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EFFECTS VIA ADDITIVE RISK MODEL 

by 

DUYTRAC VU NGUYEN 

Under the direction of Yichuan Zhao 

ABSTRACT 

 

 It is of interest that researchers study competing risks in which subjects may fail from any 

one of K causes. Comparing any two competing risks with covariate effects is very important in 

medical studies. This thesis develops omnibus tests for comparing cause-specific hazard rates 

and cumulative incidence functions at specified covariate levels. In the thesis, the omnibus tests 

are derived under the additive risk model, that is an alternative to the proportional hazard model, 

with by a weighted difference of estimates of cumulative cause-specific hazard rates. 

Simultaneous confidence bands for the difference of two conditional cumulative incidence 

functions are also constructed. A simulation procedure is used to sample from the null 

distribution of the test process in which the graphical and numerical techniques are used to detect 

the significant difference in the risks. A melanoma data set is used for the purpose of illustration. 

 

INDEX WORDS:     Cause-specific hazard rates, Additive risk model, Cumulative   
   incidence function, Confidence bands, Competing risks. 
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Chapter One: Introduction 

 Competing risks has been arising in many applications in medicine nowadays. In 

competing risks people can study the cause of risk that each subject may fail in. It is 

important to discover which cause affects the death of the subject because it will help 

researchers have a good way of treatment to patients or sometimes they can design a new 

vaccine for a disease. Each subject is observed with a time to failure and an indicator that 

tells which of the competing risks causes the failure. The classic example of competing risks 

is competing causes of death, such as cancer, heart disease, AIDS, etc. For example, in 

cancer clinical trials, patients being followed up for relapse may die before relapse occurs, so 

relapse and death without antecedent relapse are associated as competing failure types. 

Another example, in clinical study that involves 205 patients operated for malignant 

melanoma, 71 patients died in which 57 patients were recorded as having died of the disease 

and 14 patients who died from causes unrelated to the disease during the follow-up 

(Andersen et al., 1993). This thesis develops a method that is called omnibus tests in which 

competing risks is compared via additive risk model with using nonnegative weight 

functions. Comparison of cause-specific hazard rates and cumulative incidence functions at 

specified covariate levels are applied in this method.  

 As we consider a competing risks framework in which subjects are at risk from k  

types of failure and covariate measurements on each subject are available. We will propose a 

testing that provides graphical and numerical methods for comparing any two of the k cause-

specific hazard rates, or cumulative incidence functions, at a specified covariate level. 

Suppose each subject has an underlying failure time X that may be subject to censoring. We 

assume there is an existence of the latent failure time jT  corresponding to each failure 
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type kj ,...,1= . Then the observed time of failure is given by jj TX min= , which may be 

right censored. When X is uncensored, the cause of failure { }k,...,1∈δ is observed along with 

vectorp −  Z representing the covariate information. We are interested in focusing on the 

conditional cause-specific hazard rate 

tzZtXjttXtPzt tj ∆=≥=∆+≤≤= →∆ /),|,(lim)|( 000 δλ . In other words, )|( 0ztjλ is 

the instantaneous of failure of type j  given 0z  and in the presence of the other failure types. 

In the presence of dependent competing risks, the conditional cumulative incidence function 

is defined by )|,()|( ooj zZjtXPztF ==≤= δ . 

 According to McKeague, Gilbert, and Kanki (2001), a proposal of omnibus tests for 

comparison of competing risks with covariate effects has been developed under Cox 

proportional hazards model (Cox, 1972). Also, nonparametric tests that allow censoring and 

dependent competing risks but no covariate have been considered by Aly, Kochar, and 

McKeague (1994), Lam (1998), among others. Although the Cox model has been considered 

as a major tool for the regression analysis of censored survival data, the proportional hazards 

assumption may not be appropriate to some data analyses. Therefore, it is of interest for us to 

investigate an alternative approaches to modeling the association between failure times and 

risk factors through hazard functions. Additive risk model in various forms which has been 

developed and successfully utilized by numerous authors (Aalen, 1980, Cox and Oakes, 

1984; Lin and Ying, 1994) is one such alternative that has been used to describe different 

aspects of these associations, and it is suitable in many applications.  

 Under the additive risk model, we specify each )|( oj ztλ and assume that the 

censoring is conditionally independent of the latent failure times given Z. From these 
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assumptions, we develop a graphical method, along with a formal procedure, for testing the 

null hypothesis 

  ),|()|(: 02010 ztztH λλ =  τ≤≤ t0 , 

where 0z is a specified p-vector of covariate levels and ],0[ τ  is the time interval of interest. 

Then, the following hypotheses will be considered: 

  ),|()|(: 02011 ztztH λλ ≠  τ≤≤ t0  

  ),|()|(: 02012 ztFztFH ≤  τ≤≤ t0  

  ),|()|(: 02013 ztztH λλ ≤  τ≤≤ t0 , 

with strict inequality for some ],0[ τ∈t in H2 and H3. The hypothesis H0 is equality of the 

corresponding cumulative incidence functions over ],0[ τ , because 

∫=
t

ojoXoj duzuzuSztF
0

)|()|()|( λ  (Kalbfleisch and Prentice, 1980; Gay, 1988), where 

)|()|( ooX zZtXPztS =>= is the conditional survival function of X. The hypotheses H2 

and H3 are alternative expressing that cause 2 is more serious than cause 1, with H3 being the 

more restrictive alternative. H2 is appropriate for a comparison in terms of absolute risk and 

H3 in terms of risks intensity. We develop omnibus tests that are consistent against all 

departures from H0 in the directions of H1, H2, and H3. 

 The rest of this thesis is organized as follows. Chapter two includes a brief 

introduction to the test procedure in which a formula will be proposed for using comparison 

based on a comparison of the cumulative cause-specific hazard estimators at the specified 

covariate level 0z . A sampling from the null distribution of the test process that is used to 

simulate and detect departure from the null hypothesis is discussed in this chapter. Choice of 
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weight process that will help the test leads to graphical procedure is also covered. Confidence 

band for difference of two cumulative incidence functions is constructed in Chapter two. 

Simulation results, comparing cause-specific hazard rates and cumulative incidence functions 

are presented in Chapter three.  In Chapter four, we apply the proposed test to the real 

malignant melanoma data for comparing the rate of death. The thesis concludes with a 

summary of results and potential research. 
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Chapter Two: Test Procedure 

2.1 Cumulative cause-specific hazard function 

 As shown in Lin and Ying (1994), the regression coefficient estimator in the 

semiparametric additive risk model has an explicit form, which leads to a simpler 

mathematical solution in comparison to that of the Cox model. In contrast to the Cox model, 

the additive risk model specifies the hazard function for a covariate vector Z in the form of  

    ),()()|( 0 tZtZt T
jjj βλλ +=                                             (2.1) 

where (.)0 jλ  is an unspecified baseline hazard function and jβ  is an unknown p-vector of 

regression parameter for the jth cause of failure. Here, )(tZ is a p-vector of possibly time-

varying covariates and to be time independent. Lin and Ying (1994) applied the standard 

counting process martingale techniques and showed that the estimator is asymptotically 

normal with mean jβ  and a variance-covariance matrix. 

 Let C denote the censoring time. The competing risks model data are assumed to be 

given by n independent replicated of ),,~,~( ZX δ  where ),,min(~ CXX =  ),(~ CXI ≤= δδ   and 

I(.) is indicator function. We also assume that C is conditionally independent of T1,…,Tk 

given covariates ( )Z t . The latent failure time Tj do not have to be independent, but we do 

require that 0)( == lj TTP  for .lj ≠   The cause of failure time j=δ  when X=Tj.   Let 

),~( jI iji ==∆ δ  and )~()( tXItN ijiji ≤∆=  (i= 1,…, n) be a counting  process for indicating 

whether an event of type j has been observed for ith subject by time t. Let )~()( tXItY ii ≥=  

denote the predictable process indicating whether or not the ith subject is at risk just before 
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time t. Let τ  satisfy ( ) 0iP X τ> > . Lin and Ying (1994) proposed the following estimation 

function              

( ) ( ) ( ) ( ) ( ) ( ) ( ){ },,ˆ
1 0

0∑∫
=

−Λ−=
n

i
i

T
jijjijiij dttZtYtdtYtdNtZU

τ

βββ                     (2.2) 

where 

  ( ) ( ) ( ) ( ){ }
( )∫ ∑

∑
=

=
−

=Λ
τ β

β
0 1

1
0 .

