reducing the communication costs in maintaining consistency.

Additionally, we have developed client-server and P2P implementations of our

hierarchical document management algorithms. Simulations results indicate that our

approach achieves significant communication and computation cost savings. We have

also developed a hierarchical reduction algorithm that can minimize the space required of

RTCES, and this algorithm may be pipelined through our document tree. Further, we

have developed an architecture that allows for a heterogeneous set of client editing

software to connect with a heterogeneous set of server document repositories via Web

services. This architecture supports our algorithms and does not require client or server

technologies to be modified – thus it is able to accommodate existing, favored editing and

repository tools. Finally, we have developed a prototype benchmark system of our

architecture that is responsive to users’ actions and minimizes communication costs.

INDEX WORDS: Real-time Collaborative Editing, Dynamic Hierarchical Locking,

Heterogeneous Architecture, Collaboration, Consistency,

Distributed System, Peer-to-peer

RETHINKING CONSISTENCY MANAGEMENT IN REAL-TIME

COLLABORATIVE EDITING SYSTEMS

by

JON A PRESTON

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2007

Copyright by

Jon A Preston

2007

Rethinking Consistency Management in Real-time Collaborative Editing Systems

by

Jon A Preston

 Major Professor: Sushil K Prasad

Committee: Xiaolin Hu

 Melody Moore Jackson

 Rajshekhar Sunderraman

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

August 2007

To my wife, Jennifer; children: Joshua, Micah, Lillian, and Eric;

parents; and family – you are my joy.

v

Acknowledgements

A task as monumental a doctoral degree may only come to fruition as a result of

consistent encouragement and support of many people. First and foremost, I thank my

family and, most notably, my wife Jennifer for travailing with me through this arduous

task – you’re the best! It wouldn’t have happened without your love and constant

support. Certainly, my parents deserve much praise and thanks for always encouraging

me and training me in the way I should go. Russ Shackelford and Melody Moore

Jackson were instrumental in supporting me in my Bachelors and Masters studies, and I

appreciate their support and leadership in guiding me to continue my research in

computing. I also thank the Computer Science faculty at Georgia State and especially

my committee members – Raj Sunderraman, Xiaolin Hu, Melody Moore Jackson, and

my advisor and mentor Sushil Prasad; I am a better researcher and student of computing

because of you. I thank my fellow students within the program at Georgia State and the

DiMoS research group for their feedback and insightful questions; my work is better for

your influence. And special thanks to Jeff Chastine – through it all, your friendship

supported and motivated me to finish this work. I would also like to thank Jan Towslee

for encouraging me to begin my PhD work; she was an amazing mentor and a lady of

the finest caliber. I also thank the administration and my colleagues at Clayton State

University. Most sincerely, I thank God for gifting me with my talents; I continuously

refine them to Your glory.

vi

Table of Contents

Acknowledgements ..v

List of Figures ...x

List of Tables . .. xiv

List of Abbreviations ...xv

CHAPTER 1 INTRODUCTION ..1

1.1. Motivation ..2

1.2. Current State of the Art ..5

1.3. Limitations of Current Technology ...7

1.4. Problem Statement and Research Goals ..9

1.5. Contributions and Significance ..10

1.6. Organization of the Thesis ...11

CHAPTER 2 BACKGROUND ...14

2.1. Collaborative Editing Systems ...14

2.2. Architectures Supporting Collaborative Editing Systems17

2.3. Concurrency Control Policies ..25

2.4. Convergence, Causality-preservation, and Intention-preservation31

2.5. Operational Transformation ...32

2.6. Discussion and Existing Systems ..36

CHAPTER 3 AN OPEN SYSTEMS APPROACH TO RTCES48

3.1. Supporting Various Client Technologies ...50

vii

3.2. Supporting Various Server Technologies ..52

3.3. Translation of Events ...55

3.4. Heterogeneous Architecture ...57

3.5. Validation ...62

3.6. Discussion and Related Work ..78

3.7. Summary ..80

CHAPTER 4 ENABLING RELAXED CONSISTENCY TO REDUCE RTCES

COSTS ..82

4.1. Modeling Document Structure via a Document Tree83

4.2. Maximizing Owned Space and Caching ..86

4.3. Data Structures and Algorithm Overview ..90

4.4. Lock Request ...92

4.5. Lock Release ..96

4.6. Correctness and Efficiency Analysis ...98

4.7. Simulation with Exclusive Locking ...106

4.8. Discussion ..112

4.9. Summary ..115

CHAPTER 5 INTEGRATION WITH OT ..116

5.1. Generalized Operational Transformation ..117

5.2. Validating the OT Integration via Simulation ...119

5.3. Discussion and Related Work ..136

5.4. Summary ..138

viii

CHAPTER 6 PEER-TO-PEER DOCUMENT MANAGEMENT139

6.1. Extending the Client-Server Algorithms ...140

6.2. Lock Request ...143

6.3. Editing Content and Modifying the Structure of the Tree145

6.4. Lock Release ..146

6.5. User Movement within the Document Tree ...149

6.6. Correctness and Efficiency Analysis ...150

6.7. Locating the Peer and Ownership ..158

6.8. Replication, Congestion, and Fault Tolerance ...160

6.9. Simulation and Results ..163

6.10. Summary ..167

CHAPTER 7 HIERARCHICAL REDUCTION AND INTENTION

PRESERVATION ..169

7.1. Reduction ...169

7.2. Hierarchical Reduction ..174

7.3. Intention Preservation ..176

7.4. Modeling the Peer ..180

7.5. Simulation and Results ..181

7.6. Related Work ...185

7.7. Summary ..187

CHAPTER 8 PROTOTYPE SYSTEMS ...188

8.1. Simulation-based Software Architectural Design Process188

ix

8.2. Replacing Models with Actual Components ...190

8.3. Implementing the Server ..191

8.4. Implementing the Client ..194

8.5. Discussion and Related Work ..196

8.6. Summary ..199

CHAPTER 9 CONCLUSIONS AND FUTURE WORK ...200

9.1. A Systematic View of Real-time Collaborative Editing Systems201

9.2. Future Work ...203

BIBLIOGRAPHY ..204

x

List of Figures

Figure 1: Centralized and Replica Document State Management Approaches 6

Figure 2: Ordered Broadcast Ensures Convergence ... 16

Figure 3: Distributions of Models, Views, and Displays .. 23

Figure 4: A Web Services-based Collaborative Editing Architecture 24

Figure 5: Pessimistic Concurrency Control .. 27

Figure 6: Optimistic Concurrency Control ... 29

Figure 7: The Need for Operation Transformation – State Convergence 33

Figure 8: RTCES Development Growth: 1989-2006 [12] .. 37

Figure 9: RTCES Document Types Supported: 1989-2006 [12]...................................... 38

Figure 10: Mark and Retrace .. 39

Figure 11: Integrating Collaboration into IDEs (Jazz) ... 41

Figure 12: The DistEdit Approach of Adding Collaboration to Existing Applications ... 42

