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Figure 2.2: The pseudo code of the algorithm for finding all cliques with size four

However, in our case, ∆ is bounded by a constant independent from n due to the manner of graph

construction. Therefore, Cost(G) ≤ O(n), which implies that the complexity of clique searching is

linear to the total number of oxygen atoms.

2.2.3 Geometry algorithm

The circumcenter (CC) is defined to have the same distance to the four vertices of a clique (denoted

as psdCa-O). A unique CC exists as long as four oxygens are not in one plane. To eliminate false

positives, a clique is considered as a putative calcium-binding site only if psdCa-O falls into the

range (R1, R2), where R1 and R2 are the lower and upper limits. A D-filter is further applied to

eliminate any cliques that contain non-oxygen atoms within a short distance (D-filter) from the CC

since the space for calcium binding should not be occupied by other atoms. The complexity of this

geometry algorithm is O(nm) , where m is the number of all atoms other than oxygen.

2.2.4 Removal of the redundant predictions

To remove redundant predictions in one location, a merging algorithm was adopted. All putative

binding sites in a protein are input in a vector and sorted by psdCa-O. The one with the shortest

psdCa-O is determined and the putative sites within 3.5Å (Center-Center distance) from it are

deleted. The procedure is repeated until the vector is empty. The computational complexity is

dependent on the number of total comparisons, which is smaller than O(n2).
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2.2.5 General algorithm analysis

The computational complexity of the algorithm is O(n + n2 + nm) from the three parts mentioned

above, which can be simplified to be O(nm) since it is the dominant component.

2.2.6 Performance measurement

A qualified clique is a true prediction (TP) if its CC falls into the cutoff distance (3.5 or 1.0Å in

this study) from a documented calcium ion in the crystal structure. A documented calcium-binding

site is a true predicated site (TPS) if there is any prediction within the cutoff distance from this

site. The performance of the method is evaluated by Site Sensitivity (SEN), Site Selectivity (SEL),

and Redundancy (RE), which represent the percentage of TPS in the total sites, the percentage of

TP in the total predictions (hits), and the true predictions per site, respectively. The value of RE

is not less than 1.

SEN =
TPS

TotalSites
(2.1)

SEL =
TP

TotalHits
(2.2)

RE =
TP

TPS
(2.3)

2.3 Results and Discussions

Table 2.1: Calcium coordination numbers (CN, Ca−O ≤ 3.5Å) in three datasets

Dataset Total proteins Total sites Proteins (multiple sites) CN ≤ 4 CN = 3 CN ≤ 2

I 32 62 18 55 7 0

II 54 91 26 80 8 3

III 44 94 27 81 7 6

Analysis of calcium-binding sites in three datasets. As shown in Tab. 2.3 there are a total of 123

proteins and 231 calcium-binding sites in three datasets. There are three proteins (1OVA, 2POR,

and 4SBV) in both Datasets I and II and four proteins (1CEL, 1ESL, 1KIT, and 1SRA) in both
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Datasets II and III [61, 75, 77]. These three datasets represent different classes of calcium-binding

sites with different protein fold topologies (Fig. 2.3. For example, continuous sites as in calmodulin

(3CLN) with four EF-hand motifs are largely helical [4] and lectin (2TEP) is predominately -sheet

[79]. Semi-continuous sites such as in galactose-binding protein (1GCG) [33] or penicillin acylase

(1AI4) [25] and discontinuous sites such as in annexin (1ALA) [10] or cellulase (1CEL) [24] are also

included. About 55% of proteins in the three datasets contain two or more calcium-binding sites.

Some proteins, such as calmodulin, do not have calcium-binding sites with shared ligand residues

although the calcium binding process of this protein is tightly cooperative [4]. In other proteins,

the clustered calcium ions share ligand residues and even ligand oxygen atoms. For example,

mannose-binding protein A (2MSB), [105] thermolysin (1TMN, 1HYT and 8TLN), [42, 45, 74]

neutral protease (1NPC), [90] serum amyloid P component (1SAC), [29] and carboxypeptidase T

(1OBR) [95] in the datasets have calcium ions that share the same oxygen atoms Fig. 2.3. It is

important that the datasets contain proteins representing different protein folds and families and

contain different types of calcium-binding sites. For example, the data set III from Pidcock and

Moore only contains one EF-hand protein (1SRA) [44] to overcome the bias of EF-hand proteins

in the protein data bank [77] 2.3.

As shown in Tab. 2.3, 55 (89%) of 62 calcium-binding sites in 32 proteins in Dataset I have 4 or

more oxygen ligands within 3.5Å of calcium, including 5 (16%) EF-hand proteins. This dataset was

used for parameter adjustment. Dataset II contains 54 proteins with 91 sites, 80 (88%) of which

have 4 or more oxygen ligands including 2 (4%) EF-hand proteins. Dataset III from Pidcock and

Moore contains 94 sites in 44 proteins representing all classes and folds of calcium-binding proteins,

81 (86%) of which have four or more oxygen ligands.

2.3.1 Parameter optimization

Oxygen clusters are used to identify the potential calcium-binding sites in the GG program. The

oxygen atoms from water are not included since 1) the inclusion of water molecules results in

tremendous false predictions in the bulk solution and 2) the NMR and modeling structures typically

do not contain the water molecules. However, the oxygen atoms from the cofactors, such as sugars

or lipids, are included in this study. To achieve high accuracy and speed, clique Size, O-O Cutoff,
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Figure 2.3: The calmodulin (A, 3CLN), galactose-binding protein (B, 1GCG), flavodoxin (C, 1AG9),
and serum amyloid P component (D, 1SAC) represent different classes of calcium-binding sites
including different ligand distributions (continuous, semi-continuous, and discontinuous), binding
numbers (single site, independent multiple sites, and sites with shared ligands), cofactor conditions,
and protein sizes. The green balls are calcium ions. The ligand oxygen atoms are from proteins
(red balls) and cofactors (orange balls). The protein frames are in light blue while the cofactors
are in orange. The pictures are generated by PyMol (DeLano Scientific).
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PsdCa-O range, and D-filter in GG algorithm have been optimized using Dataset I.

Clique Size

In order to allow a clique in graphs to represent the calcium-binding location in a protein, the

vertices and the edges should accurately describe the calcium-binding ligands and the relationships

among them. To reveal key features of calcium-binding coordination and increase the speed of

calculation, the model of calcium binding is simplified by using the minimal required cliques. As

shown in Tab. 2.3, more than 85% of the sites contain 4 or more close oxygen ligands. The use

of clique size 3 resulted in many false positive cases and the increase of computational complexity

(data not shown) although the use of clique size ¿ 4 resulted in many false negative cases in GG.

To focus on the main features of calcium-binding proteins, we therefore chose the clique size 4 in

this study. It is expected that the calcium-binding sites with 3 or fewer ligands cannot be found.

However, we will show that part of these sites can still be identified. To better illustrate GG, the

datasets were analyzed either including or excluding the sites that have 3 or fewer ligand oxygen

atoms.

O-O Cutoff

The upper limit of O-O distance is restricted by the O-O cutoff while the lower limit is determined

by van der Waals radius and thus is not specified in the algorithm. Theoretically, the upper limit

of the O-O distance is no more than twice the maximum Ca-O distance. Most of the ligand oxygen

atoms are in the distance of 2-3 Å to the calcium [77, 109] Fig. 2.4 shows the site sensitivity (SEN)

of the GG algorithm using a series of O-O cutoff from 4 to 7 Å for Dataset I. When the cutoff is 5.0

Å, 89% (55/62) of the sites were identified. Among the 55 sites with 4 or more ligands, 52 (94%)

have been identified within 3.5 Å and 51 (93%) within 1 Å to the documented ions. This result is

consistent with the statistical study that shows the average Ca-O distance in calcium-binding sites

is about 2.4 Å, [77, 109] suggesting that a cutoff of 5 Å covers most of the O-O distances. The

longer O-O distances mainly originate from longer O-Ca distances. Further increase of the O-O

cutoff results in the identification of more calcium-binding sites (within 3.5 Å to the real ions). At

the cutoff of 6.0 Å, the SEN reaches 100% for Dataset I. Therefore, an O-O cutoff of 6.0 Å was



20

Figure 2.4: The site sensitivity (the true predicted sites in the total sites) as a function of O-O
distance cutoff

used for all sites. 2.4.

PsdCa-O range and D-filter

To eliminate false positive predictions, the psdCa-O range and D-filter were introduced into the GG

program. A clique is considered to be a potential calcium-binding site only when the psdCa-O is in

a given range as long as there are no other atoms within a distance of D-filter to the circumcenter.

SEN exhibits an upward trend while SEL shows a downward trend with the increase of psdCa-

O range. The best performance was obtained when D-filter equals the psdCa-O of each clique.

Corresponding to the average Ca-O distance of 2.4 Å, 48 sites (77% of all sites and 87% of the
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sites with 4 or more ligands) in Dataset I are identified within 1 Å to the documented ions. If the

psdCa-O of 2.3-2.5 Å is used, the corresponding SEL is 96%. When the psdCa-O range is enlarged

to 2.1-2.7 Å, the SEN increases to 95% and the SEL is 87% for the sites with 4 or more ligands.

In this case, three calcium-binding sites in ovalbumin (1OVA),(Stein, et al., 1991) staphylococcus

nuclease (1SNC), [66] and substilisin BPN (2ST1) [12] are not identified. When the psdCa-O range

is 1.8-3.0 Å, the only un-identified site is that in ovalbumin. Under such conditions, 4 of 7 sites

with 3 or fewer ligands in the Dataset I have also been identified within 3.5 Å of the documented

ions but none of them is within 1.0 Å. Taken together, using an O-O cutoff of 6.0 Å, a psdCa-O

range of 1.8-3.0 Å and a D-filter equal to the psdCa-O, the optimal performance for the prediction

of calcium-binding sites in Dataset I possesses a SEN of 95% and a SEL of 86% within 3.5 Å or a

SEN of 87% and a SEL of 68% within 1.0 Å to the documented ions.

2.3.2 GG algorithm predicts calcium-binding sites with high SEN and SEL

Using an O-O cutoff of 6.0 Å, a psdCa-O range of 1.8-3.0 Å and a D-filter equal to psdCa-O, a

SEN of 91% and a SEL of 77% have been achieved for the prediction of 91 calcium-binding sites

in Dataset II when a true prediction is assumed if the predicted calcium is within 3.5 Å of the

documented calcium ions. A SEN of 87% and a SEL of 74% have been achieved in Dataset III

under the same conditions (Fig. 2.5A). If the standard of a true prediction is that the predicted

calcium is within 1 Å of the documented calcium ions, the SEN and SEL are 84% and 59% for

Dataset II and 80% and 55% for Dataset III, respectively (Fig. 2.5B). Similar to Dataset I, 6 of 11

sites with 3 or fewer ligands in Dataset II and 4 of 13 in Dataset III have been identified within 3.5

Å of the real calcium but none of the predictions is within 1 Å of the real calcium. On the other

hand, if only considering the calcium-binding sites with 4 or more ligands as real sites, the SEN for

Datasets I, II, and III increases to 98, 95, and 93%, respectively, with the true prediction standard of

within 1.0 Å of the documented calcium ions (Fig. 2.5 ). The slightly different performances for the

three datasets reflect the different distributions of calcium-binding sites (Tab. 2.3, where Dataset

III has the highest populations of sites with 3 or fewer oxygen ligands and Dataset II contains 14

non-calcium-binding proteins [61, 75, 77]. Although the performance of the prediction was lower

by including these less popular calcium-binding sites or non-calcium-binding proteins, it confirms
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Figure 2.5: The sensitivity (black bars) and selectivity (grey bars) of the GG program with the
O-O distance cutoff of 6.0 Åand the psdCa-O distance range cutoff of 1.8-3.0 Å. The standard of
a true prediction is that the predicted calcium position is within 3.5 Å(A) or 1.0 Å(B) threshold
distance to the documented calcium. The results of all sites are shown on the left and the results
only considering the sites with 4 or more ligands are shown on the right.

the practicability of high site selectivity, sensitivity and accuracy of our GG algorithm. 2.5. The

redundancy of predicted cliques (RE) is about 14 for all three datasets. This value agrees well with
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the average coordination numbers of 6 for calcium in proteins. Theoretically, a clique of size 6 has

15 sub-cliques of size 4. The predictions of a single site are developed by combining sub-cliques

into one using the merging algorithm (Method). The final RE values after the merging are 1.15,

1.18, and 1.21 for the Datasets I, II, and III, respectively. This low RE together with the high SEN

and SEL facilitates the subsequent analysis and is advantageous in predicting large datasets. GG

is very effective for sites with 4 or more oxygen ligand atoms. After using the merging algorithm,

54 of 55 sites in Dataset I, 78 of 80 sites in Dataset II, and 78 of 81 sites in Dataset III with 4 or

more ligands have been uniquely identified.

Calcium-binding sites that were not identified by our GG algorithm usually possess abnormal

Ca-O distances. 1OVA in Datasets I and II, 1CEL in Datasets II and III, 1DJX and 1SCM in

Dataset II, and 1BJR and 1AG9 in Dataset III were not identified. 1OVA has a long Ca-O distance

of 3.3 Å between the calcium and the O1 of attached phosphate at S350 as well as two very short

distances (1.6 Å from phosphate O3 at S350 and 1.9 Å from O 2 of E201) [91]. In 1CEL, four

ligands are from two glutamates (E325 and E295) while the C atoms of both residues are closer to

the calcium ion than O 1 of E325 [24]. In 1DJX, the C is closer to the calcium than the ligand O

2 of D653 [30]. In 1SCM, there is a carbon atom (C of D28) located at 2.8 Å to the Ca502 [106].