ˆ
,ˆˆ

n

j j

n

i i
T
jiji

j
uY

duuZuYudN
t  

(2.2) is equivalent to                     

( ) ( ) ( ){ } ( ) ( ) ( ){ }∑∫
=

−−=
n

i
i

T
jijiij dttZtYtdNtZtZU

1 0

,
τ

ββ                (2.3) 

where  

                          1

1

( ) ( )
( )

( )

n
j jj

n
jj

Y t Z t
Z t

Y t
=

=

=
∑
∑

. 

The regression coefficients are estimated by solving the equation 0)ˆ( =βjU . That is            

( ) ( ) ( ){ } ( ) ( ){ } ( ) .ˆ
1 01

2

0
⎥
⎦

⎤
⎢
⎣

⎡
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
− ∑∫∑∫

==

⊗ n

i
jii

n

i
ii tdNtZtZdttZtZtY

ττ

β                     (2.4) 

The resulting estimator of β  is            

( ) ( ) ( ){ } ( ) ( ){ } ( ) ,ˆ
1 0

1

1

2

0
⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑∫∑∫

=

−

=

⊗ n

i
jii

n

i
iij tdNtZtZdttZtZtY

ττ

β                 (2.5) 

where .'2 aaa =⊗  The confidence region for the regression parameter jβ  has been developed 

by (Zhao and Hsu, 2005) in which the empirical likelihood method under the semiparametric 

additive risk model with right censoring had been used.  
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 Under model (2.1), for each j, the counting process (.)jiN can be decomposed 

uniquely so that for every ith subject at t, ( ) ( ) ( ) ( )∫ Λ+=
t

ijijiji ZuduYtMtN
0

; , where Mji(.) is a 

local square integrable martingale (Lin and Ying, 1994). The jth cumulative cause-specific 

hazard function for jT   given 0zZi = takes the form 

   ∫+Λ=Λ
t

T
jojj duztzt

0
00 )()|( β ,                          (2.6) 

where 

  ∫∑ ∫
∧

=
−

∧

−=Λ
t T

j

n

i

t

jioj duuZudN
uYn

t
01 0

)()(
)(

11)( β ,     (2.7) 

where jβ   values are computed from (2.5) and ∑
=

=
n

j
j tY

n
tY

1
)(1)( . 

2.2 Test process 

 We use an approach test that is based on a comparison of the cumulative cause-

specific hazard estimators at the specified covariate level 0z , using general predictable 

locally bounded nonnegative weight processes (.)W ,   

      ( )∫ Λ−Λ=
t

zduzduuWtL
0

0102 )|(ˆ)|(ˆ)()(  .                                    (2.8) 

The weight process provides a flexible way to control the relative importance attached to 

differences to the cause-specific hazards at different times and is useful for controlling 

instability in the tails. Thus, it is important to choose the weight function so that the function 

(2.8) gives a better and nominal level. Aly, Kochar, and McKeague (1994) used weight 

function for comparing cumulative incidence functions and cause-specific hazard rates, but 
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the covariate was absent. Then, McKeague, Gilbert, and Kanki (2001) applied weight 

functions for comparing cause-specific hazard rates and cumulative incidence functions at 

specified covariate levels. Note that the various choice of weight function was under Cox 

hazards proportional model. 

 There are many ways to choose the weight process. First, the simplest choice is 

2/1
1 )( ntW = , which reduces the test process to the normalized difference of the estimated 

cumulative cause-specific hazard functions, 

 ( ))|(ˆ)|(ˆ)( 0102 ztztntL Λ−Λ= .                                    (2.9) 

This choice is good and easy to interpret, but the variance of L(t) increases with t, so it is 

preferable to use a decreasing weight process that gives less weight to the tail, such as 

   ∑
=

≥=
n

i
i ntXItW

1
2 /)~()( ,     (2.10) 

where 1(.) =I when ( )tCX ii ≥∧ , otherwise 0(.) =I . 

Another choice that gives more sophisticated weight process and has a similar effect under 

the additive risk model is 

 
2/1

)(
2/1

03 )(
2)|(ˆ)(

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

tS
ztStW oX ,   (2.11) 

where    ∑
=

=
n

i
i

o tYtS
1

)( )()( , 

and  
⎭
⎬
⎫

⎩
⎨
⎧

Λ−= ∑
=

k

j
jX ztztS

1
00 )|(ˆexp)|(ˆ  is the conditional survival function of X. In this case, 

the asymptotic distribution of L(t) is the additive hazards model based on the estimator of a 

relatively simple form, and the variance function of V(t) simplifies to the conditional 
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cumulative incidence function )|( 0ztF . For k = 2 and no covariates, )(3 tW reduces to a 

weight process considered by (Aly et al., 1994) and makes the test statistics asymptotically 

distribution free.  

 The last relatively simple choice is )|(ˆ)( 0
2/1

4 ztSntW X −= , which gives the 

normalized difference of the estimated cumulative incidence functions, 

( ))|(ˆ)|(ˆ)( 0102 ztFztFntL −= ,                  (2.12) 

where ∫ Λ−=
t

jXoj zduzuSztF
0

00 ).|(ˆ)|(ˆ)|(  

 We use a plotting method to demonstrate (2.8)  in looking for possible departure from 

H0, with a tendency for large absolute values under H1, large positive values under H2, and an 

increasing trend under H3. This can be seen from the identity 

∫=
t

ojoXoj duzuzuSztF
0

)|()|()|( λ . However, these plots can be difficult to interpret when 

the test process that occur even under the hypothesis of equal cause-specific hazards. 

McKeague, Gilbert, and Kanki (2001) showed that L(t) from (2.8) converges in distribution 

under H0 to a zero mean Gaussian process provided 2/1/)( ntW  converges uniformly in 

probability over [ ]τ,0  to a bounded function. Moreover, the limiting covariance is 

complicated. Therefore, we develop a simulation method for approximately sampling from 

the null distribution of L(t) under the additive risk model. This procedure was presented in 

Song, Jeong, and Song (1997) for finding confidence bands for survival curve without using 

weight function; in Shen and Cheng (1999) for confidence bands for cumulative incidence 

curves.  
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 In order to sample the null distribution of the test process, we derive the limiting 

distribution of the cumulative hazard estimator. 

       Let 

   { },)|()|(ˆ)( 00
2/1 ztztntL jjj Λ−Λ=  

and  { },1)(;0inf =≥= tHtτ  

where H(.) is the distribution function of the observed failure time iX~ . 

       Let   

 { }∫ −=
t

duuZuzuWztG
0

00 )()()(),( ,               ∑
=

=
n

j
j tY

n
tY

1
)(1)( , 

 { }∑∫
=

∞
− −=

n

i
iii duuZuYuZuZ

n
C

1 0

'1 )()()()(1 ,  

where 
∑

∑
=

== n

j j

n

i ii

tY

tZtY
tZ

1

1

)(

)()(
)( . 

Under H0, the form (2.8) is also equivalent to: 

  
( )

( ) ( ).)|()|(ˆ)()|()|(ˆ)(

)|(ˆ)|(ˆ)()(

0 0
001002

0
0102

∫ ∫

∫

Λ−Λ−Λ−Λ

=Λ−Λ=

t t

t

zduzduuWzduzduuW

zduzduuWtL
  

Then, the process L(t) is asymptotically equivalent to the process L2(t) – L1(t), where  

{ } ∑∫∑∫
==

∞

+−=
n

i

t

ji

n

i
jiij udM

uY
uW

n
udMuZuZ

n
CztG

tL
1 01 0

'
0

'

)(
)(
)(1)()()(

),(
)( ,         (2.13) 

where ∫ Λ−=
t

ijijiji ZuduYtNtM
0

),()()()( . 
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The process to simulate L(t) is defined by )(* tL in which we replace )(uM ji in the first and 

second terms of )(tL j by )(uNG jiji and )(~ uNG jiji , respectively, where 

{ }nijGG jiji ,...,1;2,1:~, ==  are independent standard normal variables. Realizations of 

)(* tL are approximate draws from the null distribution of the test process. In other words, 

under H0, the conditional distribution of )(* tL given the observed data is the same in the limit 

as the unconditional distribution of L(t) (McKeague, Gilbert, and Kanki, 2001). The method 

works essentially because )(tM ji has mean zero and variance { })(tNE ji . 