Figure 13: The CoWord Approach to Adapting Single User Applications to RTCES 43

Figure 14: Generalized Collaborative Architecture .. 44

Figure 15: Collaboration via in SubEthaEdit .. 45

Figure 16: Viewing Changes Made By Users – a SubEthaEdit Report 46

Figure 17: Heterogeneous Architecture .. 50

Figure 18: Parsing a Microsoft Word Document into a Document Tree 52

Figure 19: Layering the Lock Proxy and Web Service API atop Existing CMS 53

Figure 20: Mapping Client Events Directly to Each Other... 55

Figure 21: Mapping Client Events to an Intermediate Meta Event Language 56

Figure 22: Architecture Components .. 57

file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381491
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381493
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381495
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381496
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381507
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381510
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381511
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381512

xi

Figure 23: Events in the Architecture ... 60

Figure 24: The DEVS Atomic Model ... 64

Figure 25: The DEVS Coupled Model ... 65

Figure 26: Simulation Configuration (shown with Lock Proxy) 66

Figure 27: DEVSJAVA Simulation of Lock Proxy .. 67

Figure 28: A Simple Real-time Collaborative Editor Using DirectX 9 73

Figure 29: IM/Chat Communication Costs ... 74

Figure 30: Communication Costs for DirectX 9 P2P RTCES Prototype 76

Figure 31: Synchronize Communication Cost for Varying Content Size 77

Figure 32: Mapping a Document to a Document Tree ... 84

Figure 33: Path Finding in the Document Tree .. 85

Figure 34: Supporting Multiple Readers and Writers ... 87

Figure 35: Distributing the Current Document State across Multiple Users 89

Figure 36: Original Document Tree State ... 94

Figure 37: ObtainLock with No Demotion ... 94

Figure 38: ObtainLock that Results in Demotion ... 95

Figure 39: RemoveLock(u1, i) - u2 lock on node k is promoted to node d 97

Figure 40: Promotion across multiple levels is permissible ... 98

Figure 41: The OBTAINLOCK Algorithm .. 101

Figure 42: The REMOVELOCK Algorithm ... 102

Figure 43: Supporting Functions .. 103

Figure 44: The OBTAINLOCK Operation without Demotion ... 105

Figure 45: The OBTAINLOCK Operation with Demotion .. 105

file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381513
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381514
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381515
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381516
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381522
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381523
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381524
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381525
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381526
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381527
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381528
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381529
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381530
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381531
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381532
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381533
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381534
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381535

xii

Figure 46: Agent Behavior States and Actions ... 108

Figure 47: Communication Efficiency of Dynamic Lock Algorithm 109

Figure 48: Lock Success Decreases with Increased Collaboration Density 111

Figure 49: Two Extreme Cases of Document Tree Structure ... 114

Figure 50: Modeling the Client in DEVSJAVA ... 121

Figure 51: Modeling the Server in DEVSJAVA .. 123

Figure 52: The Connecting Network Model in the DEVSJAVA Simulation Viewer 124

Figure 53: Dynamic Operational Transformation Cost as Collaboration Increases 128

Figure 54: Edit Behaviors and Communication Efficiency .. 129

Figure 55: Edit Behavior and Communication Efficiency – 3 Users 130

Figure 56: Edit Behavior and Communication Efficiency – 9 Users 131

Figure 57: Edit Behavior and Communication Efficiency – 18 & 27 Users 132

Figure 58: The Client-Server Lock Management Model .. 142

Figure 59: The P2P Lock Management Model ... 143

Figure 60: Peer-to-Peer Lock Request .. 144

Figure 61: Peer-to-Peer Lock Release .. 148

Figure 62: Three Cases of a User Moving from v to u ... 150

Figure 63: P2P OBTAINLOCK Algorithm .. 152

Figure 64: P2P RemoveLock Algorithm .. 154

Figure 65: P2P Supporting Algorithms... 156

Figure 66: Replication of the Top of the Document Tree and Localized Management

Below ...161

Figure 67: OO Model of the P2P Document Management System 164

file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381536
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381539
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381548
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381549
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381550
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381551
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381552
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381553
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381554
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381555

xiii

Figure 68: Balancing the Workload of Document Management among Peers 166

Figure 69: Pure OT vs. Hierarchical OT Communication Costs 167

Figure 70: The Reduction of a History Buffer .. 173

Figure 71: Hierarchical Reduction .. 175

Figure 72: Semantic Intention is Violated .. 178

Figure 73: The Components of the Peer ... 180

Figure 74: The Reduce Algorithm Decreases OT Computation Costs 183

Figure 75: A Hierarchical View of History Buffers [57] .. 186

Figure 76: Simulation-Driven Design Process ... 190

Figure 77: Simulation Connection to Real Server via the OutConnection Model 192

Figure 78: Web Service Implementation of Server API in ASP.NET 193

Figure 79: Implementation of Visualizing the Document Tree State 194

Figure 80: The Implementation of the Client Editor .. 195

Figure 81: Adjustable Conflict Resolution [58] .. 197

Figure 82: CES Document Profiling [94] ... 198

file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381560
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381561
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381562
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381563
file:///C:\Documents%20and%20Settings\Jon%20A%20Preston\Desktop\dissertation\jonapreston.docx%23_Toc168381566

xiv

List of Tables .

Table 1 - Comparing Transparent and Aware Collaborative Systems 21

Table 2: RTCES Developed by Year [Chen 2006] ... 36

Table 3: Lock Proxy Simulation Configurations .. 69

Table 4: Lock Proxy Simulation Results .. 70

Table 5: Mapping User Actions to CES Document Tree Events 100

Table 6: Dynamic Lock (Exclusive Writer) Simulation Results 110

Table 7: Document Structure Types ... 126

Table 8: Client/Document Configurations .. 127

Table 9: Simulation Results – Communication Costs with Structures 1-3 133

Table 10: Simulation Results – Communication Costs with Structures 4-6 134

Table 11: Simulation Results – Communication Costs with 18 and 27 Users 135

xv

List of Abbreviations

AJAX Asynchronous JavaScript and XML

API Application Programmer’s Interface

CCI Convergence, Causality preservation, and Intention preservation

CES Collaborative Editing System

CMS Configuration Management System

COT Context-based Operational Transformation

CSCW Computer Supported Cooperative Work

CVS Concurrent Versioning System

DEVS Discrete Event Simulation

DN Document Narrative

DOM Document Object Model

EIC External Internal Coupling

EOC External Output Coupling

HB History Buffer

HCI Human-Computer Interaction

IC Internal Coupling

IDE Integrated Development Environment

IM Instant Message

MVSD Multi-Version, Single Display

OP Operation

OT Operational Transformation

P2P Peer-to-Peer

xvi

RCS Revision Control System

RST Rhetorical Structure Theory

RTCES Real-time Collaborative Editing System

SCCS Source Code Control System

SCM Software Configuration Management

TTF Tombstone Transformation Function

VSS Visual Source Safe

1

CHAPTER 1

INTRODUCTION

Imagine a scenario in which a geographically distributed team can work together,

sharing ideas, collaboratively editing a shared document in real-time, and interacting as

closely and productively as a team of workers within the same room. This is one of the

goals of the field of Computer Supported Collaborative Work (CSCW) and in particular

the subfield of Collaborative Editing Systems (CES). CES may be synchronous (real-

time) or asynchronous in coordinating the collaboration among users; in either case,

managing a repository of the shared documents, maintaining consistency among replicas

of the documents, and resolving concurrent and potentially conflicting changes to the

shared documents is of central concern.

Enhancing communication and collaboration is one of the increasingly popular

uses of modern computing technology; we observe that computing technologies are ever

more user-centric and allow multiple users to work collaboratively to solve modern,

interdisciplinary and complex problems facing the world today. We note that

productivity software tools (document authoring, email, Web site management, etc.)

increasingly focus on supporting collaboration among multiple users – a welcome

addition to their core functionality.

However, the current state of CES research uses ever increasingly complex

algorithms to achieve convergence, causal preservation, and intention preservation (see

[66], [90], and [131] as examples) and still have limited capacity in achieving intention

preservation. Additionally, these systems that are replica-based in supporting

concurrency control are costly with respect to communication and computation.

2

Therefore there exists an opportunity to view Real-time Collaborative Editing Systems

(RTCES) systematically – moving beyond OT algorithms and focusing in how viewing

the system as a whole may uncover new opportunities for optimizations and new

approaches to solving the problem of CCI.

This research explores areas of RTCES that can be improved to be more scalable

in supporting larger collaborations (as measured by the size of the documents being

shared as well as the number of users within the collaboration). Our research revisits the

idea of using locking and intelligently cache operations when possible to reduce

communication and computation costs. First, we developed an open systems approach

that supports existing client and server technologies. Next, we formally developed our

theoretical work in hierarchical locking algorithms and data structures to support

caching operations and managing concurrency among the users in client-server and P2P

scenarios. Third, we integrate current best practices in Operational Transformation (OT)

research into our theoretical work. Finally, we extend our simulation results indicating

the viability of our approach into prototypes of client and server technologies to support

our approach into RTCES.

This chapter presents the motivation of our research, the current state of the art

and its limitations, and then we present our problem statement, goals, and contributions

of this dissertation. We conclude this chapter with a discussion of the organization of

the remainder of the dissertation.

