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ABSTRACT 
 

In this thesis the relative importance of input encoding and learning algorithm on 

protein secondary structure prediction is explored.  A novel input encoding, based on 

multidimensional scaling applied to a recently published amino acid substitution matrix, 

is developed and shown to be superior to an arbitrary input encoding.  Both decimal 

valued and binary input encodings are compared.  Two neural network learning 

algorithms, Resilient Propagation and Learning Vector Quantization, which have not 

previously been applied to the problem of protein secondary structure prediction, are 

examined.  Input encoding is shown to have a greater impact on prediction accuracy than 

learning methodology with a binary input encoding providing the highest training and test 

set prediction accuracy. 
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1 Introduction 

The existence of α-helices and β-sheets, which would later come to be known as protein 

secondary structure, were predicted in 1951 by Linus Pauling [1] and later observed by 

X-ray crystallography within the same decade.  X-ray crystallography remains the 

primary experimental method for determining the 3D structure of proteins [2] and is 

responsible for over 90% of the known protein structures in the largest repository of 

protein structures, the protein databank (PDB) [3]. 

 Proteins are polymers of amino acids.  These polymers, upon post-translational 

modification, fold into the native form in which they carry out the work of living 

organisms.  This native conformation is described as tertiary (or quaternary in cases 

where multiple chains combine) structure.  Secondary structure describes commonly 

found structural motifs in tertiary structure.  See [2] for a review of secondary structure. 

 The most common secondary structures are the α helix and β sheet [2].  α helices 

are characterized by φ and ψ angles of roughly -60 degrees with approximately 3.6 amino 

acids per complete turn.  β strands are characterized by regions of extended backbone 

conformation with φ=-135 degrees and ψ=135 degrees.  Idealized versions of these 

secondary structures are shown in Fig. 1.  There are several automated methods for 

determining secondary structure including DSSP [1], DEFINE [4] and STRIDE [5].  Of 

these three DSSP is the most widely used and is the method used by PDB.  DSSP defines 

7 secondary structure states.  Most prediction algorithms reduce these to 3 (Helix, Strand 

and Coil) states. 
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Fig. 1. (a) An alpha helix. (b) A beta sheet.  Image taken from [2]. 

 Advances in DNA sequencing have resulted in increases in the number of 

sequenced genomes (and consequently, sequenced protein chains) several orders of 

magnitude greater than in the preceding decades.  The manually intensive and time 

consuming nature of X-ray crystallography gave rise to the Sequence-Structure gap and 

motivated the development of automated methods for the prediction of protein secondary 

structure.  Secondary structure prediction methods operate on the amino acid sequence 

(known as 1D structure) and do not require the 3D structure.  Early methods, such as the 

method of Chou and Fasman [6] and the GOR [7] method were statistical in nature and 

based largely on probabilities assigned from amino acid proportions in regions of known 
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secondary structure from small protein sequence databases.  Although these methods 

initially reported accuracy above 70%, when later tested on larger databases the accuracy 

falls below 60% [8].   

 The Sequence-Structure gap roughly coincided with the resurgence of interest in 

neural networks during the 1980s engendered by the discovery of the back-propagation 

[9] neural network learning algorithm.  During the past 15 years neural networks of 

increasing sophistication and accuracy have been applied to the problem of secondary 

structure prediction. 

 In [10] Qian and Sejnowski develop a secondary structure prediction neural 

network that attains a Q3 accuracy of 64.3%.  This result was achieved with two serially 

cascaded back-propagation networks with binary input encoding and 3 output units.  The 

network was tested on a set of 15 proteins screened for homology with a training set of 

91 proteins.  The authors manually adjusted weights during training to maximize 

prediction accuracy.  An alternative input encoding was attempted in which 

physicochemical properties such as charge, size and hydrophobicity were used as input 

but was not found to improve prediction accuracy.  Although the authors explore 

alternative input encodings the alternatives are limited to distributed input encodings. 

 In [11] Holley and Karplus achieve 63% Q3 accuracy on a small set of 14 

proteins using a single back-propagation network with binary input encoding and 2 

output units.  The training set contained 48 proteins.  The secondary structure prediction 

for each amino acid is based on an experimentally determined threshold for the output 

units.  This threshold was chosen to maximize predictive accuracy.  In the same paper, an 
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alternative distributed input encoding based on physicochemical properties is reported to 

achieve a slightly lower accuracy of 61.1%. 

 In [12] Kneller, et al., report 64% Q3 accuracy using 2 serially cascaded back-

propagation networks.  A binary input encoding was used.  A database of 105 proteins 

was divided into 91 training set proteins and 14 test set proteins.  Spatial units added to 

the input layer to detect α helix and β strand periodicity increased Q3 accuracy to 65%. 

 In [13] Chandonia and Karplus achieve 62.64% Q3 accuracy using an iterative 

combination of structural class and secondary structure back-propagation neural networks 

on a database of 69 protein chains.  The impact of varying the size of the input window 

and hidden layer is explored with a peak accuracy achieved at a window size of 19 and 

hidden layer size of 2.  A smoothing procedure in which successive output values are 

averaged resulted in a slight improvement in prediction accuracy. 

 More recent neural network secondary structure prediction methods make use of 

evolutionary profile information determined from multiple aligned sequences (see [14-

16]).  These methods have increased accuracy above 70%.  However, there is still benefit 

from improvements in single sequence input prediction methods particularly for novel 

amino acids (those without sequence homologues) found in nature and artificially 

constructed. 