        With the sampling from the null distribution and the proposal of the test, we have 

formal procedures that detect departures from H0 in the direction of H1, H2, and H3: 

 ,)(sup
0

1 tLD
t τ≤≤

=  ),(sup
0

2 tLD
t τ≤≤

=          { },)()(sup
0

3 sLtLD
ts

−=
≤≤≤ τ

 respectively. 

 

2.3 Confidence Bands 

 In this section, we construct confidence bands for the difference of two conditional 

cumulative incidence functions since confidence intervals are used for inference or for 

making statistical statements about estimates. Gray (1988), Shen and Cheng (1999),  

developed the confidence bands for cumulative incidence function for each type of failure. 

However, McKeague, Gilbert, and Kanki, (2001) constructed confidence bands for the 

difference in two conditional cumulative incidence functions using the weight function W4 

under Cox regression model. Consider the difference )|()|()( 0102 ztFztFt −=δ can be 

obtained from the L(t) (2.12) in which the weight function W4 is used. Since the process 

))()(ˆ(2/1 ttn δδ −  converges in distribution to the null limiting distribution of L(t), we can use 
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2/1
0102 /)()|(ˆ)|(ˆ)(ˆ ntLztFztFt =−≡δ  to estimate the difference of two conditional 

cumulative incidence functions. The earlier Monte Carlo procedure based on )(* tL can be 

used to estimate an upper quantile−2/α , ),(2/ tcα  of the limiting distribution of |L(t)|. An 

approximate )%1(100 α− pointwise confidence band for )(tδ  is given by .)()(ˆ 2
1

2/

−
± ntct αδ   

A simultaneous band for )(tδ can be found by suitably scaling the pointwise band. For 

example, we can use ,)()(ˆ 2
1

2/

−
± ntact αδ   ],,0[ τ∈t  

where 1≥a  and  is the critical value of  ( )
)(

)(sup
)(

)()(ˆsup
2/

*

02/0 tc
tL

tc
ttn

tt ατατ

δδ
≤≤≤≤

=
− . Monte Carlo 

procedure is used to adjust the constant a to furnish the desired )%1(100 α− simultaneous 

confidence level. 
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Chapter Three: Simulation Study 

 In this chapter, we designed simulation to study the performance of the proposed test 

procedure. We consider if the nominal size accurately matches observed levels at moderate 

sample size and which weight function that gives the best performance in terms of power. 

We also want to know whether covariate level and censoring rate have effect on the powers 

of test. 

 First, we consider a simple additive risk model with the baseline hazard jt αλ =)(0 , j 

=1,…,k where jα  is a various choices of constant, and set ,1...21 ==== pβββ  then model 

(2.1) becomes 

  [ ])(,...,)()()|( 21 tZtZtZzt pjj ++++= αλ .                     (3.1) 

Simply we denote it as 

                            Wzt jj += αλ )|( ,                                                                 (3.2) 

where W Zβ= , Z = (Z1,Z2,…,Zp) covariate vector, and (1,1,...,1)Tβ = . 

Let T denote failure times, C denote the censoring times. We simulate competing risk data 

sets with right censoring survival time as following steps. 

1. Simulating covariates .,...,1),( nitZ pi =  

 Z ’s are drawn from uniform distribution (0,1)U . Since pZZZ ,...,, 21 are random 

independent uniform variables, we randomly choose a matrix with n rows and p columns 

from uniform distribution as the simulated competing risk data.  
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2. Simulating failure time  kjTj ,...,1, =  

 To simulate failure time T , we assume the conditional distribution of T given Z in 

model (3.1) is exponential distribution with parameter Wj +α . The survival function related 

with exponential distribution is derived as xWjexS )()( +−= α . Suppose the hazard function for 

failure time T is known, say Wzt jj += αλ )|( , we can derive the survival function ( )S t  and 

the distribution function ( )F t for T.  Since ( )
)(
)()(ln)(

'

tS
tS

dt
tSdt −=

−
=λ ,  we have 

( )
tW

dsWdszs
j

t

j

t

eeeztS )(
)|(

00)|( +−
+−−

=
∫

=
∫

= α
αλ

,                 (3.2) 

   tWjetStF )(1)(1)( +−−=−= α ,                    (3.3) 

jW
tFt

α+
−

−=
))(1ln(

.              (3.4) 

Given a distribution function ( )F t , we can simulate failure time samples T distributed with 

such a cumulative function ( )F t . Suppose U is drawn from uniform distribution (0,1)U , then 

the failure time T is obtained from 

  
j

j W
UT
α+
−

−=
)1ln(

                                (3.5)                         

3. Simulating censoring time iC , ni ,...,1=  

 Censoring time iC ’s are drawn from exponential distribution with decay parameter 

adjusted so 15-30% of the observations were censored in ],0[ τ .  

Finally, the simulated observations from the additive hazard risk model (3.2) are the triples 

as ( )pii WX ,~,~ δ , ni ,...,1= , where ),min(~ CXX = , )(~ CXI ≤= δδ  and j=δ  when jTX = . 
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3.1 Simulation Example (1) 

 In this simulation example, we generate a competing risk data set with censoring rate 

(CR) 0.30, a p = 2 dimensional covariate Z. We set covariate level )5.0,5.0(0 =z , and the 

sample size n = 50, 100, 200, and 400, respectively. The size and power of test based on D2 

and D3 at the nominal 0.05 level were estimated from 1000 independent samples, with 

critical values obtained in each sample from 1000 realizations of ).(* tL   

 Since we assumed the alternative hypotheses H2 and H3 from the proposal test that are 

expressing the notion of cause (risk) 2 more serious than cause 1, we choose 11 =α and 

various choices of 2α (1, 1.5, 2.0, 2.5, 3.0) in order to generate T from (3.5). Then we test all 

weight functions, W1, W2, W3, and W4, respectively. 
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Table 3.1 

Observed levels and powers of test for equality of conditional cause-specific hazard rates 
based on D2 and D3 at nominal level 0.05, ),5.0,5.0(0 =z CR = 0.30. 

 
n jα  D2 D3 

1α  2α  W1 W2 W3 W4 W1 W2 W3 W4 
1 1 0.047 0.047 0.046 0.047 0.050 0.052 0.054 0.052 
1 1.5 0.116 0.123 0.132 0.120 0.131 0.139 0.137 0.133 
1 2.0 0.257 0.273 0.271 0.263 0.261 0.268 0.261 0.258 
1 2.5 0.368 0.387 0.393 0.323 0.377 0.383 0.377 0.330 

 
 
 

50 

1 3.0 0.539 0.564 0.557 0.543 0.509 0.525 0.551 0.522 
  

1 1 0.057 0.060 0.064 0.059 0.054 0.061 0.061 0.060 
1 1.5 0.206 0.215 0.216 0.207 0.201 0.209 0.208 0.206 
1 2.0 0.417 0.430 0.441 0.414 0.382 0.397 0.393 0.371 
1 2.5 0.558 0.568 0.588 0.544 0.549 0.557 0.563 0.539 

 
 
 

100 

1 3.0 0.798 0.884 0.814 0.804 0.747 0.786 0.784 0.740 
  

1 1 0.049 0.057 0.057 0.053 0.050 0.052 0.052 0.052 
1 1.5 0.283 0.282 0.295 0.233 0.286 0.288 0.296 0.269 
1 2.0 0.614 0.622 0.631 0.615 0.575 0.600 0.589 0.562 
1 2.5 0.865 0.866 0.875 0.866 0.837 0.876 0.866 0.858 

 
 
 

200 

1 3.0 0.953 0.966 0.968 0.957 0.926 0.935 0.938 0.916 
  

1 1 0.057 0.057 0.059 0.051 0.059 0.057 0.059 0.047 
1 1.5 0.427 0.439 0.438 0.419 0.392 0.426 0.406 0.402 
1 2.0 0.860 0.867 0.862 0.856 0.839 0.853 0.853 0.851 

 
 

400 

1 2.5 0.991 1.000 0.996 0.994 0.986 1.000 0.988 0.970 
 
  

 The results in Table 3.1 show that the observed levels for D2 and D3 quite accurately 

match the 0.05 nominal level of the test. Since we simulate failure times from (3.5) and give 

value 1α and 2α that represent risk-1 and risk-2, respectively, the failure time of risk-2 is 

always bigger than the failure time of risk-1. Moreover, if the value of 2α  is much bigger 
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than the value of 1α , then the powers of test is larger. That means the test statistics is much 

significant.  