1.1. Motivation

CSCW and specifically RTCES and CES have a rich history of research and

significant contributions in various fields since the 1980s [43][44] [119]. These systems

3

remain collaboration-centric as the computing system merely supports the activity at

hand [87]. The following are select example domains in which our research in RTCES

applications that correspond to research questions to be addressed in this work.

Software Engineering: at the heart of software systems development is the

coordination of various developers, project managers, documents, and source code [88].

While much work within software engineering involves decomposing large systems into

subsystems that can be developed in parallel [96][100][154], much work related to

coordination remains a vital part of a software system development project [53][92].

Managing ever-changing project artifacts such as requirements, plans, test documents,

and system models involves coordinating access to either a centralized document

repository or a distributed, replicated document repository; with this comes the

concomitant consistency management practices [92]. Developers of a software system

must be informed of changes not only to the source code but also the foundational

project definition documents (requirements, designs, plans, etc.) [99][101]. Awareness

of what other users are doing within the system as well as a view of what documents

other users are accessing helps avoid conflicting changes and coordinate the

development effort [101]. Coordination among developers can be formal or informal

and is often driven/defined by the software engineering processes employed with the

project [40][147]. Central to the ability to collaborate on documents is the ability to

work within a group and coordinate group effort. In a traditional software engineering

setting, these activities entail project task scheduling, status reporting (and meetings),

and inter-group communication [33][52]. Recently, there has been an increase in

commercial interest in the field of integrating collaboration mechanisms into integrated

4

development environments [7][14][81], validating that this area of research has interest

in the commercial sector.

Collaborative Document Development: moving from the specific field of

Software Engineering, we can generalize to document sharing and collaborative editing

as a joint task among multiple authors either co-located or distributed geographically

[52]. Additionally, users may wish to edit the shared document synchronously (at the

same time) or asynchronously (at different times) [145]. Collaborative document editing

involves a high level of interactivity among users, and ensuring rapid response time to

changes in the document and maintaining a familiar look-and-feel (allowing use of

users’ favorite, existing editors) are paramount design goals for any collaborative

document editing system [86][100]. As an example of the need for such collaboration,

consider a large research proposal authored by faculty from many different universities.

There has been an increase in recent commercial development of collaborative document

management systems in recent years, validating that this area of collaborative editing

system research is becoming commercially viable [42][81]. While these systems

demonstrate some problems in the field of collaborative document development have

been solved, other research problems remain open.

Computer Aided Design (CAD): another field that we note would benefit from

computer assisted collaboration is design. CAD systems have long supported designers

develop schematics, renderings, and other design-related documents. Recent studies in

CSCW also support the idea that the design process can benefit from collaborative

editing [32]. What is most interesting about this particular field of CES is that modern

CAD systems store the documents being edited as objects with layering, so it is believed

5

that the concurrency control employed in CAD systems must manage collections of

objects within the document that are not necessarily spatially structured but are rather

structured via grouping. For example, all of the electrical wiring (the electrical objects

collection/layer) of a building schematic could be locked by one user for editing while

all of the flooring (the flooring objects collection/layer) could be locked by another user

for editing. We specifically address this domain of CAD because it offers an

opportunity to manage concurrent access to collections of objects within a document that

are not necessarily spatially related [157], and our algorithms and models generated in

this work easily accommodate this non-spatial organizational structure.

1.2. Current State of the Art

Real-time collaborative editing systems allow multiple users to synchronously

edit a shared document in a geographically-distributed environment. In such an

environment, there are two approaches in managing the document state as shown in

Figure 1. The shared document is either centralized at one location within the

collaboration or a distributed replica/copy model may be used wherein each user

maintains a local copy of the shared document. Current RTCES research utilizes the

distributed replica approach in order to maintain high local responsiveness.

6

Because the current approach in RTCES research is to utilize a replicated

architecture, concurrent changes are possible among the users; as a result, concurrency

control algorithms must be adopted to ensure the document replicas remain consistent.

CCI – convergence, causality preservation, and intention preservation (defined in detail

in Section 2.4) – is the current benchmark standard by which RTCES are judged to be

correct; thus if a RTCES achieves CCI, then it is said to be correct. Operational

transformation (defined in detail in Section 2.5) is the most prevalently researched way

to achieve CCI. Briefly, OT involves transforming operations that are created by a

remote user that are to be replayed on a local copy of the document; once transformed,

the operation may then be enacted on the local replica to achieve the intended result on

the document. Without OT, the remote operation, when replayed locally, may not have

the same effect as when it was enacted on the remote copy of the document.

Figure 1: Centralized and Replica Document State Management Approaches

Server

User

User

User
User

User

User

Replicas of the

document at each client Document state managed centrally

7

1.3. Limitations of Current Technology

This section discusses the limitations of current RTCES architectures and

concurrency management techniques.

RTCES Architectures: while the focus of RTCES research has traditionally been

on algorithms to better achieve CCI via OT, some research has developed architectural

support for RTCES. The client editing and server repository technologies and the

connecting network of the collaborative system are for the most part assumed and little

work has been done to investigate how these technologies work together to support

RTCES. The work of Li and Li [68] focus on supporting heterogeneous client

technologies to work together by transforming operations into client technology-neutral

“meta” operations that can be incorporated into varied client editing technologies. But

this heterogeneous approach has not been extended to server technologies necessary for

managing document repositories. Additionally, there has been work to differentiate

aware and transparent sharing of documents and workspaces/desktops [2][3], and even

some commercial products have emerged from this research [80]. Unfortunately, these

architectures employ interaction interleaving, only allowing one user to “control” the

cursor and concurrency is not supported. [12] performed an evaluation of RTCES

technologies currently developed and being developed (both by academia, industry, and

hobbyists), but this work did not perform an analysis of the architectural structure of

these systems; it would be fruitful to compare each of these systems to see what

architectural components support the collaboration.

Concurrency Management: whether the collaborative system employs a

centralized or replication-based approach to managing document state, concurrent access

8

to the shared document must be managed. As mentioned in the previous section,

Operation Transformation (OT) is the most popular way to ensure consistency among

copies of a shared document in RTCES that employ replication of document state, but

OT is costly with regard to computation and communication. Whenever an operation is

generated by a user, this operation is broadcast to all other users within the collaboration

and replayed locally after being transformed by the other users. Since almost all

existing OT solutions view operations at the keystroke level (i.e., the user inserts or

deletes a character), the number of messages and the processing of these messages in the

RTCES can grow quickly. [57] allows for operations to occur semantically higher than

simple characters, but their approach fixes the depth of the document tree – imposing

rigid constraints on what operations may be performed – and all operations are still

broadcast to all users. Additionally, a history of operations must be maintained at each

user’s copy requiring storage space for all operations that have been performed in the

collaboration; this history of operations is called a “history buffer.”

Alternatively, in a centralized approach to document state management, locking

may be employed to avoid concurrency problems of the shared document, but such

locking techniques as round-robin, token-based, and exclusive locking all reduce

concurrent access to the document because only one user may edit the document at any

given time. Some systems such as Coven [16] and COOP/Orm [73] attempt to increase

concurrent access by reducing the size of the lock (to the sub-file level), but the lock

does not adjust in size dynamically with regard to what other users are doing in the

collaboration. POEM [71] utilizes the hierarchical nature of software code to lock at a

9

sub-file level, but the methods must be defined a priori by the user (contextually-costly

overhead), and again the locks remain fixed in size.

Further, while there has been some preliminary work in examining how semantic

structure contained within the shared document can be used [56], no work has been done

to investigate how history buffers may be consolidated (reduced) at opportune or

predefined times; nor has any research examined how operations stored at one level

within the hierarchy of the document may be transformed and combined into operations

operational transformation applied within

1.4. Problem Statement and Research Goals

In this dissertation we have focused on the following goals in an effort to solve

some of the limitations addressed in the previous section:

1. Investigate how an open systems RTCES architecture may support existing client

technologies that connect with existing server technologies with an emphasis on

extending legacy server/repository technologies and supporting clients’ preferred

editing technologies.

