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ABSTRACT 
 
 

Flow rates and solute concentrations from eight springs in the Ridge and Valley Province 

in northwestern Georgia were used to determine flow types and to measure each aquifer’s ability 

to remove contamination for possible use by an encroaching urban and suburban population. 

This study determined and interpreted the fluctuations in chemistry of each of the sampled 

spring’s water based upon temporal variations of precipitation in the area and variations in the 

chemistries measured at each weekly sampling event. This study showed that precipitation-

induced springs were more likely to incur contamination from a pollutant which occurred in the 

drainage basin; while carbonate aquifer springs, which were not consistently influenced by 

precipitation, were not as likely to be contaminated when disturbances or pollutants occurred 

within the drainage basin.   

 
INDEX WORDS:  Spring water chemistry, Carbonate aquifer springs, Precipitation-induced 

springs, Ridge and Valley province 
 



 

TEMPORAL VARIATIONS IN SPRING WATER CHEMISTRY 

 AND COMPARISON OF VARIABLE PALEOZOIC AQUIFER DISCHARGES IN THE  

RIDGE AND VALLEY PROVINCE OF NORTHWESTERN GEORGIA 

 

by 

 

OLIVER WOOD COSTELLO 

 

 

A Thesis Submitted in Partial Fulfillment of Requirements for the Degree of  

 

Master of Science 

in the College of Arts and Sciences 

Georgia State University 

 

 

 

2009 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Copyright by 
Oliver Wood Costello 

2009 



 

TEMPORAL VARIATIONS IN SPRING WATER CHEMISTRY 

 AND COMPARISON OF VARIABLE PALEOZOIC AQUIFER DISCHARGES IN THE  

RIDGE AND VALLEY PROVINCE OF NORTHWESTERN GEORGIA 

 

by 

 

OLIVER WOOD COSTELLO 

 
 
                                                                     
 
 
 
 
 

 
                                                                   Committee Chair:      Seth Rose 
 

      Committee:     Crawford Elliott 
    Hassan Babaie 

       
 
 
 
 
 
 
 
 
 
 
 
Electronic Version Approved: 
 
Office of Graduate Studies 
College of Arts and Sciences 
Georgia State University 
May 2009



 
 
 

iv 

TABLE OF CONTENTS 
 

LIST OF TABLES......................................................................................................................... vi 

LIST OF FIGURES ...................................................................................................................... vii 

1. INTRODUCTION ................................................................................................................. 1 

2. STUDY AREA ...................................................................................................................... 5 

Geology and Hydrogeology of the Ridge and Valley Province ............................................ 5 

Spring Study Sites................................................................................................................ 12 

3. SAMPLING AND ANALYTICAL METHODS ................................................................ 18 

Field Sample Collection....................................................................................................... 18 

Temperature/pH/Conductance Measurements..................................................................... 18 

Precipitation......................................................................................................................... 19 

Evapotranspiration............................................................................................................... 19 

Environmental Data ............................................................................................................. 19 

Saturation Index................................................................................................................... 20 

Ion Analysis ......................................................................................................................... 21 

4. RESULTS ............................................................................................................................ 28 

Precipitation and Evapotranspiration Results ...................................................................... 28 

Temperature/pH/Conductance of Springs ........................................................................... 31 

Major Ion Chemistry of Springs .......................................................................................... 31 

5. DISCUSSION...................................................................................................................... 48 

Carbonate Aquifer Springs .................................................................................................. 49 

Precipitation-induced Springs.............................................................................................. 54 

6. CONCLUSION.................................................................................................................... 58 



 
 
 

v 

REFERENCES ............................................................................................................................. 60 

APPENDIX A: SPRING FIELD DATA ...................................................................................... 63 

APPENDIX B: SPRING CHEMISTRIES.................................................................................... 79 

 

 

 

 
 
 
 
 



 
 
 

vi 

LIST OF TABLES 

Table 1:   List of Spring Sites and County Locations ................................................................... 11 

Table 2:   Cave Spring Major Ion Data......................................................................................... 31 

Table 3:   Sand Spring Major Ion Data ......................................................................................... 32 

Table 4:   North John’s Mountain Major Ion Data ....................................................................... 32 

Table 5:   John’s Mountain Major Ion Data.................................................................................. 33 

Table 6:   Chestnut Mountain Shooting Range Major Ion Data ................................................... 33 

Table 7:   Everett Springs Major Ion Data.................................................................................... 34 

Table 8:   West John’s Mountain Major Ion Data ........................................................................ 34 

Table 9:   Turkey Mountain Major Ion Data................................................................................. 35 

Table 10: Conductivity Averages of Sample Sites in ųS.............................................................. 36 

 



 
 
 

vii 

LIST OF FIGURES 
 
Figure 1:     Location of Spring Sites and Geological Formations Aldaheff et al (2003)............... 6 

Figure 2:     Plot of the Geologic Data. ........................................................................................... 7 

Figure 3:     Cross-Section Line Location from Aldaheff et al (2003)............................................ 9 

Figure 4:     Geologic Cross-Section Modified from Cressler (1971) and Aldaheff et al (2003). 10 

Figure 5:     Sodium Standard Curve............................................................................................. 25 

Figure 6:     Calcium Standard Curve ........................................................................................... 25 

Figure 7:     Magnesium Standard Curve ...................................................................................... 26 

Figure 8:     Potassium Standard Curve ........................................................................................ 26 

Figure 9:     Chloride Standard Curve ........................................................................................... 27 

Figure 10:   Sulfate Standard Curve.............................................................................................. 27 

Figure 11:   Precipitation in Rome, Georgia ................................................................................. 29 

Figure 12:   ET in Rome, Georgia................................................................................................. 30 

Figure 13:   Weekly Rain Totals in Rome, Georgia ..................................................................... 30 

Figure 14:   Cave Spring Conductivity vs. Rain Volume ............................................................. 40 

Figure 15:   Sand Spring Conductance vs. Rain Volume ............................................................. 41 

Figure 16:   North John’s Mountain Conductance vs. Rain Volume............................................ 42 

Figure 17:   Horn Mountain Conductance vs. Rain Volume ........................................................ 43 

Figure 18:   Chestnut Mountain Shooting Range Conductance vs. Rain Volume........................ 44 

Figure 19:   Everett Springs Conductance vs. Rain Volume ........................................................ 45 

Figure 20:   West Armuchee Conductance vs. Rain Volume ....................................................... 46 

Figure 21:   Turkey Mountain Conductance vs. Rain Volume ..................................................... 47 

Figure 22:   Cave Spring Conductance vs. Time .......................................................................... 63 



 
 
 

viii 

Figure 23:   Cave Spring pH vs. Time .......................................................................................... 64 

Figure 24:   Cave Spring Temperature vs. Time........................................................................... 64 

Figure 25:   Sand Spring Conductance vs. Time .......................................................................... 65 

Figure 26:   Sand Spring pH vs. Time .......................................................................................... 66 

Figure 27:   Sand Spring Temperature vs. Time........................................................................... 66 

Figure 28:   North John's Mountain Conductance vs. Time ......................................................... 67 

Figure 29:   North John's Mountain pH vs. Time ......................................................................... 68 

Figure 30:   North John's Mountain Temperature vs. Time.......................................................... 68 

Figure 31:   Horn Mountain Spring Conductance vs. Time.......................................................... 69 

Figure 32:   Horn Mountain Spring pH vs. Time.......................................................................... 70 

Figure 33:   Horn Mountain Spring Temperature vs. Time .......................................................... 70 

Figure 34:   Chestnut Mountain Shooting Range Conductance vs. Time..................................... 71 

Figure 35:   Chestnut Mountain pH vs. Time ............................................................................... 72 

Figure 36:   Chestnut Mountain Temperature vs. Time................................................................ 72 

Figure 37:   Everett Springs Conductance vs. Time ..................................................................... 73 

Figure 38:   Everett Spring pH vs. Time....................................................................................... 74 

Figure 39:   Everett Spring Temperature vs. Time ....................................................................... 74 

Figure 40:   West Armuchee Conductance vs. Time .................................................................... 75 

Figure 41:   West Armuchee pH vs. Time .................................................................................... 76 

Figure 42:   West Armuchee Temperature vs. Time..................................................................... 76 

Figure 43:   Turkey Mountain Conductance vs. Time .................................................................. 77 

Figure 44:   Turkey Mountain pH vs. Time .................................................................................. 78 

Figure 45:   Turkey Mountain Temperature vs. Time .................................................................. 78 



 
 
 

ix 

Figure 46:   Cave Spring Bicarbonate Levels. .............................................................................. 79 

Figure 47:   Cave Spring Chloride Levels. ................................................................................... 80 

Figure 48:   Cave Spring Sulfate Levels. ...................................................................................... 80 

Figure 49:   Cave Spring Magnesium Levels................................................................................ 81 

Figure 50:   Cave Spring Calcium Levels..................................................................................... 81 

Figure 51:   Cave Spring Potassium Levels. ................................................................................. 82 

Figure 52:   Cave Spring Sodium Levels. ..................................................................................... 82 

Figure 53:   Sand Spring Bicarbonate Levels. .............................................................................. 83 

Figure 54:   Sand Spring Chloride Levels..................................................................................... 84 

Figure 55:   Sand Spring Sulfate Levels. ...................................................................................... 84 

Figure 56:   Sand Spring Magnesium Levels................................................................................ 85 

Figure 57:   Sand Spring Calcium Levels. .................................................................................... 85 

Figure 58:   Sand Spring Potassium Levels. ................................................................................. 86 

Figure 59:   Sand Spring Sodium Levels. ..................................................................................... 86 

Figure 60:   North John’s Mountain Bicarbonate Levels.............................................................. 87 

Figure 61:   North John’s Mountain Chloride Levels. .................................................................. 88 

Figure 62:   North John’s Mountain Sulfate Levels...................................................................... 88 

Figure 63:   North John’s Mountain Magnesium Levels. ............................................................. 89 

Figure 64:   North John’s Mountain Calcium Levels. .................................................................. 89 

Figure 65:   North John’s Mountain Potassium Levels................................................................. 90 

Figure 66:   North John’s Mountain Sodium Levels..................................................................... 90 

Figure 67:   Horn Mountain Bicarbonate Levels. ......................................................................... 91 

Figure 68:   Horn Mountain Chloride Levels................................................................................ 92 



 
 
 

x 

Figure 69:   Horn Mountain Sulfate Levels. ................................................................................. 92 

Figure 70:   Horn Mountain Magnesium Levels........................................................................... 93 

Figure 71:   Horn Mountain Calcium Levels . .............................................................................. 93 

Figure 72:   Horn Mountain Potassium Levels. ............................................................................ 94 

Figure 73:   Horn Mountain Sodium Levels. ................................................................................ 94 

Figure 74:   Chestnut Mountain Shooting Range Bicarbonate Levels.......................................... 95 

Figure 75:   Chestnut Mountain Shooting Range Chloride Levels............................................... 96 