 In the simulation, we find that sample size and weight functions also have appreciable 

effect on accuracy. For example, if the sample size is increasing, the powers of test are also 

increasing. For example, the powers of test of sample size n = 200 are bigger than the powers 

of test of sample size n = 100 (cf., Table 3.1). Especially, when sample size n = 400 and  

5.22 =α , the power of test tends to be one. The weight functions W2 and W3 gave better 

performance overall than W1 and W4 in terms of power. This makes sense because both W1 

and W4 do not down weight observations in the tail, where there tends to be sharp increase in 

the variance of the cumulative baseline hazard estimate. 

 

3.2 Simulation Example (2) 

 In this simulation example we want to consider if censoring rate have effect on 

powers of test. Doing the same as simulation in example (1), we generate a competing risk 

data set with setting censoring rate 0.15, two covariates, covariate level ),5.0,5.0(0 =z and 

the sample size n = 50, 100, 200, respectively.  

The results, reported in Table 3.2 show that the censoring rate has effect on powers of test. 

As the censoring rate decreasing, the powers of test seem to be increasing, but appears not so 

much difference. 
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Table 3.2 
Observed levels and powers of test for equality of conditional cause-specific hazard rates 

based on D2 and D3 at nominal level 0.05, ),5.0,5.0(0 =z CR = 0.15. 
 

n CR jα  D2 D3 

1α  2α  W1 W2 W3 W4 W1 W2 W3 W4 
1 1 0.047 0.047 0.046 0.047 0.050 0.052 0.054 0.052 
1 1.5 0.116 0.123 0.132 0.120 0.131 0.139 0.137 0.133 
1 2.0 0.257 0.273 0.271 0.263 0.261 0.268 0.261 0.258 
1 2.5 0.368 0.387 0.393 0.323 0.377 0.383 0.377 0.330 

 
 
 

0.30 
 

1 3.0 0.539 0.564 0.557 0.543 0.509 0.525 0.551 0.522 
  

1 1 0.059 0.054 0.060 0.057 0.057 0.056 0.054 0.059 
1 1.5 0.142 0.149 0.144 0.137 0.136 0.144 0.147 0.143 
1 2.0 0.285 0.290 0.293 0.288 0.269 0.274 0.273 0.265 
1 2.5 0.412 0.427 0.420 0.418 0.391 0.416 0.419 0.412 

 
 
 
 
 
 

50  
 
 

0.15 

1 3.0 0.540 0.575 0.578 0.562 0.516 0.565 0.560 0.554 
  

1 1 0.057 0.060 0.064 0.059 0.054 0.061 0.061 0.060 
1 1.5 0.206 0.215 0.216 0.207 0.201 0.209 0.208 0.206 
1 2.0 0.417 0.430 0.441 0.414 0.382 0.397 0.393 0.371 
1 2.5 0.558 0.568 0.588 0.544 0.549 0.557 0.563 0.539 

 
 
 

0.30 

1 3.0 0.798 0.884 0.814 0.804 0.747 0.786 0.784 0.740 
  

1 1 0.061 0.059 0.061 0.059 0.068 0.064 0.064 0.064 
1 1.5 0.210 0.222 0.217 0.209 0.208 0.215 0.214 0.208 
1 2.0 0.440 0.445 0.444 0.443 0.376 0.415 0.396 0.408 
1 2.5 0.627 0.639 0.652 0.643 0.588 0.620 0.624 0.616 

 
 
 
 
 
 

100 
 
 
 
 
 

 
 
 

0.15 

1 3.0 0.802 0.891 0.821 0.810 0.750 0.788 0.790 0.784 
  

1 1 0.049 0.057 0.057 0.053 0.050 0.052 0.052 0.052 
1 1.5 0.283 0.282 0.295 0.233 0.286 0.288 0.296 0.269 
1 2.0 0.614 0.622 0.631 0.615 0.575 0.600 0.589 0.562 
1 2.5 0.865 0.866 0.875 0.866 0.837 0.876 0.866 0.858 

 
 
 

0.30 

1 3.0 0.953 0.966 0.968 0.957 0.926 0.935 0.938 0.916 
  

1 1 0.049 0.045 0.05 0.053 0.054 0.043 0.044 0.052 
1 1.5 0.266 0.284 0.298 0.240 0.292 0.282 0.286 0.232 
1 2.0 0.617 0.626 0.649 0.623 0.578 0.593 0.594 0.573 
1 2.5 0.871 0.872 0.883 0.873 0.843 0.880 0.885 0.867 

 
 
 
 
 
 

200  
 
 

0.15 

1 3.0 0.961 0.986 0.977 0.967 0.942 0.956 0.961 0.950 
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3.3 Simulation Example (3) 

 Now we consider the effect of covariate level. We want to adjust the covariate level 

by setting );3.0,3.0(0 =z  two covariates; censoring rate 0.30; the sample size n = 50 and 100. 

Then, we observe the result of powers of test as shown in Table 3.3. The results show the 

powers of test seem to be changed a little. 

 
 

Table 3.3 
Observed levels and powers of test for equality of conditional cause-specific hazard rates 

based on D2 and D3 at nominal level 0.05, ),3.0,3.0(0 =z CR = 0.30. 
n z0 jα  D2 D3 

1α  2α  W1 W2 W3 W4 W1 W2 W3 W4 
1 1 0.047 0.047 0.046 0.047 0.050 0.052 0.054 0.052 
1 1.5 0.116 0.123 0.132 0.120 0.131 0.139 0.137 0.133 
1 2.0 0.257 0.273 0.271 0.263 0.261 0.268 0.261 0.258 
1 2.5 0.368 0.387 0.393 0.323 0.377 0.383 0.377 0.330 

 
 

(0.5) 
 

1 3.0 0.539 0.564 0.557 0.543 0.509 0.525 0.551 0.522 
  

1 1 0.071 0.063 0.059 0.065 0.060 0.067 0.063 0.066 
1 1.5 0.134 0.136 0.132 0.130 0.133 0.143 0.142 0.140 
1 2.0 0.273 0.259 0.265 0.263 0.245 0.253 0.256 0.252 
1 2.5 0.414 0.423 0.422 0.420 0.422 0.431 0.429 0.419 

 
 
 
 
 
 

50  
 
 

(0.3) 

1 3.0 0.528 0.530 0.546 0.518 0.518 0.526 0.533 0.526 
  

1 1 0.057 0.060 0.064 0.059 0.054 0.061 0.061 0.060 
1 1.5 0.206 0.215 0.216 0.207 0.201 0.209 0.208 0.206 
1 2.0 0.417 0.430 0.441 0.414 0.382 0.397 0.393 0.371 
1 2.5 0.558 0.568 0.588 0.544 0.549 0.557 0.563 0.539 

 
 
 

(0.5) 

1 3.0 0.798 0.884 0.814 0.804 0.747 0.786 0.784 0.740 
  

1 1 0.053 0.055 0.052 0.050 0.051 0.051 0.054 0.054 
1 1.5 0.230 0.234 0.233 0.231 0.219 0.228 0.224 0.217 
1 2.0 0.410 0.412 0.408 0.404 0.401 0.408 0.404 0.402 
1 2.5 0.593 0.594 0.600 0.592 0.558 0.579 0.583 0.574 

 
 
 
 
 
 

100  
 
 

(0.3) 

1 3.0 0.802 0.891 0.821 0.810 0.750 0.788 0.790 0.784 
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Chapter Four: Application 

 The data consist of measurements made on patients with malignant melanoma. Each 

patient had their tumors removed by surgery at the Department of Plastic Surgery, University 

Hospital of Odense, Denmark during the period 1962 to 1977. The surgery consisted of 

complete removal of the tumors together with about 2.5cm of the surrounding skin. Among 

the measurements taken were the thickness of the tumors and whether it was ulcerated or not. 