2. Revisit the feasibility of utilizing locking to support concurrency management

such that communication and computation costs may be reduced when compared

to current replication and non-locking approaches.

3. Examine opportunities to leverage semantic knowledge of a document’s

structure to better achieve intention preservation, apply operations more

intelligently at semantically-aware levels within the document, and reduce the

10

size of the history buffers needed to manage operations within sections of the

shared document.

4. Study how the natural structure of RTCES may be supported via a peer-to-peer

(P2P) approach that may increase reliability and avoid performance bottlenecks

at a single server.

5. Develop prototype implementations of the client and the server technologies we

develop that validate our theoretical approach is viable and easily supported in

actual, usable tools.

1.5. Contributions and Significance

We have made the following contributions to the field of RTCES in this

dissertation work:

1. An open systems architecture: we have developed an architecture that allows

existing client technologies to connect via Web services API to existing server

technologies. Our architecture enables clients to continue to use their preferred

editing tools with hooks that capture events and translate them into recognizable

messages for others within the collaboration to respond to. Further, our

architecture allows existing server repositories of documents to host

collaborative editing sessions and manage clients’ connections.

2. Theoretical algorithms and data structures to support dynamic locking: we have

developed a set of algorithms and data structures to support dynamic,

hierarchical locking that maximizes the space owned by a user to increase

caching and reduce communication costs in a RTCES. We developed client-

11

server and P2P versions of these algorithms and data structures that are validated

empirically via simulation.

3. Integration of OT best practices and improved CCI: further, we have integrated

best practices of OT techniques into our dynamic locking approach such that

concurrent editing of a shared document is supported while minimizing the costs

relative to an OT-only approach. Additionally, our approach is semantically

aware, so we are able to apply operations intelligently and achieve better

intention preservation within a RTCES.

4. Prototype client and server technologies: finally, we have developed a functional

client editor that connects to a functional Web service API server. These

technologies implement our theoretical developments and show that our

approach is easily integrated into usable tools for clients to use.

1.6. Organization of the Thesis

The remainder of this dissertation is organized as follows.

Chapter 2 introduces the reader to the background for the research including

collaborative editing systems, various architectural approaches to supporting

collaboration, locking policies, the CCI model, operational transformation, and existing

systems within the field of RTCES.

Chapter 3 introduces the open systems architectural approach we developed to

support a heterogeneous collection of client and server technologies. We present our

architectural components and the research that validates this approach to real-time

collaborative editing systems.

12

Chapter 4 presents the algorithms and data structures we developed to support

relaxed/lazy consistency via hierarchical, dynamic locking on a document tree. We

discuss how documents may be modeled as trees, why it is advantageous to maximize

the space a user locks within a document, and then present the lock request and lock

release algorithms. We discuss our initial simulation results demonstrating that such an

approach may reduce communication costs associated with a RTCES, present the

correctness and efficiency of these algorithms, and conclude with a discussion of related

work.

Chapter 5 extends the research developed in Chapter 4 by showing how our

relaxed consistency approach may integrate existing OT algorithms to support

concurrent writers and better achieve CCI. We present the improved versions of our

approach, and simulation results validating this approach are also presented.

Chapter 6 extends the client-server algorithms of Chapters 4 and 5 into P2P

algorithms and data structures. Results of the simulation presented in this chapter

demonstrate that this P2P approach is effective in load balancing work among peers and

avoiding a single point of failure and bottleneck in processing user actions. We also

present a discussion of the correctness and efficiency of our algorithms.

Chapter 7 presents our work in reducing history buffers hierarchically at various

depths within the document tree. As a result of this reduction approach, we are able to

explore opportunities for better intention preservation. We present simulation results

that show how the history buffers are distributed among the peers managing the

document tree.

13

Chapter 8 presents our work in developing prototypes of client and server

technologies and the simulation design approach we utilized. These implementations are

based upon our previous theoretical work and demonstrate the viability of our approach.

The process of moving from models of both the client and the server to fully

implemented versions of the client and server technologies is also presented.

Finally, Chapter 9 presents conclusions of this dissertation work and discusses our

future research direction.

14

CHAPTER 2

BACKGROUND

In Chapter 1, RTCES was identified as an active area of research and important

field in the future of collaborative and distributed computing. Consequently, the goals

of this research focus on viewing RTCES in a systematic way, addressing opportunities

for improving architectural structures that support RTCES and reducing communication

and computation costs associated with RTCES by addressing fundamental, theoretical

algorithms in achieving CCI. To establish a basis by which to evaluate our

contributions, we begin by discussing the past work within the field of RTCES research.

This chapter presents an overview of collaborative editing systems with an emphasis on

real-time collaborative editing systems; we then present the existing architectural

approaches to support RTCES and concurrency control policies used in these

architectures; next, we define CCI and OT and present current OT approaches; finally,

we conclude with a discussion of existing systems – both prototype and commercial.

2.1. Collaborative Editing Systems

Collaborative editing systems may be asynchronous or synchronous (real-time).

In an asynchronous collaborative editing system, users collaborate at different times on

shared documents. Real-time collaborative editing systems allow users to concurrently

share a common document, make changes to this shared document, and have their

changes distributed to other users within the system.

Because responsiveness and usability are key components to a real-time

collaborative editing system, researchers in RTCES have adopted a replicated approach

15

to RTCES architectures; under this approach, the document is copied to each user’s

machine, and the users interact with their local copy of the document. When a change

(operation) is made to the document, this operation is broadcast to all other users within

the collaboration, and the operation is enacted on each user’s local copy.

To enable concurrent access in a distributed collaborative system, we must either

centralize the storage of the document being edited onto a server and have “thin” clients

that merely relay user input/changes, or copy the document being edited onto the clients

and coordinate the changes made to the document by all the users (essentially ensuring

cache consistency). A centralized approach has proven to be too costly with regard to

communication costs and lacks adequate responsiveness typical of an interactive

application [39]. Consequently, distributed approaches are typically employed in CES.

Assuming a multi-user system employs replication to allow multiple users access

to a shared document, we must ensure that the replicated document state is consistent

among the users. If all users are allowed to make local changes to their copies of the

document, these changes could be broadcast to the other users and the changes

“replayed” on the local copies to ensure consistency. Unfortunately, the ordering of the

replayed changes is not preserved, and consequently the replicated copies of the

document become unsynchronized. To ensure consistency among the replicas of the

document, some form of concurrency must be employed.

Ordered broadcast protocols may be used to ensure proper ordering of changes to

the shared document. But this approach requires that all changes be sent to a central

controlling server and local changes cannot be affected until the server responds to the

client making the change; consequently, the response time of such systems is typically

16

not appropriate for interactive systems. Additionally, such broadcast protocol

approaches require that the changes are operationally-transformed to the client’s current

document state to preserve user intention [100]. As Figure 2 demonstrates, the state of

the document only converges when concurrent changes are broadcast and ordered in the

same total ordering on all clients or else executing A then B on Site 1 and B then A on

Site 2 would result in a different state at the different sites and may have unintended

results.

Figure 2: Ordered Broadcast Ensures Convergence

Because of the interactive nature of collaborative editing systems, traditional

transaction-based and pessimistic locking schemes typically employed in database

systems are often not appropriate as they are best employed in a batch environment

where rollbacks are permissible. Alternatively, most collaborative editing systems

employ some form of optimistic concurrency control in an effort to improve interactive

responsiveness.

17

2.2. Architectures Supporting Collaborative Editing Systems

[82] performed one of the earliest studies on design for combining synchronous

and asynchronous group editing and discovering components of both types of systems.

Therein, a model of cooperative work as applied to the task of collaborative writing

suggests that mechanisms to support communication among participants and the sharing

of a common artifact/document are critical for the success of the CES. While there has

been other research to focus on the HCI side of CES (such as communication,

awareness, and presence), because this work is focused on systems-level research

regarding RTCES such as communication and computation costs savings and improving

consistency within a RTCES, this section will focus on such systems-level issues within

the scope of RTCES architectures.