 This paper explores the relative importance of input encoding and choice of 

neural network learning algorithm on single sequence neural network secondary structure 

prediction.  A novel local input encoding is developed by applying dimensionality 

reduction to a Euclidean metric amino acid substitution matrix.  Two learning algorithms 
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which have not previously been applied to the problem of secondary structure prediction 

are tested: the Resilient Propagation (RPROP) algorithm [17] and the Learning Vector 

Quantization (LVQ) algorithm [18].  We show that input encoding has a greater effect on 

prediction accuracy than the choice of neural network learning algorithm.  We also show 

that an input encoding based on evolutionary substitution odds can improve prediction 

accuracy relative to an arbitrary encoding. 

2 Input Encoding 

Input is presented to Artificial Neural Networks (ANNs) in the form of input patterns.  

Each input pattern is described by an n-dimensional input vector where n is the number 

of components used to describe a single pattern.  Targets are described by m-dimensional 

target vectors where m is the number of components used to describe the desired output.  

Since the neural networks in this paper are predicting secondary structure m will equal 

the number of secondary structure states. 

 The protocol for representing a given input or target pattern as a vector is the 

encoding.  In a binary encoding each amino acid is represented by a group of vector 

components (also called bits).  A window of amino acids is represented by a single vector 

where each position in the window is represented by a single group.  The number of 

components per group corresponds to the number of distinct amino acid types.  The 

component corresponding to the amino acid type at the group position is the only 

component set to 1 (the rest are 0).  Since only a single component per group can be 

nonzero, this encoding is occasionally called orthogonal encoding. 
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 In a decimal encoding each component of the vector represents a distinct feature 

(in this case, a separate amino acid) of the input and can take on a range (usually between 

0 and 1) of real-numbered values. 

 The size of the input layer in a neural network is fixed.  However, the number of 

amino acids in a protein sequence can vary from as little as 30 to more than 500 [2].  This 

necessitates a partitioning of each amino acid sequence into fixed sized windows.  In 

sequence-to-structure networks the amino acid sequence is taken as input and a secondary 

structure prediction is produced.  As shown in the example below, each amino acid in a 

protein sequence is represented by a fixed sized window that includes the subject amino 

acid in the center flanked by the surrounding amino acids. 

 
Fig. 2. An example amino acid window.  The central amino acid Valine is in bold.  This window was 
taken from a sub-chain of Ubiquitin (1UBQ:C) 

 
 When cascaded networks are used a second stage structure-to-structure network 

takes the first stage predictions as input, windowed about the subject amino acid, and 

produces a final secondary structure prediction as output. 

   The amino acid encodings described in this paper can be found in Appendix A – 

Amino Acid Encodings. 

2.1 Amino Acid Encoding 

A novel amino acid encoding based on a recently published amino acid similarity matrix 

(mPAM) [19] is developed.  Unlike previous amino acid similarity matrices, mPAM 

satisfies all three requirements of a distance metric d(x,y):  

M Q I F V K T L T 
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 The LVQ learning algorithm uses a distance metric to classify an input vector into 

the same class as its nearest codebook vector.  The RPROP algorithm does not explicitly 

depend on distance metrics but may also benefit from the new encoding because this 

encoding should simplify the search through weight space for weight vectors that induce 

proper class boundaries on input vectors. 

2.2 Sammon Mapping 

As described in [20] a Sammon Mapping is a multidimensional scaling method often 

used to provide simplified visual representations of high dimensional data.  A Sammon 

Mapping was used to map the two dimensional amino acid distance matrix mPAM onto 

one dimension.  One dimension is suitable for representation of each amino acid as 

locations in a single dimension can be described by a single real number. 

 A Sammon Mapping iteratively minimizes the cost function ES: 
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where d(k,l) is the distance between elements k and l in the original vector space and 

d’(k, l) is the distance between elements k and l in the reduced vectors space.  Iteration 

involves repeatedly, on the order of 105 times the number of samples (in this case, 

roughly 24 = 20 naturally occurring amino acids + Selenocysteine (U),  2 hybrid amino 

acids (B = Aspartic Acid or Asparagine and Z = Glutamic acid or Glutamine) and 
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unknown (X).  See [21] for nomenclature), adjusting the one dimensional pair-wise 

mPAM distance between amino acids k and l ||rk-rl|| where k and l are any two different 

amino acids.  The adjustments are described as follows: 

 
( )( )lk

lk

lk
k rr

rr
rrlkd

r −
−

−−
=Δ

),(
λ  (3) 

 kl rr Δ−=Δ  (4) 

 Application of Sammon’s Mapping to mPAM resulted in values which were then 

scaled down to between 0 and 1 to form the scaled (and scaled2) encodings described in 

Appendix A – Amino Acid Encodings.  Values for B and Z in the mPAM matrix were 

derived by averaging the values for their constituent amino acids.  Values for U were set 

to 7 which equaled the largest distance found between any two other amino acids.  Values 

for X were set to the average over all other distances. 