These are thought to be important prognostic variables in that patients with a thick and/or 

ulcerated tumors have an increased chance of death from melanoma. Patients were followed 

until the end of 1977. There were 205 patients involving operated for malignant melanoma, 

71 patients died, of whom 57 were recorded as dies of the disease and 14 from causes 

unrelated to the disease during the follow-up. The remaining 134 patients were censored at 

the closure of the study since they were still alive at that point in time (Andersen et al., 

1993). For time-varying covariate effects to cause of risk were also collected, including sex, 

age, year entry study, the size of tumor, and ulceration status at the time of operation. The 

latter faction is dichotomous and is scored as “present” if the surface of the melanoma shows 

signs of ulcers and as “absent” otherwise. Failure time is defined as the time since operation. 

 For comparison, we use the proposed test to compare the rate of death by the disease 

and the rate of death from other causes. Let the failure caused by the disease, melanoma be 

risk-2 and the failure caused by other factors be risk-1. We assume risk-2 is more serious 

than risk-1. The follow-up time for the test is ten years. Then we have hypotheses as follow: 

  ),|()|(: 02010 ztztH λλ =  100 ≤≤ t , 

where 0z  is a specified covariate levels of  a four-vector covariate, i.e., sex, age, the size of 

tumor, and ulceration status. The alternative hypotheses will be considered: 
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  ),|()|(: 02012 ztFztFH ≤  100 ≤≤ t  

  ),|()|(: 02013 ztztH λλ ≤  100 ≤≤ t    

 In our application, the covariate age has mean 52 years and standard deviation 17 

years, and tumor thickness covariate has mean 2.9 mm and standard deviation 3 mm. Since 

the prediction of the cumulative incidence based on the standardize covariates has reduced 

standard errors, we specified the z0 levels as =0z {ulceration, 2.9 mm, male, 52 years} for 

the covariates ulceration, tumor size, sex, and age, respectively. Table 4.1 summarizes the 

result of test statistics and its p-value in which we used the simulation method for sampling 

from the null distribution of L(t). We also used the four weight functions, W1, W2, W3, and W4 

as described in Section 2.2 to detect departures from H0.  

 

Table 4.1 
Statistical test under additive risk model for failure caused by disease and failure resulting 

by other causes. H2 and H3 as alternative hypotheses. 
 
 W1 W2 W3 W4 
 

         Test statistics 

H2    

               P-value 

 

4.291 

 

<0.001 

 

2.685 

 

0 

 

2.350 

 

0 

 

3.345 

 

<0.001 

    

         Test statistics 

H3    

              P-value 

 

4.552 

 

<0.001 

 

2.941 

 

0 

 

2.531 

 

0 

 

3.601 

 

<0.001 
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Table 4.2 
Statistical test under Cox regression model for failure caused by disease and failure resulting 

by other causes. H2 and H3 as alternative hypotheses. 
 
 W1 W2 W3 W4 
 

         Test statistics 

H2    

               P-value 

 

5.758 

 

0.046 

 

3.564 

 

0.014 

 

3.731 

 

0.019 

 

4.467 

 

0.032 

    

         Test statistics 

H3    

              P-value 

 

5.921 

 

0.045 

 

3.726 

 

0.013 

 

3.915 

 

0.015 

 

4.630 

 

0.027 

 
 
 From Tables 4.1 and 4.2, the p-values of W1, W2, W3, and W4 in both alternative 

hypotheses, H2 and H3 show the test is very consistent and significant under both additive 

risk model and Cox regression model. That means the failure caused by the disease is overall 

higher than the failure resulting by other causes unrelated to the disease.  

 The graphical method is also applied in these alternative hypotheses test. Applying 

estimation of the cumulative incidence probability directly by the subdistribution approach 

(Gay, 1988; Fine and Gray, 1999) to estimate the cumulative incidence function of risk-1 and 

risk-2, and nonparametric Epanechnikov kernel estimates hazard rates. As shown in Figures 

4.1a and 4.1b, in which the cumulative incidence of risk-2 (malignant melanoma) overally 

exceeded the cumulative incidence of risk-1 and the hazard rate of risk-2 is also higher than 

the hazard rate of risk-1. Thus, the test is satisfied for both alternative hypotheses, H2 and H3. 



 23

 

Figure 4.1a. Malignant melanoma cohort study. No adjustment for covariates. Estimated the 
disease and other causes cumulative incidence functions with 95% pointwise confidence 
limits. 
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Figure 4.1b. Nonparametric Epanechnikov kernel estimates of the disease and other causes 
hazard rates based on the smoothed hazard rate estimate with 95% pointwise confidence 
limits calculated by transforming the symmetric confidence limits. 
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 According to Andersen et al., (1993), the number death patients who involving 

operated for malignant melanoma is higher than the number death patients from causes 

unrelated to the disease during the follow-up. The results in Tables 4.1,4.2 and Figures 4.1a, 

4.1b show the test satisfies the alternative hypotheses and our assumption. We also want to 

consider the effect of risk factors on the rate of death under the additive risk models. At the 

0.05 significance level, univariable additive risk models identified tumor thickness and 

ulceration status are highly significant risk factors for death caused by malignant melanoma, 

whereas both covariates have little effect on the intensity of dying from other causes (Tables 

4.3,4.4). In fact, the covariate age has the most significant influence on death caused by other 

factors. In addition, it is worth mentioning that certain transformations of the continuous 

covariates may improve the efficiency of estimators under the additive risk model (Shen and 

Cheng, 1999). In our application, the covariates age (mean: 52 years; standard deviation: 17 

years) and tumor thickness (mean: 2.92 mm; standard deviation: 3 mm) are standardized as 

given in Tables 4.3 and 4.4. We also fit the cause-specific intensity function by the Cox 

proportional hazards model (Cox, 1972) in order to compare its results with the additive risk 

model. Although the magnitude of each parameter estimate appears to differ between the two 

model fittings, it is notable that there is good agreement between the test statistics for subject 

covariate effects under both models. 
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Table 4.3 
Estimation results of risk factors in additive risk model for failure time to death occurring 

from different causes of 205 malignant melanoma patients. 
 
 Covariate Estimate SE Estimate/SE P-value

 
 
 
Failure caused 
by melanoma 
 

ulceration 

(thickness - 2.92)/3

sex 

(age -52)/17 

0.05074 

0.02511 

0.0196 

0.0105 

0.01577 

0.01195 

0.01457 

0.00772 

3.217 

2.1014 

1.3453 

1.3600 

0.001 

0.0356 

0.1785 

0.1738 

 
 
Failure 
resulting from 
other causes 

ulceration 

(thickness - 2.92)/3

sex 

(age -52)/17 

0.002205 

0.003441 

0.004487 

0.0110 

0.007022 

0.00524 

0.007093 

0.00356 

0.3141 

0.6573 

0.6326 

3.0906 

0.7535 

0.511 

0.527 

0.002 

 
 
 
 
 
 

Table 4.4 
Estimation results of risk factors in Cox regression model for failure time to death occurring 

from different causes of 205 malignant melanoma patients. 
 
 Covariate Estimate SE Estimate/SE P-value

 
 
 
Failure caused 
by melanoma 
 

ulceration 

(thickness - 2.92)/3

sex 

(age -52)/17 

1.141 

0.3651 

0.400 

0.2213 

0.312 

0.0925 

0.269 

0.1411 

3.657 

3.946 

1.487 

1.567 

<0.001 

<0.001 

0.137 

0.117 

 
Failure 
resulting from 
other causes 

ulceration 

(thickness - 2.92)/3

sex 

(age -52)/17 

0.1239 

0.1646 

0.3735 

1.136 

0.5842 

0.2384 

0.5455 

0.343 

0.212 

0.690 

0.685 

3.311 

0.832 

0.490 

0.493 

0.001 
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 We applied the test to compare cause-specific hazard rates for the full model in which 

four covariates, ulceration status, tumor thickness, sex, and age have been included, and 

another model in which only the significant risk factors covariates, ulceration status, tumor 

thickness, and age (sex was excluded because it has little effect on the intensity of dying the 

disease and other causes (cf., Tables 4.3, 4.4).  

