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would probably lead to unfolding in the low pH environment of the stomach.  The 

digestive enzymes of the stomach (pepsin) and duodenum (pancreatic enzymes and brush 

border carboxy- and aminopeptidases) would undoubtedly cleave most peptides.   Nearly 

all protein therapeutic agents are intended to be injected intramuscularly or intravenously.  

Intramuscular injections simply provide a reservoir for proteins to slowly enter the 

bloodstream; therefore, the circulation is the major determinant for the distribution 

component of pharmacokinetics.  The brain, liver, heart, and kidney are the most well 

perfused organs (see Table 10.1).  In addition to circulation to these organs, diffuse and 

ordered lymphatic tissues are likely to encounter protein drugs.   

8.3 The Brain 

Due to the blood brain barrier (BBB), the brain is highly unlikely to receive a 

significant amount of an intravenously administered protein drug.  The blood brain 

barrier refers to a combination of several barriers rather than one contiguous structure.  

Capillary endothelial cells that perfuse the brain possess exceptionally tight occluding 

junctions and phagocytic astrocytes surround these capillaries.  The ependymal cells that 

line the junction between the central nervous tissue and the cerebrospinal fluid also 

possess tight junctions.  Therefore, should an agent leave the capillaries in the brain, it 

must first pass between the endothelial cells (which is nearly impossible), diffuse through 

the endothelial cells (hydrophobic small molecules only), or enter and exit the endothelial 

cells through receptor mediated endocytosis.  The endothelial cells in the blood brain 

barrier present an additional hurdle—several plasma membrane proteins that reject drugs 

(MRP1 and MRP2), proteins, and other disruptive molecules.  The effective molecular 
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weight cutoff of the combined elements of the blood-brain barrier is about 500 Daltons.  

In terms of protein and peptide pharmaceuticals, that amounts to 4-6 amino acids.  Most 

protein drugs are at least ten times larger than this. 

Some proteins can enter the brain through receptor mediated endocytosis, 

including insulin, transferrin, high-density lipoprotein (HDL) and diphtheria toxin (100).  

Some researchers have developed single domain antibodies and other tags that can 

successfully traverse the blood-brain barrier carrying conjugated, therapeutically active 

proteins along with them (101, 102).  There are some areas of neurons that lay outside of 

the blood-brain barrier.  These areas are called circumventricular organs.  Researchers 

seeking to target these areas of the CNS may have less difficulty.  The choroid plexus, 

pineal gland, subfornical organ (thirst center), area postrema (vomiting center), median 

eminence, subcommissural organ, and posterior pituitary gland are all outside of the 

blood-brain barrier.   

The layers of connective tissue surrounding the central nervous system prevent 

diffusion of nearly all molecules from the surrounding interstitium to the nervous tissue 

and cerebrospinal fluid.  From superficial to deep, the layers are known as the dura mater, 

arachnoid mater, and pia mater.   

8.4 The Liver 

The liver is the largest internal organ, receiving roughly 25% of cardiac output in 

normal individuals (Table 10.1).  The liver is a critical component of drug metabolism, 

responsible for the destruction and chemical modification of most drugs.  Protein drugs 

seem to be no exception; many protein drugs are found to accumulate in the liver (29, 30) 

102



 103

(103).  This accumulation of proteins is likely due to the phagocytic Kupffer cells of the 

liver, which are responsible for the nonspecific phagocytosis of circulating cellular debris 

and pathogens.   

It is highly likely that non-antigenic peptides and proteins are subject to chemical 

modification in the liver (104).  Supporting evidence can be observed in the elimination 

of large monoclonal antibody fragments, such as the Fab2 studied by Kobayashi et al 

(30).  These antibodies are larger than the exclusion limit in the glomerular charge barrier 

and probably must be cleaved into smaller fragments in order to reach the urinary space 

of the nephrons in the timeframe observed 

8.5 The Kidney 

The human kidney filters the entire blood volume thirty times in one day (assuming 