Figure 76:   Chestnut Mountain Shooting Range Sulfate Levels.................................................. 96 

Figure 77:   Chestnut Mountain Shooting Range Magnesium Levels. ......................................... 97 

Figure 78:   Chestnut Mountain Shooting Range Calcium Levels . ............................................. 97 

Figure 79:   Chestnut Mountain Shooting Range Potassium Levels. ........................................... 98 

Figure 80:   Chestnut Mountain Shooting Range Sodium Levels. ............................................... 98 

Figure 81:   Everett Springs Bicarbonate Levels. ......................................................................... 99 

Figure 82:   Everett Springs Chloride Levels.............................................................................. 100 

Figure 83:   Everett Springs Sulfate Levels. ............................................................................... 100 

Figure 84:   Everett Springs Magnesium Levels......................................................................... 101 

Figure 85:   Everett Springs Calcium Levels. ............................................................................. 101 

Figure 86:   Everett Springs Potassium Levels. .......................................................................... 102 

Figure 87:   Everett Springs Sodium Levels. .............................................................................. 102 

Figure 88:   West Armuchee Bicarbonate Levels. ...................................................................... 103 

Figure 89:   West Armuchee Chloride Levels. ........................................................................... 104 

Figure 90:   West Armuchee Sulfate Levels. .............................................................................. 104 

Figure 91:   West Armuchee Magnesium Levels........................................................................ 105 



 
 
 

xi 

Figure 92:   West Armuchee Calcium Levels. ............................................................................ 105 

Figure 93:   West Armuchee Potassium Levels. ......................................................................... 106 

Figure 94:   West Armuchee Sodium Levels. ............................................................................. 106 

Figure 95:   Turkey Mountain Bicarbonate Levels. .................................................................... 107 

Figure 96:   Turkey Mountain Chloride Levels. ......................................................................... 108 

Figure 97:   Turkey Mountain Sulfate Levels. ............................................................................ 108 

Figure 98:   Turkey Mountain Magnesium Levels. .................................................................... 109 

Figure 99:   Turkey Mountain Calcium Levels........................................................................... 109 

Figure 100: Turkey Mountain Potassium Levels........................................................................ 110 

Figure 101: Turkey Mountain Sodium Levels............................................................................ 110 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

1 

1. INTRODUCTION 

The Ridge and Valley Province of Georgia is located in the northwestern corner of the 

state of Georgia and bordered to the east by the Blue Ridge, to the south by the Piedmont and to 

the northwest by the Cumberland Plateau (Georgia Geologic Survey, 2003). This area is 

characterized by long narrow ridges separated by valleys which are composed of sedimentary 

rocks formed during the Paleozoic period (Butts and Gildersleeve, 1948). Limited studies have 

been conducted on the Paleozoic sedimentary aquifers of the Ridge and Valley Province of 

northwestern Georgia throughout the past. A study of the groundwater chemistry of the study 

area was first performed in the late 1960’s by the Geologic Survey of Georgia’s Department of 

Mines and Mining and Geology (Cressler, 1970). Later, in 1978, the United States Geological 

Survey (U.S.G.S.) began an aquifer analysis program called the Regional Aquifer System 

Analysis (RASA) to further study the potential collection of groundwater from large aquifer 

systems in the U.S. during drought periods (Hollyday and Smith, 1990). The Appalachian 

Valley-Piedmont phase of the U.S.G.S. RASA survey included eight states from Alabama to 

Pennsylvania; however, the Ridge and Valley province of northwestern Georgia was not as well 

studied as the more populated Ridge and Valley of the northeastern United States (Swain et al., 

2004). The lack of knowledge of the Ridge and Valley area is attributed to the complex nature of 

the underlying geologic features, including thrust faults and complex erosional features 

(Rutledge and Mesko, 1996). Due to the presence of large unconfined aquifers this area has been 

classified as a region of high risk of groundwater contamination by the Georgia Department of 

Natural Resources (Aldaheff and others, 2003).  

This study investigated the changes in spring water chemistry and interpreted the 

chemical changes to determine the flow path that ground water takes between the wet winter 
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season and into the drier summer season. Generally the water that recharged these sedimentary 

rock aquifers is rain-induced infiltration versus recharge from streams or rivers. Ahearn et al. 

(2004) showed stream water chemistry fluctuation had an initial flushing period at the beginning 

of the rainy season and a diluting phase that followed in the late rainy to early dry period. Spring 

discharges that respond quickly after rain events, chemically and volumetrically, are more 

vulnerable to influences from the surface (Fetter, 2001). In the Ridge and Valley Province of 

northwestern Georgia, the most susceptible aquifers are conduit flow paths through carbonate 

aquifers. Since the conduit flow is more susceptible to influences from precipitation, they are at a 

greater risk from potential contamination (Garner and Mayer, 2004). 

Carbonate aquifers can exhibit flow differences from open solution channels to the other 

extreme where the aquifer behaves as a diffuse homogeneous medium (Fetter, 2001). The aquifer 

systems of the Ridge and Valley Province can exhibit conduit flow based on the dissolution of 

the rock as well as the presence of deformation features (Garner and Mayer, 2004).  

The flow through carbonate aquifers to a spring discharge point has been described as 

either conduit or diffuse flow (Shuster and White, 1971). Conduit flow is generally characterized 

by turbulent and variable flow through solution openings, while diffuse flow can be 

characterized by flow through small pores and fractures or the matrix of the rock (Harmon and 

others, 2006). The generally constant flow through the aquifer allows us to describe the flow rate 

using Darcy’s Law (Fetter, 2001). 

 To determine flow type Pavlicek (1996) used specific conductance of spring flow over 

spring high and low flow periods. For dilute freshwater, the relationship between specific 

conductance and dissolved solids is commonly well defined for these waters and specific 

conductance can be used to extrapolate flow types for aquifers (Seaber, 1988). Large fluctuations 
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in spring water chemistry would suggest that the water did not have time to equilibrate with the 

surrounding rock. If flow remained relatively constant, then the type of flow can be determined 

by the variations in specific conductance (Pavlicek, 1996). This constant flow would suggest 

more of a conduit flow spring than a diffuse flow spring. In a diffuse flow spring water has a 

much longer residence time, and results in for very little fluctuations in chemistry (Shuster and 

White, 1971). By understanding the flow type and fluctuations in geochemistry, each of the 

spring’s aquifers were classified as either conduit or diffuse flow.  

Analysis of the major ion concentrations recorded in the eight springs demonstrated the 

susceptibility of each aquifer to contamination by surface waters based upon the flow dynamics. 

Spring discharges that responded quickly to rain events, chemically and volumetrically, are more 

vulnerable to influences from the surface (Fetter, 2001). Flow is generally thought to occur in 

fractures or solution openings versus pore openings in the rocks (Rutledge et al., 1996). Spring 

waters that did not reach equilibrium with the surrounding water did not spend enough time in 

contact with the rock to allow for chemical reactions to occur (Kehew, 2001). In the Ridge and 

Valley Province of northwestern Georgia, the most susceptible aquifers contain conduit flow 

paths through carbonate aquifers. Since the conduit flow is more susceptible to influences from 

precipitation, they are at a greater risk from potential contamination (Garner and Mayer, 2004).  

Carbonate minerals are thought to be the most abundant parent for most of the dissolved 

ions in fresh groundwater (Kehew, 2001). As meteoric water falls, it reacts with carbon dioxide 

in the atmosphere; it increases the hydrogen activity in water, thus lowering the pH by producing 

carbonic acid (Hem, 1985). Once the water percolates into the vadose zone it can begin to react 

with the surrounding rock. As the reactions occur, the unsaturated vadose zone allows for the 

continued reaction with carbon dioxide (Hem, 1985). Once the water enters the saturated zone it 
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can either be in an open or closed system with respect to carbon dioxide (Kehew, 2001). A 

closed system limits the continued reaction to dissolve additional calcite. Field pH, alkalinity 

titrations, and ion analysis can be used to determine whether the spring water discharge is in 

equilibrium with calcite or dolomite. 

 This study additionally examined the major ion chemistry of each spring to determine its 

equilibrium state with respect to calcite. Carbonate aquifers are generally characterized by 

weathering reactions (Groves and Meiman, 2005). The evolution of flow paths through a karst 

aquifer has been interpreted using numerical modeling and simulations; however, variations in 

water pH, temperature, and pressure affect the rate of dissolution. 

Through groundwater chemical analysis of springs in the Ridge and Valley Province in 

northwestern Georgia, the study examined the geochemical signatures of the selected springs to 

determine the potential source of the water by suggesting rock types and formation 

characteristics for each aquifer and the flow type for each. This study explains a possible flow 

type for groundwater discharging from springs by analyzing the water chemistry of the selected 

springs that have near constant flow and the amounts of precipitation that occur in the area. 

Investigating the groundwater discharged through springs can provide insight with respect to the 

path of the ground water. Such studies allow a unique insight to the path of the groundwater and 

its potential for use as a drinking water source for neighboring communities. Additionally, this 

modeling can be further utilized to predict contaminants in other aquifer systems. 
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2. STUDY AREA 

Geology and Hydrogeology of the Ridge and Valley Province 
 

The Ridge and Valley Province of northwestern Georgia stretches from Alabama in the 

south in Canada to the north. The Ridge and Valley Province is located in the northwestern 

corner of Georgia and is composed of marine and terrestrial sedimentary rocks formed during the 

Paleozoic period and partially deformed during the Appalachian orogeny (Butts and 

Gildersleeve, 1948). This area is physiographic ally characterized by long narrow ridges 

separated by valleys. In Georgia, the Ridge and Valley Province is bordered to the east by the 

Blue Ridge, to the south by the Piedmont and the northwest by the Cumberland Plateau 

(Aldaheff and others, 2003). 

Geologic structures in the Ridge and Valley Province are typically folding and thrust 

faulting. A general Georgia Ridge and Valley Province groundwater study was performed in 

1971 by Charles Cressler and the Ridge and Valley Province was studied by Miller (1990); 

however, much of this area’s hydrogeology has not been studied in Georgia. The sedimentary 

rocks are generally carbonate, sandstone or shale; of these carbonate rocks are the better aquifers 

(Miller, 1990). Maupin, M.A. and Barber (2000) estimated the total volume of water pumped out 

of the Ridge and Valley Province in North Georgia for public use is 226 million gallons/day. The 

province is made up of 80 percent carbonate rocks and 20 percent sandstone or unconsolidated 

sediment (Maupin and Barber, 2000). Generally the USGS Ground Water Atlas rates and names 

the aquifers based upon specific formation names and the area (Miller, 1990). The geology of the 

spring sites in their respective counties and have been mapped by the Georgia Geologic Survey 

below modified from Aldaheff and others (2003) (Figure 1).  
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Figure 1: Location of Spring Sites and Geological Formations Aldaheff et al (2003). 
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 To understand the geologic attitude of the area, measurements were collected to 

produce the cross-section. The geologic data collected cuts approximately along the 

cross-section line. The bedding orientation data were collected, plotted on Stereo Win 

1.2, and oriented according to the apparent dip. The structural data are presented in a 

stereo net which plots the poles of the geologic data collected (Figure 2). 