These sites are rejected by the psdCa-O range and D-filter. In 1BJR, the O-O distance between the

two ligands of Ca290, the backbones of S15 and A273, is 6.02 Å, exceed the O-O cutoff of 6.0 Å [88].

In 1AG9, the closest oxygen from the protein to Ca350 is 4.4 Å away.(Hoover and Ludwig, 1997)

The calcium is chelated by four oxygen atoms from the cofactor BTB (Bis-2-Hydroxy-Imino-Tris-

Hydroxymethyl-Methane), which are located at one side of the calcium ion [48] Thus, the clique

center is far from the calcium ions and is either rejected or not counted as a true prediction. To

maintain the sensitivity, the O-O cutoff and the psdCa-O range have to be increased. As a result,

the CC shifts away from the calcium position, the SEL decreases, and the RE value increases.

2.3.3 The prediction of calcium-binding sites with three or less ligand oxygen atoms

As shown in Tab. 2.3, 13% of 231 calcium-binding sites contain 3 or fewer oxygen atoms. Oxygen

atoms from water were excluded for the prediction due to their limited contribution to calcium-

binding affinity [35, 72, 75]. Since we use clique size of 4, it is expected that the calcium-binding
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sites with 3 or fewer ligands cannot be found. Surprisingly, 4 of 7 (57%), 6 of 11 (54%), and 4 of 13

(30%) of these sites in Dataset I, II, III, respectively, have been identified although it is relatively

less sensitive. The results suggest that other non-binding oxygen atoms are crowded around the

calcium-binding sites in addition to the ligand oxygen atoms. Although these oxygen atoms do not

chelate calcium directly, they can form cliques together with the ligand oxygen atoms and result in

a partial identification of less-coordinated sites using a clique size of 4.

2.3.4 Performance Comparison

Several methods such as Feature and SeqFeature based on the statistic function of the physiochem-

ical environment around functional sites have been developed for predicting calcium-binding sites

[5, 52, ?, 61, 60, 80, 89, 104]. These methods predict the calcium-binding sites by a scoring system

taking into account multiple properties such as secondary structures, chemical groups, and atom

types for which high sensitivity and selectivity have been claimed. The same dataset investigated

by Altman et al. with Feature was analyzed by GG program. The standard of true prediction of

calcium-binding sites is within 6.0 Å of the documented calcium for FEATURE [61] in contrast to

1.0 Å for our prediction using GG. Even though, the SEN from FEATURE is similar to that from

the GG with the sacrifice of SEL [61]. For the sites with 4 or more oxygen ligand atoms, we have

achieved SEN of 95% within 1 Å of the structural resolution. Our results have shown that the GG

program not only provided high prediction sensitivity without the use of vast statistical properties

(i.e. based on oxygen cluster only) but also retain a greater site resolution to the documented

calcium positions. This is very important for the application of testing the function of the proteins

with required resolution and accuracy.

Using a somewhat less diversified dataset, the best geometry-based prediction of calcium-binding

sites at present has been achieved using the valence study by Nayal and Di Cera [75]. In their

study, points with high valences in a fine grid are output as potential calcium positions. A SEN of

93% and a SEL of 95% have been reported when the standard of true prediction is within 3.5 Å

to the documented calcium. This SEN is similar to that from GG (95%) while the SEL is higher

than that from GG (86%). There are several major improvements of our GG algorithm. First, the

SEL reported by Nayal and Cera has definitions for selectivity different from GG. In GG, the SEL
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is defined as the total true predictions among the total predictions. When one site has multiple

predictions, the selectivity of the sites is different from the selectivity of the predictions. After

merging the related predictions, the site selectivity of the GG program is 40% for the Dataset I.

In the valence study by Nayal and Cera, the SEL is derived from the predicted points [75]. It is

expected that the qualified points in a calcium-binding pocket are much denser than that out of

the pockets. As indicated by RE, the SEL might be significantly affected after merging the points

in their study. Second, the RE and the total predictions of GG are much smaller than that in the

valence study. The RE from the valence study is about 69, almost 5 times of that from GG. The

total predictions are 4018 in the valence study and 808 in GG [75]. In one aspect, the high RE

indicates the high deviation of the SEL. More importantly, if further analysis is required, it will

suffer from the large result data file. The small result file together with only 20% of false positives

from the GG algorithm will be a beneficial and practical for the further evaluation. Third, in the

valence study, a total of 7.2 million points have been calculated while only 51258 points in the GG

are calculated [75]. Correspondingly, the GG program is almost 600-time faster than the valence

calculation. For example, it took 141 CPU seconds for the valence calculation program (vale.exe)

to examine mannose-binding protein A (2MSB) using an Intel Celeron M 1.30 GHz processor,

which prevents the practical use of this algorithm to analyze large databases. In contrast, GG only

requires 0.24 CPU seconds for the same analysis. This high speed is important for the application

to the prediction of calcium-binding sites using vast structural genomic information. Fourth, the

GG program is very sensitive to sites with 4 or more close ligands. Even with a higher standard

of 1.0 Å, more than 93% of the sites have been identified in all datasets. Since the majority of the

natural calcium sites have 4 or more ligands and the remaining either require the cofactors or bind

weakly, the results indicate that the GG program is a powerful tool for most of the calcium-binding

proteins. Moreover, our GG algorithm can still predict calcium-binding sites with 3 or less oxygen

ligand atoms with regular Ca-O distances.

2.3.5 A cluster of four or more oxygen atoms has a high potential for calcium binding

The three datasets analyzed in this study contain a total of 231 calcium-binding sites in 123 proteins.

They cover all major classes of the natural calcium-binding proteins and different protein frames
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as reported by Pidcock and Moore [77]. These calcium-binding sites also cover a broad range of

calcium affinity with dissociate constants from 10-10 (e.g. subtilisin, 2ST1) [48, 64] to 10-4 M (e.g.

thermolysin, 8TLN) [42, 45, 64, 74] in addition to 14 non-calcium-binding proteins in Dataset II. As

shown in Tab. 2.3, more than 85% of the sites contain 4 or more ligands from proteins and cofactors.

Less than 15% of the sites contain 3 and fewer ligand oxygen atoms. A detailed examination revealed

that part of these sites is really just disordered higher coordination sites, which can be identified

using 4-atom cliques with increased O-O cutoff distances. For example, 14 of 31 sites with 3 or

fewer oxygen ligand atoms were identified within 3.5 Å of the documented calcium ions. Since

these sites are normally located at the protein surfaces, the development of a program based on GG

to predict them is in progress by combining the 3-atom cliques with the calcium-specific valence

calculation and adding a structured water molecule. We have noticed that the sidechain atoms

in NMR structures usually possess less defined coordinations than the backbones due to lack of

structural constraints. To overcome such uncertainties, we plan to further integrate the sidechain

re-packing programs with the GG program to allow the visualization of calcium-binding sites in

structures with lower local resolutions [77, 109] The chelate of calcium in proteins is largely of an

electrostatic nature, which is a balance of Ca-O charge-charge attraction and ligand O-O repulsion

in addition to the constraint from the sidechain configurations and protein frames [69, 78]. Efforts

have been made previously to locate the calcium-binding sites using an energy-based united residue

potential calculation [55]. Since ligand oxygen atoms could be from highly charged carboxyl and

partially charged carbonyl and hydroxyl groups in addition to water and cofactors, the arrangement

of 4 or more ligand atoms can be very different from traditional polygon coordination of metal ions

such as zinc, magnesium, or iron. The high sensitivity and selectivity of the GG program suggest

that a cluster of four or more oxygen atoms is not only necessary but also sufficient for most

calcium binding. The results reveal that clusters of oxygen atoms without other atoms inside can

be classified to identify calcium-binding sites. The metal-binding sites using non-oxygen ligands

will not be identified based on the oxygen clusters. For example, copper and manganese also bind

to nitrogen atoms in addition to oxygen atoms. To distinguish the calcium-binding sites from other

all-oxygen-ligand metal-binding sites requires further consideration of other factors such as the

charge nature, the knowledge of hydrogen waters, the size of different metal ions, and the binding

geometry. For example, magnesium possesses a relatively smaller ionic radius (Mg 0.65 Å vs. Ca
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0.99 Å), a shorter bond distance (Mg-O 2.1 Å vs. Ca-O 2.4 Å), and less protein ligands due to the

hydration nature of the magnesium ions.

The previous version of the GG program predicts the calcium-binding sites without a signif-

icant movement of oxygen atoms or global conformational changes. It is capable of being incor-

porated with other methods or altered parameters for better performance. It can be a powerful

tool for automated analysis of large structural genomic databases with sensitivity greater than

85% in addition to its capability of providing structural resolution (within 1 Å of the documented

ions and with high speed). More importantly, our developed algorithm can be directly applied

to predict calcium-binding sites in proteins and receptors with weak calcium affinities overcom-

ing the major limitation of the current methodology. To reveal the calcium binding in the NMR

structure of our designed calcium-binding protein Ca.CD2, we have previously applied the same

concept of oxygen cluster to facilitate the visualization of the metal coordination. The manganese-

relaxation NMR experiments clearly validated this prediction strategy [108]. The development

of the GG program will significantly accelerate such processes of locating calcium ions in the

NMR structure. Furthermore, our study using graph theory has revealed new features of cal-

cium binding in proteins and the developed program may facilitate the understanding and pre-

diction of functions of calcium roles in biological systems based on oxygen coordination, which

can be provided by homology modeling based on the sequence information. The GG program

is available at http://chemistry.gsu.edu/faculty/Yang/GG.htm or http://mathstat.gsu.edu/ mat-

gtc/research/06/Calcium/GG.html.
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Chapter 3

IDENTIFYING CALCIUM-BINDING SITES WITH GEOMETRIC AND

CHEMICAL CRITERIA AT OXYGEN-CARBON SHELL

In the Chapter 2, We describe a graph theory and geometry approach to improve the accuracy for

predicting calcium-binding sites based on the valence function. However, in order to explore in-depth the

geometric properties of the oxygen-carbon shells of calcium-binding sites, we enhance our previous approach

at a high level to find biggest local oxygen clusters with a graph algorithm to find maximal cliques and propose

a new geometric criterion embedding the bidentate property to filter non calcium-binding oxygen clusters.

In addition, we apply some motifs of residue combinations as another filter to exclude non calcium-binding

oxygen clusters possibly formed by hydrogen bonds and obtain higher site selectivity without trading off site

sensitivity. The experiments demonstrate good predictive performance on both old and new datasets.

3.1 Introduction

Yamashita et al. developed an algorithm based on the hydrophobicity/hydrophicility contrast

function and successfully predicted ion-binding sites in a number of cases [107]. Nayal and Di Cera

improved the result by establishing a new simple function, valence function. Their approach gives

fair accurate on identifying many points on the space may be potential sites [75]. Consequently,

one calcium biding site may correspond to many potential predictions. Unfortunately, there is lack

of way to filter out non-calcium-binding sites as the Nayal and Di Cera pointed out that the points

where the valence function reaches maximal values may not be closer to calcium binding sites than

the points which have smaller valence value. Altman et al. also developed a statistical method to

identify the microenvironment of metal binding sites, but their prediction standard is 6.0Å from

the real calcium, which is too loose to position the calcium cation [5, 61, 60, 104].

To overcome the shortage of the above approaches, we need to understand some geometric prop-

erties as well as other properties of calcium binding sites. However, as mentioned by the literature
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references [107], it is impossible to characterize the crystal geometric properties of oxygen atoms

surrounding calcium binding sites in the traditional way. Despite the difficulty of characterizing

the geometric properties of all oxygen atoms surrounding a calcium binding sites, We discovered

there are always four oxygen atoms on the sphere with certain size centered at the calcium binding

sites [23, 22]. Based on this discovery, they established a graph algorithm to identify all clusters

with four oxygen atoms and then use a geometric algorithm to filter out the non calcium binding

sites and identify the calcium binding sites if the four oxygen atoms satisfy the condition.

Schymkowitz et al. developed a broad method to predict water and metal binding sites as well

as their binding affinities from the Fold-X field [84]. They obtained a high accuracy of 97% for the

prediction with the precision on a certain dataset of 115 proteins with 244 calcium-binding sites

[84]. However, their calculation is somewhat complicated in both fusion and optimization phases

[84].

We developed a graph theory and geometry (GG) approach for rapidly identifying calcium-

binding sites in proteins, which is detailed in the Chapter 2. The previous version is called GG1.0.

The current version of the GG approach, called GG2.0, employs the maximal clique algorithm to

find biggest local oxygen clusters/cliques and uses an optimization tool to calculate the geometric

filter related to the ratio between the size of the first shell and the second shell of calcium-binding

sites. In this paper, we include the geometric properties of carbon shell as well as oxygen shell and

analyze these properties with a special geometric angle in calcium-binding sites. In order to do so,

we find all maximal clusters with at least 4 oxygen atoms from proteins. We also establish new

data sets to conform to the requirements as the Fold-X method.

In addition, we observe that some oxygen clusters satisfying geometric criteria are not calcium

binding sites with some fixed residue combinations. A site sensitivity of 98% with a site selectivity of

86% is obtained on the newly-created training set with adjusted parameters on geometric properties.