3 Learning Algorithms 

Neural networks are a biologically inspired class of universal function approximators 

capable of learning from experience.  They are biologically inspired both in terms of 

structure and manner of processing.  However, apart from their utility as models of 

human cognition, they have proved to be a useful computational paradigm.  Structurally, 

artificial neural networks (ANNs) are comprised of processing units that are analogous to 

neurons.  Each processing unit receives input from other processing units, generates 

output based on that input (and its own state) then transmits that output to other 

processing units.  This manner of processing is analogous to the functioning of the human 
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brain wherein a neuron receives electrochemical signals from other neurons across 

synapses via dendritic tree, internally process the input then transmits electrochemical 

output through their axon to other neurons (see Fig. 3). 

Since the units of neural networks are often grouped into layers neural networks 

can be broadly classified, in terms of the direction of communication between units, as 

either recurrent or feed-forward.  In feed-forward networks each unit only receives input 

from units in preceding layers.  In recurrent network each unit can receive input from 

units in any layer.  This paper focuses on a further restricted class of feed-forward neural 

networks in which input is only received from the directly preceding layer. 

 

Fig. 3. (a) real neuron (b) artificial neuron (unit).  Image taken from [22]. 

It has been shown in [23] that multiple layer feed-forward neural networks 

(MLFNs) with non-linear activation functions are capable of approximating any function.  

Although MLFNs are among the slowest to learn [24], their ability to generalize often 

exceeds that of other methods. 
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The neural networks discussed in this paper carry out a form of learning known as 

supervised learning.  Supervised learning involves 2 phases; the learning phase (also 

called the training phase) and the recall phase (also called the prediction phase).  During 

the learning phase a set of examples are presented to the ANN.  Each example consists of 

an input pattern and the desired output pattern (known as the target pattern).   The output 

of the ANN is compared to the target and the weights in the network are adjusted to 

reduce the difference between the desired output and the actual output (the error).  The 

“supervision” in supervised learning refers to the fact that during training the desired 

output for each input is known; the network’s learning is “supervised” so as to reduce the 

error.  During the recall phase only input patterns are presented to the ANN.  This phase 

is also called the prediction phase because the output produced by the ANN can be 

considered a prediction since the target output is not presented (and possibly unknown).   

The learning algorithm of an ANN is the systematic method by which weights are 

adjusted to minimize error.  One of the most attractive properties of ANNs is their ability 

to generalize from examples.  The goal of generalization is to produce accurate 

predictions when presented with novel input (input on which it has not been trained).  

While there are many learning algorithms (see [25]) this paper will focus on Learning 

Vector Quantization (LVQ) [20] and a modified form of Back-Propagation known as 

Resilient Propagation (RPROP) [17] . 
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3.1 Resilient Propagation (RPROP) 

 RPROP [17] is an adaptive learning rate neural network learning algorithm.  

Adaptive learning rate algorithms automatically vary the rate of weight adjustment (and 

hence the rate of learning) with the general goal of speeding up convergence.  One of the 

main difficulties encountered with standard back-propagation neural networks is long 

training times before convergence (or no convergence at all).  This is often caused by 

poor choice of parameters such as the learning rate, momentum, etc…  By dropping use 

of momentum and automatically adjusting the learning rate, RPROP achieves faster 

convergence while requiring less manual optimization of network parameters. 

 Whereas standard BP uses fixed proportions (the learning rate) of the error 

gradient to adjust weights, RPROP introduces a time varying weight step Δij for every 

weight.  When the error gradient changes sign, which indicates the crossing of an 

extrema, the algorithm reduces the size of the weight step then retracts the most recent 

step.  Like BP, when the error is increasing (indicated by a positive error gradient) the 

weights are reduced and when the error is decreasing (indicated by a negative error 

gradient) the weight are increased.  However, unlike BP, the size of the adjustment is no 

longer a fixed percentage of the error gradient.  The size of the weight step Δij is adjusted 

as follows: 
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where 0 < η- < 1 < η+, Δij
(t) = weight step for wij at time t and Δij

(t-1) = previous weight 

step.  The weights themselves are  

3.2 Learning Vector Quantization (LVQ) 

Learning Vector Quantization [20] is a neural network method based on classical vector 

quantization and subspace classification.  In classical vector quantization, a continuous 

signal is approximated by the closest codebook vectors where each codebook vector is 

the discrete representation of a point in continuous signal space.  In subspace 

classification, n-dimensional data is represented by the nearest lower dimensional 

orthogonal projection. 

 Under LVQ, a set of codebook vectors (also called models) mi are each associated 

with one of the desired classes Si.  Each class contains more than one codebook vector.  

When an input vector x is presented a winner mc is chosen on the basis of a distance 

metric (the closest mi wins).  Typically Euclidean distance is used.  While there are 

several variations of this method, some of which are discussed below, the general idea is 

to adjust the winning codebook vector to more closely approximate its class Si.  That is, if 
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both mc and x are in the same class then mc is moved closer to x otherwise it is moved 

away. 

 

In standard neural network parlance each hidden unit represents a codebook 

whose incoming weights are the components of the codebook vector.  Each output unit 

represents a separate class.  The output units only receive input from hidden units in the 

same class. 

3.3 LVQ1 

In the first LVQ method, LVQ1[18], the codebook vectors mi are updated as follows: 
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where 0 < α(t) < 1 and α(t) (the learning rate) decreases monotonically over time and c is 

the index of the winning codebook vector. 

3.4 OLVQ1 

The first optimized learning vector quantization (OLVQ1) [20] algorithm optimally 

adjusts the learning rate α(t).  Optimality is achieved when prediction accuracy cannot be 

improved by changing α(t).  This can be recursively determined as follows: 
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where s(t) = +1 when the current input pattern x is in the same class as mc and s(t) = -1 

when x is not in the same class as mc.  The model updates are the same as those defined 

in section 3.3 except that α is replaced with αc which is recomputed with each pattern 

presentation. 

