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ABSTRACT 

 

 

A DYNAMIC ANALYSIS OF VARIABLE ANNUITIES AND GUARANTEED 

MINIMUM BENEFITS 

By 

 

JIN GAO 

 

Dec 2010 

 

 

Committee Chair: Dr. Eric R. Ulm 

 

Major Department: Risk Management and Insurance 

 

 

We determine the optimal allocation of funds between the fixed and variable sub-

accounts in a variable annuity with a GMDB (Guaranteed Minimum Death Benefit) 

clause featuring partial withdrawals by using a utility-based approach. In section two, the 

Merton method is applied by assuming that individuals allocate funds optimally in order 

to maximize the expected utility of lifetime consumption. It also reflects bequest motives 

by including the recipient's utility in terms of the policyholder's guaranteed death benefits. 

We derive the optimal transfer choice by the insured, and furthermore price the GMDB 

through maximizing the discounted expected utility of the policyholders and beneficiaries 

by investing dynamically in the fixed account and the variable fund and withdrawing 

optimally. In section three, we add fixed and stochastic income to the model and find that 



 XVI 

both human capital and the GMDB will influence the insured's allocation and withdrawal 

decisions. Section four explores the GMDB effects if there is also a term life policy 

available in the market. Our work suggests that if term life insurance is available and is 

continuously adjustable, fairly priced GMDBs may not be useful investments and the 

existence of GMDBs does not affect term life policy demand significantly. 

 



1 Introduction and Motivation

There are a number of risks (mortality risk, longevity risk, inflation risk and investment

risk) for an individual approaching retirement age. Here, mortality risk refers to the loss

of human capital in the event of an individual’s premature death. The traditional means

for handling mortality risk is life insurance because life insurance generates an immediate

bequest and provides protection against the effects of premature death, especially if the event

occurs before individual wealth can be accumulated.

Longevity risk is the risk that a retiree’s savings might not be sufficient to support him

due to a long life. There is available literature that tries to model investment and pension

decisions with longevity risk in mind, for example Bengen (2001); Ameriks, Veres, and

Warshawsky (2001); Milevsky and Robinson (2005); Milevsky, Moore, and Young (2006).

Many of them refer to the use of annuities as a solution. Annuities are the opposite of

life insurance, because annuities are defined as periodic payments that continue for a fixed

period or for the remaining time of a designated life. Therefore, annuities protect against

the longevity risk by providing an income that is not outlivable. Insurers sell several types of

annuities, such as fixed annuities, variable annuities and equity-indexed annuities. Variable

annuities can also be considered as an efficient means of investment to hedge against inflation

risk.

1.1 History of Variable Annuities

In the early part of the 20th century, people regarded the fixed deferred annuity as an

investment product for accumulating and safeguarding wealth to provide for their economic

needs during retirement. Fixed deferred annuities provide a long term, low-risk investment

but conservative rate of return. By using the fixed annuity as a retirement nestegg, people

needed to pay a large principal to offset the annuity’s declining purchasing power due to

inflation. On the other hand, a variable annuity also provides a lifetime income for retiree, but

the income payments vary depending on stock market movements. Beside providing a lifetime
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income, a variable annuity also protects against inflation by keeping the real purchasing

power of the periodic payments during retirement given positive correlation between living

cost and common stock prices over the long run. The first variable annuity contract was

issued by the Teachers Insurance and Annuity Association (TIAA) - College Retirement

Equity Fund in 1952 (Poterba 1997). This fund was established to provide variable annuity

coverage within the retirement income program of TIAA. In 1959, the US Supreme Court

ruled that the VAs fell under the joint jurisdiction of the Securities and Exchange Commission

(SEC) and the state level insurance regulations department. Since the early 1990s, there has

been a rapid growth of the variable annuity market. By 2000, annual variable annuity sales

had reached a peak of $138 billion, more than twice the level of fixed annuity sales (Table 1

shows the growth rates of fixed and variable annuities). Condron (2008) reports that “more

than $1.35 trillion was invested in variable annuities in the United States.”