The average deviation of predicted calcium locations is 0.66 Å. To validate the performance of

GG2.0, we apply it on the test set and achieve a site sensitivity of 100% and a site selectivity of

89%. More importantly, the GG2.0 approach reveals the geometric property of the first-second shell

of calcium-binding sites and some motifs of residues consisting of non calcium-binding clusters.
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3.2 Methods

3.2.1 Datasets

To acquire a high resolution and non-homology dataset of proteins with calcium-binding sites,

we query from the metalloprotein database and browser (MDB) [17] with the conditions that

every calcium-binding protein structure from PDB [9] has a resolution less than 2.0 Åfrom X-ray

crystallography, each site has a coordination number greater than three excluding water oxygen,

and the PDB entry must be in the PDBSELECT non-homology list (Hobohm and Sander). The

retrieved dataset contains 163 proteins of 345 sites. Because the current state-of-the-art method,

Fold-X, targets at the calcium-binding sites with at least four coordinated atom number [84], we

exclude the PDB entries containing a calcium-binding site which does not conform to the same

requirement as the Fold-X method. Finally, the training dataset contains 121 protein structure

files with all 240 calcium-binding sites. The test dataset contains 20 proteins listed in the literature

of Fold-X method. in 2005 [84]. In this test dataset, there are four calcium binding sites which have

the coordinated ligand number less than four each and are not taken into account for calculating

prediction accuracy.

3.2.2 Graph algorithm

For a given protein structure as shown in Fig. 3.1, the coordinates in the PDB file of oxygen atoms

including the hetero atoms but excluding those from water molecules were extracted first for the

analysis. The distances between every two oxygen atoms are calculated. A graph, G(V,E), is

constructed accordingly, in which each vertex in V represents an oxygen atom or a carbon atom

which has a covalent bond with an oxygen atom and each edge in E represents either a covalent

bond between an oxygen atom and a carbon atom or a relation between a pair of oxygen atoms

apart within an O-O cutoff distance. Only the edges among oxygen atoms are weighted by the

Euclidean distance. The graph construction time is O(n2), where n = |V (G)| is the number of

oxygen atoms. A clique Q is maximal if there is no clique containing Q as a proper subset.

The redundant cliques will lower the efficiency of the program and cost more efforts in analyzing

the results. In principal, a clique with a size of 5 and 6 contains 5 and 15 sub-cliques of a size

of 4, respectively. Therefore, local maximal cliques instead of cliques with fixed sizes which were
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Figure 3.1: The schematic model of GG2.0 Program is shown. The positions of oxygen atoms in
green (non-water oxygen) and orange (water oxygen) and bonded carbon atoms in blue are extracted
from the protein structure. An edge is given between two oxygen atoms if the distance between
them is less than the cutoff distance. A putative calcium-binding site is an oxygen cluster/clique
with a constraint on the average radius of two clusters (right bottom).
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once employed in the GG1.0 [22] are searched in this study. To search for a clique with size N or

above, all oxygen atoms possess less than N-1 edges have been eliminated first. The local maximal

cliques are identified in the remaining atoms following the procedure shown in Scheme 1 which was

developed by Bron and Kerbosch [21]. We choose the simple and classical clique-finding algorithm

because the time complexity is bounded by linear time for this special graph constructed. The

algorithm combines a backtracking search with a branch and bound technique. The backtracking

search is to find the maximal cliques recursively. The branch and bound technique is used to stop

some useless search failing to find a new maximal clique in advance. There are three important sets

in this algorithm:

1. Candidate Clique is a set of vertices connecting each other. The set can be either added or

reduced by a vertex along the backtracking tree.

2. Candidates is a set of vertices qualified for adding to the set of Candidate Clique.

3. Old Candidates is the set of vertices which were added to Candidate Clique before and not in

it now. The algorithm executes recursively addition on Candidate clique with one of vertices

from Candidates. In the mean time it keeps the vertices connecting to the candidate vertex

in Candidates and Old Candidates. When Candidates is empty, Candidate Clique can not

be extended any more and is satisfied for the maximal clique. The early stop condition is

reached once a vertex in Old Candidates connects all vertices of Candidates. It is foreseen

that maximal cliques can not be found in this branch, which can be proved by counter-proof.

Assuming there is a maximal clique founded in the branch, a vertex can be added to the

maximal clique to make a bigger clique. This violates the definition of maximal cliques

Let Cost(G) be the cost of the computational complexity of this algorithm. As a direct conse-

quence of lines 2, 10, 12, 13, and 18 of the pseudo code (Fig. 3.2), we have

Cost(G) ≤ O(n∆∆)

where n = |V (G)| is the number of oxygen atoms and ∆ is the maximum degree in G. For a

general graph, ∆ can be as big as n-1 so that the computational complexity is O(nn). However, we

prove that ∆ is bounded above by a constant for the graphs created from PDB file. Then, from
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Figure 3.2: The procedure of finding the maximal cliques.
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the above inequality, Cost(G) ≤ O(n),which implies that the job to find cliques can be finished

in linear time. Here we restrict four as the minimum size of maximal cliques because every target

binding site has at least four protein oxygen ligands.

3.2.3 A geometric criterion

After oxygen clusters/cliques’ finding, we can obtain a carbon cluster around every oxygen cluster

because each oxygen connects one carbon atom. Each oxygen cluster could have a geometric point

called LVP from which the distances to every other atom/vertex of the cluster/clique have a smallest

variance. For every oxygen cluster, there is a corresponding carbon cluster surrounding it. These

two clusters are thus called twin clusters and the LVP of the oxygen cluster is chosen as the center of

the twin clusters. In fact, we also calculate the LVP of a carbon cluster to analyze calcium binding

site and results (data not shown) are not as good as the above-mentioned selection of LVP. We use

the optimization function of fminsearch in the software of Matlab7.0 to obtain the coordinates of

the LVP of a cluster. A radius of oxygen/carbon (RO/RC) can be calculated as follows.

RO =
∑k

i=1 dist(LV P, O)
k

(3.1)

RC =
∑k

i=1 dist(LV P, C)
k

(3.2)

where dist(LV P, O) dist(LV P, C) labels the distance between the LVP and each oxygencarbon

ligand, and k is the number of vertices of a cluster. The value of RO
RC reflects the size of an

oxygen/carbon shell to some extent. There is a ratio between the RO and the RC for every twin

clusters, briefed as r RO RC. To eliminate false positives, we use r RO RC as a filter within some

range for a putative calcium-binding site. From the experiments, the results (data not shown)

are not as good as those using the adjusted r RO RC, ar RO RC, because the carbon shell will

become smaller when a calcium-binding site has a bidentate residue as ligand and the ar RO RC is

bigger. In this way, the ar RO RC is chosen to replace the r RO RC as the filter. The r RO RC

and ar RO RC are calculated as follows.

r RO RC =
RO

RC
(3.3)

ar RO RC = r RO RC − 0.5NB (3.4)
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where NB shows the number of bidentate residue(s) in a putative calcium-binding site. The com-

plexity of this optimization algorithm is O(n) because only constant calculations are needed for

every pair of clusters and there are O(n) pairs of clusters in total.

3.2.4 A chemical criterion

From the experiment results, some oxygen clusters satisfying the geometric criteria are not around

calcium binding sites. In those clusters with size four, we observe some patterns of residue com-

bination for non calcium binding sites. The patterns are summarized into two rules as the chemic

criteria as follows.

1. If a cluster contains a backbone carbonyl oxygen atom, it is considered to be putative sites.

2. If a cluster contains two side-chain carboxylate atoms from different residues, the cluster is

considered to be putative sites. The complexity of this step is also O(n) because only constant

calculations are needed for every twin clusters and there are O(n) pairs of clusters in total.

3.2.5 Removal of the redundant predictions

To remove redundant predictions in one location, we develop a merging algorithm. All putative

sites in a protein are recorded as a vector and sorted by clique size and RO in order. The one with

the largest cluster/clique is determined and other clusters/cliques sharing two or more common

vertices are deleted. If there are two clusters with same size, we choose the one with smaller RO.

The procedure is repeated until the vector is empty. The computational complexity is dependent

on the number of total comparisons, which is O(nlgn).

3.2.6 General algorithm analysis

The computational complexity of the algorithm is O(n2+n+n+nlgn) from the four parts mentioned

above, which can be simplified to be O(n2) since it is the dominant component.
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3.2.7 Performance measurement

A qualified clique is a true prediction (TP) if its LVP falls into the cutoff distance (2.0Å in this

study) from a documented calcium ion in the crystal structure. A documented calcium-binding site

is a true predicated site (TPS) if there is any prediction within the cutoff distance from this site.

The performance of the method is evaluated by Site Sensitivity (SEN), Site Selectivity (SEL), and

Deviation (Dv), which represent the percentage of TPS in the total sites, the percentage of TP in

the total predictions (hits), and the average distance between predicted location and documented

location, respectively.

Dv =
Dvs

TotalHits
(3.5)

3.3 Results and Discussions

3.3.1 Parameter setting

Clique Size

Similarly to the GG1.0, we use four as the threshold of clique size, which means only clusters with

four or more oxygens are considered as putative calcium-binding sites. Because only a small portion

of calcium-binding sites with less than four ligands, we aim at calcium-binding sites with four or

more ligands.

O-O Cutoff

From the statistical analysis of the GG1.0, we use 6.0 Åas the O-O cutoff since we take the oxgyen

shell as 3.0Å from the calcium cation and the maximum distance between two oxygen ligands in

the oxygen shell is 6.0 Å.

ar RO RC

As shown in Fig. 3.3a, the plot shows the histogram of RO and RC on the new dataset. It indicates

the distribution of RO and RC on the new dataset similar to the analysis from Nayal and Di Cera

[75] on the old dataset. The peak value for RO is within the range of 2.4−2.5Å while the peak value
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Figure 3.3: The histogram of RO and RC (a), the histogram of bidentate r RO RC, bidentate
r RO RC and r RO RC (b), and the histogram of bidentate ar RO RC, bidentate ar RO RC and
ar RO RC (c).
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Figure 3.4: The effect of ar RO RC on prediction accuracy

for RC is within the range of 3.2− 3.3Å. In a calcium-binding site, the RO is always smaller than

the RC because the former represents the size of the oxygen shell whereas the latter represents the

size of the carbon shell. Therefore, r RO RC is less than 1. The Fig. 3.3b indicates that r RO RC

has the range between 62% and 82%. After the adjustment of r RO RC according to the bidendate

property of oxygen shell, ar RO RC falls into the smaller range between 62% and 74% with only

one exception that the ar RO RC is 56% in the calcium binding site with three bidentate ligand

residue as seen in the Figure 2c. We choose a series of ar RO RC values from 71% to 75% as

the threshold value of the geometric filter, which means if ar RO RC is greater than the threshold

value, the oxygen cluster is not considered as a putative calcium-binding site; otherwise it is. As

shown in Figure 3, with the increase of the ar RO RC, the SEN increases but the SEL decreases.

When it reaches 75%, the SEN does not increase but the SEL decreases. Therefore we adopt the

value 74% as the threshold of the filter to exclude non calcium-binding oxygen clusters.

3.3.2 performance

As seen from the Fig. 3.4, without using the chemical filter, the GG2.0 can obtain the prediction

accuracy of the SENs ranged from 92% to 98% with the SELs ranged from 87% to 78%. There

is a trade-off between the SEN and the corresponding SEL. Because we prefer SEN with a higher

value than SEL, so 74% is taken as the empirical value of ar RO RC for the threshold of the filter.

Although the SEN also reaches 98% at the ar RO RC value of 75%, but the SEL decrease relative
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to the SEL at the ar RO RC value of 75%. To explain how the geometric filter comes out, we

analyze the correlation between the r RO RC and the average angle of Ca-O-C in each calcium-

binding site. As seen in Fig. 3.5, the angle decreases as the r RO RC increases. In order to verify

the negative linear relationship of these two parameters, we calculate the Pearson coefficient and

obtain -0.97 which proves this strong correlation. Additionally, the distribution of bidentate and

non-bidentate angles shows almost non-overlap range which matches the distribution of r RO RC

as seen in Fig. 4.10. In the meantime, it indirectly proves that r RO RC become larger when the

bidentate residue(s) join the calcium-binding site from the average angle of Ca-O-C. As a matter

of fact, the r RO RC can be calculated by solving the Equations 4.3 and 3.6.

dist(C, O)2 = dist(C, O)2 + dist(C, O)2 − 2 ∗ dist(C, O) ∗ dist(C, O) ∗ cos Angca−o−c (3.6)

where dist(C,O) means the distance between the carbon and the oxygen atoms, dist(Ca,O) means

the distance between the calcium cation and the oxygen atom, and dist(Ca,C) means the distance

between the calcium cation and the carbon atom. To roughly calculate the r RO RC, we could

take RO as the value of dist(Ca,O), RC as the value of dist(Ca, C), and the empirical value of

1.2 Åas the value of dist(C,O). It seems that a conflict exists between the statistical analysis and

mathematical equations on the relationship between r RO RC and angle Ca-O-C. In fact, dist(Ca,

O) also changes with the change of angle Ca-O-C (data not shown), which may partly explain

the quadratic equation (8). Using the chemical filter with the ar RO RC of 75%, the GG2.0 still

obtains the best site sensitivity of 98% while increases the SEL from 82% to 86%. The result is

comparable to the result of the current of state-of-the-art method, Fold-X. This means that the

chemical filter is the absolute filter to exclude non calcium-binding oxygen clusters. It is noted that

ASP and GLU are from the charged residue group, and SER, THR, TYR, HIS, ASN and GLN

are from the polar residue group, according to the classification of chemic properties on twenty

basic amino acids. It is already known that hydrogen donor protein oxygen atoms are SER OG,

TYR OH and THR OG1, and acceptor oxygen atoms are carboxyl oxygen of the side chain, ASN

OD1, GLN OE1, ASP OD1, GLU OE1, SER OG, ASP OD2, GLU OE2, THR OG1, and TYR OH

[96]. In particular, approximately 90% of the ‘bifurcated’ bonds are of ST/DE type [96]. ”The

term ‘bifurcated hydrogen bonds’ implies that hydrogen of the ‘rotating’ hydroxyl of Ser or Thr

may interact with the two oxygen atoms of a carboxyl group” [96]. The results imply that four
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Figure 3.5: The Correlation of r RO RC and avg Angle of Ca-O-C

oxygen atoms may form a cluster within a O-O cutoff of 6.0 Åbecause of two hydrogen bonds, which

provide strong supports for the chemical filter on some oxygen clusters with size four. After using

the merge algorithm, we can finally annotate the calcium binding position with a Dv of 0.66 Åfor

each identified calcium binding site. Although somewhat lower than the result of Fold-X method

[84], it is higher than all other previous methods such as the FEATURE [61] and the Valence

methods [75]. In addition, our filters have a high selectivity. To test the reliability of the GG2.0,

we apply it on the testing dataset. 48 out of 52 total calcium binding sites are identified with a

high selectivity of 89%. It is worth pointing out that the site sensitivity would become 100% if we

do not count the four calcium binding sites with protein ligand number less than four. From the

supporting materials of the Fold-X method, it is hardly seen that Schymkowitz et al. count these

calcium-binding sites as prediction accuracy (which is an arguable point) [84].
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Chapter 4

FEATURE ANALYSIS ON CALCIUM-BINDING SITES

4.1 Introduction

The biological roles of proteins are inextricably linked to their three-dimensional tertiary structures,

which in many cases, are achieved as a result of binding interactions with metal ions. In fact, nearly

40% of all proteins bind metals [35, 46, 49, 65, 87, 94], and a search for ”metal binding proteins”

in PubMed (http://www.ncbi.nlm.nih.gov/) returns over 87, 000 entries.