Transparent collaborative systems are so named because the applications that are

being shared among multiple users have no idea of the collaboration - the collaborative

interface acts as an intermediary buffer for the application and receives all users' input

and relays these interactions to the application; when the application responds and

adjusts its output, the collaborative system/agent relays this information to all users'

computers such that all users see the same interface. The advantage of such transparent

systems is that they can be integrated into most single-user applications without the need

to recompile or edit the original application.

Aware collaborative systems are so named because the collaborative interface is

embedded within the application itself and the system’s core interface and operations

support synchronization and distribution/sharing of the system’s content. These systems

are defined as aware because the application is “aware” that the content is being shared

18

and the interface of the system enables such sharing. While there are many benefits of

embedding the collaboration within the application, the disadvantage is that the source

of the application must be available and the collaborative API (synchronization, mutex,

etc.) must be tightly coupled within the application. This is often not possible, thus the

need for transparent systems.

Application sharing and transparency are two different approaches to

collaborative systems. Application sharing involves either centralizing the application's

execution and distributing the input and output (display) among user machines or

creating a replicated, homogenous architecture in which each user runs the same

application across a network; with either model, the user is constrained to use the same

application as all other users in the collaborative environment. Even in heterogeneous

application sharing environments, considerable concerns must be overcome in

supporting the capture, communication, and replication of users' actions as discussed in

the previous section.

In comparison, transparency-based systems allow users to share applications

without modifying the original program. Transparencies originally involved screen

sharing technologies in which the user would share the entire screen to other users.

These systems evolved into sharing only specific windows or applications, rather than

the entire screen, and are best represented by the X windows protocol.

Under conventional collaborative transparent system, concurrency is not possible

- only one user is able to input to the application at any given time; while this is

appropriate for presentations and shared meetings, this is too limiting for collaborative

software development. "Floor control" is the term used to define which user has access

19

to the input stream (mutex), and this is needed to ensure that event interleaving is

avoided.

One promising concept of being able to merge the best of transparent and aware

collaborative systems is the modern object-oriented concept of reflection [69][115]. If a

developer wanted to transform a single-user application into a collaborative multiple-

user application but did not have access to the source code, then through reflection, the

developer could extend the program and add the communication/synchronization API

into the system externally via reflection. Unfortunately, this approach does require a

high-level knowledge of the internals of the single-user system, and even without access

to the original source code, in-depth knowledge of the internals of the system is often

required.

An alternative approach would be to design systems that allow users to establish

relationships to objects within the system and extend the collaborative software to

support such relationships [69]. Of course, the prerequisite of this type of system would

be that the collaborative API be built into the current system and that the system

supports extension by allowing the user to establish relationships between objects. Li

and Patrao’s model exhibits such an interface by viewing the elements of the

collaborative interaction as objects that support emergent sharing and distributed

referential integrity. Such objects inherit common attributes and provide a generalized

API for modification such that these modifications (small differentials) can be broadcast

to the users of the system and tracked; this avoids the more costly low-level messaging

(transparency-based) system wherein all display information is broadcast.

20

Li and Li [68] discuss current advances in the area of transparencies that should

support spontaneous application sharing (i.e. a user can use a single-user application and

then later decide to publish/share the application to another user) and support

heterogeneous clients and independent views. Additionally, the issue of "late comers"

needs to be addressed in modern collaborative environments: how can the system bring

new users that were not present at the beginning of the session up to speed quickly; OS

hooks such as the Microsoft Windows API provides such capabilities that allow

collaborative transparencies to record sessions for replay on future, late arriving clients.

Begole et al [2][3] discuss a synchronous methodology for providing a

"transparent" collaboration system that works in coordination with existing applications.

This system is different from other existing collaboration transparencies in that it avoids

the "conventional" centralized architecture that require that only one person interact with

the system at any given time (single token-based mutex). One difficulty that is avoided

in such single-controller transparent collaborative systems is that of interaction

interleaving; since only one user can “control” the cursor, then interactions cannot be

interleaved incorrectly (i.e. the input is by definition sequential in nature and no

undesired overlap is possible.

Four attributes are useful in comparing aware and transparent collaborative

systems [3] as shown in Table 1.

21

Table 1 - Comparing Transparent and Aware Collaborative Systems

 Transparency Aware

Concurrent Work Single Multiple

WYSIWIS Strict Relaxed

Group Awareness Little Detailed

Network Usage High Low

These attributes are defined as:

 Concurrent work: Does the system allow for multiple users to provide input

simultaneously, or is only one user able to provide input at any given time?

 WYSIWIS: All users should see the same state at all times; What You See Is What

I see.

 Group Awareness: How much detail does the system provide with regard to what

other users in the system are doing and what section of the document they are

viewing? Some systems simply provide a pointer/cursor showing the current

“location” of the other users; other systems provide thumbnails and more detailed

views.

 Network Usage: How much network bandwidth is consumed and needed by the

system? In aware systems, operations are typically all that is communicated (and

these messages are small), whereas in transparent systems typically rely upon

centralized server architectures and broadcast display change information (quite

large).

22

Aware collaborative systems consume less bandwidth, allow for concurrent work,

more easily provide flexible WYSIWIS interfaces, and allow for more inherently robust

group awareness. Transparency-based collaborative systems are useful in situations

where the developer needs to create a collaborative system based upon a single-user

application but does not have access to the underlying code base of the single-user

system; transparency-based systems often consume more system resources and require a

centralized server model, but they are often the only option in some circumstances.

Another model to define CSCW systems is Patterson’s [116] that defines

groupware into four levels: display (renders the application to the user), view (contains

the application's logical presentation), model (the application's state and internal

information), and file (the persistent information of the application). Based upon these

four levels, three different variations can be described. The shared model is one in

which the different users each have their own displays and views, but the model and file

levels are combined in a centralized server. The shared view is one in which each user

has a separate file, model, view, and display, but the models and views utilize

communication mechanisms to ensure consistency. The hybrid model is one in which

the file and model are centralized and shared on a server, but the system allows for

different views and displays (and views are coordinated via communication to ensure

consistency). These configurations are displayed in Figure 3.

23

Other modern models include the window system and coordination

agent/subsystem that communication to the presentation and functional core aspects of

the model. Based upon this view, the system can be central (contain server that

maintains all state), direct communication (a peer-to-peer system), hybrid (combination

of server and peer-to-peer), asymmetrical (in which the server resides on a user's

machine), and multiple servers (in which there is a hierarchy of servers and

communication layers) [116]. Of course, other permutations of the placement of these

CES components are possible, and a goal of modern CSCW architectures is to

accommodate modular components that can accommodate a wide range of computation,

data management, communication, and application components [142]. To increase

reuse of CES components, Geyer et al [35] advocate aggregating components in an

Figure 3: Distributions of Models, Views, and Displays

File Model

Display

View

User 1 User N

…

Display

View

Shared Model

Display

View

User 1

Shared View

File

Model

Display

View

User N

File

Model

 …

File Model

Display

View

User 1 User N
…

Display

View

Hybrid Model

24

object-centric architecture and allowing each CES component to control access, rights,

etc. This model is similar to a Web-services approach, and coordination among such

objects is critical to achieve successful utilization of the components. Mehra et al [79]

propose such a Web Services-based architecture as shown in Figure 4.

Figure 4: A Web Services-based Collaborative Editing Architecture

A "Distributed Version Control System" (DVCS) is one in which version control

and software configuration control is provided across a distributed network of machines.

By distributing configuration management across a network of machines, one should see

an improvement in reliability (by replicating the file across multiple machines) and

25

speed (response time). Load balancing can be another benefit of distributed

configuration management. Of course, if file replication is employed, then we must

implement a policy whereby all copies of the file are always coherent [64].

In order for distributed configuration management to work efficiently, the fact

that the files/modules are distributed across multiple computers on the network must be

transparent to the developer/user. The user should not be responsible for knowing where

to locate the file he/she is seeking. Rather, the system should be able to provide an

overall hierarchical, searchable view of the modules present in the system; the user

should be able to find their needed module(s) without any notion of where it physically

resides on the network [73][74].

2.3. Concurrency Control Policies

Since a shared set of objects reside at the heart of any collaborative system, some

mechanism must be in place to coordinate the activities of the multiple users within the

system. Traditionally in collaborative editing, one of two approaches is taken with

regard to coordination: pessimistic concurrency control or optimistic concurrency

control.