All of the formations that occur in the study area were deposited in the Paleozoic 

Era. During the Cambrian Period the Shady Dolomite, Rome Formation, Conasauga 

Group, Copper Ridge Dolomite, and the Knox Group Undifferentiated were deposited. 

The Ordovician formations include the Rockmart Slate, Newala Limestone, and Middle 

Ordovician Group. The Silurian formations include the Red Mountain and Lavender 

Shale Member. The formations from the Devonian and Mississippian periods include the 

Armuchee Chert, Devonian/Mississippian Undifferentiated, Mississippian 

Undifferentiated, Fort Payne Chert, Bangor Limestone, and Floyd Shale. The 

Pennsylvanian Period formations are mapped as Pennsylvanian Undifferentiated.    

 
Figure 2: Plot of the Geologic Data. 
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 Figure 2 shows the plot of the poles of the geologic data collected at each of the 

three structural sites. The data has been corrected to show the apparent dip with respect to 

the cross-section.  

 Geologic mapping was required to interpret the spring flow. Geologic attitudes 

(strike and dip of the bedding), for rock formations in the study area, were collected over 

the months of March and April 2007. This information was collected to help produce a 

geologic cross-section to better understand the three dimensional aspects of the aquifer 

systems. The eastern portion of the following cross-section (Figure 4) was modified from 

Cressler (1971) and the Digital Environmental Atlas of Georgia (Aldaheff and others, 

2003). The western portion of the cross-section was produced from the Digital 

Environmental Atlas of Georgia and the field work from the spring of 2007 (Figures 3 

and 4). The general geology of the Ridge and Valley Province is shown as rolling valleys 

and hills. The region is composed of sedimentary rocks and despite folding and thrust 

faulting has experienced little to no metamorphism.   

These three sites were located once the cross-section line was drawn. Site #1 is 

located along Highway 201 where a section of the Conasauga formation is exposed. Site 

#2 is located farther to the north along Highway 201, to the east of where the thrust fault 

should have been exposed. Since no visible surface exposure of the two western thrust 

faults was visible within the study area, the attitude of the faults was interpreted to be the 

same as the thrust faults to the east of the study area. The most eastern fault was mapped 

by Cressler (1971) and has a known attitude. Site #3 is located on Highway 156 to the 

northwest of the city of Villanow. 
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Figure 3: Cross-Section Line Location from Aldaheff et al (2003). 
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Figure 4: Geologic Cross-Section Modified from Cressler (1971) and Aldaheff et al 
(2003). 
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A series of eight springs was chosen in the Ridge and Valley Province in the 

northwestern corner of Georgia. Table 1 lists the eight sampling sites along with their 

abbreviated codes, and their county location within. 

Table 1: List of Spring Sites and County Locations 

 
Spring Sites 

 
Georgia County 

 

 
Codes 

 
Cave Spring Floyd CS 

   
Sand Spring Floyd SS 

   
North John’s Mountain Walker NJM 

   
Horn Mountain Gordon JM 

   
Chestnut Mountain Shooting Range Gordon CMSR 

   
Everett Springs Floyd ES 

   
West Armuchee Walker WA 

   
Turkey Mountain Floyd TM 

   
 

Each of these eight springs was chosen based upon several factors. First, a N45°E 

line bisecting the Valley and Ridge province which followed the trend of the ridges in 

this corner of Georgia was drawn on a topographic map of North Georgia. 

The towns that fell along the line having high topographic relief characteristics 

were scouted as potential spring sampling sites. Ease of access and non-private property 

issues were considered during the selection process. Once the sites were located and 

determined acceptable for sampling, each site was marked with a hand held GPS 

receiver. The locations were converted from UTM using the United States Corp of 
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Engineer’s program, CORPSICON into Georgia State Plane region 16 format so that 

each spring could be easily identified on the Georgia Geologic Atlas. 

Flow volumes were not used as a factor in determining if the spring was suitable, 

since recharge and chemical variations over the study period were the characteristics 

being analyzed during this study. Flow volumes could also be indicative of aquifer types, 

since precipitation-induced springs are more likely to have higher fluctuations in 

discharge amounts while carbonate aquifers generally have a more diffuse recharge and 

flow. Spring properties such as potential basin geology and high and low flow discharges 

were not used in the selection process to keep a varied selection of springs.  

Finally, after several months of scouting though the region, eight springs were 

chosen. The springs were located on topographic and geologic maps to produce the cross-

section (Figure 4). Each spring is described individually in the following section.  

Spring Study Sites 
 

Cave Spring-Location #1 (CS) 

 
The city of Cave Spring, Georgia is a small, spring-dependent community located 

approximately twenty miles southwest of Rome, Georgia in Floyd County. Water 

emerges from the aquifer in a cave system in the center of town. The city collects all of 

its municipal drinking water from the cave before the water leaves the cave entrance. The 

city allows water to pass through the cave entrance to be collected by local residents and 

to be used for a natural water community swimming pool for the summer. The city 

maintains the site as a local park and historic site, which can be accessed at nearly all 
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times. The chemistry at Cave Spring was extensively studied by Garner and Mayer 

(2004) to determine a geochemical baseline for future comparisons. During the year, the 

spring provides a fairly constant discharge, approximately two million gallons per day 

(MGD) as discussed by Garner and Mayer (2004). There are two rock quarries and large 

cattle and agricultural sites in the vicinity of the springs that are sites of potential 

contamination of the aquifer system. In the Garner and Mayer (2004) study, no 

contamination from the surrounding agricultural or industrial sites was identified. The 

discharge occurs from the Conasauga formation and is believed to be recharged 

additionally by the Knox formation residual soils.   

 

Sand Spring-Location #2 (SS) 

 
 The spring is located on the southern part of the Rocky Mountain syncline on the 

northern side of Lavender Mountain just outside of Rome, Georgia in Floyd County. This 

spring is located in the Georgia Department of Natural Resources Wildlife Resources 

Division Berry College Wildlife Management Area (BCWMA).The area however, is 

maintained by Berry College. Since the spring is located inside the area, which is 

protected from environmental impact, there is very little development within five to ten 

miles of the site. There are two small private residences that are located within ten miles 

of the spring site and one home has a small cattle farm. In Cressler’s (1971) mapping of 

this spring area, he sampled a larger spring approximately four miles west of the site. The 

discharge channel of the spring was filled with fine clays and loose chert rubble material. 
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The GGS Digital Environmental Atlas of Georgia (2003) shows the Fort Payne and 

Armuchee Chert formations in contact at the approximate location of the SS site.  

 

North John’s Mountain-Location #3 (NJM) 

 
This spring is located on the western side of John’s Mountain in the John’s 

Mountain Wildlife Management Area (JMWMA) in the area of Villanow, Georgia in 

Gordon County. This area of the park is mainly used by fishermen accessing the trout 

stream at the parking area. All of the trails that lead into this area of the park were closed 

due in the late 1990’s to heavy land use. Roads still exist over the mountain yet they are 

not accessible by motorized vehicles due to large constructed berms of soil and trees. The 

spring emerges over one mile from the nearest open or usable trail and is only accessible 

by bushwhacking along the creek. The spring exhibited a consistent flow throughout the 

study period with little to no visible decline in wet or dry periods. With the exception of 

occasional hunters the site was virtually not used due to the steep sided cliffs on either 

side of the valley or the steep gradient with which the stream flowed down hill from the 

mountain side. The discharge at this site occurred in a sandstone rubble. Aldaheff and 

others (2003) showed the Red Mountain formation is stratagraphically above the Floyd 

Shale at this site.   

 

Horn Mountain-Location #4 (HM)  

 
This spring is located on the southern most extent of the John’s Mountain 

Wildlife Management Area (JMWMA) in Gordon County. This management area is used 
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in the fall and winter for turkey and deer hunting and all of the surrounding JMWMA was 

easily accessible due to the low topographic relief above the spring head. Flow at the 

location here varied more than at the other sites throughout the wet and dry seasons. 

During the spring sampling events, only Wildlife Resource Division rangers were 

encountered. In addition, no development above the spring discharge was observed. 

There is a residence with a small farm approximately five miles down hill from the 

spring’s location. The discharge emerges from a heavy clay soil. Aldaheff and others 

(2003) shows the spring site in the Silurian Red Mountain formation.   

 

Chestnut Mountain Shooting Range-Location #5 (CMSR) 

 
This spring is located in the northern most extent of the John’s Mountain Wildlife 

Management Area (JMWMA). This area is located five miles east of the town of 

Villanow, Georgia in Gordon County and is currently used as a shooting range as well as 

for hunting. Very little use of the area outside of the shooting range was observed. The 

spring is approximately one mile off of a side dirt road within a steep sided valley. 

Depending on the time and amount of the last rain fall the location of the spring tended to 

change within fifty feet of its original location. Again the spring discharged into a 

sandstone rubble filled channel, that was designated a part of the Red Mountain 

formation, by the Aldaheff and others (2003).  
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Everett Springs-Location #6 (ES) 

 
This spring is located along Everett Springs Road North of Highway 156 in 

Everett Springs, Georgia in Floyd County. This small church community appears to have 

developed around the springs in the late 1800’s. The spring site is located along the 

easement of the road on property maintained by the community church. The spring 

appears to no longer be in use due to the low flow and the observation that the water 

contained an orange-red colored algae. Flow occurred through a man made well structure 

and measurement of less than a liter a minute was found when collecting samples. 

Though Cressler (1971) mapped this spring, he did not sample it after determining that 

the flow rate was too low. Cressler (1971) shows the middle Ordovician rocks 

outcropping on top of the Floyd Shale Formation at the spring site. 

 

West Armuchee-Location #7 (WA) 

 
This spring is located in the John’s Mountain Wildlife Management Area 

(JMWMA) in the East Armuchee Valley and discharges into Armuchee Creek, North of 

the town of Subligua, Georgia in northeastern Chattooga County. This is the southwest 

corner of the wildlife management area, located on the western side of John’s Mountain. 

The wildlife management area is composed of residential estates and small farms. This 

park is heavily used for equestrian activities. The spring is located about three-fourths of 

a mile from the nearest trail. The spring emerges from a limestone outcropping 

approximately twenty feet in elevation over the river. The flow at this spring is very low 

and during extremely dry periods flow was limited to a trickle. Numerous sinkholes were 
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observed in the area where the ground surface was saturated which suggested heavy 

discharge. The flow was very low and diffuse. The area is currently being used as a horse 

park, however the site was previously an old home site with numerous rock walls and a 

dug well. Cressler (1971) showed the spring discharge occurs at the contact of the 

Conasauga Formation on top with the Knox Group below. 