For naturally-occurring metalloproteins, the binding of Mg2+, Zn2+ and Ca2+ ions has been

studied extensively with respect to binding geometry, structure, coordination number, and ligand

preference [2, 3, 18, 19, 27, 26, 35, 38, 39, 40, 76, 99, 100]. Studies of peptide fragments have

revealed further data regarding the binding affinities of Ca2+-binding structures [69]. Despite

significant variations in these values with respect to each metal ion, the majority of metal-binding

sites are characterized by a central shell of hydrophilic ligands to chelate the ion, with a surrounding

shell of hydrophobic residues [5, 107].

Ionic calcium is demonstrably one of the more relevant metals associated with biological systems.

In the human body, more than 90% of the extant calcium can be found in bones and dental enamel as

hydroxyapatite, and CaCO3 is prevalent in the biomineralization of shells and corals [70]. Calcium

ions bind to various Ca2+-binding proteins (CaBP’s), which results in conformational changes, thus

inducing function. These functions include muscle contraction, neurotransmitter release, enzyme

activation and blood-clotting [43, 47, 68]. Calcium also participates in various functions related to

the cell life cycle including both cell division and apoptosis, and its prevalence in both extracellular

and intracellular fluids, where fluctuations of Ca2+ concentrations in the latter, which normally

range from sub-micromolar to millimolar levels, allows it to act as a secondary, or intracellular,

messenger [16, 70, 76, 82].

The most common motif associated with Ca2+-binding, the EF-Hand motif, was first described
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by Kretsinger in 1973 [56], and is observed in over 50% of all Ca2+-binding proteins. This motif is

characterized by a helix-loop-helix structure comprised of approximately 30 amino acids, and this

motif can be sub-divided into canonical EF-Hand (e.g. - calmodulin) and pseudo EF-Hands found

in the S100 protein N-termini [112]. A thorough summary of the classification and evolution of

EF-Hand proteins was presented by Kawasaki, Nakayama and Kretsinger [54].

The results of these studies have provided several key characteristics associated with Ca2+-

binding. Calcium ions, classified as hard Lewis acids, form ionic bonds predominantly with oxygen

ligands, and the Ca2+-O bond length ranges from 2.01-3.15 Å, with a mean value of 2.4±0.2Å [27,

35, 43, 93, 102] . Observed structures frequently exhibit irregular pentagonal-bipyrimid geometry

(Figure 1), with 3 monodentate ligands and 1 ligand providing the 5 planar oxygen ligands. The

Ca2+ ion resides 0.8 − 1.2Å outside of the pentagonal plane, and less than 0.4.Å outside of the

bidentate plane, with a ϕ < 30 deg [35, 92]. The inferior vertex (X) is occupied by a side-chain

oxygen, and the superior vertex (-X) is frequently provided by a water molecule. A coordination

number of 6-8 is most commonly observed, although coordination numbers ranging from 4-12 have

been reported citeGlus1991. Additional structural stability is achieved through hydrogen bonding

of the non-ligand Glu and Asp oxygens. The ionic radius of the calcium ion increases with increasing

coordination number, but has been generally reported between 0.99 to 1.12Å for a coordination

number of 6-8 [70]. As might be expected, the presence of negative charge in the binding site is

relevant. Several studies have evaluated the charge environment for Ca2+-binding sites, indicating

higher binding affinities with a net negative charge within 5−15Å of the binding microenvironment

[63, 62], and the presence of 3-4 negative charges in the primary coordination shell may provide

optimal charge configuration [69, 110].

For canonical EF-Hands, calcium ions bind in a 12 residue central loop, typically utilizing side-

chain oxygen ligands from loop positions 1, 3, 5, 9, and 12, as well as a main-chain carbonyl oxygen

from position 7. Ligands associated with EF-Hands are typically Asp at position 1, Asp or Asn at

position 3, Asp, Ser or Asn at position 5, a water molecule at position 9, and a bidentate Glu at

position 12 [69].

Pseudo EF-Hands coordinate the Ca2+ ion predominantly with main-chain carbonyl oxygen

atoms in a 14 residue loop. Participating ligands may be contiguous or non-contiguous in the

sequence.
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Using the volume of information available, numerous attempts have been made to predict Ca2+-

binding sites using computational methods. The capability of predicting or designing protein struc-

ture has far-reaching implications, in that it would allow for protein design with predetermined

functions.

Currently, prediction of sites using pattern searches to identify sites based on patterns identified

in the primary sequence can be performed using Prosite (http://www.expasy.ch/prosite/). Recent

work in our lab resulted in calcium binding-site patterns with higher prediction rates than those

presented in the Prosite database [112], as well as the capability of predicting non-contiguous

binding sites by using variable gap-lengths in the search motif. Prediction of sites based only

on primary sequence data suffers from the same constraints as attempting to elucidate tertiary

structure based on the sequence alone: mainly, the potential complexity resulting from a multitude

of potential conformations.

A number of studies have evaluated algorithms designed to predict binding sites based on

pre-existing tertiary structure data. Bagley and Altman developed a grid system to evaluate mi-

croenvironment properties surrounding a binding site, score the potential site based on preselected

physical and chemical characteristics, and statistically compare the site relative to a control non-

site [5]. Sodhi et al report a method, MetSite, that combines sequence and structure data to

identify residues that form the metal-binding sites [89]. This method reportedly resulted in mean

accuracy of 94.5% with a true-positive rate of 39.2%, and suggested that structural data alone was

insufficient for accurate prediction.

Although other prediction methods have been reported in the literature, only four additional

methods/analyses are discussed in this work, as they represent the core datasets utilized in our

study.

4.2 Method

In general, the common feature for evaluating metal-binding sites in known crystal structures

relies on the presence of clustered binding ligands: oxygen, nitrogen, and sulfur. In contrast to

assertions noted in previous studies, the presence of identifiable oxygen clusters alone has been

shown as sufficient for fast identification of calcium-binding sites in calcium-binding proteins [22].
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The four datasets presented in this work were selected because they were produced in the past

decade, and, for those involving computational predictions, they rely on clustering of ligands in the

three-dimensional structure as a precursor to applying their prediction algorithms.

Dataset I was reproduced from Nayal and Di Cera [75], who evaluated 62 Ca2+-binding sites

from 32 Ca2+-binding proteins using data from PDB files. As with the Sodhi method, the Nayal

study suggests that structural data alone cannot characterize the Ca2+-binding site for prediction

purposes [73, 75]. The Nayal and Di Cera algorithm also utilizes a grid system to evaluate valences

around a grid point selected based on the presence of at least 3 oxygen atoms within a probe radius

of 3.4Å. A prediction rate of 99.7% was reported using this method, based on the prediction of the

Ca2+-binding site within 3.5Å of the actual site, for a cutoff valence value of 1.6. It is important to

note with respect to the Nayal study that the clustering of oxygen atoms was integral to selection

of potential sites.

Dataset II was reproduced from Pidcock and Moore, who in 2001 conducted a comprehensive

statistical analysis of binding sites for both Ca2+ and lanthanide ions, utilizing data provided in

the PDB and the Cambridge Structural Database (http://www.ccdc.cam.ac.uk/) [77]. Dataset

II from Pidcock and Moore originally contained 44 proteins with 94 calcium-binding sites. (515

fully normalized crystal structures of calcium-binding proteins in PDB from 1994 to 1999 with a

resolution between the range 1.0-2.5 Å. This initial dataset was reduced in our study to 44 structures

with 60 sites by removing structures whose calcium-binding sites share ligand residues or ligands

other than those donated by the protein and water.)

Dataset III in our study was based on work done by Dudev et al, who evaluated the role of

second-shell atoms and their interactions with first shell atoms involved as binding ligands in metal-

binding sites [27]. Because the second shell contains many of the main chain or peptide backbone

atoms and structures, these constituents contribute to metal selectivity by constraining the metal-

binding site with respect to ionic radii and coordination geometry. The Dudev study utilized

density functional theory/continuum dielectric methods (DFT/CDM) to evaluate the dielectric

medium surrounding the metal-binding site, which was determined by first identifying the oxygen,

nitrogen and sulfur atoms surrounding the metal-binding site. The original Dataset consisted of

34 proteins with 81 calcium-binding sites, constrained by PDB structures with a resolution less

than 3.0 X-ray and NMR structures, and, with only one exception, no more than 30% sequence
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homology with the other selected protein structures.

Dataset IV from Yamashita et al. in 2005 contains 20 proteins with 46 calcium-binding sites

(The PDB short list containing calcium is used for analyze the relationship between experimental

and predicted energy). Yamashita et al reported the use of a radial distribution plot surrounding a

metal binding site to develop a hydrophobicity contrast function, which identifies metal binding sites

based on the assumption that a hydrophilic core around the binding site is surrounded by spherical

hydrophobic shell [107]. The determination of the hydrophilic core within the grid system is

determined based on the presence of clustered charged-ligands: essentially, oxygen, nitrogen and

sulfur.

The characteristics of the calcium-binding sites from the selected datasets that were analyzed

statistically in this study are graphically presented in Figure 4.1.

As see in Figure 4.1, Ca-O-C is the angle between the central Ca2+ (Ca) ion, the ligand oxygen

(O), and the carbon (C) bound to the ligand oxygen. O-Ca-O is the angle between two oxygen

ligands (O) and the central Ca2+ (Ca) ion. Distances evaluated were a) between the central Ca2+

(Ca) and and the carbon (C) bound to the ligand oxygen (dist(Ca,C)), and b) between the ligand

oxygen (O), and the carbon (C) bound to the ligand oxygen (dist(C,O)).Distinction is also made

in the statistical analysis between monodentate and bidentate ligands.

Angle and distance values were calculated using Matlab7.0. Statistics were compiled and

graphically-rendered using MS Excel (Microsoft corporation, Redmond, Wa)

4.3 Results

Table 4.1 summarizes the coordination numbers (CN) for the calcium binding sites evaluated in

each of the four sample datasets. For the purpose of this study, a cutoff distance of 3.5Å was

selected, so that only ligand atoms (O, N) within this distance would be considered coordinating

ligands. As a consequence of this distance constraint, the CN values reported in table differ from

those reported for the original datasets. The majority of coordination number (CN) is 6, 7, and 8.

3 14% of the datasets are complexes with a CN of 3 or 4. The average CN per calcium-binding site

is from 6.4 to 6.9.

It should be noted that ligands can be from the protein itself, cofactors, or water molecules. Ta-
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Figure 4.1: Illustration of two angles: Ca-O-C and O-Ca-O, and two distances: dist(Ca,C) and
dist(C,O)
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Table 4.1: Coordination numbers (CN) of four datasets

Dataset Total Sites CN8 CN7 CN6 CN5 CN4 CN3 Avg CN

I 62 10 31 14 4 0 2 6.7

II 94 11 35 32 11 4 1 6.4

III 81 14 37 19 1 6 4 6.4

IV 46 7 32 3 3 0 1 6.9

ble 4.2 summarizes the sources of the ligand atoms involved in binding site coordination. Side-chain

carboxylate oxygen atoms represent the major ligand contributor, followed by water molecules,

which stresses the significance of solvent exposure during binding.

4.3.1 Average Ca-O and Average Ca-C

Figure 4.2 presents the average distance values for ligand oxygen atoms (first shell) and their

associated carbon atoms (second shell) The Avg Ca-O and Avg Ca-C values were calculated as

follows in Equation 4.1 and Equation 4.2, respectively.