6 L blood volume, 180 L filtered blood).  Since most protein drugs are intended for 

injection, the concentration of the protein pharmaceutical in the bloodstream reaches its 

zenith almost immediately after injection (intraperitoneal and intramuscular injections are 

slower, but still fast in terms of pharmacokinetics).  Until relatively recently, it was 

believed that the kidney was very efficient at preventing proteins from entering the 

urinary space (105).  The distribution of albumin, a 70 kDa molecule accounting for 

approximately half of the circulating plasma protein, gives insight to the mechanism of 

renal protein metabolism and excretion.  The concentration of albumin in the urine is less 

than 100 mg/dL; however, the concentration of albumin in the ultrafiltrate is 220-320 

mg/dL, which is highly suggestive a proteolytic or endocytotic mechanism for albumin 

reabsorption in the nephron (105).  This mechanism was recently found to be a result of 
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the activity of two proteins present on the brush border of epithelial cells lining the 

nephron: megalin and cubulin (105).  These two proteins were later found to be capable 

of binding many proteins of varying structure (see Fig 1).  In fact, there is evidence that 

the body actually relies on the kidney to destroy certain circulating proteins; patients with 

chronic renal failure develop excessive serum beta-2-microglobulin (106). 

The proteolysis of proteins in the kidney in itself is not a point of contention.  

There are two main issues with renal metabolism/excretion of protein drugs.  First, after 

renal proteolysis, proteins accumulate in the kidney (most likely in the epithelial cells as 

small peptide and amino acid fragments) without being excreted in a timely manner.  

This can be extremely dangerous—many therapeutic proteins under development are 

labeled with radioactive isotopes or other adducts that may be harmful if allowed to 

accumulate in kidney cells. 

8.6 Lymphatic Cells and Tissues 

Obviously the cells responsible for protection against foreign molecules are 

expected to play a role in the fate of exogenous proteins and peptides.  In addition to 

destroying non-self proteins, the lymph nodes, spleen, tonsils, liver and several types of 

loose connective tissues (sub-epithelial layers of hollow organs, tunica adventitia of 

blood vessels, etc.) contain cells that can easily ingest proteins and large particles that are 

not necessarily immunogenic (Fig.11.2).   

The spleen is very well perfused and is the largest collection of lymphoid tissue in 

the body, so it is not surprising that many researchers have found their protein to 

accumulate in the spleen (30, 31).  The spleen exists to activate B and T lymphocytes, 
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remove senescent, damaged and abnormal erythrocytes and platelets, store erythrocytes 

(in some species, but not in humans), and--most relevant to this review—remove 

macromolecules from the blood.  The high perfusion rate of the spleen is coupled with a 

unique sinusoidal circulation large enough to allow the cells to move freely.  The large 

fenestrations are likely a major contributing factor to the high tissue penetration of 

protein drugs in the spleen while the promiscuous phagocytic cells are responsible for the 

accumulation of protein drugs here.   

There are several ways to reduce recognition and opsonization by the diffuse and 

ordered lymphatic tissues.  If at all possible, most of the protein should be humanized.  

Most antibody therapeutics approved by the FDA are chimeric antibodies or humanized 

antibodies.  Before chimeric and humanized antibodies were available, monoclonal 

antibodies generated in nonhuman species were used.  Of course, these provoked a strong 

immune response in patients, greatly diminishing their usefulness.   

Chimeric antibodies are mostly human IgG except for the variable domains.  

Humanized antibodies are advertised as more than 90% human in terms of their peptide 

sequence; only the region responsible for recognition (CDR-complementarity 

determining region) is generated from a non-human species or other means.  This is 

slightly flawed reasoning, as there is a high degree of homology between mouse and 

human antibodies to begin with, so a 100% mouse antibody is quite “human” in most 

regions (107).  Nonetheless, humanization is the optimal means of reducing 

immunogenicity and reducing rapid degradation and accumulation in the lymphatic 

tissues. 
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Some researchers may wish to target the immune system.  For example, anti IL1-

B and anti TNF- antibodies have been used to curb allograft rejection in murine models 

(108).  To specifically target the immune system, the IgGs were encapsulated in 1 µm 

albumin-glutaraldehyde microspheres, which are rapidly ingested by cells of the 

reticuloendothelial system (108, 109).     
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Figure 8.1  Megalin and cubulin.   
Taken from Christensen et al 2003 Pediatric Nephrology 
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Figure 8.2  Some of the phagocytic cells of the body 
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