 

Turkey Mountain-Location #8 (TM) 

 
This spring is located approximately ten miles from the city of Rome, Georgia on 

private property to the North of Highway 140. The land owner collects water for a small 

vineyard and orchard area. The unused portion is diverted at the discharge point in the 

rock and not affected by potential contamination to a public access collection point and 

parking lot. This area is fairly developed compared to the other springs in the studied 

area. A large industrial carpet facility located approximately three miles south and 

numerous residential facilities surround the site. Furthermore, Turkey Mountain is the 

site of several chert mining operations in the early 1900’s. Since the spring discharged 

through a polychlorinated vinyl pipe the discharge rate was easily measured at a 

consistent eight to ten gallons per minute. Aldaheff and others (2003) map Turkey 

Mountain as composed of four formations: the Fort Payne Chert, the Armuchee Chert, 

the Red Mountain formation, and the Lavender Shale member.  
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3. SAMPLING AND ANALYTICAL METHODS 
 

The eight springs were selected based upon the geology at the discharge site and 

surrounding recharge basin, topography of the surrounding landscape, accessibility of the 

discharge point, and flow rate. A total of 136 spring water samples were collected from 

January, 2005 through June, 2005 for this investigation. 

Field Sample Collection 
 
 Each of these springs were tested and sampled weekly for a period of six months 

to monitor the potential for fluctuations in the chemical make up of the discharging 

water. This period was selected to ensure that the wetter weather would provide 

additional volume and ease of measurement. Single samples from each site were 

collected weekly and stored in one half liter, acid cleaned polyethylene containers. 

Bottles were thoroughly rinsed with sample water from the springs before final sample 

collection.  

Temperature/pH/Conductance Measurements 
 

Specific conductance was measured in the field with an YSI 85 specific 

conductance meter. Initial field measurements of water temperature and pH were 

collected using a hand-held Accumet AP 84 Temperature/pH meters. These 

measurements were collected for an additional variable to compare the springs. To ensure 

quality measurements, both meters were calibrated by measuring known standards before 

each weekly field-sampling event by using pH=4.00 and pH=7.00 buffers. 
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Precipitation 
 
 The precipitation rates were based upon the data collected from the University of 

Georgia (UGA) Agricultural commissions Northwest Research and Education Center 

weather station in Floyd County. This UGA station was chosen since it most closely 

approximates the central study area when compared to the potential stations located in the 

extremities of the region. The Northwest Research and Education Center reports the 

weather for the region as well as daily precipitation and evapotranspiration volumes. 

Daily totals were collected and then graphed to show the fluctuations over the study 

period (Figure 11).  

Evapotranspiration 
 

Evapotranspiration (ET) includes the transpiration of plants and the evaporation 

of water from land surfaces (Fetter, 2001). For this study ET was collected from the UGA 

agriculture website and determined the potential ET, which is the measure of the ET that 

would occur from a standard agricultural crop (University of Georgia, 2007). The ET was 

calculated by UGA using a formula based upon the temperature and precipitation rates. 

This is a potential rate since actual measurement is very difficult to calculate.   

Environmental Data 
 

Information on regional precipitation was recorded from the University of 

Georgia Department of Agriculture website (http://www.griffin.uga.edu) which compiled 

information from a weather station on the northern side of Rome, Georgia. Additionally, 

stream base flow data was recorded from the USGS website (http://ga.water.usgs.gov/) to 
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examine potential links between regional base flow and changes in the flow of the sample 

spring systems. 

Saturation Index 
 

Saturation Index (SI) is a number calculated to measure the tendency of natural 

water to dissolve or precipitate a mineral (Ball and Nordstrom, 1991). The SI is 

calculated using the following formula: 

 
SI =  Log10   Ion Activity Product 

                                                              K (mineral) 

Where ion activity product (iap) is the activity of the ions that compose the 

mineral:  

Iap = (Ca) (CO3) 

Where ( ) = the activity for each ion. K is solubility product of the mineral being 

measured, in the case of this study calcite:   

K (calcite) = (Ca) (CO3) 

From the equation above if iap = K (log 1 = 0), the water is in equilibrium with 

the mineral and a positive number means that the water is supersaturated with a mineral 

and the mineral will precipitate.  A negative saturation index suggests that the water is 

under-saturated and will dissolve a mineral. The calculation is based upon the pH 

(acidity-alkalinity), the Eh (redox potential), the ion concentration, and the temperature.   

 WATEQ is a chemical speciation code for natural waters. It uses field 

measurements of temperature, pH, Eh, dissolved oxygen and alkalinity, and the chemical 

analysis of a water sample as input and calculates the distribution of aqueous species, ion 
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activities, and mineral saturation indices that indicate the tendency of a water to dissolve 

or precipitate a set of minerals. WATEQ was first developed by Truesdell and Jones in 

1974 as one of the first geochemical equilibrium models to be widely used. WATEQ is a 

speciation code; it calculates the distribution of elements among aqueous species (Ball 

and Nordstrom, 1991). The usual reason for doing the calculation is to obtain saturation 

indices for minerals and partial pressures of gases, which whether minerals (and gases) 

should dissolve or precipitate in the solution. The program needs a complete major 

element chemical analysis (Ca+2, Mg+2, Na+1, K+1, SO4
-2, Cl-1, HCO3

-1, alkalinity, and 

field pH) to make the calculation (Ball and Nordstrom, 1991). 

Ion Analysis 
 

The geochemical characterization of spring discharges is a common technique 

used to understand the hydrogeology of springs and groundwater flow systems (Hem, 

1985). Spring discharge sampling was selected as a less intrusive and more cost effective 

method of obtaining a sample to examine the aquifer’s chemical analysis than well 

installation above each discharge point. Additionally spring discharge sampling allowed 

for the collection of water that is possibly representative of a large drainage area 

(Knoppman, 1991).  

Each sample was divided and tested for alkalinity within 24 hours of initial 

collection for alkalinity and ion analysis. Alkalinity titrations used 0.2N sulfuric acid and 

an Orion 720A pH meter to determine the breakpoint and reported as mg/l bicarbonate. 

The precision of the titrations was greater than 5%.  
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The remaining sample was filtered using a 0.45µ membrane and placed into two 

separate polyethylene bottles. The two bottles were individually labeled for cation and 

anion analyses. The bottle marked cation was treated with strong nitric acid to keep ions 

in solution, while the anion sample was not treated.  

Individual cations which were analyzed included calcium (Ca+2), magnesium 

(Mg+2), sodium (Na+1), and potassium (K+1) and individual anions which were analyzed 

included sulfate (SO4
-2), bicarbonate (HCO3

-1), and chloride (Cl-1). These ions were 

chosen since they constitute the major ions in groundwater (Hem, 1985). Samples were 

analyzed using the Lachat IC5000 ion chromatograph for anion analysis and the Perkin 

Elmer Atomic Absorption Spectrophotometer 3110 for cation analysis.  

The Perkin Elmer Atomic Absorption Spectrophotometer 3110 was used to 

measure the concentration of the cations. Samples of known cation concentrations were 

analyzed for calibration purposes before any sample was run for the day. These samples 

were plotted absorption versus concentration. Additionally, throughout the analysis the 

standards were run for quality control.  

The AA spectrophotometer uses the visible or ultraviolet light that is absorbed by 

the measured atoms to measure the ionic concentration in the sample. To produce a gas 

phase of the sample, a pump pushes the sample continuously into an oxy-acetylene flame. 

Since each element becomes excited by a particular wave length of light an ion specific 

lamp is used for each element.  

Samples were run on all cations at the same time. To ensure that the machine was 

functioning properly and determine the appropriate peak times for each cation, standards 
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of known concentration were analyzed to produce a regression line for each cation 

(Figures 6-9).  

The chloride and sulfate anions were tested using the chromatograph, while 

bicarbonate was measured through titration. The sodium, calcium, magnesium, and 

potassium cations were tested using the spectrophotometer. The following graphs show 

the calibration curves run for each ion (Figures 5-10) run in this study.  

The Lachat IC5000 Ion Chromatograph was used to analyze the anions. The 

bicarbonate/carbonate eluent method was used: rapid anion method. The sample is 

filtered to 0.45ųm and then through a 0.20ųm syringe membrane. The sample is injected 

into a stream of eluent carbonate/ bicarbonate for anions, then drawn out over a charged 

column. The ions are separated by strength of the charge. The weakest charged ions move 

the further along the column than stronger charged ions.  Smaller charged ions are the 

first to appear at the end of the column and analyzed by a electrical conductivity detector.   

Samples were run on all anions at the same time. To ensure that the machine was 

functioning properly and determine the appropriate peak times for each anion, standards 

of known concentration were analyzed to produce a regression line for each anion 

(Figures 10-11).  

The standard samples for the ions were run every ten samples through out all 

testing to ensure that the machines did not fluctuate in accuracy and precision. The values 

that resulted from the duplicate testing were used to calculate the percent error for each 

element. Percent error was calculated as follows: 

Percent (%) error = [accepted value - measured value]    X 100 
             [accepted value] 
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The amount of precision determines that a group of sample results are repeatable 

and have a common reference point. To ensure that measurements were accurate and 

precise, known standards were run every tenth sample throughout the testing phase of this 

thesis. For all of the ion analysis, every sample was run three times. The mean and 

standard deviation were calculated for each. A standard deviation was calculated for each 

of the replicated cation tests.  

σ = √ ((∑ (total-(mean))/ (n-1)) 
 
 

σ = Standard deviation 

total = all results combined 

mean = average of the results 

n = number of results 

The standard deviation was then used to calculate the relative standard deviation 

for each cation. All testing had a relative standard deviation of 5% or less. 

σ (rel) = (σ / mean) X 100 
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Sodium Standard Curve
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Figure 5: Sodium Standard Curve 

Calcium Standard Curve
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Figure 6: Calcium Standard Curve 
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Magnesium Standard Curve
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Figure 7: Magnesium Standard Curve 

Potassium Standard Curve

y = 0.9957x - 0.0074
R2 = 0.9984

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4

STANDARD [ ] 

M
EE

A
SU

R
ED

 [ 
]

 

.5

Figure 8: Potassium Standard Curve 
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Chloride Standard Curve
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Figure 9: Chloride Standard Curve 

Sulfate Standard Curve
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Figure 10: Sulfate Standard Curve 
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4. RESULTS 

recipitation and Evapotranspiration Results 
hs were compared to the rainfall 

igure 12, the blue line represents precipitation and the red trend line shows the 

average

 

P
 Each of the spring major ion concentration grap

rates for the region over the study period. The precipitation rates were based upon the 

data collected from the University of Georgia (UGA) Agricultural commissions 

Northwest Research and Education Center weather station in Floyd County. There are 

four weather stations maintained by UGA. The Northwest Research and Education 

Center reports the weather for the region as well as daily precipitation and 

evapotranspiration volumes. Daily totals were collected and filed to account for the 

numbers and then graphed to show the fluctuations over the study period. A trend line 

was added to the graph showing an average overall volume instead of individual rain 

events. Rainwater amounts in the state of Georgia have been monitored since 1978 by the 

National Atmospheric Deposition Program (NADP). Their studies at their Pike County 

facility have shown average rain water conductivity levels of 15 ųS and a maximum 

conductivity of 24.7 ųS since 1978. This high was used to separate the springs that are 

directly influenced by precipitation, by comparing the conductivity to the twenty-nine 

year high. 