RO =
∑k

i=1 dist(Ca,O)
k

(4.1)

RC =
∑k

i=1 dist(Ca,C)
k

(4.2)

In Equation 4.1, k is the number of ligands in one site. In Equation 4.2, m is the number of

bonded carbon atoms, and k ≥ m. When k equals m in a single binding site, it indicates that

only monodentate ligands appear in this site, otherwise k must be greater than m for polydentate

ligands. From figure 2., it can be observed that the peak value of Avg Ca-O is either 2.4 (dataset I)

or 2.5 (dataset II, III, IV), which in fact means Avg Ca-O per site is between 2.3 and 2.5 because

we use 0.1 as interval bin. Also, the peak values of Avg Ca-C are 3.3 for all four datasets, which

means Avg Ca-C per site is between 3.2 and 3.3 due to bin interval. For all four datasets, the

resulting curves are very similar, and exhibit a characteristic decrease as the distance for both the

ligand oxygens and their associated carbon atoms approaches the first/second shell interval, which

is expected.
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Figure 4.2: Distribution of average Ca-O (Avg Ca-O) and average Ca-C (Avg Ca-C) distances

4.3.2 r RO RC and ar RO RC

To examine the spatial relationship between the inner oxygen shell and the outer bonded carbon

shell of calcium-binding sites, the ratio of Avg Ca-O and Avg Ca-C (r RO RC), is calculated using

Equation 4.3. It is hypothesized that a fixed ratio should exist for this relationship, based on the

average C-Ca and average O-Ca bond lengths and constraints on the the C-O-Ca angle. Equation 4

calculates an adjusted ratio, where NB represents the number of bidentate residue(s) in a putative

calcium-binding site and 0.5 is an empirically-derived coefficient of NB to determine the deduction

effect on ar RO RC

The calculated ratios r RO RC and ar RO RC for the four datasets are represented in Figure

4.3a and Figure 4.3b, respectively.

r RO RC =
RO

RC
(4.3)

ar RO RC = r RO RC − 0.5NB (4.4)
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Figure 4.3: The distributions of r RO RC (a) and ar RO RC (b) in dataset I (light gray), dataset
II (dark gray), dataset III (white), and dataset IV (black)

It is clear that the majority of r RO RC is represented by the value ranging from 0.66 to 0.84 with

an interval bin of 0.03. After adjustment of r RO RC, the majority of ar RO RC is represented by

the value ranging from 0.66 to 0.78. Therefore, a relatively stable range value exists to quantitatively

evaluate the geometric properties of calcium binding sites. Besides calcium-binding sites, are there

any other domains or locations of proteins which have similar geometric property? It is an open

question motivating us to explore in the prediction of calcium binding sites in proteins using this

measurement of geometric property without knowing documented calcium location.

4.3.3 Bidentate Residue Effect on r RO RC

More interestingly, we find that the bidentate property of both aspartate and glutamate have an

important impact on the distribution of r RO RC. Intuitively, the carbon shell will get closer to the

oxygen shell in one calcium-binding site if there is a bidentate residue in that site, as the carbon

from the bidentate residue is restricted to stretch away from the calcium cation. The effect of

differentiating sites based on the presence of bidentate ligands was examined for all four datasets.

Similar results were obtained for all analyses. The results for only Dataset II, which included the

most proteins of the four evaluated datasets, are depicted in Figure 4.4. As seen in Figure 4.4,

changes in r RO RC based on inclusion of bidentate ligands results in a decreased ratio, which is

to be expected, as the bidentate ligand distances (O-Ca) are shorter than non-bidentate distances
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Figure 4.4: Distribution of r RO RC for non-bidentate (black) and bidentate sites (white)

(data not shown)

A clear cutoff between the two distributions is apparent at 0.75. Even though there is the overlap

between 0.72 and 0.75 of ar RO RC for both sites, the frequency (3 sites) from bidentate sites is

very small. While Figure 4 illustrates the distinction between sites including bidentate ligands, it

does not explain this phenomenon. To answer that, it is necessary to evaluate the Ca-O-C bond

angle.

4.3.4 Ca-O-C

The Ca-O-C angle constrains the proximity of carbon from the calcium cation to some extent.

A decrease in this angle generally results in a decrease in the C-Ca distance. It can be seen in

Figure 5 that the bidentate Ca-O-C angles range between 100 and 150 whereas the monodentate

(i.e. - non-bidentate) Ca-O-C angles range between 130 and 160. These ranges overlap between 130

and 150 which also corresponds with the highest frequency distribution across the datasets. The
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Figure 4.5: Distribution of Ca-O-C angles for bidentate and monodentate residues over four datasets
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Figure 4.6: Distribution of Ca-O-C angle pair sums for bidentate residues over four datasets

bidentate angle properties can also be characterized by the sum of the angle pairs, as seen in Figure

4.6. Here we see a more discernable quantity, where the majority of the frequency distribution

values fall between 180 and 200, with a bin interval of 10.

4.3.5 Relationship Between r RO RC and Ca-O-C

In order to relate the individual ligand Ca-O-C angles to r RO RC for the binding site, the average

Ca-O-C (denoted as AvgCa-O-C) angle is defined by calculating the mean for all Ca-O-C angles

in each individual site. In this way, both AvgCa-O-C and r RO RC can be compared. Figure 4.7

shows the correlation of AvgCa-O-C and r RO RC for Dataset II.

As seen in Figure 4.7, the coordinate convergence appears linear, with AvgCa-O-C decreasing in

inverse proportion to r RO RC. It can also be observed that AvgCa-O-C is always greater than 90,

which implies that the carbon atom must reside at a greater distance than the oxygen ligand from

the calcium cation. To verify the linear relationship between these variables, a Pearson coefficient
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Figure 4.7: Distribution of Ca-O-C angle pair sums for bidentate residues over four datasets

was calculated at -0.96 which means that strong negative correlation exists. The Pearson product-

moment correlation coefficient (r) is detailed in Equation 4.5.

r =
∑

(x− x̄)(y − ȳ)∑ √
(x− x̄)2(y − ȳ)2

(4.5)

In Equation 4.5, (r) is a measure of the correlation of two variables X and Y measured on

the same object or organism, that is, a measure of the tendency of the variables to increase or

decrease together. The values for x bar and y bar are the sample means AVERAGE(x) and

AVERAGE(y). The value r ranges from -1 to 1. A value of 1 indicates that a linear equation

describes the relationship perfectly and positively, with all data points lying on the same line and

with Y increasing with X. A score of -1 shows that all data points lie on a single line but that Y

increases as X decreases. A value of 0 shows that a linear model is inappropriate - that there is no

linear relationship between the variables.
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Figure 4.8: Frequency of occurrences of formally charged residues by site, for Datasets I-IV. A
formal charge of -3 was most frequent for the sum of all four datasets, however, a formal charge of
2 was disproportionately high within Dataset II

4.3.6 Types of Ligands per Site

Because Ca2+ is a positively-charged ion, the microenvironment surrounding the ion must neces-

sarily exhibit a net negative charge of -2. It was previously noted that 3-4 negative charges in the

primary coordination shell may provide optimal charge configuration [69, 110]. In the studies cited

for datasets used in this work, formal charge is defined where sidechain carboxyl groups have a

charge of -1, main chain carbonyls from Glu or Asp have a charge of -1, and all other main chain

carbonyls have a formal charge of zero. However, data summarized in the four datasets used in this

study indicate the frequency of charges follows the order −3 > −2 > −1 > −4, as seen in Figure

4.8.

Interestingly, six sites were found with a formal charge of zero, and six sites with a formal charge

of 5. To further examine this, data from PDB files for 1BJR and 1HYT were obtained. Relevant

data from the PDB files is summarized in Table 4.3. The columns in Table 4.3 are defined as follows:
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HetAtm Res indicates the sequence number associated with the calcium ion; ResName is the amino

acid providing the ligand atom; AtomCharID indicates the atom type; ResSeq is the primary

sequence number of the residue; Ca Bind Dist is the distance between the ion and the ligand atom;

C-Lig-Ca Angle is the angle between the calcium ion, the binding ligand atom and its associated

carbon; Ligand source indicates whether the ligand atom is from the main chain or the side chain,

and the functional group; and Charge indicates the formal charge associated with each ligand atom.

Models of the two binding sites were completed using Pymol (http://pymol.sourceforge.net/), and

are presented in Figure 4.9.

As seen in Table 4.3, the 4 binding ligands surrounding calcium 290 in 1BJR are all carbonyl

oxygens, with no formal charge. For calcium 804 in 1HYT, seven ligand atoms bind the calcium

ion, comprised of two pairs of bidentate ligands that each contribute a charge of -1, two side chain

carboxyl groups that each contribute a charge of -1, and a final charge of -1 from a main chain Glu

carbonyl.

Figure 4.9 indicates an irregular geometry for both binding sites, as compared with the more

symmetric geometry typically seen in EF-Hand calcium binding motifs (Figure 4.10). Nonetheless,

the structures observed in Figure 4.9 agree with the calculated charges
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Figure 4.9: A) 1BJR calcium 290 has a formal charge of zero in the binding site, and B) 1HYT,
calcium 801, has a formal charge of 5
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Table 4.2: Ligand Charge Data for Two Calcium Binding Sites

HetAtm Atom Ca Bind C-Lig-Ca Ligand

PDB ID HetAtm ResName CharID ResSeq Dist Angle source Charge

1BJR 290 Arg O 12 2.77 149.18 MC Carbonyl 0

1BJR 290 Ser O 15 3.28 169.84 MC Carbonyl 0

1BJR 290 Asn OD1 257 2.83 144.17 SC Carbonyl 0

1BJR 290 Ala O 273 2.98 132.93 MC Carbonyl 0

1HYT 801 Asp OD2 138 2.32 132.93 SC Carboxyl 1

1HYT 801 Glu OE1 177 2.45 101.84 SC Carboxyl 0.5

1HYT 801 Glu OE2 177 2.82 82.44 SC Carboxyl 0.5

1HYT 801 Asp OD1 185 2.43 132.09 SC Carboxyl 1

1HYT 801 Glu O 187 2.27 150.98 MC Carbonyl 1

1HYT 801 Glu OE1 190 2.48 92.90 SC Carboxyl 0.5

1HYT 801 Glu OE2 190 2.51 89.81 SC Carboxyl 0.5
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Figure 4.10: Pentagonal-bipyrimid geometry surrounding Ca2+ ion (A) and (B) ligand-ion contact
geometry for calmodulin EF-I binding pocket from PDB 3CLN. The water molecule at -X is not
shown.
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Chapter 5

PREDICTING DISULFIDE CONNECTIVITY

5.1 Introduction

Disulfide bonds are covalent bonds between two non-adjacent cysteine residues in proteins. They

play an essential role in folding and assembling of proteins [41, 86]. The better prediction on

disulfide bonds will lead the better prediction on protein structure. Furthermore, the knowledge

of disulfide bonds helps reveal structure/function relationship of proteins. Therefore, developing

methodology and/or descriptors for the prediction of disulfide connectivity revealing properties of

the bonds is as important as the gaining the high accuracy.

Although there have been bunches of approaches using different techniques, Tsai et al. have

categorized all methods into two groups: (1) pattern-wise as shown in [101, 111] and (2) pair-wise

as shown in [32, 7, 31]. The idea of a pattern-wise method is based on on comparing the test

protein sequence with template proteins having the same number of disulfide bonds and assign

the connectivity pattern of the template protein, whose primary sequence is most similar in some

aspect to that of the test protein; the basic principle of a pair-wise method is to break the test

protein into all possible bonds, then associate a probability function for each possible bridge by

comparing them with all bridges in a template dataset, finally assign the set of disjoint pairs with

maximum total weight to the disulfide bond connectivity, which usually carries out by applying the

well-known maximum weight perfect matching algorithm developed by Edmonds [28].

The highest prediction accuracy among all results quoted above is 52% obtained by [111].

Recently, elegantly applying the state-art technology SVM, Tsai et al. improved the accuracy to

63%; Chen et al. established a new record of prediction accuracy of 70% by combining the previous

works [97, 111] into a two level model in addition to using SVM [20]. after calculating the bond

possibility of any pair of cysteines in one protein chain; consequently, they belong to pair-wise

method in general. The main reason why the accuracy of pattern-wise method is low is mainly
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due to there do not have sufficient template proteins having the same number of disulfide bonds

as test proteins. Notice that the result in the work [20] exceeds the best performed pattern-wise

method [111] by 18% in prediction accuracy, which is a giant leap. Zhao et al. and Tsai et al. have

realized that the limitation comes from the number of template patterns in pattern-wise methods

[111, 97]. In order to break this limitation, we develop a new method to compare proteins with

different number of disulfide bonds if there is no protein with the same number of disulfide bonds

close enough to a test protein.

A descriptor is another determinant factor for prediction performance. Fariselli and Casadio

calculated the bond probability of two cysteines from local contact potential profile [31].Zhao et

al. used global sequence separations as the representation of a protein [111]. Tsai et al. also

used global sequence separations as one of their descriptors for predicting the bond probabilities of

possible pairs of cysteines [97]. Secondary structure has been employed as the descriptor for input

coding [7, 32]. Inspired from previous descriptors, we construct a global descriptor of secondary

structure, cysteine separation profile of secondary structure (CSPSS), similar to the CSP descriptor

[111]. Instead of using a local window of secondary structures, we extend the window beginning

from the first cysteine and ending to the last cysteine in one protein chain.

Our approach combines the new proposed pattern-wise method and the descriptor of CSPSS to

predict disulfide connectivity. We apply the method on SWISS-PROT 39 (SP39) [6] and obtain

the prediction accuracy of 70%.