 Test of H0 versus H2 and H3 applied at covariate level =0z {ulceration, 2.9 mm, 

male, 52 years} for the full model and =0z {ulceration, 2.9 mm, 52 years} for other one,  

indicated a significantly greater type 1 hazard rate and cumulative incidence function, and the 

weight functions W2 and W3 performed better than the weight function W1 and W4 as shown 

in Tables 4.1, 4.2 and Figures 4.2 – 4.5 in both models. Figures 4.2-4.5 also show the model 

without covariate sex performed better than the full model.  

 It is of interest to estimate the difference between the risk-1 and risk-2 cumulative 

incidence functions for various covariate subgroups. The confidence bands displayed in 

Figure 4.6 were computed via the procedure described in Section 2.3 for the same covariate 

subgroups as in Figures 4.2-4.5, conditions a and b, respectively. The constant value a is 

estimated by Monte Carlo procedure in the condition with covariate sex is 1.4, and the 

condition without covariate sex is 1.9  Based on the 90% simultaneous bands, we find the 

probability of risk-2 (malignant melanoma) is lower than the probability of risk-1 in the first 

two years. However, the probability of risk-2 is overall higher than the probability of risk-1 

during the follow-up. 
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Figure 4.2. The test process L(t) (solid line) and 10 realizations of )(* tL (dash lines) for the 
weight process W1(t). a. Conditions with covariate {ulceration status, tumor thickness, sex, 
and age}. b. Conditions with covariate {ulceration status, tumor thickness, and age}. 
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Figure 4.3. The test process L(t) (solid line) and 10 realizations of )(* tL (dash lines) for the 
weight process W2(t). a. Conditions with covariate {ulceration status, tumor thickness, sex, 
and age}. b. Conditions with covariate {ulceration status, tumor thickness, and age}. 
. 
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Figure 4.4. The test process L(t) (solid line) and 10 realizations of )(* tL (dash lines) for the 
weight process W3(t). a. Conditions with covariate {ulceration status, tumor thickness, sex, 
and age}. b. Conditions with covariate {ulceration status, tumor thickness, and age}. 
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Figure 4.5. The test process L(t) (solid line) and 10 realizations of )(* tL (dash lines) for the 
weight process W4(t). a. Conditions with covariate {ulceration status, tumor thickness, sex, 
and age}. b. Conditions with covariate {ulceration status, tumor thickness, and age}. 
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Figure 4.6. Ninety-five percent pointwise and 90% simultaneous confidence bands for the 
difference in conditional rate of death cumulative incidence functions. a. Conditions with 
covariate {ulceration status, tumor thickness, sex, and age} at level =0z {ulceration, 2.9 mm, 
male, 52 years}. b. Conditions with covariate {ulceration status, tumor thickness, and age} at 
level =0z {ulceration, 2.9 mm, 52 years}. 
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Chapter Five: Conclusion 

 The main purpose of this thesis was to develop omnibus tests for comparison of 

competing risks with covariate effects via semiparametric additive risk model that is used for 

alternative of the Cox regression model. It has shown how useful it is to compare cause-

specific hazard rate and cumulative incidence in competing risks data. The graphical method 

is also applied for illustration of the comparison.  

 The simulation results and the applied problem verify that the additive risk model is 

to be fit with competing risk data. The developing of the simulation method for 

approximately sampling the null distribution of L(t) under the additive risk models to detect 

the hypotheses is consisted. Beside formal omnibus tests that are consistent against all 

departures from H0 in the directions of H1, H2, and H3, we used graphical method as shown in 

Figures 4.1a - 4.1b and Figures 4.2 – 4.6 to illustrate the comparison risk-1 and risk-2. An 

adjustment of covariate level and censoring rate are also used in simulation of this thesis. It is 

very important to know which covariate has effect on the intensity of dying because it will 

help the researcher to determine the cause of death and its rate of death, or in the designing of 

a new vaccine. For example, McKeague, Gilbert, and Kanki, (2001) have mentioned about 

designing a new vaccine for the human immunodeficiency virus (HIV) in which they needed 

to compare the infection rate HIV type1 and HIV type2 with adjustment for covariate effects 

because in order for an HIV vaccine to be efficacious in a particular geographic region, it 

may be necessary to match the genotypes of the HIV antigens contained in the vaccine to the 

local HIV genotype that pose the greatest risk of HIV infection. This thesis has shown it to be 

a reliable and useful tool for comparison of competing risk data where covariate has possibly 

time-varying.  
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 Future research could extend this to comparing of more than two competing risks 

under the additive risk model or the Cox regression model. Sun (2001) studied the 

nonparametric test procedures for comparing multiple cause-specific hazard rates.  We will 

investigate the challenging problem in the future. Another area of the research could be to 

develop a goodness-of-fit test for the model in which a comparison between the additive risk 

model and the Cox regression model is considered.  
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Appendix A 
 

FORTRAN Code for comparison competing risk in simulation 
c     
c     This program is to implement tests of ordering  
c     of two conditional cause-specific hazard functions 
c     and two cumulative incidence functions. 
c     Simulated data example.    
c 
c     Test H_0: g_1(t|z)=g_2(t|z) on [t1,t2]  
c             where z, t1 and t2 need to be specified 
c     versus 
c          H_1:  F_1(t|z)<=F_2(t|z) on [t1,t2] 
c     OR 
c          H_2: g_1(t|z)<=g_2(t|z) on [t1,t2] 
c       (with strict inequality for some t) 
c  Note:  H_1 and H_2 are denoted H_2 and H_3 in the paper. 
c 
 
 
      program pvalues 
      parameter(mxnsmp=1000,mxncov=2) 
 
c 
c      ncov  : number of covariates  
c  
c      set mxncov=ncov in the subroutine ESTP as well!! 
c 
c      nsamp : sample size 
c      time(i)  :  failure time for subject i 
c      censor(i) : cause-of-failure = 0 (censored), 1 or 2   
c      covar(j,i,k) :  covariate j for subject i at k-th event time 
c      clevel(j)  :  specified level of covariate j 
c      nboot:  number of simulated test processes used  
c              to find P-value (nboot=1000 gives good results) 
c      nsim:  number of runs (only needed for a simulation study 
c             to check accuracy of the tests; 
c        
   
      integer ncov,nsamp,indx(mxnsmp),seeda,seedb,seedc,seedd, 
     $        nsim,nboot 
      real censor(mxnsmp),covar(mxncov,mxnsmp,mxnsmp), 
     $   time(mxnsmp),dat(14),ccensor(mxnsmp),cov(mxncov,mxnsmp), 
     $   ctime(mxnsmp), s0(mxnsmp), 
     $   U(mxncov),copy(mxnsmp),nrej,nreja, 
     $   U2(mxncov),s1(mxncov,mxnsmp),s2(mxncov,mxncov), 
     $   var(mxncov,mxncov),beta(mxncov),base2(2,0:mxnsmp), 
     $   beta2(2,mxncov),s02(2,mxnsmp),clevel(mxncov),phi(0:mxnsmp), 
     $   stt(0:mxnsmp),betav1,betav2,cbeta,clev,cc, 
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     $   s12(2,mxncov,mxnsmp),w(mxnsmp),censor1(mxnsmp), 
     $   censor2(mxnsmp),aa, bb(0:mxnsmp), phiboot(mxnsmp), 
     $   v1(mxncov,mxncov),v2(mxncov,mxncov), 
     $   uu(mxncov,0:mxnsmp),zt(mxnsmp,mxncov), 
     $   g(mxncov,0:mxnsmp),gt(1,mxncov,mxnsmp),Yi,sumYi,  
     $   cvalue(mxncov,mxncov),ctemp(mxncov,mxnsmp), 
     $   cinv(mxncov,mxncov),ct(mxncov,mxncov), 
     $   gcvalue(1,mxncov,mxnsmp),Zbar(mxncov,mxnsmp), 
     $   temp1(mxncov,mxnsmp),temp2(mxncov,mxnsmp), 
     $   value11,value22, value2(2,0:mxnsmp), 
     $   value3(2,0:mxnsmp), cumulative(2,0:mxnsmp),delta(mxnsmp), 
     $   uu1(mxncov),uu2(mxncov),b1(0:mxnsmp),b2(0:mxnsmp) 
     