In F

 precipitation in each day in Rome, Georgia collected by the UGA Agriculture 

Commission. It shows the frequency of rain events decreasing after the midpoint of the 

study period; however, large rain events still occur periodically. During the mid point of 

the study period, April 1, 2005, the average ET overtakes the average precipitation 

(Figure 13).Figure 13, the purple line shows the ET estimated by Georgia Automated 
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tion of the decline in the sample area’s rain 

totals a

Environmental Monitoring Network on the individual sampling dates for the region and 

the blue line shows the rainfall events for the study period.  The agriculture department at 

UGA uses the Penman equation to calculate ET.  The Penman equation uses temperature, 

wind speed, relative humidity and solar radiation to estimated ET (Georgia Automated 

Environmental Monitoring Network 2008).  

In Figure 14, to facilitate the observa

veraged weekly precipitation over the course of the study period is charted here. 

This chart is used to compare the precipitation fluctuations with the changes in chemistry 

at each spring site. 

Precipitation in Rome

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/
1/

20
05

1/
8/

20
05

1/
15

/2
00

5

1/
22

/2
00

5

1/
29

/2
00

5

2/
5/

20
05

2/
12

/2
00

5

2/
19

/2
00

5

2/
26

/2
00

5

3/
5/

20
05

3/
12

/2
00

5

3/
19

/2
00

5

3/
26

/2
00

5

4/
2/

20
05

4/
9/

20
05

4/
16

/2
00

5

4/
23

/2
00

5

4/
30

/2
00

5

5/
7/

20
05

5/
14

/2
00

5

5/
21

/2
00

5

5/
28

/2
00

5

6/
4/

20
05

6/
11

/2
00

5

6/
18

/2
00

5

6/
25

/2
00

5

Date

In
ch

es
 p

er
 d

ay

Precipitation Average Precipitation  
Figure 11: Precipitation in Rome, Georgia 
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Precipitation/ET
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Figure 12: ET in Rome, Georgia  
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Figure 13: Weekly Rain Totals in Rome, Georgia 
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Temperature/pH/Conductance of Springs 
 

Each spring’s field data was examined to determine any variations in their 

conductivity, pH, and temperature readings. Changes in conductivity can demonstrate the 

flow patterns that occur in the carbonate aquifer. Conductivity varied greatly from spring 

to spring as well as single spring sites over the entire season. See appendix A for a 

graphical representation of all field data. 

Major Ion Chemistry of Springs 
 

Once all the results of the laboratory and field collection were collected, the 

information was plotted graphically (Appendix A and Appendix B). Tables 2-10 show 

the average values for each parameter tested and the variation in the spring flow 

characteristics.  

Table 2: Cave Spring Major Ion Data 

Spring 
name Parameters   

Average 
value 

# of samples 
taken 

Standard 
Deviation 

low 
value 

high 
value 

CS Conductivity  189.9 17 22.4 165.7 220.1
 pH  7.2 17 0.2 6.7 7.6
 Temp  14.5 17 0.5 13.8 15.8
 Break pt.  4.9 17 0.3 5.1 6.3
 HCO3  128.9 17 7.2 124.4 152.5
 Cl  1.6 4 0.1 1.5 1.7
 SO4  0.9 4 0.0 0.9 0.9
 Mg  10.7 4 0.3 10.3 11.0
 Ca  20.6 4 1.1 19.0 21.4
 K  0.4 4 0.1 0.3 0.5
 Na  0.6 4 0.1 0.5 0.7
 % error  3.9 4 1.2 2.4 5.1
 anion  2.1 4 0.0 2.1 2.2
 cations  1.9 4 0.0 1.9 2.0
 TDS  161.2 4 2.2 159.6 164.4

 
lg 
iap/KT(calcite)  0.8 4 0.1 0.6 0.9
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Table 3: Sand Spring Major Ion Data 

Spring 
name Parameters   

Average 
value 

# of samples 
taken 

Standard 
Deviation

low 
value 

high 
value 

SS Conductivity  136.8 17 36.2 78.1 211.1
 pH  6.5 17 0.3 5.9 7.0
 Temp  12.4 17 0.6 11.3 13.7
 Break pt.  3.0 17 0.8 2.1 5.4
 HCO3  77.3 17 24.0 50.0 136.7
 Cl  1.8 6 0.2 1.6 2.0
 SO4  2.1 6 0.2 1.8 2.3
 Mg  2.1 6 0.6 1.3 2.7
 Ca  27.0 6 8.4 21.5 43.5
 K  0.7 6 0.1 0.6 0.8
 Na  1.0 6 0.2 0.8 1.2
 % error  3.9 6 3.1 0.8 9.5
 anion  1.4 6 0.4 1.2 2.3
 cations  1.6 6 0.5 1.3 2.4
 TDS  116.5 6 35.6 97.6 188.5

 
lg 
iap/KT(calcite)  -1.3 6 1.1 -1.9 1.0

 

 
Table 4: North John’s Mountain Major Ion Data 

Spring 
name Parameters   

Average 
value 

# of 
samples 
taken 

Standard 
Deviation

low 
value 

high 
value 

NJM Conductivity  13.8 17 3.3 10.0 22.1
 pH  5.5 17 0.7 3.7 6.5
 Temp  12.7 17 1.0 11.0 14.3
 Break pt.  0.0 17 0.0 0.0 0.0
 HCO3  0.0 17 0.0 0.0 0.0
 Cl  1.5 2 0.1 1.4 1.6
 SO4  1.2 2 0.0 1.2 1.3
 Mg  0.4 2 0.0 0.4 0.4
 Ca  0.6 2 0.0 0.6 0.6
 K  0.5 2 0.0 0.5 0.5
 Na  0.6 2 0.0 0.6 0.6
 % error  2.7 2 0.3 2.5 2.9
 anion  0.1 2 0.0 0.1 0.1
 cations  0.1 2 0.0 0.1 0.1
 TDS  4.9 2 0.1 4.8 5.0

 
lg 
iap/KT(calcite)  -5.1 2 0.0 -5.2 -5.1
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Table 5: John’s Mountain Major Ion Data 

Spring 
name Parameters   

Average 
value 

# of 
samples 
taken 

Standard 
Deviation

low 
value 

high 
value 

JM Conductivity  14.2 17 2.4 11.3 19.3
 pH  4.6 17 0.4 4.2 5.5
 Temp  11.4 17 0.8 10.2 13.1
 Break pt.  0.0 17 0.0 0.0 0.0
 HCO3  0.0 17 0.0 0.0 0.0
 Cl  1.5 3 0.1 1.4 1.5
 SO4  0.9 3 0.4 0.6 1.3
 Mg  0.2 3 0.1 0.2 0.3
 Ca  0.3 3 0.2 0.2 0.5
 K  0.4 3 0.2 0.3 0.7
 Na  0.5 3 0.0 0.5 0.5
 % error  0.7 3 0.8 0.1 1.5
 anion  0.1 3 0.0 0.1 0.1
 cations  0.1 3 0.0 0.1 0.1
 TDS  3.9 3 0.6 3.4 4.6

 
lg 
iap/KT(calcite)  -5.6 3 0.2 -5.8 -5.5

 

Table 6: Chestnut Mountain Shooting Range Major Ion Data 

Spring 
name Parameters   

Average 
value 

# of 
samples 
taken 

Standard 
Deviation

low 
value 

high 
value 

CMSR Conductivity  29.3 17 7.8 22.1 52.0
 pH  4.8 17 0.3 5.0 5.8
 Temp  10.6 17 1.4 10.5 14.8
 Break pt.  0.0 17 0.0 0.0 0.0
 HCO3  0.0 17 0.0 0.0 0.0
 Cl  3.2 2 0.4 1.7 2.5
 SO4  4.1 2 1.5 1.0 3.9
 Mg  1.4 2 0.8 0.2 1.8
 Ca  1.0 2 0.6 0.5 1.4
 K  0.8 2 0.6 0.4 1.2
 Na  1.6 2 0.3 0.8 1.4
 % error  4.2 2 3.7 1.6 6.8
 anion  0.1 2 0.0 0.1 0.1
 cations  0.1 2 0.1 0.1 0.2
 TDS  7.6 2 3.5 5.1 10.1

 
lg 
iap/KT(calcite)  -4.8 2 0.7 -5.3 -4.4
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Table 7: Everett Springs Major Ion Data 

Spring 
name Parameters   

Average 
value 

# of 
samples 
taken 

Standard 
Deviation

low 
value 

high 
value 

ES Conductivity  379.1 17 28.8 316.1 413.0
 pH  6.9 17 0.2 6.5 7.2
 Temp  15.1 17 1.1 13.6 18.8
 Break pt.  9.6 17 2.4 7.9 17.5
 HCO3  217.3 17 13.7 192.8 256.2
 Cl  5.4 5 0.5 4.5 5.7
 SO4  2.6 5 0.2 2.2 2.8
 Mg  7.6 5 0.3 7.1 7.9
 Ca  55.3 5 0.5 54.6 55.8
 K  0.6 5 0.1 0.5 0.8
 Na  5.5 5 0.2 5.2 5.7
 % error  2.2 5 1.0 0.6 3.3
 anion  3.8 5 0.1 3.7 3.9
 cations  3.6 5 0.0 3.6 3.7
 TDS  297.4 5 6.4 290.4 304.9

 
lg 
iap/KT(calcite)  0.5 5 0.2 0.3 0.7

 

Table 8: West John’s Mountain Major Ion Data 

Spring 
name Parameters   

Average 
value 

# of 
samples 
taken 

Standard 
Deviation

low 
value 

high 
value 

WJM Conductivity  183.5 17 42.8 119.5 287.7
 pH  6.6 17 0.3 5.8 7.0
 Temp  10.9 17 1.5 9.1 13.5
 Break pt.  4.6 17 0.6 3.6 5.7
 HCO3  114.2 17 12.8 94.4 139.1
 Cl  1.7 5 0.3 1.2 2.0
 SO4  1.6 5 0.3 1.2 2.0
 Mg  3.0 5 0.3 2.6 3.2
 Ca  37.7 5 4.1 32.3 43.1
 K  0.5 5 0.1 0.4 0.6
 Na  0.7 5 0.1 0.6 0.8
 % error  4.6 5 3.6 0.2 7.5
 anion  1.9 5 0.1 1.9 2.0
 cations  2.2 5 0.2 1.9 2.5
 TDS  159.0 5 7.0 152.8 169.9

 
lg 
iap/KT(calcite)  -1.2 5 0.1 -1.4 -1.0
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Table 9: Turkey Mountain Major Ion Data 

Spring 
name Parameters   

Average 
value 

# of 
samples 
taken 

Standard 
Deviation

low 
value 

high 
value 

TM Conductivity  83.3 17 23.8 45.0 128.0
 pH  6.2 17 0.2 5.9 6.5
 Temp  12.6 17 0.4 12.1 13.5
 Break pt.  1.7 17 0.7 0.3 2.3
 HCO3  41.9 17 16.8 6.1 56.1
 Cl  2.2 5 0.2 1.9 2.4
 SO4  3.0 5 0.1 2.9 3.2
 Mg  3.0 5 0.9 1.5 3.5
 Ca  9.5 5 3.0 4.3 11.6
 K  0.6 5 0.0 0.5 0.6
 Na  1.4 5 0.4 0.8 1.7
 % error  3.2 5 1.4 1.6 4.3
 anion  0.9 5 0.3 0.3 1.0
 cations  0.8 5 0.2 0.4 1.0
 TDS  64.4 5 22.7 24.1 77.7

 
lg 
iap/KT(calcite)  -2.9 5 0.6 -3.9 -2.4

 

WATEQ is designed to analyze a set of water chemistry and determine the 

saturation indices for that data set. The variations in the chemistries detected at each of 

the spring sites were plotted graphically to produce trends in the chemical variations. See 

Appendix B from all individual spring laboratory testing results. 