3.5 LVQ3 

The third learning vector quantization (LVQ3) [20] algorithm adjusts both the nearest 

codebook vector and the next nearest codebook vector as follows: 
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where mi and mj are the closest codebook vectors to x where x is in the same class as mj 

and in a different class than mi.  x is subject to the additional restriction: 

 [ ])()()()()1( tmtxttmtm kkk −+=+ εα  (9) 

for k in {i, j} if x, mi and mj belong to the same class. 

4 Secondary Structure 

4.1 DSSP 

Dictionary of Protein Secondary Structure (DSSP) [1] is the most widely used algorithm 

[5] for the determination of secondary structure.  It is a hierarchical method whose root 

parameter is the presence or absence of a hydrogen bond.  This parameter was chosen for 
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simplicity; the presence or absence of a hydrogen bond, once defined, is binary whereas 

use of backbone torsion angles φ and ψ introduces four additional parameters (the four 

angles of a rectangle in the φ and ψ plane) for each type of secondary structure. 

On the basis of an application specific definition of a hydrogen bond (described in [1]), 

elementary secondary structural elements are defined as follows: 

 5,4,3),,()( =+=− nniiHbonditurnn  Eq 4.1 
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Eqs 4.2 

where hbond(i,j) indicates a hydrogen bond between the carboxyl group of the ith residue 

and the amino group of the jth residues. 

The next level in the hierarchical definition of secondary structure is the cooperative 

structure level.  Cooperative structural elements are defined in terms of elementary 

structural elements.  Ambiguity is resolved by priority assignment.  Cooperative 

secondary structural elements are defined as follows: 
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{ }
{ }
{ }turn(i)-5 and 1)-turn(i-55)ihelix(i,-5

turn(i)-3 and 1)-turn(i-32)ihelix(i,-3
turn(i)-4 and 1)-turn(i-43)ihelix(i,-4

=+
=+
=+

 Eqs 4.3 

 
residues sharedby  connected ladders moreor  one ofset sheet

 typeidentical of bridges econsecutiv moreor  one ofset ladder
=
=

 Eqs 4.4 

where 4-helix (α helix), 3-helix (310 helix) and 5-helix (π helix) are identified by the 

codes H, G and I respectively.  Single bridges are labeled B.  All other ladder residues are 

labeled E. 

4.2 DEFINE 

DEFINE [4] is an automatic method for the determination of secondary structure based 

on idealized secondary structure Cα distance matrices.  The Cα distance matrix for the 

target sequence is computed and residues are assigned to the secondary structure class 

with the most similar ideal distance matrix. 

4.3 STRIDE 

STRIDE [5] is an algorithm for assigning secondary structure on the basis of both 

hydrogen bond energy and backbone torsion angles.  The x-ray crystallography structures 

present in the protein data bank (PDB) [3] were analyzed to produce a range of φ and ψ 

torsion angles as well as hydrogen bond energies most representative of existing 

secondary structural classifications. 

5 Architecture 

There are three major components of the prediction architecture. 
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Fig. 4 Schematic of Prediction Architecture. 

 The Input Encoding component partitions protein sequences and their 

corresponding secondary structure states into fixed sized windows and converts these 

windows into input/target patterns suitable for training (and testing) in the neural network 

component. 

 The Neural Network component predicts the secondary structure of the central 

amino acid in the input window.  This may be done directly by a single sequence-to-

structure network or in stages with sequence-to-structure and structure-to-structure 

networks cascaded serially. 

 The Decision Function component is responsible for turning the output of the 

neural network component into secondary structure state predictions.  There are 3 

secondary structure states which are represented as H, E and C.  Neural network output 

however, is numerical.  The decision function component applies several decision 

functions to convert the numerical output of the neural network component into one of 

the secondary structure states. 

5.1 Decision Functions 

Two decision functions were employed in this project.  The first, df_maxout, assigns the 

prediction to the state corresponding to the output unit with the largest value.  The 

Input 
Encoding 
Component 

Neural 
Network 
Component 

Decision 
Function 
Component 
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second, df_hethresh, assigns the prediction by comparing the output of the H and E units 

to a variable threshold.  This decision function extends the use of the output threshold, 

first introduced in [13], by incorporating a separate threshold for both the H and E states.  

The prediction accuracy is determined as both the H and E thresholds vary from .2 to .5 .  

The thresholds that minimize the standard deviation of per-state accuracy (also known as 

qindex) are chosen.  If neither the H nor E output units exceed their respective thresholds 

then C is assigned.  Otherwise, the larger of the 2 states (H or E) is assigned. 

5.2 Single Stage Networks 

Three different single stage sequence-to-structure networks were compared: three 1-state 

RPROP networks, one 3-state RPROP network and one 3-state LVQ network. 

5.3 Three 1-state RPROP networks 

Depicted in Fig. 5, each RPROP sub-network is trained to recognize a single secondary 

structure class and has a single output.  The network with the greatest output determines 

the secondary structure prediction. 

 
Fig. 5. Schematic of first stage RPROP network of sub-networks. 
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5.4 3-state RPROP network 

The 3-state RPROP network, depicted below, learns to distinguish all three secondary 

structure states (H, E and C).  The output unit, yi, with the greatest value determines the 

secondary structure prediction of the central amino acid xi. 