Configuration management systems (and CSCW systems) typically take one of

two approaches with regard to locking: optimistic or pessimistic locking. In the

optimistic approach, users are free to edit in a more parallel fashion, but conflict occurs

at the merge point when two sets of edits must be merged together and changes brought

together (to avoid losing work and ensuring that changes in one file have not adversely

affected changes in the other file) [78]. In the pessimistic approach, users must obtain a

129

Note that we do not consider message types LK and ULK since they are the same

in our dynamic system and a pure OT system.

Thus a relative message overhead of 1 reflects the dynamic lock with OT system

incurs the same number of communication cost as a pure OT system. Mo above 1

reflects our system incurs more communication that a pure OT system. Mo below 1

reflects our system incurs less communication than a pure OT system. Thus a lower

value is a reduction in communication costs.

Figure 54 through Figure 57 show how our system employing dynamic locking

and OT at the leaf level compares with using a “pure OT” (defined as broadcasting all

changes to all users) performed with respect to communication for all 48 simulation

configurations. Figure 54 shows all of the data included in Figure 55 and Figure 56 so

that an overall picture can be seen of the data; Figure 55 and Figure 56 show data

specific for 3 and 9 users respectively.

Figure 54: Edit Behaviors and Communication Efficiency

130

From the results presented in Figure 54, it is clear that our system performs better

relative to pure OT when all other variables remain the same and the number of clients

increases (note that odd-even pairs reflect an increase from 3 to 9 in the number of

clients). Additionally, when clients cluster their edit behavior, our system performs

better relative to pure OT; this is intuitive in that the caching benefits of our system are

better utilized when edits are localized/clustered. Further, the trend in Figure 54 shows

that as the size of the document increases, our system increasingly outperforms pure OT.

Figure 55: Edit Behavior and Communication Efficiency – 3 Users

Figure 55 shows that communication costs for our system are better than costs for

an OT-only system for clustered editing behaviors, and our performance improves as the

document size increases. For the random, clustered, and hybrid client series in Figure

55, there were 3 users simulated on documents 1-6. For the uniform editing behavior

series, one user was simulated for each of the three different editing behaviors (random,

131

clustered, and hybrid) for a total of 3 users. Our approach outperformed the OT-only

approach for larger documents (document 6) and when clustered editing behavior was

used. The data associated with Figure 55 appears in Table 9.

Figure 56: Edit Behavior and Communication Efficiency – 9 Users

Figure 56 shows that communication costs for our system are significantly better

than costs for an OT-only system. For the random, clustered, and hybrid client series in

Figure 56, there were 9 users simulated on documents 1-6. For the uniform editing

behavior series, three users were simulated for each of the 3 different editing behaviors

(random, clustered, and hybrid) for a total of 9 users. In all cases other than document

1-3 using random editing behavior, our approach outperformed the OT-only approach,

and the trends as previously discussed of improvement increasing as document size

increases and as clients adopt a clustered editing pattern continue to hold. The data

associated with Figure 56 appears in Table 10.

132

Figure 57: Edit Behavior and Communication Efficiency – 18 & 27 Users

Figure 57 shows that communication costs for our system are significantly better

than costs for an OT-only system. For the random, clustered, and hybrid client series in

Figure 57, there were 18 users simulated on documents 4-6. For the uniform editing

behavior series, nine users were simulated for each of the three different editing

behaviors (random, clustered, and hybrid). In all cases, our approach outperformed the

OT-only approach, and the trends as previously discussed of improvement increasing as

document size increases and as clients adopt a clustered editing pattern continue to hold.

The data associated with Figure 57 appears in Table 11.