5.2 Method

The new prediction consists of three steps. First, the secondary structures are generated from

protein sequences by applying the PSIPRED server of [71]. Then, the CSPSSs are encoded on

the separation profile of cysteine positions on the secondary structure sequence. Finally, the new

pattern-wise method is used to assign known patterns to test proteins according to the divergences

of CSPSSs between the test proteins and template proteins.
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5.2.1 CSPSS

Let x be a protein with n disulfide bonds paired by 2n cysteine residues. The cysteine separation

profile on secondary structure (CSPSSx) is defined as follows,

CSPSSx = (S1, S2, ..., S2n−1) (5.1)

where Si represents the segment of secondary structure sequence between the ith paired cysteine

and the (i + 1)th paired cysteine for each i = 1, 2, ..., 2n − 1. By the definition, Si is a character

array consisting of three possible symbols (C, H, E) representing different secondary structures. To

make it numeric, we transform Si into Ŝi, a vector of coordinates as follows,

Ŝi = (Li, Ci, Ei, Hi), (5.2)

where Li is the length of the segment, Ci is the number of C’s, Ei is the number of E’s, and Hi is the

number of H’s. Clearly, Li = Ci +Ei +Hi. The following is an example showing how to form Si and

Ŝi from a given protein chain (AMCI APIME) containing 56 amino acids (aa), 10 paired cysteines,

the disulfide pattern [1−7, 2−5, 3−6, 4−10, 8−9], and 56 secondary structures (ss) from prediction.

aa : EECGPNEV FNTCGSACAPTCAQPKTRIC

TMQCRIGCQCQEGFLRNGEGACV LPENC

ss : CCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCEECCCCCCCCCCCC

S1 = [CCCCCCCCCC]→ Ŝ1 = [10, 10, 0, 0]

S2 = [CCCCC]→ Ŝ2 = [5, 5, 0, 0]
...

S8 = [CCCCCEECCCCCC]→ Ŝ8 = [13, 11, 2, 0]

S9 = [CCCCCCC]→ Ŝ9 = [7, 7, 0, 0]
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5.2.2 An expanded pattern-wise method

The CSPSS of a test protein could be compared with all CSPSS’s of template proteins. The disulfide

connectivity pattern of the test protein can be predicted as that of the template protein with the

most similar CSPSS, i.e. with the minimum divergence value. The divergence between protein x

and protein y, D(x, y), is defined below.:

|Ŝx
i − Ŝy

i | = (Lx
i − Ly

i )2 + (Cx
i − Cy

i )2 + (Ex
i − Ey

i )2 + (Hx
i −Hy

i )2,

and

D(x, y) =
2n−1∑
i=1

√
|Ŝx

i − Ŝy
i |

where Sx
i and Sy

i are the ith separations of the CSPSSs of two proteins of x and y, respectively.

Similarly, Ŝx
i and Ŝy

i are the ith vectors of the CSPSSs; Lx
i and Ly

i are the length of ith segments;

Cx
i and Cy

i are the number of C’s in ith segments; Ex
i and Ey

i are the number of E’s in ith segments;

and Hx
i and Hy

i are the number of H’s in ith segments of different proteins according to the letter

in the following parenthesis. If more than one proteins meet minimum value for one test protein,

one of the template patterns will be selected randomly. In fact, this situation has not occurred in

our experiments.

The known pattern-wise method algorithms [101, 111] restrict comparison only between a test

protein and a template protein with the same number of disulfide bonds. This restriction may reach

the limitation when these proteins with the same number of disulfide bonds are not very close to

the test proteins, i.e., the divergencies may not be small enough. To overcome the obstacle, we

expand the pattern-wise method to compare test proteins with template proteins having different

number of disulfide bonds. The new method includes four possible phases described as follows for

predicting the disulfide bond pattern of a given test protein x. For any protein p, Bp denotes the

set of all disulfide bonds and |Bp| denotes the number of disulfide bonds in p.

1. Calculate D(x, y) for all template proteins y satisfying that |Bx| = |By|; assign the disulfide

bound pattern of the y to the pattern of x if there is a y such that D(x, y) is minimum one

and is less than the pre-determined cutoff value. Otherwise,



63

2. Calculate D(x, y) for all artificially modified template proteins y satisfying that |Bx| = |By|

where y is modified from z by removing one or more disulfide bonds in z (y has same primary

sequence and secondary structure with z, and By ⊂ Bz); assign the pattern of y to the pattern

of x if there is a z with its modified protein y such that D(x, y) is minimum one and is less

than the cutoff value. Otherwise,

3. Modify x into two proteins: xi and xj by removing one or more disulfide bonds in x where

xi and xj have to satisfy the following conditions: Bx = Bxi ∪ Bxj , Bxi ∩ Bxj = Ø, and

|Bxi | >= |Bxj |; compare xi with any template protein u satisfying that |Bu| = |Bxi | and

xj with any template protein v satisfying that |Bv| = |Bxj |; assign the pattern of u to the

pattern of xi if there is a u such that D(xi, u) is minimum one and is less than a cutoff value,

and the pattern of v to the pattern of xj if there is a v such that D(xj , v) is minimum one

and is less than a cutoff value; assemble the patterns of xi and xj into the candidate pattern

of x (denoted as P (|Bxi |+ |Bxj |) if they are available; choose one of candidate patterns with

the largest value of |Bxi | if there are more than one candidate patterns.

4. If no such satisfied pattern of x is assembled in the third phase, take the pattern with minimum

divergence without cutoff restriction from all above phases. As a matter of fact, the minimum

divergence in the 3rd phase is the sum of both minimum divergences through comparisons

between two modified proteins of x and template proteins.

It is worth mentioning three points detailed as follows in the implementation of the method.

p(B) denotes the protein p with B disulfide bonds.

1. The template proteins with relatively small number of disulfide bonds have higher priority

for comparison than those with relative larger number of disulfide bonds in the 2nd phase.

For instance, if x(2) can find a satisfied pattern from a template protein y(3), x(2) will not

search pattern in any template protein y(B) where B > 3.

2. Pattern assembly has a preference order in the 3rd phase. For instance, x(5) does not have

any match in the first two phases. xi(4) can find a match from u(4) in the 3rd phase, the

pattern of u(4) adds the left pair of cysteines (v(1), a special case) to assembly the candidate
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pattern of x(5), P(4 + 1). Similarly, x can be divided into two modified proteins of xi(3) and

xj(2), and can obtain a candidate pattern of P(3 + 2) assembled from the matched patterns

of u(3) and v(2). Instead of the P(3 + 2), the P(4 + 1) should be assigned to the pattern

of x(5) because of the preference order. In fact, pattern-searching stops immediately after

finding the P(4 + 1) in the implementation.

3. The empirical value of 6B is taken as the cutoff value of divergences where B is the number

of disulfide bonds.

5.2.3 Measurement

The prediction accuracy of our method is also evaluated with QP , which is the fraction of proteins

with correct disulfide connectivity pattern prediction and is defined as:

QP =
CP

TP
(5.3)

where CP is the number of proteins correctly predicted and TP is the number of total test proteins.

We ignore another general measurement of the fraction of pairs of cysteines correctly predicted in

our experiments because even one displaced disulfide bond in a protein may lead to a nonfunctional

protein structure or a protein structure with different function [37, 36, 86]. The QP is more reliable

to evaluate performance on disulfide bond prediction.

5.3 Results

5.3.1 Dataset

To compare our method to all other methods published in 2005-2006, the dataset from SWISS-

PROT named SP39 [6] was adopted for method validation. To avoid the influence of sequence

homology, the dataset was divided into four groups to guarantee that each two proteins from

different groups have a sequence identity less than 30% [7, 97]. The numbers of sequences according

to the bonds are displayed in Table 5.1. as well as the results.
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Table 5.1: Performance comparison among different algorithms

B=2 B=3 B=4 B=5 B=25

SP39 156 146 99 45 446

Method QP % QP % QP % QP % QP %

2D −RNNa 74 51 27 11 49

DiANNAb 62 40 55 26 49

CSP c 72 54 33 18 52

CSPSS+Old Pattern-wise 72 58 37 18 54

SV Md 79 53 55 71 63

Two− levelModele 85 67 57 58 70

CSPSS+New Pattern-wise 79 68 68 45 70

a [7]
b [32]
c [111]
d [97]
e [20]
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5.3.2 Cross-validation

In order to compare with other methods for disulfide connectivity prediction, same criteria were

applied on selecting our dataset. Also the same fourfold cross-validation has been applied on our

dataset. Even the selection of four subsets is same as the method [7]. The SP39 were divided into

four subsets each of which has four balanced groups according to the number of bonds. Table 5.1

lists the accuracies of four-fold cross-validation performed with the dataset SP39 for our method

along with some results reported previously. Here we only list the results published in 2005 because

the results before 2005 show the accuracy is up to 46%. Baldi et al. used 2-Dimensional Recursive

Neural Network (2D-RNN) to predict disulfide connectivity in proteins starting from their primary

sequence and its homologues [7]. The outputs of 2D-RNN are the pair-wise probabilities of the

existence of a bridge between any pair of cysteines. Finally, the weighted matching algorithm is

applied on the graph with all edges/possibilities between any two vertices/cysteines. A diresidue

Neural Network (DiANNA) [32] is trained to recognize pairs of bonded half-cystines given input of

half-cystines symmetric flanking regions. The network is trained using disulfide bonds information

derived from high-quality protein structures. the data are encoded with respect to cysteine pairs.

Zhao et al. simply adopted the descriptor of cysteine separation profile and used the nearest

neighboring method [111]. For the SVM model [97], the features coded are the information

extracted from profile and distances between oxidized cysteines (DOC). After the data are encoded,

the SVM model is used to predict bonding probabilities for each cysteine pair. Finally, the problem

is transformed into a maximum weight matching problem and solved to find the final bonding

pattern for a protein.

With the CSPSS descriptor the traditional pattern-wise method obtained a Qp of 54%, which

is better than those obtained in previous methods except the SVM models. The reason for the

improvement is the consideration of global secondary structure. We also found that our results

contain all but one correct predictions from the CSP method [111], which validates that our

descriptor includes the information of the CSP descriptor. Furthermore, we combine the CSPSS

descriptor with the new pattern-wise method to obtain the best performance of 70%, which is

comparable to the current-of-the-state method, two-level SVM model [20]. More interestingly,

our method reflects the evolutionary process of DNA recombination and mutation between the
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structure patterns with fewer disulfide bonds and the structure patterns with more disulfide bonds.

Figure 5.1 shows an example of finding pattern in the template protein with more disulfide bonds

through the new pattern-wise method. ANGI HUMAN (PDBid:1A4Y, pattern:[1-4, 2-5, 3-6],

Figure 5.1a) can not find a correct pattern from template proteins with three disulfide bonds using

the traditional pattern-wise method [111] because even the minimum divergence between the test

protein and template proteins is too large. However, it can find the correct pattern from the modified

protein with the pattern of [1-4, 2-5, 3-6](26-84, 40-95, 58-110) from RNP RAT (PDBid:1A4Y,

pattern:[1-6, 2-7, 3-8, 4-5](26-84, 40-95, 58-110, 65-72) Figure 5.1b) by removing the bond of 4-5(65-

72) through the 2nd phase of the new pattern-wise method. It indicates that the protein with more

disulfide bonds may evolve from the protein with fewer disulfide bonds. Figure 5.2 shows an example

of finding pattern in the template protein with fewer disulfide bonds through the new pattern-wise

method, which may add proof to the above opinion. UROK HUMAN (PDBid:1LMW, pattern:[1-

3, 2-4, 5-9, 6-7, 8-10], Figure 5.2a) can not find a correct pattern from the template protein of five

disulfide bonds using the traditional pattern-wise method [111], but it can be divided into two

modified proteins one of which has paired cysteins (42, 58, 136, 168, 182, 191, 201, 220), then this

modified protein can find the satisfied pattern from EL1 PIG (PDBid:1C1M, pattern:[1-2, 3-5,

4-7, 6-8](42-58, 136-201, 168-182, 191-220) Figure 5.2b), finally the pattern with paired cysteines

adds the left pair [1-2](50-111) in the other modified protein to make a complete pattern according

to the index of paired cysteines in protein 1LMW through the 3rd phase of the new pattern-wise

method.

5.4 Conclusion and Discussion

There are two major categories for the descriptors of disulfide connectivity prediction: (1) The

global descriptors [20, 97, 111] such as sequence length and the positions of all cysteines, and (2)

local descriptors [7, 20, 31, 32, 97, 101] such as secondary structure and residue contact potential.

The SVM model [97] for predicting disulfide connectivity benefits from the combination of the

global descriptor of distance of cysteines (DOC) and local descriptor (sequence profile). The two

level SVM model [?] takes advantages of both the CSP descriptor [?] and the descriptors from

previous SVM model [97]. We add the descriptor CSPSS to the global descriptors, test this
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Figure 5.1: An example of finding the pattern of the test protein (a) from the subpattern of the
template protein (b) with more disulfide bonds
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Figure 5.2: An example of finding the pattern of the test protein (a) from the template protein (b)
with less disulfide bonds
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descriptor with traditional and new pattern-wise methods, and obtain good performance. It is thus

possible to improve the results through combining the CSPSS and local descriptors.