Based upon preliminary field testing the springs were separated into carbonate 

aquifer and precipitation-induced springs. Once ion analysis was completed the ion 

analytical data was keyed into the WATEQ modeling program. Since bicarbonate 

represented the major anion in each of the springs, the average conductivity for each 

spring was used to determine the spring classification. Carbonate aquifer springs were 

those higher conductivity springs and were approaching equilibrium with calcite. Table 

10 shows the spring divided into their respective groups and their average conductivity. 
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The line for spring saturation was based upon the computer model analysis that 

determined the possible material that the discharging water was in equilibrium with 

calcite. In Table 10 below, carbonate aquifer and precipitation-induced springs are 

divided by sampling locations.  

Table 10: Conductivity Averages of Sample Sites in ųS 

 
 

Carbonate Aquifer  
Springs 

 

Conductivity 
(µS) 

Precipitation-induced 
Springs Conductivity (µS) 

 
Cave Spring 

 
191.8 North John's 

Mountain 5.5 

 
Sand Spring 

 
136.8 Horn Mountain 14.2 

 
Everett Springs 

 
379.1 Chestnut Mountain 

Shooting Range 29.3 

 
West Armuchee Spring 

 
183.5 

 
Turkey Mountain Spring 

 
83.3 

 

 

Once analysis was completed, a preliminary line separating the carbonate aquifer 

and precipitation-induced springs based upon the levels of conductivity was drawn from 

field testing (Table 2). The precipitation-induced spring generally tended to have low 

conductivities and was not near equilibrium with calcite. The carbonate aquifer springs 

were grouped to include all of the sites that did not have a conductivity that dropped 

below 45 ųS over the course of the study period. There was one exception, Chestnut 

Mountain Shooting Range, which varied greatly from the low 20’s ųS to the high 50’s 
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ųS. For the purpose of this study the Chestnut Mountain Shooting Range was included 

into the precipitation-induced spring’s group. Carbonate aquifer springs were separated 

again based upon the fluctuating conductivity. The fluctuating conductivity levels with 

the changes in rainfall volume were used to determine the flow type; diffuse or conduit. 

The following figures compare trends between rainfall and conductivity over the 

sampling period of the study. 

In Figure 15, Cave Spring does not experience quick or significant fluctuations in 

conductivity as a result of precipitation events. As the weekly precipitation volumes 

increase and decrease there is no change that coincides with a change in conductivity. 

There is a decreasing trend that occurs both in the conductivity and the rain volume over 

the course of the study period.    

 The Figure 16 shows that both the conductivity and the rain volumes had very 

large fluctuations over the study period. While none of the peaks for the two factors 

exactly lined, there appears to be an offset of peaks. This offset could be the result of a 

delay in rain water reaching the spring.  

In Figure 17, field sampling showed that the conductivity generally remained 

under 15 ųS, with the exception of one sample of 22 ųS, which is still below the 

maximum conductivity for rain water measured by the NADP for Georgia.  

 The Figure 18 of Horn Mountain was classified with within the precipitation-

induced springs. The conductance observed during the study period was too low too 

accurately comparing chemical fluctuations to the fluctuations of the weekly rain volume. 

The spring water’s chemical composition was below the measurable accuracy and 

precision of the lab equipment used.   
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The Figure 19 shows for each of the sampling events do appear to have a 

significant relationship with the precipitation. The water tested below the spring site on 

the mountain had conductivity above 70 ųS, while during the regular study period the 

spring had level of conductivity, slightly higher than that measured in Georgia’s 

rainwater. The gap that occurs at the end of the graph results from the spring drying up.  

The Figure 20 shows that there is little correlation between the peaks of the 

precipitation line and the peaks on the conductivity line. There was a drop in average 

conductivity that occurred in a similar rate to the average drop in rain volume. This graph 

shows that the high conductivity of the spring does not represent the bicarbonate ion 

solely. The Ca+2 ions were considerably higher than in any other spring. The average 

Ca+2 cation were 55 mg/L. These properties suggest that the water that discharges 

through this spring passes through a limestone aquifer. The only carbonate material is an 

Upper and Middle Ordovician undivided formation, including the Murfreesboro, Ridley, 

Moccasin, and Bays formation found stratagraphically below the Red Mountain 

formation on John’s Mountain. Since there is little to no change in chemistry and 

constant flow rate, this aquifer exhibits a diffuse flow network. The filtration received by 

the water passing through the rock matrix would allow for the reduction in the amount of 

treatment needed at this discharge point.   

 The graph shows that the bicarbonate does relate with the conductivity, since the 

calcium ion is very high the fluctuations for the conductivity are more exaggerated. To 

determine flow type the conductivity is compared to the weekly rain events in the 

following graph.   
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The Figure 21 shows that both the conductivity and the rain volumes had very 

large fluctuations over the study period. The peaks for each of the factors appear to have 

some relationship, since with each peak in rainfall there is an increase in conductivity. 

Over the course of the study period the average rain volume dropped while the average 

conductivity did not decrease significantly.   

The Figure 22 shows that both the conductivity and the rain volumes had very 

large fluctuations over the study period. Unlike the other carbonate aquifer springs, large 

fluctuations occurred at nearly every sampling event. The fluctuations do not appear to 

have a significant relationship with the precipitation.   

 



 
 
 

40 
CAVE SPRING FIELD DATA RESULTS 

 

Cave Spring Conductivity vs. Rain Volume
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Figure 14: Cave Spring Conductivity vs. Rain Volume 
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SAND SPRING FIELD DATA RESULTS 

 

Sand Spring Conductance vs Rain Volumes
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Figure 15: Sand Spring Conductance vs. Rain Volume 
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NORTH JOHN’S MOUNTAIN FIELD DATA RESULTS 

 

North John's Mountain Conductance vs Rain Volume
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Figure 16: North John’s Mountain Conductance vs. Rain Volume 
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HORN MOUNTAIN FIELD DATA RESULTS 

 

Horn Mountain Conductance vs Rain Volume
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Figure 17: Horn Mountain Conductance vs. Rain Volume 
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CHESTNUT MOUNTAIN SHOOTING RANGE FIELD DATA RESULTS 

 

Chestnutt Mountain SR Conductance vs Rain Volume
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Figure 18: Chestnut Mountain Shooting Range Conductance vs. Rain Volume 
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EVERETT SPRINGS FIELD DATA RESULTS 

 

Everett Springs Conductance vs Rain Volumes
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Figure 19: Everett Springs Conductance vs. Rain Volume 
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WEST ARMUCHEE FIELD DATA RESULTS 

West Armurchee Conductance vs Rain Volume
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Figure 20: West Armuchee Conductance vs. Rain Volume 
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TURKEY MOUNTAIN FIELD DATA RESULTS 

 

Turkey Mountain Conductance vs Rain Volumes
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Figure 21: Turkey Mountain Conductance vs. Rain Volume 
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5. DISCUSSION 
 
 The carbonate aquifer spring group included the springs with high conductivity 

(Cave Spring, Sand Spring, West Armuchee, and Everett Springs), which are referred to 

as the suspect carbonate aquifers, versus the precipitation-induced spring group with low 

conductivity (North John’s Mountain, Horn Mountain, and Chestnut Mountain Shooting 

Range), now referred to as the suspect precipitation-induced springs. There was a large 

distinction between the conductivity of the two classifications. Precipitation-induced 

springs resulted as the spring discharge that approximates the chemistry of rain water. 

Rainwater has generally low conductivity and low pH (Kehew, 2001). For this study the 

springs which demonstrated an average conductivity level below 25 ųS were included in 

the precipitation-induced spring category. Chestnut Mountain was included in the 

precipitation-induced springs since its average was close to that of rain water. 

Additionally, Chestnut Mountain Shooting Range’s average conductivity was far below 

the nearest carbonate aquifer spring average.   

The study period coincided with the winter wet season and the beginning of a 

summer dry season. The tail end of this study period coincided with a much wetter than 

normal summer season in the southeastern region. This was the 2005 summer when 

several large hurricanes hit the Gulf Coast of the United States.  

The fluctuations of field measured conductivity levels for each of the carbonate 

aquifer springs were compared to the fluctuations that occurred in the weekly rain 

volumes during the sampling period. The changes in conductivity were used to compare 

variances that occurred due to influence from precipitation events. With the exception of 
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Chestnut Mountain Shooting Range all precipitation induced springs did not have enough 

conductivity to show an effect from the precipitation events. The following graphs are 

used to compare the fluctuations in the conductivity and weekly rain volumes. To 

compare these values, the Y-axis values were removed and each line was imported on the 

same graph.  

Carbonate Aquifer Springs 
 

Carbonate aquifers were broken down into conduit and diffuse flow networks. 

Conduit flow generally occurs through highly soluble material and is controlled by well 

developed surface drainage systems, while diffuse flow occurs in less soluble rocks such 

as shaley limestone or dolomite or in less developed drainage systems (White, 1969). 

Conduit flow is generally characterized by turbulent and varying flow through solution 

openings, while diffuse flow can be characterized by flow through small pores and 

fractures.  

 
Cave Spring-Location #1 (CS) 

Cave Spring was grouped into the carbonate aquifer springs group due to its high 

conductivity results from the field testing and the high bicarbonate levels from the 

laboratory analysis. Ionic analysis showed that the predominant anion was bicarbonate 

and minor chloride and sulfate ions. While calcium was the predominate cation, the 

magnesium levels were higher suggesting that there was some interaction with dolomitic 

material. The average WATEQ analysis determined the aquifer type to be a slightly 

supersaturated with respect to calcite.  
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The large peak of the bicarbonate in the early section of the study period is 

masked in the conductivity due to the high volume of rain that was occurring at this time 

(Figure 14). Unlike the other springs in this study, Cave Spring has been studied by 

Garner and Mayer, 2004. Its aquifer was described as discharging from the decomposing 

Knox Group residuum at the point where contact with the Conasauga Formation occurs. 