133

Table 9: Simulation Results – Communication Costs with Structures 1-3

Doc

ID

Clients Write

requests

Messages TOTALS
OT% MO

R C H LK ULK U D P OTA OTJ OTD OTM DM POT

1 1 1 1 1458 254 241 5 62 59 257 179 194 1719 2970 2916 0.79 1.02

1 3 0 0 955 249 233 5 25 22 311 202 275 1262 2584 1910 0.79 1.35

1 0 3 0 2243 290 276 1 52 50 362 246 301 2969 4547 4486 0.85 1.01

1 0 0 3 864 170 156 4 16 11 243 140 222 1411 2373 1728 0.85 1.37

1 3 3 3 7904 1540 1388 30 7 4 6977 1512 6477 38156 56091 63232 0.95 0.89

1 9 0 0 6615 1646 1422 47 6 3 6645 1594 5918 29020 46301 52920 0.93 0.87

1 0 9 0 8286 909 828 11 8 5 3960 893 3680 38836 49130 66288 0.96 0.74

1 0 0 9 8769 1739 1580 28 10 7 7887 1699 7358 43323 63631 70152 0.95 0.91

2 1 1 1 2070 434 404 5 15 11 610 363 575 3210 5627 4140 0.85 1.36

2 3 0 0 1645 485 456 9 24 20 696 432 654 2541 5317 3290 0.81 1.62

2 0 3 0 2856 385 362 13 37 33 446 315 407 3737 5735 5712 0.86 1.00

2 0 0 3 2049 444 420 7 11 8 615 379 588 3090 5562 4098 0.84 1.36

2 3 3 3 7617 1755 1609 22 14 12 6867 1669 6389 32905 51242 60936 0.93 0.84

2 9 0 0 4557 1370 1276 8 6 3 6704 1311 6360 24070 41108 36456 0.94 1.13

2 0 9 0 7941 1149 1053 15 12 9 5020 1105 4696 37581 50640 63528 0.96 0.80

2 0 0 9 7000 1709 1585 17 6 3 7433 1633 7025 33411 52822 56000 0.94 0.94

3 1 1 1 2942 636 589 9 41 33 651 443 593 3269 6264 5884 0.79 1.06

3 3 0 0 1936 600 554 8 44 37 740 452 691 2660 5786 3872 0.79 1.49

3 0 3 0 3706 539 497 38 58 49 429 333 381 3024 5348 7412 0.78 0.72

3 0 0 3 2746 637 596 17 75 68 750 496 687 3538 6864 5492 0.80 1.25

3 3 3 3 6864 1716 1553 17 18 10 6778 1606 6260 28856 46814 54912 0.93 0.85

3 9 0 0 5817 1888 1724 14 51 43 8304 1761 7737 27053 48575 46536 0.92 1.04

3 0 9 0 10276 1651 1494 28 41 33 5215 1468 4738 37158 51826 82208 0.94 0.63

3 0 0 9 7577 1872 1700 17 35 25 7397 1759 6824 32671 52300 60616 0.93 0.86

134

Table 10: Simulation Results – Communication Costs with Structures 4-6

Doc

ID

Clients Write

requests

Messages TOTALS
OT% MO

R C H LK ULK U D P OTA OTJ OTD OTM DM POT

4 1 1 1 4042 959 859 19 85 70 754 578 671 3806 7801 8084 0.74 0.96

4 3 0 0 2887 960 855 10 59 44 925 666 839 3000 7358 5774 0.74 1.27

4 0 3 0 5489 816 739 118 116 99 547 413 487 3919 7254 10978 0.74 0.66

4 0 0 3 3764 946 849 15 99 83 773 575 691 3493 7524 7528 0.74 1.00

4 3 3 3 8905 2318 2055 28 48 33 6186 2086 5585 26440 44779 71240 0.90 0.63

4 9 0 0 7507 2597 2298 5 52 40 9165 2354 8314 29818 54643 60056 0.91 0.91

4 0 9 0 10850 1841 1656 62 124 107 2990 1457 2693 21092 32022 86800 0.88 0.37

4 0 0 9 9655 2582 2287 29 58 41 7529 2282 6772 32818 54398 77240 0.91 0.70

5 1 1 1 4638 1053 910 59 125 95 669 539 578 3458 7486 9276 0.70 0.81

5 3 0 0 3665 1241 1078 11 159 126 901 693 784 3198 8191 7330 0.68 1.12

5 0 3 0 5473 797 711 194 127 103 405 333 359 2765 5794 10946 0.67 0.53

5 0 0 3 4429 1179 1031 26 160 126 774 603 667 3490 8056 8858 0.69 0.91

5 3 3 3 10308 2698 2325 44 114 84 5371 2141 4675 24558 42010 82464 0.87 0.51

5 9 0 0 8873 3166 2712 9 128 100 8019 2740 6964 26498 50336 70984 0.88 0.71

5 0 9 0 11766 1942 1719 194 184 155 2779 1313 2445 18993 29724 94128 0.86 0.32

5 0 0 9 11154 3024 2598 36 152 120 6495 2526 5612 29134 49697 89232 0.88 0.56

6 1 1 1 4879 1185 1015 680 307 256 439 402 355 2383 7022 9758 0.51 0.72

6 3 0 0 4080 1425 1190 556 259 204 706 592 557 2734 8223 8160 0.56 1.01

6 0 3 0 5494 653 574 1187 193 166 140 140 115 884 4052 10988 0.32 0.37

6 0 0 3 5081 1350 1147 471 332 273 640 540 497 3113 8363 10162 0.57 0.82

6 3 3 3 10300 2830 2357 1803 270 213 3557 1916 2950 16594 32490 82400 0.77 0.39

6 9 0 0 10142 3608 2985 1026 284 228 6195 2729 5175 22052 44282 81136 0.82 0.55

6 0 9 0 13607 1647 1452 2606 207 167 1442 910 1255 9448 19134 108856 0.68 0.18

6 0 0 9 12194 3329 2800 912 262 204 4502 2314 3772 20826 38921 97552 0.81 0.40

135

Table 11: Simulation Results – Communication Costs with 18 and 27 Users

Doc

ID

Clients Write

requests

Messages TOTALS
OT% MO

R C H LK ULK U D P OTA OTJ OTD OTM DM POT

4 18 0 0 13721 4859 4228 9 54 38 35085 4624 31416 111012 191325 233257 0.95 0.82

5 18 0 0 16545 5913 5015 10 115 84 30905 5479 26795 102049 176365 281265 0.94 0.63

6 18 0 0 18677 6709 5508 9 213 160 23236 5929 19414 79898 141076 317509 0.91 0.44

4 0 18 0 20712 3599 3190 94 67 51 10564 3131 9449 72150 102295 352104 0.93 0.29

5 0 18 0 21520 3706 3242 200 120 90 10024 3049 8804 69137 98372 365840 0.93 0.27

6 0 18 0 20098 3321 2929 313 268 223 6373 2464 5689 42411 63991 341666 0.89 0.19

4 0 0 18 17888 4805 4219 25 43 26 28289 4525 25333 124492 191757 304096 0.95 0.63

5 0 0 18 20387 5554 4716 39 119 86 22733 4981 19517 102422 160167 346579 0.93 0.46

6 0 0 18 22004 6164 5142 63 246 190 16434 5179 13786 73302 120506 374068 0.90 0.32

4 9 9 9 26398 6812 5889 67 41 26 49195 6485 43382 222741 334638 686348 0.96 0.49

5 9 9 9 28363 7493 6384 73 117 85 39877 6943 34469 180275 275716 737438 0.95 0.37

6 9 9 9 29303 7933 6655 72 222 167 27577 6869 23497 123515 196507 761878 0.92 0.26

Doc ID – Document Structure ID

Clients R – Random

Clients C – Clustered

Clients H – Hybrid

Write Requests - # times clients modified document

LK – Lock Request

ULK – Unlock (Lock Release)

U – Update Position

D – Demotion

P – Promotion

OTA – OT Add

OTJ – OT Join

OTD – OT Delete

OTM – OT Modify

DM – Messages using Dynamic Locking Algorithm

POT – Messages using Pure OT Algorithm

OT% = (OTA + OTJ + OTD + OTM) / DM

MO – Relative message overhead (DM / POT)

136

5.3. Discussion and Related Work

While there is much literature on OT research such as [66],[134], etc., but the

prior work assumes that the document structure is linear in nature and operates

exclusively on character-level insertion and deletion operations. Prior OT research

supporting rich-text document formats (thus supporting objects) claims that their

approach is generalizable to other non-character insertion and deletions, but all such OT

researchers describe their algorithms in terms of character insert and delete operations;

few discuss the details of supporting other semantic levels of operations. Those that do

support non-linear OT algorithms enforce strict semantic levels and are not flexible to

arbitrary document structures or depths of document trees. For example, [58] discusses

algorithms for merging two different versions of a document by accepting

changes/operations at a word, sentence, or paragraph depth/level; this constraint of only

applying operations at specified levels within the semantic structure is not as broad and

flexible as our generalized approach as presented herein. [57] also demonstrate promise

in managing history buffers in a hierarchical document structure and applying operations

at varying semantic levels within the document; but again the semantic depth at which

the changes are managed are constrained to paragraph, sentence, and word levels.

Further, their approach applies operations from top to bottom, so all operations must

flow through the document tree root – posing a significant bottleneck in processing the

operations. Rather, our approach is flexible in supporting operations at any semantic

depth and begins the process of managing and applying these operations within the leaf

nodes where they occur.

141

congestion) and improve fault tolerance (via replication of portions of the document tree

structure and content among various peers).

Further, given the peer-to-peer nature of this approach, we adopt an adjustable

locking policy that is established on a per-section basis. As a result, users may select

whether to share their active section and allow multiple writers (thus adopting OT or

some other coordination mechanism), choose to disallow other users from entering their

owned section (denying the lock request of other writers wishing to enter the section), or

allow for demotion of their lock to a sub-section to resolve the conflict. The policy

adopted may vary according to any user (i.e., one user may select a sharing policy while

another selects an exclusive lock policy while another selects a demotion policy) and

also very according to which section is active (i.e., a user might adopt an exclusive lock

policy when editing section X, but the same user might adopt a sharing policy when

editing section Y). Of course, global policies based upon user priority, etc. can also be

adopted to “trump” local policies if desired (such that a high-priority user can override

the lock policies of another lower-priority user if desired/needed). Thus the P2P

algorithms discussed in this chapter assume such lock policies are on a per-node basis

and are queried at each node upon a lock request or release.

The preceding client-server approach taken for lock management is shown in

Figure 58 where the server is a central bottleneck and point of failure. The entire

document tree is managed by the server. In this figure, local OT is being applied among

users 3 and 4, but other than this, all communication is handled via the server.

142

In contrast, the P2P approach for lock management discussed in this chapter is

shown in Figure 59. Notice in the P2P model, each user is responsible for managing the

portion of the document tree that is associated with the portion of the document that they

are editing and each peer is able to communicate directly with all other peers in the

system. Local OT is still permissible as demonstrated in the sharing and OT among

users 3 and 4.

Figure 58: The Client-Server Lock Management Model

143

6.2. Lock Request

When a user, U1, enters/initiates the CES, this user is the only user in the system

and consequently has the entire document updated and cached in its computer.

Assuming a locking policy has been adopted and sharing is not permitted, when another

user, U2, enters the system, U1’s portion of the document is reduced to accommodate the

new user such that the contention between U1 and U2 is removed. We assume that U1

and U2 are interested in authoring disparate sections; if U1 and U2 are interested in

editing the same section of the document, then either U2’s request to enter the section

“owned” by U1 can be rejected (a failed write event) or an OT-based multi-writer policy

may be adopted. Figure 60 demonstrates the demotion of U1 from the entire section v

down to the sections denoted by {w1, …, wn} and the injection of U2 at the section

denoted by x. Any changes made so far by U1 to x (denoted by x) must be passed to

Figure 59: The P2P Lock Management Model

144

U2. At this point, U1 contains the most current copy of the sections {w1, …, wn}, and U2

contains the most current copy of section x. Since the x is being transmitted to U2, it is

appropriate to apply reduction to the history buffer at x when such a demotion occurs;

since these nodes are locked by U1, we avoid any form of deadlock in achieving the

messaging to U2.