 

 
Fig. 6. 3-state RPROP network. 

5.5 3-state LVQ network 

The LVQ network is a single stage network with 3 outputs.  The classification of an 

amino acid is based on the class of the nearest codebook vector mc after training.  Since 

LVQ networks associate input with a class (in this case, each class is a secondary 

structure state) there is no numerical output available for the decision function 

component.  The network prediction is used directly. 
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Fig. 7. Schematic of single stage LVQ network.   

Codebook vectors mi shown in center.  The class of the codebook mc closest to the input vector is the 
predicted class. 

 

5.6 Two Stage Networks 

Two stage networks are comprised of a sequence-to-structure stage and a structure-to-

structure stage.  The output of the sequence-to-structure stage network is presented as 

input into the second stage structure-to-structure network.  The addition of a structure-to-

structure network is intended to provide a network that learns the association between 

adjacent amino acids as the sequence-to-structure network is not necessarily trained on 

the amino acids in sequence order.  It is presumed that the first stage networks cannot 

learn this association if they are trained on randomly selected amino acids which are not 

necessarily adjacent.  Earlier work ([10], [16], [26]) has shown slight improvement in 

prediction accuracy with the addition of a structure-to-structure network. 

Three such configurations were examined: three 1-state RPROP networks cascaded 

into a single 3-state RPROP network, a 3-state RPROP network cascaded into another 3-
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state RPROP network and a hybrid of an LVQ network + three 1-state RPROP networks 

cascaded into a 3-state RPROP network. 

6 Prediction Accuracy Measures 

A variety of measures have been employed to describe the accuracy of secondary 

structure prediction methods.  While early neural network secondary structure prediction 

methods included a Matthews correlation coefficient, this measure is no longer widely 

used. 

 The Comprehensive Assessment of Secondary Structure Prediction (CASP) is a 

multi-year project to provide an objective comparison of protein structure prediction 

methods.  3-D structures are submitted to CASP before they are made public.  Prediction 

methods are then tested against these pre-release structures.  Since the structures have not 

yet been made public, this procedure reduces the possibility of inflated prediction 

accuracy due to training bias and provides a blind evaluation of all submitted methods.  

Four of the first five CASPs included a secondary structure prediction category (see [27-

30]).  The current CASP (CASP VI) has dropped the secondary structure category.  The 

prediction accuracy measures used in this paper were taken from the metrics used in the 

CASPs that included a secondary structure category. 

6.1 Cross-Validation 

Given a set of protein sequences properly screened to remove any sequence homologues 

the ideal method of validating the prediction accuracy is the leave-one-out (jackknife) 

method.  Under the leave-one-out method tunable parameters (in the case of neural 
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networks the weights are the tunable parameters) are trained on N-1 of N proteins then 

tested against the remaining protein.  This is repeated N times so that each protein is 

tested exactly once.  The computational overhead of training neural networks makes 

leave-one-out implausible for all but the smallest datasets.  Cross-validation [31] is a 

widely used compromise method that balances the desire to avoid inflated accuracy due 

to training set bias with the computational intensity of full-blown leave-one-out 

validation.  Under cross-validation the network is trained on (M-1)(N/M) proteins then 

tested on the remaining (N/M) proteins where M is the fold of validation.  This is 

repeated each time with a different set of (N/M) proteins left out of training for testing 

purposes until every protein has been tested at least once. 

6.2 Q3 

Q3 measures the percentage of correctly identified residues for all secondary structure 

classes (H, E and C).  This method is the simplest measure of prediction accuracy.  

However, because it places undue emphasis on residue accuracy while secondary 

structure is defined in terms of segments, it can provide an inaccurate estimate of the 

relative accuracy of prediction methods.  A separate Qindex for each state (H, E and C) is 

also provided.  Q3 measures are defined as follows: 
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where Q{h,e,c} is the per-state accuracy, p{h,e,c} is the number of helices, strands or coils 

correctly predicted, n{h,e,c} is the total number of helices, strands or coils and N is the total 

number of residues. 

6.3 Q3* 

Q3* is the average of Q3s calculated for each sequence separately.  Since the sequences 

have different lengths this is an un-weighted average. 

6.4 SOV3 

Segment Overlap, originally defined in [32] and updated in [33], provides an indication 

of how well secondary structure segments were predicted.  In some protein sequences, a 

Q3 accuracy greater than 50% can be achieved by simply predicting every residue to be a 

helix.  SOV3 on the other hand would result in a much lower score.  SOV3 is defined as 

follows: 
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where (s1,s2) denote an overlapping pair of segments, S(i) = the set of all overlapping 

pairs of segments (s1,s2) in state I and S’(i) = the set of all segments s1 for which there is 

no overlapping segment s2 in state i. 

7 Simulation Results 

The networks were trained on the Rost and Sander dataset (rs126) (described in [16, 32, 

34, 35] as dataset 2b).  This set of 126 protein chains were carefully selected to minimize 

internal homology.  While there exist other datasets more stringently screened for internal 

homology there are a plethora of differing screening methodologies with none currently 

accepted as standard.  RS126 was chosen because it is widely used which allows for 

better comparisons with earlier work. 

 3-fold cross validation was performed by partitioning rs126 into 3 subsets (2 sets 

with 40 sequences, 1 set with 46).  Each network configuration was trained on 2 of the 3 
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subsets then tested on the remaining subset.  This was repeated with 2 different subsets 

until each partition was tested at least once.  The prediction accuracies are the averages 

obtained during cross-validation. 