Table 1: Growth rates of US Annuity Gross Sales

Compound annual growth rate (%)

1995− 2000 2000− 2007 1995− 2007

Variable Annuities 23 4 11

Fixed Annuities 1 3 2

Total 14 3 8

Data from Towers Perrin VALUE Survey and LIMRA data

In the United States, the funds within a variable annuity are held in subaccounts which

are kept independent from other insurance company assets. Their benefits are based on the

performance of the underlying bond or equity portfolio. Individuals buy variable annuities

for many reasons: they are tax-deferred while protecting the policyholder from outliving

their assets during retirement. In addition, insurers often offer various forms of option-like

guarantees that insure against the negative risks inherent to subaccounts. However, variable

annuity guarantees are different from regular options because they contain insurance charac-

teristics that are life contingent. To protect against negative equity market movements, an

essential aspect of a VA is the design of their guaranteed minimum benefits. Consequently,
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variable annuity policyholders are able to maintain a greater weight in the equity portfolio.

According to Mueller (2009), despite the severe financial crisis, the prospective VA sales

globally are still good, due to the following reasons:

• the US is an aging society, and a growing number of individuals are reaching retirement

age;

• there is a growth in the size of retirement assets;

• only life insurers can offer lifetime guarantees;

• and, there has been a shift in the retirement savings responsibility from employers to

employees.

Therefore, variable annuities can still be viewed as an important investment tool to

provide retirement age income.

1.2 Guaranteed Minimum Benefits

Stone (2003) and Hardy (2003) give us an overview of many variable annuity guarantees.

Variable annuity guarantees include Guaranteed Minimum Living Benefits (GMLB) and

the Guaranteed Minimum Death Benefits (GMDB). Guaranteed Minimum Living Benefits

(GMLB) include the following:

• GMIB: a Guaranteed Minimum Income Benefit is offered as a guaranteed minimum

level of annuity payments upon annuitization, regardless of the performance of your

annuity.

• GMAB: a Guaranteed Minimum Accumulation Benefit is offered as a one time “top

up” of account value after the accumulation period, or a set period of time, e.g., after

15 years.

• GMMB: a Guaranteed Minimum Maturity Benefit is offered as a guaranteed minimum

amount at the maturity of the contract.
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• GMSB: a Guaranteed Minimum Surrender Benefit is offered “as a variation of the

guaranteed minimum maturity benefit. Beyond some fixed date the cash value of the

contract, payable on surrender, is guaranteed.” (Hardy 2003)

• GMWB: a Guaranteed Minimum Withdrawal Benefit is offered as guaranteed amounts

via optional annual withdrawals. Higher guaranteed amounts are offered if the policy-

holder defers the initial withdrawal. Also, the guaranteed amounts may increase upon

attaining certain age thresholds.

Guaranteed Minimum Death Benefits (GMDB) have been available in variable annuities

since the 1990s, and provide the beneficiary a lump sum amount upon the insured’s death. A

GMDB is an example of an option-like feature. It can be viewed as a put option with a ran-

dom exercise time at the moment of death. This rider helps protect the policy’s beneficiary

from negative market movements.

Many papers discuss GMDB riders. Milevsky and Posner (2001) apply risk-neutral op-

tion pricing methods to value GMDB riders embedded in annuity contracts. Milevsky and

Salisbury (2001) notice that when the embedded options are out of the money, policyholders

have a real option to lapse their policy and simultaneously repurchase the investment with

higher death benefit. They assume that policyholders exercise this option optimally so that

the lapse decision can be formulated as an optimal stopping problem. Based on this assump-

tion, they calculate the surrender charge for the lapse to compensate the income loss of the

insurance company. This surrender charge is derived by making the policyholder indifferent

between keeping and lapsing the policy.

Another important option that is frequently available in these contracts is the option to

transfer funds between a variable account and an attached fixed account that promises a

fixed rate. The policyholders have two options for the allocation of their funds: one option is

to leave the funds in the variable account, where the performance of the account will follow

the market fluctuations; the other option would be to move the funds to the fixed account

and forgo the market swings. Ulm (2006) discusses the effect of the real option to transfer

funds between fixed and variable accounts. He uses the no-arbitrage pricing methodology

4



and gets the boundary between the area where all money is invested in the variable account

and the area where all money is invested in the fixed account. He shows analytically that

the option to transfer to the fixed fund has no value and will never be used unless the

fixed growth rate is larger than the risk free rate less any asset fees taken off the variable

account. If the fixed growth rate is less than this, the value of the option can be calculated

and the approximate location of the optimal exercise boundary can be determined. Ulm

(2010) models real policyholders transfer behavior. He uses data from Morningstar and

NAIC annual statements to develop an empirical model. He compares his model with two

other practical strategies: constant percentage rebalancing and buy-and-hold, and finds a

model based on recent fund performance has a better fit. He concludes that the GMDB

options will be overvalued and over-hedged if the policyholder’s empirical transfer choices

are not taken into account.