A user requests a section of the document to which he wants to write, and the

system attempts to obtain a lock on that section of the document. The OBTAINLOCK

algorithm works from top-to-bottom by examining nodes in the path from the root to the

destination node. The correct path is determined by first querying the peer who

manages the root, and then descending further down by following peers’ references to

other peers (see Section 6.7). As it traverses this path, if a white node is found, then the

insert succeeds and the node becomes owned by the requesting user (and painted black).

If a grey node is found, it continues down. If a black node is reached, then we either

adopt an OT strategy if multiple writers are allowed at this node, or we demote (push

down) this black node (its current owner/user), turn this node into grey thus making

room for the new insert request to continue down. Demotion works by moving the

ownership of that user (and the black coloring) down the tree hierarchy while ensuring

Figure 60: Peer-to-Peer Lock Request

v U1 v U1 v U2

w1 wn …

v

x

145

that the leaf node needed by that user is contained within the sub-hierarchy. As in our

previous, centralized algorithms [103][105], we avoid deadlock among peers by

employing handshake locks on parent/child nodes and by always moving downward

through the tree.

6.3. Editing Content and Modifying the Structure of the Tree

Given the structure of the document tree, all content is stored at leaf nodes; all

other nodes act as structural support and represent sections and subsections. When a

user U1 owns a section denoted by node v, then all changes made to the content of the

sections rooted at v are cached locally on U1. Four types of edits/changes may be made

within the system by a user U1:

1. The content of a leaf v may be changed. In this case, U1 modifies some element

of the document that is represented by v. No structure change is made to the tree.

2. U1 removes/deletes a node v. In this case, node v may be either a leaf node or a

non-leaf node. If v is a leaf node, then the entity/content that v stored is deleted

from the tree. If v is a non-leaf node, then v and all of its child nodes are removed

from the tree (denoting a removal of a section and all its subsections). In this

case, it is valid to remove all sub-trees since by definition U1 has write

permissions to node v or the change would be rejected.

3. U1 splits a node v into two nodes, v and v2. In this case, U1 is creating a new

section, paragraph, etc. v2 is added as a sibling to v, some of the content of the

original v is moved to v2, and U1 owns both v and v2.

146

4. U1 creates a new section. This is a modified case of the case 3 in that the new

node v2 is created, except in this case no content is moved from an existing node.

The node v2 is added into the tree and is owned by U1.

In the above cases, no communication is needed between peers – all of the

changes are cached locally. If other users are interested in the sections rooted at v (as

either readers or writers), then any changes made can be selectively multicast to these

other users and an OT can be employed to maintain consistency among all peers

interested in sections rooted at v.

6.4. Lock Release

The REMOVELOCK algorithm also works from top-to-bottom. As the path from

the root to the node to be released is traversed downward, the grey-count for all nodes

painted grey is decreased by one until a grey node with a grey-count of one (after

decrementing) is encountered; when this occurs, a promotion is needed to ensure that the

sibling of the to-be-unlocked node owns the largest sub-tree possible. When a

REMOVELOCK request is fulfilled that necessitates a promotion, the node whose grey

count has been reduced to one must be painted black and must be added into the black

sibling list of the grey, parent node. Since this algorithm works strictly downward along

the tree, we avoid deadlock and are guaranteed to be able to promote the lock if only one

peer remains in the sub-tree.

When a user, U1, leaves a section w of the document and does not plan to return

(or does not plan to return in the near future), it is appropriate to release the lock held by

U1 on w and promote (if possible) another user’s (U2) lock such that the portion of the

document held by U2 is increased. Since U1 is leaving w, there is no contention on w

147

with other users, so if there remains only one user, this user can assume ownership of a

larger portion of the document. Alternatively, it is possible to cache the changes on U1

and update U2’s ownership at a later time (if at all). This would be appropriate in the

case where it is foreseeable that U1 would return to w before any other user desires to

read/write to w.

Let w = changes made by U1 on w. In the case where w is being

communicated from U1 to U2, we guarantee that w represents all changes to w and U1’s

copy of w is up-to-date (i.e., w = the history buffer of w at U1). Consequently, we must

communicate w to another user U2 and replay w on U2’s copy of w to achieve the up-

to-date version of w at U2. This is shown in Figure 61. In this example, U2’s ownership

is being promoted from x to v. As a result, only w needs to be communicated, and we

avoid having to communicate the entire contents of w to U2. x is current since U2 owns

it, and w is now current because w has been “replayed” at U2. Thus U2 contains a

proper and complete, up-to-date version of v since v is defined by w and x (i.e., v is

current because v = w + x and v = w + x). Note that v is easily constructed in

constant time since w and x are independent and do not conflict – thus v is the

concatenation/simple-merge of w and x.

148

Since the w is being transmitted to U2, it is appropriate to reduce the history

buffer at w before such a promotion occurs; even though we are moving up the tree, we

avoid deadlock in achieving the promotion and messaging to U2 by using a window lock

on v, w, and x. Reduction may be applied safely and recursively up to v. Here, when we

state we are “moving up” in the tree, this is logically up; all operations are performed

top-to-bottom using handshake locks and deadlock is avoided.

When w is communicated to U2, U2 may elect to incorporate w into its copy of

w, or if desired, U1’s changes to w (w) may be rejected. This acceptance or rejection of

changes by other users could be done automatically by the system based upon embedded

rules or done explicitly by users as prompted by the system.

When a user, U1, leaves the CES, all of the cached changes are flushed to another

user within the system. The policy of flushing the cache could be set to broadcast the

changes to all peers or send the changes to a single peer (or selectively send specific

sections’ changes to various peers) who would assume ownership of the sections that U1

had previously owned.

Figure 61: Peer-to-Peer Lock Release

v

U2 (v = w + x)

v

U1

v

U2

w

v

x

w x

v

149

6.5. User Movement within the Document Tree

If user Ui is currently editing/present in the section denoted by node v and wishes

to move to the section denoted by node x, then three situations may arise (see Figure

62):

1. Ui owns x; this may arise for two reasons: either Ui owns (i.e., has a lock on) a

node n that is an ancestor of nodes x and v, or the common ancestor n may be

marked grey because Ui owns x and v but another user, Uj, owns a node within the

n-rooted tree. In this case, we move Ui to x without any contention with other

users. Ui can retain the lock on v or release it (user preference), and no

communication is necessary.

2. x is not owned (i.e., colored white). If this is the case, then either Ui can release

its lock on v and acquire the lock on x, or, if desired, Ui can retain its lock on v

and acquire the lock on x (this would be desirable if Ui was entering x

temporarily and knew a priori that he wished to return to v after a brief edit to x).

In this situation, there must exist another user, Uj, that owns another node w

rooted at n since Ui does not own n (case 1); thus n must be colored grey.

3. Another user Uj owns x (or owns a tree which contains x); again, n must be grey

due to the contention between Ui and Uj (and possibly other users). If this is the

case, then Ui must wait for Uj to leave x and release the lock on x – assuming a

single-writer policy is employed at x. Alternatively, if a multi-writer policy has

been adopted at x (i.e., Uj allows other writers within x), then Ui may enter x and

an OT-based coordination policy is adopted among the writers.

150

In cases 1 and 2, no communication is required if the user retains his lock on node

v; in case 1 the user is moving within the user’s currently-owned sub-tree and the move

is permissible and does not conflict with any other user; in case 2 the user is moving to a

white node which implies that no other user was previously in this desired node. In case

3, the history buffer at node x must be communicated to user Ui since Ui now has

entered x and must have the latest state of x.

If the user elects to release his lock on node v, then the cache (history buffer) for

node v will be flushed and communicated to the node that assumes management of v

(which could be the original owner Ui if no promotion occurs in which case no

communication is required; otherwise, the new manager of v will be node promoted as a

result of Ui leaving v and the history buffer (cache) of v must be communicated to the

promoted node).

6.6. Correctness and Efficiency Analysis

Similar to the client-server algorithms for lock management, we designed the P2P

versions of the OBTAINLOCK and RELEASELOCK operations such that the document tree

v x

n n

v x v w

… … …

Ui

Uj Ui Uj Ui

Case 1 Case 2 Case 3

x

n

…

n

v x w

… …

Uj Ui Ui

- OR -

Figure 62: Three Cases of a User Moving from v to u