c     *** Give some values to simulate data *** 
c     Use these input values for the numerical example: 
c         42 37 45 51  1.  1. .3  400 .5 1000  0. 0.15   
 
 
      seeda=42. 
      seedb=37. 
      seedc=45. 
      seedd=51. 
      betav1=1. 
      betav2=1. 
      cbeta=.3 
      nsamp=200 
      clev=.5 
      nboot=1000 
      t1=0. 
      t2=0.15 
 
      nsim=1000 
 
      call rstart(seeda,seedb,seedc,seedd) 
      ncov=2 
      do 5 j=1,ncov 
        clevel(j)=clev 
 5    continue 
c 
      rcounta=0. 
      rcount=0. 
      do 1000 isim=1,nsim 
c 
      do 10 i=1,nsamp 
         zz=uni() 
         zzz=uni() 
   
         cov(1,i)=zz 
         cov(2,i)=zzz 
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         tim1=-alog(uni())/(betav1*zz+betav1*zzz+1) 
 
         tim2=-alog(uni())/(betav2*zz+betav2*zzz+2.5) 
          
         cc=-alog(uni())*exp(-cbeta*zz-cbeta*zzz) 
 
         if ((tim1.lt.tim2).and.(tim1.lt.cc)) then 
             censor(i)=1. 
             time(i)=tim1 
         endif 
         if ((tim2.lt.tim1).and.(tim2.lt.cc)) then 
             censor(i)=2. 
             time(i)=tim2 
         endif 
         if  ((tim1.ge.cc).and.(tim2.ge.cc)) then         
             censor(i)=0. 
             time(i)=cc 
         endif         
 
 10    continue 
       print *, ' ' 
 
c *************************************************** 
 
c      print*,'data simulated' 
 
c       *** order the data by time *** 
 
c *************************************************** 
 
      call indexx(nsamp,time,indx) 
      do 20 i=1,nsamp 
         copy(i)=time(i) 
 20   continue 
      do 40 i=1,nsamp 
         time(i)=copy(indx(i)) 
 40   continue 
      do 60 i=1,nsamp 
         copy(i)=censor(i) 
 60   continue 
      do 80 i=1,nsamp 
         censor(i)=copy(indx(i)) 
 80   continue 
      do 95 j=1,ncov 
         do 90 i=1,nsamp 
            copy(i)=cov(j,i) 
 90      continue 
         do 95 i=1,nsamp 
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            cov(j,i)=copy(indx(i)) 
            do 94 ii=1,nsamp 
            covar(j,i,ii)=cov(j,i) 
 94      continue            
 95      continue          
 
c 
c ----------------------------------------------- 
c  Find indices iii and jjj corr to time > t1 and  
c       first failure time <= t2) 
c ----------------------------------------------- 
c 
      iii=1 
      jjj=1        
      do 100 i=1,nsamp          
         if (time(i).lt.t1) then 
            iii=i+1 
         endif          
         if (time(i).le.t2) then 
            jjj=i 
         endif   
 100  continue     
      do 105 i=1,nsamp 
          copy(i)=censor(i) 
          if (censor(i).gt.1.5) then 
             censor(i)=0. 
          endif 
          censor1(i)=censor(i) 
c          print*, i, censor(i) 
 105   continue  
c 
c ------------------------------------------------------ 
c 
       do 200 j=1,ncov 
 
         beta(j)=0. 
 
 200   continue   
            
c  ***  CALL SUBROUTINE estp to get beta hat value *** 
 
       call estp(nsamp,ncov,time,covar,censor,s0,s1,s2,beta, 
 
     $    CL,var,NDEAD,NMIS)     
 
      print *, 'beta1=', (beta(j),j=1,ncov) 
 
      do 205 j=1,ncov 
 



 40

         beta2(1,j)=beta(j) 
 
 205  continue    
      print*, ' ' 
c ---------------------------------------------------- 
 
c   Find the first cumulative function  
c   for first cause-of-failure  
c ---------------------------------------------------- 
      
      do 210 i=1,nsamp 
       do 208 j=1,ncov 
     base2(j,i)=0. 
            cumulative(j,i)=0.0 
            value2(j,i)=0.0 
            value3(j,i)=0.0 
 208     continue 
 210  continue 
 
      start=0.0 
      sumYi=nsamp      
      value11=0.0 
      bb1=0.0 
      tempvalue1=0 
 
      do 215 j=1,ncov 
         bb1=bb1+beta2(1,j)*clevel(j)  
 215  continue 
 
 
      do 225 i=1,nsamp 
         s02(1,i)=s0(i) 
         value11= value11 +censor1(i)/sumYi 
         diff=time(i)-start             
          
         do 220 j=1,ncov 
            s12(1,j,i)=s1(j,i) 
            Zbar(j,i)= S1(j,i)/S0(i)  
            tempValue1=tempValue1 +beta2(1,j)*Zbar(j,i)*diff                               
 220     continue 
 
         value2(1,i)=tempValue1 
 
         value3(1,i)=value3(1,i) + time(i)*bb1 
  
         base2(1,i)=base2(1,i-1)+value11-value2(1,i)   
  
     cumulative(1,i)=cumulative(1,i)+value11 -value2(1,i)+value3(1,i) 
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         start=time(i)  
         sumYi=nsamp -i 
   
 
         do 225 k=1,ncov 
 
            s12(1,k,i)=s1(k,i) 
 
 225  continue 
          
c -------------------------------------------------------------------- 
c    Now consider second cause of failure: 
c -------------------------------------------------------------------- 
 
      do 300 j=1,ncov 
 
         beta(j)=0. 
 
 300  continue       
      
 
      do 305 i=1,nsamp 
 
         if (copy(i).ge.2.) then  
 
            censor(i)=1. 
 
         else 
 
            censor(i)=0. 
 
         endif 
 
         censor2(i)=censor(i) 
 
 305  continue                   
 
c  ***  CALL SUBROUTINE estp to get second cause of failure *** 
       call estp(nsamp,ncov,time,covar,censor,s0,s1,s2,beta, 
 
     $   CL,var,NDEAD,NMIS) 
   
 
      print *, 'beta2=', (beta(j),j=1,ncov) 
 
      do 310 j=1,ncov 
 
         beta2(2,j)=beta(j)               
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 310  continue       
 
c -------------------------------------------------- 
c    Find the second cumulative function *** 
c -------------------------------------------------- 
 
   
      value22=0 
      start=0.0 
      sumYi=nsamp      
      bb2=0.0 
      tempvalue2=0 
    
      do 315 j=1,ncov 
         bb2=bb2+beta2(2,j)*clevel(j)   
 315  continue 
 
 
      do 330 i=1,nsamp 
          s02(2,i)=s0(i) 
          value22= value22 +censor2(i)/sumYi 
          diff=time(i)-start 
 
          do 320 j=1,ncov 
             s12(2,j,i)=s1(j,i) 
             Zbar(j,i)= S1(j,i)/S0(i)  
             tempValue2=tempValue2 + beta2(2,j)*Zbar(j,i)*diff      
 320      continue 
          
          value2(2,i)=tempValue2 
 
          value3(2,i)=value3(2,i) + time(i)*bb2      
 
          base2(2,i)=base2(2,i-1)+value22-(value2(2,i))    
 
 
      cumulative(2,i)=cumulative(2,i)+value22 -value2(2,i)+value3(2,i) 
 
          start=time(i)  
   sumYi=nsamp-i 
           
 
          do 330 k=1,ncov         
 
             s12(2,j,i)=s1(j,i) 
 