Some GMDB contracts also contain a feature allowing the policyholder to withdraw from

the invested capital at any time prior to the maturity of the contract. Bauer, Kling and Russ

(2008) suggest a general solution to the GMDB with optimal partial withdrawals at discrete

time horizons in a Black-Scholes option pricing model. Belanger, Forsyth and Labahn (2008)

develop a pricing model from the issuer’s perspective based on partial differential equations

to determine the no-arbitrage insurance charge for contracts with a GMDB clause featuring

partial withdrawals. They demonstrate that higher fees are required for GMDB contracts

with a partial withdrawal option.

1.3 Motivation

There are basically three ways one can think about pricing and hedging GMDBs. The first

is Risk Neutral Optimality (Ulm 2006) that presupposes the worst case from the insurance

company’s perspective. Risk neutral optimality assumes no arbitrage or the law of one price

in a complete market in which GMDBs can be replicated and hedged by market traded

instruments. From the insurer’s perspective, GMDBs are able to be traded and hedged.
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Therefore, the worst thing is that policyholders behave optimally, and make the GMDB

prices the largest under the risk neutral measure. The positive side of the risk neutral

method is that the insurers are able to protect themselves from insolvency by presupposing

the worst case and seldom underestimating the value of the option. The negative side is that

the insurers will be over-hedged. The policyholders want to maximize the utility not the

GMDB prices, so the worst case under risk averse optimality is not the worst case under risk

neutral optimality. Under the assumption of complete markets, the risk neutral optimality

is suitable as the GMDB would be tradable and the policyholders can always sell the GMDB

for money. What the insurers have to do is to maximize the assets they are holding. Because

transaction fees are incurred, the insurers will pay more cost to buy or sell more products.

Also it is risky to get over-hedged, because the insurers cannot totally eliminate the risks.

The second is determining policyholder behavior through empirical analysis (Ulm 2010).

By looking at what the policyholders really did, the insurance company can price the GMDB.

The positive side is that it would have worked well in the past and the insurer would have

minimized the variance of their total income stream. This method is less expensive than

risk neutral optimality, so the insurance company can charge better (less) premiums. The

negative side is if policyholders suddenly “wise up” on you, the insurer may be under-hedged

and got in trouble.

There are disagreements and tradeoffs between risk neutral optimality and empirical

analysis: the first one is doing something expensive and from the perspective of the worst

case; the second one is doing something less expensive but is vulnerable if the policyholders

suddenly behave rationally.

The third is utility based optimality assuming the policyholder’s optimal allocation and

consumption choices given their preferences. This is the focus of this paper. It is potentially

more realistic especially if the option is neither tradable nor hedgeable. Variable annuity

markets are not complete, as it is usually not possible to sell your annuity to a third party and

there may be barriers to surrendering it. Utility based models are a theoretically defensible

way of treating the products with such restrictions (see Shreve (2003) pg. 70). Leung
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and Sircar (2009) take this approach to employee stock options which have similar trading

restrictions. Milevsky (2001a) first applies a utility based model in annuity analysis to choose

if and when to annuitize, but the annuitization decision is irreversible which is different

from our research in this paper. Charupat and Milevsky (2002) derive the optimal utility

maximizing asset allocation between fixed and variable subaccounts within a variable annuity.

However, they do not model the guarantee options in their research. In this thesis, we show

that the guarantee options may change the insured’s allocation decision. Our paper is a

good supplement to their research.

The equity markets slide in 2008 implied that there is a huge need for guarantee and

option products. In the past, the separate fund guarantees, which are rarely in the money,

resulted in a more lax approach to policy design, pricing, and risk management (see Hardy

(2003) pg. 310). It showed the vulnerability of the insurers who craft these offerings. And

it raised questions about just how well insurers understand the risk of dealing with complex

financial instruments – such as the ones used to guarantee investments (see WSJ (May 4,

2009)).