 The experiments were conducted on an Intel Pentium IV 3.0GHZ processor.  The 

time to execute 100 epochs of training varied from 2 to 4 minutes wall clock time 

depending on the input encoding and hidden layer size.  The Input Encoding component 

was written in PERL.  The Matlab 6.5R13 Neural Network Toolbox was used to carry 

out all RPROP simulations.  All RPROP simulations were executed using ‘early 

stopping’ to maximize predictive accuracy.  The LVQ networks were executed using 

version 3.1 of the Helsinki University of Technology lvq_pak software package.  All 

decision functions were written in C++. 

7.1 Single stage networks 

The single stage networks produced secondary structure predictions based directly on the 

amino acid sequence. The RPROP networks had an initial weight step size of .07, weight 

increment of 1.2, weight decrement of .5 and maximum weight change of 50. 

7.2 Three 1-state RPROP networks 

Input window sizes of 9, 13 and 17 were used.  Hidden layer sizes of 0 (no hidden layer), 

2 and 5 were used.  Networks were trained for a maximum of 100 epochs though none 

reached this threshold because of ‘early stopping’.   
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Table I Summary of training set accuracy. 

Only the best results for each encoding (based on df_maxout) are shown.  See appendix for full 
results. 

encoding winsize hidden 
layer size

Q3 
 

SOV3 
 

qH qE qC 

arbitrary 17 5 0.511 0.176 0.063 0.036 0.964
binary 17 5 0.675 0.537 0.603 0.428 0.822
scaled 17 2 0.506 0.151 0.019 0.027 0.982
scaled2 13 5 0.524 0.282 0.034 0.190 0.941
 
Table II Summary of test set accuracy.   

Only the best results for each encoding (based on df_maxout) are shown.  See appendix for full 
results.  Peak Q3 prediction accuracy is shown in bold. 

encoding winsize hidden 
layer size 

Q3 
 

SOV3  qH qE qC 

arbitrary 17 5 0.510 0.168 0.058 0.034 0.963
binary 17 0 0.633 0.514 0.565 0.372 0.785
scaled 9 5 0.510 0.183 0.023 0.054 0.973
scaled2 13 5 0.526 0.287 0.030 0.194 0.941
 
 The first stage RPROP network achieved a peak Q3 prediction accuracy of 63.3% 

with the binary encoding.  The binary encoding achieves a 12.3% improvement over the 

scaled encoding.  Somewhat unexpectedly the arbitrary encoding Q3 training set 

accuracy (51.1%) was higher than the scaled encoding (50.6%).  As pointed out in [11] 

and [10] high training set accuracy not reflected in higher testing set accuracy can suggest 

memorization of the training set patterns instead of generalization of common features.  

This memorization may explain the reduced testing set prediction accuracy relative to the 

scaled2 encoding.   

 It is clear from the imbalance in qH, qE and qC that the arbitrary, scaled and 

scaled2 encodings derive much of their predictive accuracy from coil prediction.  The 

binary encoding however has a much more balanced per state predictive accuracy.  To 

address this problem an alternative decision function, df_hethresh, was devised. 
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Table III Summary of training set accuracy.   

Only the best results for each encoding (based on df_hethresh) are shown.  See appendix for full 
results. 

encoding winsize hidden 
layer size 

Q3 
 

SOV3  qH qE qC 

arbitrary 13 5 0.431 0.288 0.433 0.422 0.434
binary 17 5 0.640 0.517 0.640 0.643 0.639
scaled 17 5 0.412 0.266 0.301 0.447 0.454
scaled2 9 5 0.435 0.288 0.389 0.451 0.451
 

Table IV Summary of testing set accuracy.   

Only the best results for each encoding (based on df_hethresh) are shown.  See appendix for full 
results.  Best results in bold. 

encoding winsize hidden 
layer size 

Q3 
 

SOV3  qH qE qC 

arbitrary 13 5 0.431 0.279 0.426 0.433 0.433
binary 13 0 0.597 0.520 0.600 0.600 0.594
scaled 9 5 0.404 0.226 0.366 0.395 0.430
scaled2 9 5 0.433 0.285 0.363 0.465 0.459
 

 The binary encoding produces the most accurate prediction under both decision 

functions.  The decision function df_hethresh minimizes the spread in per-state predictive 

accuracy.  Although this reduces Q3 it increases SOV3 and, by increasing qH and qE, 

substantially increases the reliability of Helix and Strand predictions. 
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Fig. 8 Per-state test set accuracy as a function of amino acid encoding.   

  

 The scaled2 encoding has a higher sheet and coil accuracy than the arbitrary 

encoding.  However, the binary encoding Qindices exceed all others.  Qindex calculated 

based on df_hethresh decision function.  Only the Qindices of network configuration with 

highest q3 are shown. 

 
Table V Differences in test set accuracy between scaled2 and arbitrary encoding. 

Encoding Q3 SOV3 
Arbitrary .0.510 0.168
Scaled 0.526 0.287
Δ 0.016 0.119

 

7.3 One 3-state RPROP network 

Input window sizes of 9, 13 and 17 were used.  Hidden layer sizes of 0 (no hidden layer), 

2 and 5 were used.  Networks were trained for a maximum of 100 epochs though none 

reached this threshold because of ‘early stopping’. 
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Table VI Summary of training set accuracy.   