There are two major categories for the methods of disulfide connectivity prediction: pattern-wise

and pair-wise already mentioned in the section of introduction. We develop the new pattern-wise

method which can replace the traditional pattern-wise method because of the limited number of

patterns available in the template set of proteins. The new pattern-wise method could also replace

pair-wise methods to some extent not only because it is simple and time-efficient but also because

it considers the whole pattern naturally not breaking any disulfide bond. In the literature [97],

they mentioned that each of CTRA BOV IN (PDBid:1HJA, pattern: [1-4, 2-3, 5-9, 6-7, 8-10]) and

UROK HUMAN (PDBid:1LMW, pattern:[1-3, 2-4, 5-9, 6-7, 8-10], Figure 5.2a) has an unique

pattern in the dataset SP39 and can not be predicted by the pattern-wise method CSP [111]. Our

new pattern-wise method can successfully predict the disulfide patterns of both proteins as well as

the SVM model [97]. In addition, there exists some deficiency of machine learning techniques such

as neural networks and SVM that they always take the non-bonded cysteines as negative samples

and are thus not scientific without considering influences between disulfide bonds sufficiently in one

protein chain. The method itself could be refined through the process of dividing test proteins in

the 3rd phase. Meanwhile, the performance of the method could be improved by balancing the

tradeoff between divergence cutoff value and the hierarchical priority through more experiments

of the method. In this study, we propose a new pattern-wise method to resolve disulfide pattern

insufficiency which the traditional pattern-wise method causes. This method takes full advantages

of pattern analysis considering the influences among disulfide bonds in one protein chain. The

best performance reached by this method with the descriptor of CSPSS indicates that the simple

pattern-wise method is comparable to the best pair-wise method and protein secondary structure

is highly related to disulfide bonds. Both the method and the descriptor of CSPSS are available

for use with other methods and descriptors for predicting disulfide connectivity.
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Chapter 6

CONCLUSIONS

This dissertation work focuses on two bioinformatics problems: calcium-binding and disulfide

bond connectivity. I have tried so many graph theory algorithms to solve these practical issues.

Because these two problems involve bunches of biophysical, biochemical, geometrical properties,

some algorithms may only partially solve the problems and provide a framwork or pathway to

reveal the interior relationship among certain properties. All work done are from computational

angle and are expected to verification.



72

BIBLIOGRAPHY

[1] V.I. Abkevich and E.I. Shakhnovich. What can disulfide bonds tell us about protein energetics,
function and folding: Simulations and bioinformatics analysis. J. Mol. Biol., 300:975–985,
2000.

[2] I. L. Alberts, K. Nadassy, and S. J. Wodak. Analysis of zinc binding sites in protein crystal
structures. Protein Sci, 7(8):1700–16, 1998. 0961-8368 (Print) Journal Article Research
Support, Non-U.S. Gov’t.

[3] C. S. Babu, T. Dudev, R. Casareno, J. A. Cowan, and C. Lim. A combined experimental
and theoretical study of divalent metal ion selectivity and function in proteins: application
to e. coli ribonuclease h1. J Am Chem Soc, 125(31):9318–28, 2003. 0002-7863 (Print) Journal
Article Research Support, Non-U.S. Gov’t.

[4] Y. S. Babu, C. E. Bugg, and W. J. Cook. Structure of calmodulin refined at 2.2 a resolution.
J Mol Biol, 204(1):191–204, 1988.

[5] S. C. Bagley and R. B. Altman. Characterizing the microenvironment surrounding protein
sites. Protein Sci, 4(4):622–35, 1995.

[6] Amos Bairoch and Rolf Apweiler. The SWISS-PROT protein sequence database and its
supplement TrEMBL in 2000. Nucl. Acids Res., 28(1):45–48, 2000.

[7] Pierre Baldi, Jianlin Chen, and Alessandro Vullo. Large-Scale Prediction of Disulphide Bond
Connectivity, pages 97–104. MIT Press, Cambridge, MA, 2005.

[8] Atkinson MJ Reidh U Becker I Nekarda H Siewert JR Becker, K-F and H. Hofker. E-cadherin
gene mutations provide clues to diffuse type gastric carcinomas. CANCER RESEARCH,
54:3845–3852, 1994.

[9] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov,
and P. E. Bourne. The protein data bank. Nucleic Acids Res, 28(1):235–42, 2000.

[10] M. C. Bewley, C. M. Boustead, J. H. Walker, D. A. Waller, and R. Huber. Structure of
chicken annexin v at 2.25-a resolution. Biochemistry, 32(15):3923–9, 1993.

[11] D. N. Bolon and S. L. Mayo. Enzyme-like proteins by computational design. Proc Natl Acad
Sci U S A, 98(25):14274–9., 2001.



73

[12] R. Bott, M. Ultsch, A. Kossiakoff, T. Graycar, B. Katz, and S. Power. The three-dimensional
structure of bacillus amyloliquefaciens subtilisin at 1.8 a and an analysis of the structural
consequences of peroxide inactivation. J Biol Chem, 263(16):7895–906, 1988.

[13] L. Brocchieri, T. N. Kledal, S. Karlin, and E. S. Mocarski. Predicting coding potential
from genome sequence: application to betaherpesviruses infecting rats and mice. J Virol,
79(12):7570–96, 2005.

[14] Yang S-H Brown, KC and T. Kodadek. Highly specific oxidative cross-linking of proteins
mediated by a nickel-peptide complex. Biochemistry, 34:4733–4739, 1995.

[15] A. A. Canutescu, A. A. Shelenkov, and Jr. Dunbrack, R. L. A graph-theory algorithm for
rapid protein side-chain prediction. Protein Sci, 12(9):2001–14, 2003.

[16] E. Carafoli. The signaling function of calcium and its regulation. J Hypertens Suppl,
12(10):S47–56, 1994. 0952-1178 (Print) Journal Article.

[17] J.M. Castagnetto, S.W. Hennessy, V.A. Roberts, E.D. Getzoff, J.A. Tainer, and M.E. Pique.
Mdb: the metalloprotein database and browser at the scripps research institute. Nucleic
Acids Res, 30(1):379–382, 2002.

[18] P. Chakrabarti. Geometry of interaction of metal ions with sulfur-containing ligands in protein
structures. Biochemistry, 28(14):6081–5, 1989. 0006-2960 (Print) Journal Article Research
Support, U.S. Gov’t, P.H.S.

[19] P. Chakrabarti. Interaction of metal ions with carboxylic and carboxamide groups in protein
structures. Protein Eng, 4(1):49–56, 1990. 0269-2139 (Print) Journal Article.

[20] B. Chen, C. Tsai, C. Chan, and C. Kao. Disulfide connectivity prediction with 70models.
Proteins: Structure, Function, and Bioinformatics, 64:246–252, 2006.

[21] Joep Kerbosch Coen Bron. Finding all cliques of an undirected graph. Communications of
the ACM, 16(9):575–577, 1973.

[22] H. Deng, G. Chen, W. Yang, and J. J. Yang. Predicting calcium binding sites in proteins-a
graph theory and geometry approach. Proteins, (64):34–42, 2006.

[23] H. Deng, H. Liu, and Y. Zhang. Mining calcium-binding sites from protein structure graphs.
In the Second International Conference on Neural Networks and Brain (ICNN&B05), Beijing,
2005.

[24] C. Divne, J. Stahlberg, T. Reinikainen, L. Ruohonen, G. Pettersson, J. K. Knowles, T. T.
Teeri, and T. A. Jones. The three-dimensional crystal structure of the catalytic core of
cellobiohydrolase i from trichoderma reesei. Science, 265(5171):524–8, 1994.



74

[25] S. H. Done, J. A. Brannigan, P. C. Moody, and R. E. Hubbard. Ligand-induced conformational
change in penicillin acylase. J Mol Biol, 284(2):463–75, 1998.

[26] T. Dudev and C. Lim. Effect of carboxylate-binding mode on metal binding/selectivity and
function in proteins. Acc Chem Res, 40(1):85–93, 2007. 0001-4842 (Print) Journal Article.

[27] T. Dudev, Y. L. Lin, M. Dudev, and C. Lim. First-second shell interactions in metal binding
sites in proteins: a pdb survey and dft/cdm calculations. J Am Chem Soc, 125(10):3168–80,
2003. 0002-7863 (Print) Journal Article Research Support, Non-U.S. Gov’t.

[28] J. Edmonds. Paths, trees, and flowers. Canadian J. Math, 17:449–467, 1965.

[29] J. Emsley, H. E. White, B. P. O’Hara, G. Oliva, N. Srinivasan, I. J. Tickle, T. L. Blundell,
M. B. Pepys, and S. P. Wood. Structure of pentameric human serum amyloid p component.
Nature, 367(6461):338–45, 1994.

[30] L. O. Essen, O. Perisic, M. Katan, Y. Wu, M. F. Roberts, and R. L. Williams. Structural
mapping of the catalytic mechanism for a mammalian phosphoinositide-specific phospholipase
c. Biochemistry, 36(7):1704–18, 1997.

[31] Piero Fariselli and Rita Casadio. Prediction of disulfide connectivity in proteins. Bioinfor-
matics, 17(10):957–964, 2001.

[32] F. Ferre and P. Clote. Disulfide connectivity prediction using secondary structure information
and diresidue frequencies. Bioinformatics, 21(10):2336–2346, 2005.

[33] M. M. Flocco and S. L. Mowbray. The 1.9 a x-ray structure of a closed unliganded form
of the periplasmic glucose/galactose receptor from salmonella typhimurium. J Biol Chem,
269(12):8931–6, 1994.

[34] A. Francesconi and R. M. Duvoisin. Divalent cations modulate the activity of metabotropic
glutamate receptors. J Neurosci Res, 75(4):472–9, 2004.

[35] J. P. Glusker. Structural aspects of metal liganding to functional groups in proteins. Adv
Protein Chem, 42:1–76, 1991.

[36] E. Gross, D. B. Kastner, C. A. Kaiser, and D. Fass. Structure of ero1p, source of disulfide
bonds for oxidative protein folding in the cell. Cell, 17:601610, 2004.

[37] E. Gross, CS. Sevier, A. Vala, CA. Kaiser, and D. Fass. A new fad-binding fold and inter-
subunit disulfide shuttle in the thiol oxidase erv2p. Nat Struct Biol, 9:61–67, 2002.

[38] M. M. Harding. The geometry of metal-ligand interactions relevant to proteins. Acta Crys-
tallogr D Biol Crystallogr, 55(Pt 8):1432–43, 1999. 0907-4449 (Print) Journal Article.



75

[39] M. M. Harding. The geometry of metal-ligand interactions relevant to proteins. ii. angles at the
metal atom, additional weak metal-donor interactions. Acta Crystallogr D Biol Crystallogr,
56(Pt 7):857–67, 2000. 0907-4449 (Print) Journal Article.

[40] M. M. Harding. Geometry of metal-ligand interactions in proteins. Acta Crystallogr D Biol
Crystallogr, 57(Pt 3):401–11, 2001. 0907-4449 (Print) Journal Article.

[41] P.M. Harrison and M.J.E. Sternberg. Analysis and classification of disulphide connectivity
in proteins. J. Mol. Biol, 244:448463, 1994.

[42] A. C. Hausrath and B. W. Matthews. Redetermination and refinement of the complex of
benzylsuccinic acid with thermolysin and its relation to the complex with carboxypeptidase
a. J Biol Chem, 269(29):18839–42, 1994.

[43] O. Herzberg, J. Moult, and M. N. James. A model for the ca2+-induced conformational
transition of troponin c. a trigger for muscle contraction. J Biol Chem, 261(6):2638–44, 1986.
0021-9258 (Print) Journal Article Research Support, Non-U.S. Gov’t.

[44] E. Hohenester, P. Maurer, C. Hohenadl, R. Timpl, J. N. Jansonius, and J. Engel. Structure
of a novel extracellular ca(2+)-binding module in bm-40. Nat Struct Biol, 3(1):67–73, 1996.

[45] D. R. Holland, D. E. Tronrud, H. W. Pley, K. M. Flaherty, W. Stark, J. N. Jansonius,
D. B. McKay, and B. W. Matthews. Structural comparison suggests that thermolysin and
related neutral proteases undergo hinge-bending motion during catalysis. Biochemistry,
31(46):11310–6, 1992.

[46] R. H. Holm, P. Kennepohl, and E. I. Solomon. Structural and functional aspects of metal
sites in biology. Chem Rev, 96(7):2239–2314, 1996. 0009-2665 (Print) Journal article.

[47] K. C. Holmes, D. Popp, W. Gebhard, and W. Kabsch. Atomic model of the actin filament.
Nature, 347(6288):44–9, 1990. 0028-0836 (Print) Journal Article.

[48] D. M. Hoover and M. L. Ludwig. A flavodoxin that is required for enzyme activation:
the structure of oxidized flavodoxin from escherichia coli at 1.8 a resolution. Protein Sci,
6(12):2525–37, 1997.

[49] J. A. Ibers and R. H. Holm. Modeling coordination sites in metallobiomolecules. Science,
209(4453):223–35, 1980. 0036-8075 (Print) Journal Article Research Support, U.S. Gov’t,
Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.

[50] M. Ikura. Calcium binding and conformational response in ef-hand proteins. Trends Biochem
Sci, 21(1):14–7, 1996.

[51] G. Inesi. Mechanism of calcium transport. Annu Rev Physiol, 47:573–601, 1985.



76

[52] E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. A. Friesem, C. Aflalo, and I. A. Vakser.
Molecular surface recognition: determination of geometric fit between proteins and their
ligands by correlation techniques. Proc Natl Acad Sci U S A, 89(6):2195–9, 1992.

[53] H. Kawasaki, S. Nakayama, and R. H. Kretsinger. Classification and evolution of ef-hand
proteins. Biometals, 11(4):277–95, 1998.

[54] Nakayama S Kawasaki, H and RH. Kretsinger. Classification and evolution of ef-hand pro-
teins. Biometals, 11:277–95, 1998.

[55] M. Khalili, J. A. Saunders, A. Liwo, S. Oldziej, and H. A. Scheraga. A united residue force-
field for calcium-protein interactions. Protein Sci, 13(10):2725–35, 2004.