WSJ (May 4, 2009) said: “Recently, variable annuity issuers raised prices and reduced

benefits in effort to restore profits. Many insurers are reacting to steep losses they suffered

from late 2008, as stock markets slid and the gap widened between their promises and the

value of customers’ fund accounts. All told, the roughly two dozen insurers who dominate

the guarantee business boosted their reserves and capital last year by more than 15 billion

dollars to show regulators they can make good on the promises, according to ratings firms and

consultants. Meanwhile, since last year, the insurers have faced sharply higher costs to buy

financial hedges to offload the guarantees’ market risk. The costs soared as volatility spiked

and interest rates fell – soaring to the point that ‘very few companies’ selling guarantees of

minimum lifetime withdrawals ‘are actually pricing and designing products with sufficient

margins to fully hedge the guarantees,’ barring a strong long-term recovery of stocks. What

is needed is ‘more innovative’ product design.”

With continuous-time diffusion processes, any strategy that involves continuous readjust-
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ment of a state variable when there are fixed costs would become infinitely expensive and

could not be optimal. Instead, we believe that the optimal strategy is to change the state

instantly in discrete amounts, thereby incurring the fixed costs only at isolated points in

time.

This thesis contributes in several important ways. First, to date no one has examined

optimal behavior in a utility-based incomplete market framework. Second, there has been a

debate recently between financial advisors and insurance companies regarding the suitability

of GMDBs given the existence of term life insurance. We contribute to this discussion by

evaluating consumers’ willingness to pay for GMDB protection in utility-framework with a

term insurance policy available.

The remainder of this paper is organized as follows: Section two introduces the “no labor

income” model and numerical analysis. In this section, we determine the optimal allocation

of funds between the fixed and variable subaccounts in a variable annuity using a utility

based approach. This paper differs from Ulm (2006) in several ways. First, we assume the

insureds are risk averse, so partial transfers between variable and fixed accounts could be

optimal. More precisely, we apply the Merton (1969) method by assuming that individuals

allocate funds in order to maximize the expected utility of lifetime consumption. In this

model, the insured gets utility from consumption and has bequest motives. We include the

effect on asset allocation from dissavings (consumption). We also reflect bequest motives by

including the utility of the recipient of the policyholders guaranteed death benefits. When

we derive the optimal transfer choice by the insured, we find the GMDB will increase the

risky allocation in the VA account by incurring an “argument” between the policyholder and

his beneficiary, especially especially when the guarantees are at-the-money. Furthermore we

price the GMDB through maximizing the discounted expected utility of the policyholders and

beneficiaries by investing dynamically in the fixed account and variable fund and withdrawing

optimally.

In section three, we apply the idea of human capital (we assume labor income) to our

model in addition to the variable annuity withdrawals. Human capital is the present value of
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individual’s remaining lifetime labor income, and it will influence individual’s asset allocation

choice. “The risks you can afford to take depend on your total financial situation, including

the types and sources of your income exclusive of investment income” (see Malkiel (2004)

pg. 342). Hanna and Chen (1997) study the optimal asset allocation by considering human

capital. They conclude that the investors who have long investment horizons should apply all

equity portfolio strategy. Bodie, Merton and Samuelson (1992) study the investment strategy

given labor income. They find that younger investors should put more money in risky assets

than should older investors. Chen, Ibbotson, Milevsky and Zhu (2006) take human capital

into account, and argue that human capital affects asset allocation. There are roughly three

stages of a person’s life1: the first stage is the growing up and getting educated stage; the

second stage is the accumulation stage, in which people work and accumulate wealth; the

third stage is the retirement/payout stage. The human capital generates significant amount

of earnings during the accumulation stage. As individuals save and invest, human capital

is transferred to financial capital. Chen et al. (2006) provide an approach to making the

individuals’ financial decisions in purchasing life insurance, purchasing annuity products

and allocating assets between stocks and bonds. Campbell and Viceira (2002) make some

conclusions: 1. investors with “safe” labor income prefer investing more of their financial

capital into equities; 2. if investors’ labor income is highly positively correlated with stock

markets, they should choose an investment allocation with less equity exposures; 3. high

labor flexibility tends to increase the proportion of allocation to equities. In our work, we

discuss the policyholder’s decision with safe (fixed) and stochastic labor income. Our focus

is on how human capital interacts with financial assets in the variable annuity account, and

how the interaction changes the VA policyholder’s behaviors, including asset allocation and

consumption choices. We find that there exists a human capital effect, and the “argument”

incurred by GMDB does have an impact on the insured’s optimal decision. We provide

the models that enable policyholders to customize their allocation and withdrawal decisions

based on their own typical circumstances.