 330  continue 
c 
c ******************************************************************* 
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c 
      st=1. 
      st1=1. 
      st2=1. 
      st0=1. 
      phi(0)=0.0 
      do 350 i=nsamp 
         phi(i)=0 
 350  continue 
       
      bb1=0. 
      bb2=0. 
      do 400 j=1,ncov 
         bb1=bb1+beta2(1,j)*clevel(j) 
         bb2=bb2+beta2(2,j)*clevel(j) 
 400  continue           
       
      sumYi=nsamp     
      do 450 i=1,jjj 
         st0=st 
         st = st*(exp(-(cumulative(1,i)-cumulative(1,i-1) +  
     $   cumulative(2,i)-cumulative(2,i-1)))) 
 
         st1 = st1*(exp(-(cumulative(1,i)-cumulative(1,i-1))))  
         st2 = st2*(exp(-(cumulative(2,i)-cumulative(2,i-1))))  
 
         if (i.ge.iii) then 
 
c   for constant weight function W_1 use: 
         w(i)=sqrt(float(nsamp)) 
 
c   for weight function W_2 use 
c         w(i)=float(nsamp-i+1)/sqrt(float(nsamp)) 
 
c   for weight function W_3 use 
c         w(i)=1./sqrt(2./sumYi) 
 
c   for weight function W_4 use 
c        w(i)=sqrt(float(nsamp))*st0 
c        phi(i)=sqrt(float(nsamp))*(st1-st2) 
 
 
 
         phi(i)=phi(i-1)+((cumulative(2,i)-cumulative(2,i-1))- 
     $               (cumulative(1,i)-cumulative(1,i-1)))*w(i) 
  
         else 
             phi(i)=phi(i-1)  
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        endif 
        sumYi=nsamp-i 
c        print*, time(i), cumulative(1,i),cumulative(2,i),st 
 450  continue 
c   
c ************************************************************  
c   **** compute the test statistics **** 
c 
c************************************************************* 
c 
      stata=phi(iii) 
      stat=phi(iii) 
       do 460 i=iii,jjj-1 
        xx=phi(i) 
        if (xx.gt.stata) then 
           stata=xx 
        endif 
        do 460 j=i+1,jjj 
        xxx=phi(j)-phi(i) 
        if (xxx.gt.stat) then 
           stat=xxx 
        endif 
 460  continue 
c     N.B.  the sqrt(nsamp) in front of the test statistic 
c           is merged into the weight function; 
c           this avoids having to normalize s^{(0)}  
c           by nsamp in various places. 
      print*, ' ' 
      print*, 'The output of sample size ',nsamp 
      print *,'Test statistic (H_0 vs H_1) =', stata 
      print *,'Test statistic (H_0 vs H_2) =', stat 
      print*,' ' 
c -------------------------------------------------------   
c    
c   **** simulation to determine P-value **** 
c ------------------------------------------------------- 
       
      b1(iii-1)=0 
      b2(iii-1)=0 
      nreja=0. 
      nrej=0. 
       
      do 900 iboot=1,nboot 
 
      sumYi=nsamp 
      do 510 i=nsamp 
         do 505 j=1,ncov          
            uu1(j)=0 
            uu2(j)=0 
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            ctemp(j,i)=0 
            g(j,i)=0 
 505     continue 
 510  continue 
c ------------------------------------- 
c    Find the second term of L(t) 
c ------------------------------------- 
       
c *** culculate G' value *** 
 
      start=0. 
      g(1,0)=0 
 
      do 520 i=1, jjj 
  diffvalue=time(i)- start 
          
  do 515 j=1,ncov 
     g(j,i)=g(j,i-1)+ w(i)*(clevel(j)- zbar(j,i))*diffvalue             
 515     continue 
         start=time(i)             
 520     continue 
c ------------------------------------------- 
       
      start2=0   
 
      do 580 i=1,nsamp 
        diffvalue2=time(i)- start2 
 do 525 j=1,ncov 
     gt(1,j,i)=g(j,i) 
 525    continue 
c        print*, i, (gt(1,j,i), j=1,2) 
   
c *** transpose of Z value *** 
 
      do 530 j=1,ncov 
     zt(i,j)=covar(j,i,i) 
 530  continue 
     
      do 535 j=1,ncov 
         ctemp(j,i)=ctemp(j,i)+ (covar(j,i,i)-zbar(j,i))*diffvalue2 
 535  continue 
 
        
      start2=time(i) 
 
      do 550 K=1,ncov 
         do 545 L=1,ncov 
            temp10=zero 
            do 540 M=1,1 
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               temp10= temp10 + ctemp(L,i)*zt(i,K)/float(nsamp) 
 540        continue 
            cvalue(L,K)=cvalue(L,K)+temp10 
 545     continue          
 550  continue       
 580  continue 
c -------------------------------------------- 
c *** get C inverse    *** 
c -------------------------------------------- 
      call MATINV(cvalue,ncov,ncov,IFLAG) 
       
      do 620 K = 1, ncov 
         do 610 J = 1, ncov 
            cinv(K,J)=cvalue(K,J) 
 610     continue            
 620  continue 
c ----------------------------------------- 
c *** get C transpose    *** 
c -----------------------------------------        
      do 640 k=1,ncov 
  do 630 L=1,ncov 
            ct(K,L)=cinv(L,K) 
 630     continue 
 640  continue        
c      print*, ct(1,1), ct(1,2) 
c      print*, ct(2,1), ct(2,2)    
       
      do 680 i=1,nsamp 
        do 660 k=1,ncov 
            temp15=zero 
     do 650 j=1,ncov 
               temp15= temp15 + gt(1,j,i)*ct(j,k)/float(nsamp) 
 650        continue 
            gcvalue(1,k,i)=temp15 
 660      continue 
 680  continue 
 
c 
c ---------------------------------------------------------- 
c    Find phiboot(i) then p-value 
c ---------------------------------------------------------- 
                      
      do 750 i=iii,jjj 
          b1(i)=b1(i-1)+w(i)*rnor()*censor1(i)/(sumYi) 
          b2(i)=b2(i-1)+w(i)*rnor()*censor2(i)/(sumYi) 
 
          a1=0 
          a2=0 
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          yy1=rnor()*censor1(i) 
          yy2=rnor()*censor2(i) 
          do 710 j=1,ncov 
             uu1(j)=uu1(j)+ yy1*(covar(j,i,i)-zbar(j,i)) 
             uu2(j)=uu2(j)+ yy2*(covar(j,i,i)-zbar(j,i))   
 
             a1=a1 + gcvalue(1,j,i)*uu1(j) 
             a2=a2 + gcvalue(1,j,i)*uu2(j) 
               
 710      continue   
 
    sumYi=nsamp-i      
 
          phiboot(i)=b1(i)+b2(i) + (a1+a2)/float(nsamp)   
 750    continue     
c ---------------------------------------------------------- 
 
      bstata=phiboot(iii) 
      bstat=phiboot(iii) 
 
      do 800 i=iii,jjj-1 
      xx=phiboot(i) 
      if (xx.gt.stata) then 
          bstata=xx 
      endif                   
      do 800 j=i+1,jjj 
        xxx=phiboot(j)-phiboot(i) 
          if (xxx.gt.bstat) then 
            bstat=xxx 
          endif 
 800  continue  
      if (bstata.gt.stata) then 
         nreja=nreja+1. 
      endif       
      if (bstat.gt.stat) then 
         nrej=nrej+1. 
      endif 
   
 900  continue 
 
      print*, ' ' 
      print*, 'P-value (vs H_1) = ', nreja/float(nboot) 
      print*, 'P-value (vs H_2) = ', nrej/float(nboot) 
      print *,'(H_1 and H_2 are denoted H_2 and H_3 in the paper!)' 
      print*,'Completed simulation',isim, ', runs with nboot = ', nboot 
      print*,'***************************************************' 
 
      if (nreja/float(nboot).lt.0.05) then 
         rcounta=rcounta+1. 
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      endif    
      if (nrej/float(nboot).lt.0.05) then 
         rcount=rcount+1. 
      endif         
 1000 continue 
       print*,'Completed simulation ',nsim, ' runs with nboot = ', nboot 
       print*,'Rej. at 0.05 level (vs H_1)= ',rcounta/float(nsim) 
       print*,'Rej. at 0.05 level (vs H_2)= ',rcount/float(nsim) 
      end 
c 
c ********************************************************************* 
c                          ending main program 
c ********************************************************************* 
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