[56] R. H. Kretsinger and C. E. Nockolds. Carp muscle calcium-binding protein. ii. structure
determination and general description. J Biol Chem, 248(9):3313–26, 1973. 0021-9258 (Print)
Journal Article.

[57] N. Kunishima, Y. Shimada, Y. Tsuji, T. Sato, M. Yamamoto, T. Kumasaka, S. Nakan-
ishi, H. Jingami, and K. Morikawa. Structural basis of glutamate recognition by a dimeric
metabotropic glutamate receptor. Nature, 407(6807):971–7, 2000.

[58] R. A. Laskowski, J. D. Watson, and J. M. Thornton. From protein structure to biochemical
function? J Struct Funct Genomics, 4(2-3):167–77, 2003.

[59] R. A. Laskowski, J. D. Watson, and J. M. Thornton. Profunc: a server for predicting protein
function from 3d structure. Nucleic Acids Res, 33(Web Server issue):W89–93, 2005.

[60] M. P. Liang, D. R. Banatao, T. E. Klein, D. L. Brutlag, and R. B. Altman. Webfeature:
An interactive web tool for identifying and visualizing functional sites on macromolecular
structures. Nucleic Acids Res, 31(13):3324–7, 2003.

[61] M. P. Liang, D. L. Brutlag, and R. B. Altman. Automated construction of structural motifs
for predicting functional sites on protein structures. Pac Symp Biocomput, pages 204–15,
2003.

[62] Jonsson B Linse, S and WJ Chazin. The effect of protein concentration on ion binding. Proc
Natl Acad Sci U S A, 92:4748–52, 1995.

[63] S. Linse, P. Brodin, C. Johansson, E. Thulin, T. Grundstrom, and S. Forsen. The role of
protein surface charges in ion binding. Nature, 335(6191):651–2, 1988. 0028-0836 (Print)
Journal Article Research Support, Non-U.S. Gov’t.

[64] S. Linse and S. Forsen. Determinants that govern high-affinity calcium binding. Adv Second
Messenger Phosphoprotein Res, 30:89–151, 1995.



77

[65] Stephen J. Lippard and Jeremy Mark Berg. Principles of bioinorganic chemistry. University
Science Books, Mill Valley, Calif., 1994. Stephen J. Lippard, Jeremy M. Berg. Bioinorganic
chemistry ill. (some col.) ; 26 cm.

[66] P. J. Loll and E. E. Lattman. The crystal structure of the ternary complex of staphylococcal
nuclease, ca2+, and the inhibitor pdtp, refined at 1.65 a. Proteins, 5(3):183–201, 1989.

[67] S. Hazout M. H. Mucchielli-Giorgi and P. Tuffery. Predicting the disulfide bonding state of
cysteines using protein descriptors. Proteins, 46:243–249, 2002.

[68] K. G. Mann, M. E. Nesheim, W. R. Church, P. Haley, and S. Krishnaswamy. Surface-
dependent reactions of the vitamin k-dependent enzyme complexes. Blood, 76(1):1–16, 1990.
0006-4971 (Print) Journal Article Research Support, Non-U.S. Gov’t Research Support, U.S.
Gov’t, P.H.S. Review.

[69] B. J. Marsden, G. S. Shaw, and B. D. Sykes. Calcium binding proteins. elucidating the
contributions to calcium affinity from an analysis of species variants and peptide fragments.
Biochem Cell Biol, 68(3):587–601, 1990.

[70] RB. Martin. Bioinorganic Chemistry of Calcium., volume 17 of Metal Ions in Biological
Systems. Marcel Dekker, New York, 1984.

[71] Liam J. McGuffin, Kevin Bryson, and David T. Jones. The PSIPRED protein structure
prediction server. Bioinformatics, 16(4):404–405, 2000.

[72] C. A. McPhalen, N. C. Strynadka, and M. N. James. Calcium-binding sites in proteins: a
structural perspective. Adv Protein Chem, 42:77–144, 1991.

[73] Strynadka-NC McPhalen, CA and MN. James. Calcium-binding sites in proteins: a structural
perspective. Adv Protein Chem, 42:77–144, 1991.

[74] A. F. Monzingo and B. W. Matthews. Binding of n-carboxymethyl dipeptide inhibitors to
thermolysin determined by x-ray crystallography: a novel class of transition-state analogues
for zinc peptidases. Biochemistry, 23(24):5724–9, 1984.

[75] M. Nayal and E. Di Cera. Predicting ca(2+)-binding sites in proteins. Proc Natl Acad Sci U
S A, 91(2):817–21, 1994.

[76] M. R. Nelson and W. J. Chazin. Structures of ef-hand ca(2+)-binding proteins: diversity in
the organization, packing and response to ca2+ binding. Biometals, 11(4):297–318, 1998.

[77] E. Pidcock and G. R. Moore. Structural characteristics of protein binding sites for calcium
and lanthanide ions. J Biol Inorg Chem, 6(5-6):479–89, 2001.



78

[78] B. Prod’hom and M. Karplus. The nature of the ion binding interactions in ef-hand peptide
analogs: free energy simulation of asp to asn mutations. Protein Eng, 6(6):585–92, 1993.

[79] R. Ravishankar, M. Ravindran, K. Suguna, A. Surolia, and M. Vijayan. The specificity of
peanut agglutinin for thomsen-friedenreich antigen is mediated by water-bridges. Curr. Sci.,
72:855–61, 1997.

[80] L. Rychlewski, D. Fischer, and A. Elofsson. Livebench-6: large-scale automated evaluation
of protein structure prediction servers. Proteins, 53 Suppl 6:542–7, 2003.

[81] R. Samudrala and J. Moult. A graph-theoretic algorithm for comparative modeling of protein
structure. J Mol Biol, 279(1):287–302, 1998.

[82] L. Santella and E. Carafoli. Calcium signaling in the cell nucleus. Faseb J, 11(13):1091–109,
1997. 0892-6638 (Print) Journal Article Review.

[83] BW Schafer and CW. (1996). Heizmann. The s100 family of ef-hand calcium-binding proteins:
functions and pathology. Trends Biochem Sci, 21:134–40, 1996.

[84] Joost Schymkowitz, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau, and Luis
Serrano. The FoldX web server: an online force field. Nucl. Acids Res., 33(suppl2):W382–388,
2005.

[85] Head-JF Engelman DM Seaton, BA and FM. Richards. Calcium-induced increase in the
radius of gyration and maximum dimension of calmodulin measured by small-angle x-ray
scattering. Biochemistry, 24:6740–3, 1985.

[86] Carolyn S. Sevier and Chris A. Kaiser. Disulfide transfer between two conserved cysteine
pairs imparts selectivity to protein oxidation by ero1. Mol Biol Cell, 17:2256–2266, 2006.

[87] J. R. R. Frasto da Silva and R. J. P. Williams. The biological chemistry of the elements :
the inorganic chemistry of life. Clarendon Press ; Oxford University Press, Oxford [England]
New York, 1991. J.J.R. Frausto da Silva and R.J.P. Williams. ill. ; 26 cm.

[88] T. P. Singh, S. Sharma, S. Karthikeyan, C. Betzel, and K. L. Bhatia. Crystal structure of
a complex formed between proteolytically-generated lactoferrin fragment and proteinase k.
Proteins, 33(1):30–8, 1998.

[89] J. S. Sodhi, K. Bryson, L. J. McGuffin, J. J. Ward, L. Wernisch, and D. T. Jones. Predicting
metal-binding site residues in low-resolution structural models. J Mol Biol, 342(1):307–20,
2004.

[90] W. Stark, R. A. Pauptit, K. S. Wilson, and J. N. Jansonius. The structure of neutral protease
from bacillus cereus at 0.2-nm resolution. Eur J Biochem, 207(2):781–91, 1992.



79

[91] P. E. Stein, A. G. Leslie, J. T. Finch, and R. W. Carrell. Crystal structure of uncleaved
ovalbumin at 1.95 a resolution. J Mol Biol, 221(3):941–59, 1991.

[92] N. C. Strynadka and M. N. James. Crystal structures of the helix-loop-helix calcium-binding
proteins. Annu Rev Biochem, 58:951–98, 1989. 0066-4154 (Print) Comparative Study Journal
Article Research Support, Non-U.S. Gov’t Review.

[93] A. L. Swain, R. H. Kretsinger, and E. L. Amma. Restrained least squares refinement of
native (calcium) and cadmium-substituted carp parvalbumin using x-ray crystallographic
data at 1.6-a resolution. J Biol Chem, 264(28):16620–8, 1989. 0021-9258 Journal Article.

[94] J. A. Tainer, V. A. Roberts, and E. D. Getzoff. Protein metal-binding sites. Curr Opin
Biotechnol, 3(4):378–87, 1992. 0958-1669 (Print) Journal Article Research Support, U.S.
Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S. Review.

[95] A. Teplyakov, K. Polyakov, G. Obmolova, B. Strokopytov, I. Kuranova, A. Osterman, N. Gr-
ishin, S. Smulevitch, O. Zagnitko, O. Galperina, and et al. Crystal structure of carboxypep-
tidase t from thermoactinomyces vulgaris. Eur J Biochem, 208(2):281–8, 1992.

[96] Weber I.T. Torshin, I.Y. and R.W. Harrison. Geometric criteria of hydrogen bonds in proteins
and identification of ‘bifurcated’ hydrogen bonds. Protein Engineering, 15:359–363, 2002.

[97] Chi-Hung Tsai, Bo-Juen Chen, Chen-hsiung Chan, Hsuan-Liang Liu, and Cheng-Yan Kao.
Improving disulfide connectivity prediction with sequential distance between oxidized cys-
teines. Bioinformatics, 21(24):4416–4419, 2005.

[98] D. Tsuchiya, N. Kunishima, N. Kamiya, H. Jingami, and K. Morikawa. Structural views of
the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist
and both glutamate and gd3+. Proc Natl Acad Sci U S A, 99(5):2660–5, 2002.

[99] B. L. Vallee and D. S. Auld. Zinc coordination, function, and structure of zinc enzymes
and other proteins. Biochemistry, 29(24):5647–59, 1990. 0006-2960 (Print) Journal Article
Research Support, U.S. Gov’t, P.H.S. Review.

[100] B. L. Vallee and D. S. Auld. Active zinc binding sites of zinc metalloenzymes. Matrix Suppl,
1:5–19, 1992. 0940-1199 (Print) Journal Article Review.

[101] Alessandro Vullo and Paolo Frasconi. Disulfide connectivity prediction using recursive neural
networks and evolutionary information. Bioinformatics, 20(5):653–659, 2004.

[102] M. N. Vyas, B. L. Jacobson, and F. A. Quiocho. The calcium-binding site in the galac-
tose chemoreceptor protein. crystallographic and metal-binding studies. J Biol Chem,
264(34):20817–21, 1989. 0021-9258 (Print) Journal Article Research Support, Non-U.S. Gov’t
Research Support, U.S. Gov’t, P.H.S.



80

[103] J. D. Watson, R. A. Laskowski, and J. M. Thornton. Predicting protein function from
sequence and structural data. Curr Opin Struct Biol, 15(3):275–84, 2005.

[104] L. Wei, E. S. Huang, and R. B. Altman. Are predicted structures good enough to preserve
functional sites? Structure Fold Des, 7(6):643–50, 1999.

[105] W. I. Weis, K. Drickamer, and W. A. Hendrickson. Structure of a c-type mannose-binding
protein complexed with an oligosaccharide. Nature, 360(6400):127–34, 1992.

[106] X. Xie, D. H. Harrison, I. Schlichting, R. M. Sweet, V. N. Kalabokis, A. G. Szent-Gyorgyi,
and C. Cohen. Structure of the regulatory domain of scallop myosin at 2.8 a resolution.
Nature, 368(6469):306–12, 1994.

[107] M. M. Yamashita, L. Wesson, G. Eisenman, and D. Eisenberg. Where metal ions bind in
proteins. Proc Natl Acad Sci U S A, 87(15):5648–52, 1990.

[108] J.J. Yang and W. Yang. Calcium binding proteins. In R.B. King, editor, The Encyclopedia of
Inorganic Chemistry, Second Edition, page In press. John Wiley & Sons, Ltd., West Sussex,
UK, 2005.

[109] W. Yang, H. W. Lee, H. Hellinga, and J. J. Yang. Structural analysis, identification, and
design of calcium-binding sites in proteins. Proteins, 47(3):344–56, 2002.

[110] Isley L Ye Y Lee HW Wilkins AL Liu Z Hellnga HW Malchow R Ghazi M Yang JJ Yang W,
Jones LM. Rational design of a calcium-binding protein. Journal of the American Chemical
Society, 125:6165–6171, 2003.

[111] East Zhao, Hsuan-Liang Liu, Chi-Hung Tsai, Huai-Kuang Tsai, Chen-hsiung Chan, and
Cheng-Yan Kao. Cysteine separations profiles on protein sequences infer disulfide connectiv-
ity. Bioinformatics, 21(8):1415–1420, 2005.

[112] Y. Zhou, W. Yang, M. Kirberger, H. W. Lee, G. Ayalasomayajula, and J. J. Yang. Prediction
of ef-hand calcium-binding proteins and analysis of bacterial ef-hand proteins. Proteins,
65(3):643–55, 2006. 1097-0134 (Electronic) Journal Article.

[113] Z. Y. Zhu and S. Karlin. Clusters of charged residues in protein three-dimensional structures.
Proc Natl Acad Sci U S A, 93(16):8350–5, 1996.