1This paper focuses on the accumulation stage.
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In section four, we bring term life policy into our model and check if the guarantee

options add value to the contract even if the term life policy is available. Many papers

study the life insurance demand. Campbell (1980) derives solutions to optimal life insur-

ance demand on mortality risk. Lin and Grace (2005) examine the life cycle demand for

different types of life insurance by using the Survey of Consumer Finances. They find the

relationship between financial vulnerability and term life insurance demand, and that older

people demand less term life insurance. We find a few papers studying the joint demand of

term life insurance and annuities. Hong and Rios-Rull (2007) use an overlapping generation

model of multiperson households to analyze social security, life insurance and annuities for

families. Purcal and Piggott (2008) use an optimizing lifetime financial planning model to

explore optimal life insurance purchase and annuity choices. Their model incorporates the

consumption and bequests in an individual’s utility function. Policyholders’ needs for life

insurance and annuities varied across different risk aversions and different bequest motives.

We derive the insured’s optimal decisions in purchasing the term life policy, allocating and

withdrawing assets in his VA account. We price the GMDB from the insurer’s perspective

by incorporating the insured’s choices in a risk neutral model.

Finally, section five concludes the paper with some general remarks and directions for

further research.

2 Optimal Consumption and Allocation in Variable

Annuities with Guaranteed Minimum Death Ben-

efits

There are several features a Guaranteed Minimum Death Benefit (GMDB) may comprise:

1. Roll-ups

If the account value goes down after the purchase of the variable annuity contract, the

beneficiary will receive either the initial premium that was put in accumulated at some roll-
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up rate or the account value accumulated. The roll-up rates vary between 0% and 7%. The

table below illustrates how the GMDB is computed due to the roll-up rate rp for the first

few years. ai is the account value at the beginning of ith year, for i = 1, 2, 3, · · ·.

Table 2: Computation of GMDB due to roll-up rate rp

Dates Roll-up values

1/1/2005 a0

1/1/2006 a0 × (1 + rp)

1/1/2007 a0 × (1 + rp)
2

1/1/2008 a0 × (1 + rp)
3

Let us put forward an example to see how the roll-up benefit can protect the beneficiary

from the equity market’s downside risk. In January 1998, an individual put $100 in a VA

account and the closing date of the account was at the end of 2009. This person invested

the entire amount in the S&P500 index.

Figure 1: Account Value v.s. roll-up level from 1998-2009
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Figure 2: Bequest Amount with roll-up benefits from 1998-2009

Figure 1 shows that if there was no GMDB option, the account value followed the index

oscillations. If the insured died at a “bad” time, the bequest amount to the beneficiary would

be low. Meanwhile, if there was a GMDB roll-up option (assume the annual roll-up rate

rp = 2%), which increased the principal 2% annually, the bequest amount to the beneficiary

was protected (the downside risk was eliminated), and the account value to the beneficiary

was equal to the maximum of account value and the roll-up level (Figure 2).

2. Reset option

Here, the death benefit guarantee can be adjusted (moved up or down) at the beginning of

every reset period. The frequency of the resetting interval ranges from once a year to once

every five years. Table 3 below illustrates how the death guarantee due to the reset feature

is computed for the first few year.
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Table 3: Computation of GMDB due to the resetting option

Dates Reset values

1/1/2005 a0

1/1/2006 max(a0, a1)

1/1/2007 max(a0, a2)

1/1/2008 max(a0, a3)

If the policyholder in the above example bought the GMDB with resetting option in

1998, the bequest amount would be described in Figure 3.

Figure 3: Bequest Amount with resetting option from 1998-2009

3. Ratchet option

This is essentially a discrete lookback option – the death benefit equals to the larger of the

amount invested or the ratcheted account value. More precisely, the death benefit guarantee

only moves up at the beginning of every ratchet period. Table 4 shows how the death

guarantee due to the ratchet feature is computed for the first few year.
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Table 4: Computation of GMDB due to the ratchet option

Dates Ratchet values

1/1/2005 a0

1/1/2006 max(a0, a1)

1/1/2007 max(a0, a1, a2)

1/1/2008 max(a0, a1, a2, a3)

If the policyholder in the above example bought the GMDB with ratchet option in 1998,

the bequest amount would be described in Figure 4.

Figure 4: Bequest Amount with monthly ratchet option from 1998-2009

The aforementioned features are provided to the policyholders with an extra premium as

riders to a base death benefit (which just contains return of the premium).