Overall this spring fluctuates very little over the course of the study period, with only 

small out lying variations. The conductivity drops and remains low through the remaining 

drier months of the study period. This drop in conductivity is similar to the dilution drop 

seen in stream discharges measured by Aheam et al., 2004.    

Even though the spring discharges through a small cave network, this study 

demonstrated that the consistent flow and chemical make up determine that the spring’s 

flow network was more diffuse than conduit as is supported by the laboratory analysis 

that was performed. This analysis agrees with the determination made by Garner and 

Mayer (2004). The diffuse nature of the aquifer net work showed the reason why water 

has been collected by the local people for so long. The aquifer allowed for the partial 

filtration of the water before discharging onto the surface. The diffuse flow helped the 

aquifer to prevent contamination spread to the discharge point.   

 

Sand Spring-Location #2 (SS) 
 

Sand Spring was classified as a carbonate aquifer spring due to its high 

conductivity levels. WATEQ analysis shows that the spring was supersaturated with 

respect to calcite at the first sample; however the remaining samples were undersaturated 

slightly with respect to calcite.  Though the flow rates didn’t appear to vary greatly with 
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time, either the increase in volume of flow caused the dilution of the ions or additional 

water sources began infiltrating the aquifer. Figure 15 shows the apparent effect of 

precipitation on the spring’s chemical makeup. 

The spring was discharging below a thick clay cliff containing Chert nodules. The 

discharge channel was filled with fine clays and loose chert rubble material. This 

geologic determination agrees with the Aldaheff and others (2003), which shows the Fort 

Payne and Armuchee Chert formations in contact at approximately the spring site. 

Approximately one-hundred yards below the spring there is an exposure of moderately to 

heavily weathered shaley material within the stream bed. Aldaheff and others (2003) 

shows this as the Floyd Shale formation. There are several discharges along the same 

formational contact near the base of the mountain, such as the larger spring that Cressler 

(1971). The top of Lavender Mountain is capped with Red Mountain formation 

sandstone, which holds a small reservoir that serves Berry College.   

 

Everett Springs-Location #6 (ES) 
 

Everett Springs was also a carbonate aquifer spring located in the basin between 

Horn Mountain and John’s Mountain. Since the spring ran very slowly, flow rate was 

measurable by collecting the entire overflow, which was calculated as approximately 24 

g/hr or just under 600g/day based upon collection of study samples. This rate of flow did 

not change measurably through out the study period. Everett Springs had the highest 

conductivity of all of the study springs, averaging 380 ųS over the coarse of the study 

period. With the exception of a few small fluctuations the pH and temperature of the 

spring did not change over the period. 
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Additionally, as shown in Figure 19, the chemistries did not have much 

fluctuation for the same period. The valley where the spring was located contained 

numerous springs that all appeared to occur at the same elevation relative to each other. 

WATEQ analysis shows that the discharge was slightly supersaturated with respect to 

calcite over the course of the entire study period. 

Since the flow did not change and the chemistries remained constant through the 

study period, this spring appeared to result from a diffuse recharge and flow network 

originating in the Red Mountain formation sandstone cap rocks of John’s Mountain, 

flowing through a Middle Ordovician Limestone that underlies it and discharging through 

the Floyd shale. One-quarter of a mile to the east is Rocky Creek, a slow moving stream. 

More discharge probably occurs with in the stream; however there was no visible 

evidence. 

 

West Armuchee-Location #7 (WA) 
 

West Armuchee spring was included in the carbonate aquifers due to the high 

conductivity samples collected over the course of the study period.  Ionic analysis 

showed that the predominant anion was bicarbonate and included minor chloride and 

sulfate ions. While calcium was the predominate cation, the magnesium levels were 

higher suggesting that there was some interaction with dolomitic material. The average 

WATEQ analysis determined the aquifer type to be a slightly supersaturated with respect 

to calcite. In Figure 20 the conductivity does not directly relate to the rainfall volumes.  

West Armuchee discharges from the Bangor limestone that is exposed under the 

Red Mountain formation at the contact of a thrust fault along the western side of John’s 
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Mountain. The spring discharges through numerous points along the side of the valley 

above Armuchee Creek. The major spring ions were calcium and bicarbonate. This 

location is categorized as a carbonate aquifer spring. Flow in this spring varied 

considerably throughout the study period, however there was a consistent wetland area 

that never dried out.   

Turkey Mountain-Location #8 (TM) 

Turkey Mountain spring is located along the south eastern end of Turkey 

Mountain. This spring appeared to have a constant flow over the course of the study 

period and slightly variable. According to the chemical data and flow this spring appears 

to be a result of a carbonate aquifer. WATEQ analysis shows that the spring in 

undersaturated with respect to calcite.   

This site is the location that was used as a chert quarry in the early to mid 1900’s. 

There are four formations that make up Turkey Mountain according to Cressler (1971); 

the Fort Payne Chert, the Armuchee Chert, the Red Mountain formation, and the 

Lavender Shale member. None of these formations contains a potential carbonate aquifer. 

The Rome fault has been mapped to the east of Turkey Mountain; however, the Rome 

fault is broken up by numerous minor thrust faults. Also the Oostanaula River runs to the 

east of Turkey Mountain, approximately 120 feet down in elevation from the spring, 

which would keep groundwater flow coming from the west. In a 1946 Geologic Map of 

Northwest Georgia, Charles Butts mapped an undulation in the Rome fault at Turkey 

Mountain. This undulation shows a section of Conasauga formation that was placed on 

the east side of the mountain. The Conasauga is a shaley limestone, which helps to 

explain the presence of the calcium and bicarbonate ions.  .  
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 Since the conductivity falls nearly in line with the rain events (Figure 21) a new 

source is being accessed (Kehew, 2001), which would show that the Conasauga was only 

included in the aquifer after a rain event. Also, the rapid rise and fall in conductivity 

suggests that there is a form of conduit flow to the aquifer system that is added in rain 

events. These rain events created contact between rock and water in the recharge basin 

that has a carbonate portion allowing for decreased dissolution as the water traveled 

through the system. Since the aquifer was known to mainly cherty in nature, which is not 

reactive in natural rainwater, it is difficult to estimate the amount of time the water 

spends in the groundwater network or what kind of flow path was taken. The increased 

flow due to rainfall events show that the water did flow through conduit systems. The 

conduit systems would not allow for the passing groundwater to be filtered, showing that 

the contaminate potential to reach the discharge point was very likely.   

Precipitation-induced Springs 
 

The precipitation-induced springs were classified as such because they had 

chemistries that were similar in nature to rain water. The discharges of these springs had 

very low conductivities and slightly acidic pH’s similar to that found in the rainwater 

tests done by NADP’s website. Since the discharges occurred from aquifers that appeared 

to be composed of non-reactive material, the time the water spends underground is 

unknown.  

North John’s Mountain-Location #3 (NJM)  

 North John’s Mountain is a low conductivity spring and is classified as a 

precipitation-induced spring. The spring did have spikes of conductivity during drier 
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weather; however, the variations were below the level of error for the YSI Specific 

conductance sampling device. The pH and temperature for the site did not fluctuate very 

much, and remained very similar to rain water.  As with all of the precipitation-induced 

springs WATEQ analysis showed that the discharge is very undersaturated with respect 

to calcite  

The area is located in a steep valley composed of sandstone rubble and fill 

resulting from the weathering of the Silurian sandstone of the Red Mountain formation. 

All along the creek leading up to the spring, there were large sandstone boulders and 

cobble size rocks that bordered the stream and the varieties encountered were common 

for the study area. Above the discharge point North John’s Mountain appeared to be 

capped by coarse sandstone, while the exposed material below varied from a very dark 

shaley material to a competent cherty rock. The Aldaheff and others showed the Red 

Mountain formation stratagraphically above the Floyd Shale at this site.   

The spring’s chemical data and relative geologic setting illustrated that the valley 

above this discharge point was filled with Alluvium material, collected from the 

weathering of the sandstone cap rock material. The large cobbles and fill material did not 

regulate the discharge at the spring, which caused the flow rate to fluctuate over the study 

period. Non-regulated flow occurred due to the conduit flow of the aquifer. Since the 

conduit flow network did not allow for any filtration and very little chemical reaction 

between the water and the rock, the resulting stream discharge has the potential to carry 

contaminates.   

 

 

 



 
 
 

56 
Horn Mountain-Location #4 (HM) 

This site was a low conductivity spring that did not experience an extreme change in 

observable flow rates or field measurements over the study period. The titrations in the 

lab showed that there was an immeasurable amount of bicarbonate in the samples from 

this spring. The conductivity measured at this spring was well below the acceptable error 

for the YSI sampling device and below the measured maximum conductivity for 

rainwater in the state of Georgia.  WATEQ analysis shows that the discharge is 

undersaturated with calcite and due to the higher sulfate anions was undersaturated with 

gypsum as well.   

At the discharge point there is little in the way of lithic material. There is a thick 

clay-like soil layer in most areas and a very light pink regolith around the spring is 

present. Down hill from the discharge point there is sandstone material with a larger chert 

layer exposed at the base of the mountain. Based upon the comparison of the spring’s 

location and the outcropping of rocks that were surrounding it, comparing these factors to 

the Georgia Digital Atlas, the spring discharge from originates in the Red Mountain 

formation. On the digital atlas the Red Mountain formation overlies a cherty Devonian-

Mississippian undivided formation. The regolith provides a consistently large supply of 

water for the spring discharge which explains why the springs flow rate did not appear to 

fluctuate. This diffuse flow network slowed the water down allowing for a consistent rate 

of discharges at the spring mouth.   

Since the flow did not vary visibly over the course of the study period even when 

periods of no rain occurred, it appears that the water remained in the groundwater 

network for a longer period of time. This extended time plus the diffuse nature of the 
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spring showed that this discharge point is a viable option for water collection, since the 

water would be filtered before discharging.    

 

Chestnut Mountain Shooting Range-Location #5 (CMSR) 

The Chestnut Mountain Shooting Range location did not continuously run for the 

duration of the sampling season. During the month of June the spring dried up and no 

water was visible for approximately a half mile down hill. The water here was tested but 

not sampled due to the potential for contamination from additional aquifers that might, 

during normal conditions be hidden under the flow of the sample spring. Again the spring 

discharged into a sandstone rubble filled channel, that was designated a part of the Red 

Mountain formation, by Aldaheff and others.  

Due to the variations in conductivity, this indicated there was a potential for 

mixing of precipitation-induced and carbonate aquifers to dilute the chemistries down 

stream. The bicarbonate ion did not vary greatly for this spring. WATEQ analysis shows 

that the spring in undersaturated with respect to calcite.  