Only the best results for each encoding (based on df_maxout) are shown.  See appendix for full 
results. 

encoding winsize hidden 
layer size 

Q3 
 

SOV3  qH qE qC 

arbitrary 17 5 0.506 0.127 0.020 0.018 0.985
binary 17 5 0.679 0.531 0.608 0.452 0.815
scaled 9 5 0.508 0.198 0.005 0.074 0.973
scaled2 13 0 0.519 0.261 0.024 0.186 0.936
 

Table VII Summary of testing set accuracy.   

Only the best results for each encoding (based on df_maxout) are shown.  See appendix for full 
results.  Best results in bold. 

encoding winsize hidden 
layer size 

Q3 
 

SOV3  qH qE qC 

arbitrary 13 5 0.508 0.155 0.028 0.032 0.974
binary 17 0 0.632 0.518 0.563 0.384 0.779
scaled 9 5 0.508 0.201 0.004 0.078 0.971
scaled2 13 0 0.519 0.254 0.021 0.188 0.935
 

 As is the case for the single state networks, the binary encoding produces the most 

accurate prediction. 

7.4 One 3-state LVQ Network 

The parameters of the first stage LVQ network used in the final network ensemble were 

selected for highest predictive accuracy.  The OLVQ1 and LVQ3 algorithms were 

compared.  The number of codebook vectors that were compared: 92, 192, 384, 768, 

1536 and 3072.  The OLVQ1 algorithm was executed for 10,000 cycles.  The LVQ3 

algorithm was executed for 40,000 cycles. 
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Fig. 9. Test set accuracy (Q3) as a function of the number of codebooks, lvq algorithm and amino 
acid encoding (results for 1536 and 3072 codebooks not shown). 

 
 As can be seen in  Fig. 9 the LVQ3 algorithm with a codebook size of 384 

produced the highest prediction accuracy (51.5%).  

 
Table VIII Summary of test set accuracy for lvq3 algorithm with 384 codebook vectors. 

Winsize Encoding Q3 
9 Arbitrary .452 
9 Scaled .515 

 

 Training set accuracy continued to increase with increasing number of codebook 

vectors as seen in Fig. 10.  However training set accuracy increases obtained with more 

than 384 codebook vectors resulted in decreased prediction accuracy. 
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Fig. 10. Training set Q3 prediction accuracy as a function of number of codebooks for lvq3 algorithm 
with scaled encoding. 

7.5 Two stage networks 

Two stage networks produce secondary structure predictions based on the predictions of 

the first stage networks.  In the case of the Hybrid LVQ-RPROP network, only the final 

secondary structure prediction of the sequence-to-structure networks is used.  In the 

remaining cases all first stage output values are presented to the second stage structure-

to-structure network.  Except where noted the RPROP network parameters for the two 

stage networks are the same as for the single stage networks. 
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7.6 Three 1-state RPROP networks into one 3-state RPROP network 

The first stage of this configuration is described in section 7.2.  The following parameters 

describe the second stage structure-to-structure network.  Input window sizes of 9, 13 and 

17 were used.  Hidden layer sizes of 0 (no hidden layer), 2 and 5 were used.  Networks 

were trained for a maximum of 100 epochs though none reached this threshold because of 

‘early stopping’. 

Table IX Summary of testing set accuracy. 

Only the best results for each encoding (based on df_maxout) are shown.  See appendix for full 
results.  Best results in bold. 

encoding winsize hidden 
layer size 

Q3 
 

SOV3  qH qE qC 

arbitrary 17 5 0.505 0.116 0.025 0.015 0.979
binary 17 5 0.630 0.504 0.567 0.355 0.784
scaled 9 5 0.508 0.183 0.000 0.094 0.964
scaled2 13 5 0.521 0.240 0.000 0.179 0.955
 

 The addition of a structure-to-structure network does not appear to increase 

prediction accuracy for this network configuration. 

7.7 One 3-state RPROP network into one 3-state RPROP network 

The first stage of this configuration is described in section 7.3.  The following parameters 

describe the second stage structure-to-structure network.  Input window sizes of 9, 13 and 

17 were used.  Hidden layer sizes of 0 (no hidden layer), 2 and 5 were used.  Networks 

were trained for a maximum of 100 epochs though none reached this threshold because of 

‘early stopping’. 
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Table X Summary of testing set accuracy. 

Only the best results for each encoding (based on df_maxout) are shown.  See appendix for full 
results.  Best results in bold. 

encoding winsize hidden 
layer size 

Q3 
 

SOV3  qH qE qC 

arbitrary 13 5 0.510 0.137 0.060 0.013 0.968
binary 13 5 0.632 0.495 0.574 0.380 0.776
scaled 17 5 0.503 0.199 0.037 0.029 0.964
scaled2 17 5 0.508 0.210 0.042 0.084 0.946
 

 The addition of a structure-to-structure network does not improve overall Q3 but 

appears to slightly improve the accuracy of helix prediction (0.563 vs. 0.574). 

7.8 Hybrid LVQ-RPROP network 

The second stage of the Hybrid RPROP network had 18 or 26 input units (depending on 

the window size of the corresponding first stage networks) and 32 hidden units.  This 

network was trained with stage 1 training set predictions then tested with stage 1 testing 

set predictions.  The input was the final state prediction (either H, E or C) from both first 

stage networks. 

Table XI Summary of training set accuracy. 

Encoding describes amino acid encoding used in corresponding first stage networks. 

winsize encoding Q3 Q3stddev Q3* Q3stddev* SOV3 SOV3stddev 
9 arbitrary .610 .022 .622 .023 .547 .039 
9 scaled .637 .012 .652 .012 .600 .015 

 
Table XII Summary of test set accuracy. 

Peak prediction accuracy (Q3 of 52.2%) is shown in bold. 

winsize encoding Q3 Q3stddev Q3* Q3stddev* SOV3 SOV3stddev 
9 arbitrary .501 .010 .509 .016 .439 .027 
9 scaled .522 .010 .539 .007 .485 .010 

 
 The second stage RPROP network achieved a peak prediction accuracy of 52.2% 

with a window size 9 and scaled encoding. 
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Fig. 11. Per-state prediction accuracy as a 
function of input encoding. 

 
Table XIII Differences in Q3, per 
sequence Q3 and SOV3 for arbitrary and 
scaled encodings. 

 Q3 Q3* SOV3 
Arbitrary .501 .509 .439 
Scaled .522 .539 .485 
Δ .021 .03 .046 
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8 Conclusions 

When using a decimal encoding for amino acids a lower dimensional projection of 

mPAM, an amino acid substitution matrix that satisfies the requirements of a Euclidean 

distance metric, improves prediction accuracy.  The use of scaled mPAM encoding does 

not appear to improve prediction accuracy for RPROP networks.  Improvement might be 

observed with larger hidden layer sizes and/or discontinuing use of early stopping. 

 The impact of the scaled mPAM encoding on prediction accuracy is substantial 

for the LVQ networks.  The scaled encoding increases prediction accuracy by 6.3% 

(51.5% vs. 45.2%) for a window size of 9 and 5.1% (50.6% vs. 45.5%) for a window size 

of 13 in an LVQ3 network with 384 codebook vectors.  This is likely because the LVQ 

algorithms explicitly use Euclidean distance to determine the closest codebook vector and 

the scaled mPAM encoding of input vectors reflects the evolutionary similarity expressed 

in the mPAM amino acid substitution matrix. 

 Unfortunately adding a second stage structure-to-structure network does not 

appear to improve overall accuracy for networks with decimal input encoding.  However, 

a binary input encoded network does benefit from an additional stage for helix prediction 

accuracy (~1-2% improvement).  The former finding is inconsistent with previous work 

([10] and [12]) in which 1% improvements were obtained by the addition of a second 

stage network.  The lack of an improvement observed in the hybrid LVQ-RPROP 

network may be due to the manner in which the first stage predictions are presented to the 

second stage.  In the earlier work cited above the second stage network received all three 
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output values for each amino acid position.  In this paper the second stage network 

received only the final secondary structure prediction for each amino acid position.  This 

arrangement provides no information about the relative strength of each prediction 

making it difficult for the second stage network to learn the relationship between first 

stage prediction strength and prediction accuracy. 

 Although prediction accuracy was improved by the amino acid encoding 

described in this paper, the highest prediction accuracy was achieved using a binary 

encoding.  This suggests that additional understanding of the significance of input 

encoding as it relates to secondary structure prediction could be gleaned from an analysis 

of the clustering properties of known protein sequences when represented by different 

encoding schemes.  Such an analysis could guide the development of alternative input 

encodings, perhaps based on different substitution matrices or generated with different 

scaling methods.  Greater improvements in prediction accuracy might be obtained with 

alternative input encodings. 
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Appendix – Amino Acid Encodings 

The amino acid encodings referred to in this thesis are listed below. 

Binary 

Amino Acid Code Encoding 
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
C 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
N 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Q 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 

Scaled 

Amino Acid Code Encoding
- 0.0      
A 0.605972 
B 0.540875 
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C 0.344405 
D 0.535232 
E 0.458446 
F 0.773517 
G 0.579425 
H 0.495398 
I 0.689636 
K 0.557823 
L 0.712677 
M 0.672961 
N 0.56799  
P 0.517885 
Q 0.504313 
R 0.472478 
S 0.591856 
T 0.625893 
U 0.1      
V 0.656455 
W 0.9      
X 0.403483 
Y 0.788306 
Z 0.480359 
 

Scaled2 

The relative order of encoding is preserved from the scaled encoding but actual codes are 
uniformly spaced from 0 to 1. 
 
Amino Acid Code Encoding
- 0.0  
A 0.64 
B 0.44 
C 0.08 
D 0.4  
E 0.16 
F 0.88 
G 0.56 
H 0.28 
I 0.8  
K 0.48 
L 0.84 
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M 0.76 
N 0.52 
P 0.36 
Q 0.32 
R 0.2  
S 0.6  
T 0.68 
U 0.04 
V 0.72 
W 0.96 
X 0.12 
Y 0.92 
Z 0.24 
 

Arbitrary 

Amino Acid Code Encoding
- 0.0  
A 0.04 
B 0.84 
C 0.2  
D 0.16 
E 0.28 
F 0.56 
G 0.32 
H 0.36 
I 0.4  
K 0.48 
L 0.44 
M 0.52 
N 0.12 
P 0.6  
Q 0.24 
R 0.08 
S 0.64 
T 0.68 
U 0.88 
V 0.8  
W 0.72 
X 0.96 
Y 0.76 
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Z 0.92 
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