This spring’s discharge was classified into the alluvial fill material with a conduit 

flow network system that allowed for quick draining of the groundwater system. The 

conduit nature of this groundwater flow path would allow potential contaminates to reach 

the discharge point with only small if any, filtration. Therefore, if water was needed, 

further treatment would be necessary.  
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6. CONCLUSION 
 

With the increasing growth throughout the Southeast, especially within the state 

of Georgia, there is a need to determine additional resources for the supply of water. The 

relatively undisturbed corner of northwest Georgia could supply additional fresh water to 

the metropolitan areas but very little is known about this area and its ample groundwater 

supplies. Each of the eight spring discharges was examined to determine chemistry and 

flow type. These measurements were analyzed to understand the potential for 

contamination in this region.  

This study compared the chemical fluctuations of eight springs in the Ridge and 

Valley Province of Northwestern Georgia. Based upon the chemical data and 

precipitation rates for the area of the study, the sites were separated into carbonate aquifer 

and precipitation- induced springs. The dissolved ions discharging from a spring allow 

insight into the path taken by the water.  Measuring the discharge of each carbonate 

aquifer over a time frame allows the observer to determine the likely hood in which 

contaminates will be filtered out before the discharge point.  Discharges that contain 

higher levels of ionic material traveled along slower, longer, or more diffuse paths. Cave 

spring, Everett spring, and West Armuchee spring samples show increased ionic content 

resulting from extended water rock contact.  Sand spring shows the potential for 

contamination due to the lower saturation indices and conductivity levels at the discharge 

point. The precipitation-induced spring type was not separated in to flow types since the 

chemical results were below the percent error for each of the analytical devices. 
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Understanding the properties of the selected springs and using this knowledge to 

interpret other aquifer systems within the Ridge and Valley province will allow for the 

proper utilization of this groundwater as the development in the northern metropolitan 

Atlanta area increases. 
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APPENDIX A: SPRING FIELD DATA 
 

CAVE SPRING DATA 

 

Cave Spring Conductance

0

50

100

150

200

250

1/
25

/2
00

5

2/
1/

20
05

2/
8/

20
05

2/
15

/2
00

5

2/
22

/2
00

5

3/
1/

20
05

3/
8/

20
05

3/
15

/2
00

5

3/
22

/2
00

5

3/
29

/2
00

5

4/
5/

20
05

4/
12

/2
00

5

4/
19

/2
00

5

4/
26

/2
00

5

5/
3/

20
05

5/
10

/2
00

5

5/
17

/2
00

5

5/
24

/2
00

5

5/
31

/2
00

5

6/
7/

20
05

Date

C
on

du
ct

an
ce

 (ų
S)

 
Figure 22: Cave Spring Conductance vs. Time 
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Cave Spring pH
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Figure 23: Cave Spring pH vs. Time 
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Figure 24: Cave Spring Temperature vs. Time 
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SAND SPRING DATA RESULTS 
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Figure 25: Sand Spring Conductance vs. Time 
 
 
 
 

 



 
 
 

66 

Sand Spring pH
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Figure 26: Sand Spring pH vs. Time 
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Figure 27: Sand Spring Temperature vs. Time 
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NORTH JOHN’S MOUNTAIN FIELD DATA 

North John's Mountain Spring Conductance
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Figure 28: North John's Mountain Conductance vs. Time 

 

 



 
 
 

68 

North John's Mountain pH
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Figure 29: North John's Mountain pH vs. Time 

North John's Mountain Temperature
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Figure 30: North John's Mountain Temperature vs. Time 
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HORN MOUNTAIN FIELD DATA RESULTS 

 

Horn Mountain Spring Conductance
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Figure 31: Horn Mountain Spring Conductance vs. Time 
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Horn Mountain Spring pH
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Figure 32: Horn Mountain Spring pH vs. Time 

Horn Mountain Spring Temperature
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Figure 33: Horn Mountain Spring Temperature vs. Time 
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CHESTNUT MOUNTAIN SHOOTING RANGE FIELD DATA RESULTS 
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Figure 34: Chestnut Mountain Shooting Range Conductance vs. Time 
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Chestnutt Mountain SR pH
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Figure 35: Chestnut Mountain pH vs. Time 
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Figure 36: Chestnut Mountain Temperature vs. Time 
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EVERETT SPRINGS FIELD DATA RESULTS 

Everett Spring Conductance
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Figure 37: Everett Springs Conductance vs. Time 
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Everett Spring pH
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Figure 38: Everett Spring pH vs. Time 
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Figure 39: Everett Spring Temperature vs. Time 
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WEST ARMUCHEE FIELD DATA RESULTS 

West Armuchee Conductance
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Figure 40: West Armuchee Conductance vs. Time 
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West Armuchee pH
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Figure 41: West Armuchee pH vs. Time 
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Figure 42: West Armuchee Temperature vs. Time 
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TURKEY MOUNTAIN FIELD DATA RESULTS 

Turkey Mountain Conductance
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Figure 43: Turkey Mountain Conductance vs. Time 
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Turkey Mountain pH
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Figure 44: Turkey Mountain pH vs. Time 
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Figure 45: Turkey Mountain Temperature vs. Time 
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APPENDIX B: SPRING CHEMISTRIES 
 
 

Chemistry of Cave Spring 
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Figure 46: Cave Spring Bicarbonate Levels. 
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Cave Spring Chloride
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Figure 47: Cave Spring Chloride Levels. 
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Figure 48: Cave Spring Sulfate Levels. 
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Cave Spring Magnesium 
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Figure 49: Cave Spring Magnesium Levels 

Cave Spring Calcium
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Figure 50: Cave Spring Calcium Levels. 
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Cave Spring Potasium (K)
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Figure 51: Cave Spring Potassium Levels. 

Cave Spring Sodium (Na)
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Figure 52: Cave Spring Sodium Levels. 
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Major Ion Chemistry of Sand Spring 
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Figure 53: Sand Spring Bicarbonate Levels. 
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Sand Spring Cl
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Figure 54: Sand Spring Chloride Levels. 
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Figure 55: Sand Spring Sulfate Levels. 
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Figure 56: Sand Spring Magnesium Levels. 
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Figure 57: Sand Spring Calcium Levels. 
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Figure 58: Sand Spring Potassium Levels. 
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Figure 59: Sand Spring Sodium Levels. 

 



 
 
 

87 
Major Ion Chemistry of North John’s Mountain 
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Figure 60: North John’s Mountain Bicarbonate Levels. 
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Figure 61: North John’s Mountain Chloride Levels. 
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Figure 62: North John’s Mountain Sulfate Levels. 
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North John's Mountain Mg
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Figure 63: North John’s Mountain Magnesium Levels. 
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Figure 64: North John’s Mountain Calcium Levels. 
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Figure 65: North John’s Mountain Potassium Levels. 
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Figure 66: North John’s Mountain Sodium Levels. 
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Major Ion Chemistry of Horn Mountain 
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Figure 67: Horn Mountain Bicarbonate Levels. 
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Horn Mountain Chloride (Cl)
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Figure 68: Horn Mountain Chloride Levels. 
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Figure 69: Horn Mountain Sulfate Levels. 
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Horn Mountain Magnesium (Mg)
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Figure 70: Horn Mountain Magnesium Levels. 
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Figure 71: Horn Mountain Calcium Levels . 
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Figure 72: Horn Mountain Potassium Levels. 
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Figure 73: Horn Mountain Sodium Levels. 
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Major Ion Chemistry of Chestnut Mountain Shooting Range 
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Figure 74: Chestnut Mountain Shooting Range Bicarbonate Levels. 
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Figure 75: Chestnut Mountain Shooting Range Chloride Levels. 
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Figure 76: Chestnut Mountain Shooting Range Sulfate Levels. 
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Chestnutt Mountain Mg
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Figure 77: Chestnut Mountain Shooting Range Magnesium Levels. 

Chestnutt Mountain Ca
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Figure 78: Chestnut Mountain Shooting Range Calcium Levels . 
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Chestnutt Mountain Potassium (K)
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Figure 79: Chestnut Mountain Shooting Range Potassium Levels. 

Chestnutt Mountain Sodium (Na)
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Figure 80: Chestnut Mountain Shooting Range Sodium Levels. 
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Major Ion Chemistry of Everett Springs 

Everett Spring Bicarbonate
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Figure 81: Everett Springs Bicarbonate Levels. 
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Everett Spring Cl
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Figure 82: Everett Springs Chloride Levels. 

Everrett Spring Sulfate
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Figure 83: Everett Springs Sulfate Levels. 
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Everett Spring Mg
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Figure 84: Everett Springs Magnesium Levels. 

Evertt Spring Calcium (Ca)
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Figure 85: Everett Springs Calcium Levels. 
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Everett Spring Potasium (K)
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Figure 86: Everett Springs Potassium Levels. 

Evertt Spring Sodium (Na)
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Figure 87: Everett Springs Sodium Levels. 
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Major Ion Chemistry of West Armuchee 

West Armuchee Bicarbonate
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Figure 88: West Armuchee Bicarbonate Levels. 
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West Armuchee Chloride
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Figure 89: West Armuchee Chloride Levels. 
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Figure 90: West Armuchee Sulfate Levels. 
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West Armuchee Magnesium
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Figure 91: West Armuchee Magnesium Levels. 

West Armuchee Calcium
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Figure 92: West Armuchee Calcium Levels. 
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West Armuchee Potassium
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Figure 93: West Armuchee Potassium Levels. 

West Armuchee Sodium
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Figure 94: West Armuchee Sodium Levels. 
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Major Ion Chemistry of Turkey Mountain 

Turkey Mountain Bicarbonate

0

10

20

30

40

50

60

1/
25

/2
00

5

2/
1/

20
05

2/
8/

20
05

2/
15

/2
00

5

2/
22

/2
00

5

3/
1/

20
05

3/
8/

20
05

3/
15

/2
00

5

3/
22

/2
00

5

3/
29

/2
00

5

4/
5/

20
05

4/
12

/2
00

5

4/
19

/2
00

5

4/
26

/2
00

5

5/
3/

20
05

5/
10

/2
00

5

5/
17

/2
00

5

5/
24

/2
00

5

5/
31

/2
00

5

6/
7/

20
05

Date

C
on

ce
nt

ra
tio

n 
(m

g/
l)

 
Figure 95: Turkey Mountain Bicarbonate Levels. 
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Turkey Mountain Cl
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Figure 96: Turkey Mountain Chloride Levels. 

Turkey Mountain Sulfate
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Figure 97: Turkey Mountain Sulfate Levels. 
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Figure 98: Turkey Mountain Magnesium Levels. 
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Figure 99: Turkey Mountain Calcium Levels. 
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Figure 100: Turkey Mountain Potassium Levels. 
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Figure 101: Turkey Mountain Sodium Levels. 
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