2.1 Models

In the model, we treat only return of premium and roll-up benefits. An individual
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purchases a variable annuity product and makes a lump sum deposit. We restrict ourselves

to insurance contracts with GMDB options only. There are two subaccounts in the VA

account. One subaccount is a fixed account, which provides a fixed interest return gt, and

the other subaccount is a variable account, which provides a return related to the stock

market performance, with guaranteed minimum death benefit, i.e.

(1) kt = a0

∏t

i=1

{
(1 + rpi)

ai − ci
ai

}
,

(2) bt = max(kt, at − ct) = max(kt−1(1 + rpt)
at − ct
at

, at − ct),

where at is the total account value at time t in both the fixed account (F ) and the variable

account (S), i.e. at = Ft + St; a0 is the initial wealth; rpt is the guaranteed rate for GMDB

at time t; kt is the guaranteed payment in the GMDB; bt is investment guaranteed amount;

and a0 = b0 = k0; ct is the withdrawal at the beginning of time t, and the insured consumes

ct immediately. ct is non-negative which means that deposits are not allowed in our model.

The money in the VA account is partitioned between these two sub-accounts. dSt =

αtStdt+ σtStdBt, dFt = gtFtdt, where gt is the risk-free rate and the fixed account grows at

a rate gt; Bt is a standard Brownian motion. We denote by ωt the percentage of wealth held

in the variable subaccount and 1 − ωt the proportion of wealth allocated in the fixed rate

subaccount. The amount of withdrawals is ct, and it may vary with time.

(3) dat = at[ωtrt + (1− ωt)gt]dt+ ωtσtatdBt − ct,

We assume that the insureds have options to transfer money in between fixed and variable

accounts. To be more realistic, we assume 0 ≤ ωt ≤ 1, which means that there are no short

sales.

We assume the insured and the beneficiary are risk averse with the same utility function.
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We apply a constant relative risk averse (CRRA) type utility which has a functional form

U(c) =


c1−γ

1− γ
, γ > 0, γ 6= 1,

ln(x), γ = 1.

This utility has some special properties:

• it is a homogeneous function of degree 1− γ for γ 6= 1;

• γ is the coefficient of relative risky aversion; 1/γ is the intertemporal substitution

elasticity between consumption in any two periods, i.e., it measures the willingness to

substitute consumption between different periods.

If there is no possibility of death and no partial withdrawals in the accumulation stage

and in the absence of a GMDB, the individual maximizes the expected utility at retirement

date T . According to Charupat and Milevsky (2002), the objective function is

max
ωt

E

[
1

1− γ
a1−γ
T

]
.(4)

The solution to the objective function is equal to

ω∗ = min

[
r − g
γσ2

, 1

]
,(5)

where r is the risky asset’s expected rate of return; σ is the volatility of risky return; g is

the risk free asset’s rate of return; γ is the coefficient of relative risk aversion.

During the term of the contract, there are several possible types of events: the insured

can

• transfer the funds between these two subaccounts;

• perform a partial surrender;

• completely surrender the contract;

• or pass away.
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We incorporate these events into our “without consumption” and “with consumption” mod-

els.

2.1.1 “WITHOUT CONSUMPTION” CASE

In the first step, let us assume there are no surrenders. If we only consider the insured

and beneficiary utility without consumption, we can get the objective function as

max
ωt

E

[ T∑
t=1

βt(
∏t−1

i=1
φi)(1− φt)ζvB(bt) + βT (

∏T

i=1
φi)VT+1(aT+1)

]
.(6)

The insured retires at the end of time T . φt is the survival rate at time t. ζ denotes the

strength of the bequest motive and ranges from 0 to 1. If ζ = 0, the insured has no bequest

motive and does not want to leave a bequest to his beneficiary; if ζ = 1, the insured has the

strongest bequest motive and will treat his beneficiary like himself. vB is the beneficiary’s

value function. If the insured dies before retirement, the beneficiary will get the larger of the

account value or the guaranteed amount. Once the beneficiary gets the money, the objective

function of the beneficiary is

(7) max
ωBt

E

[
βTB−t(

∏TB

i=t
φi)vTB+1(bTB+1)

]
.

When the insured purchases the VA product, the beneficiary has TB years until retirement

age. If the insured dies at time t, the beneficiary will receive the bequest and has TB − t

years until retirement age. She will optimally allocate the amount between risky and risk-

free investments, and periodically consume the amount after her retirement. However, the

beneficiary’s investment is not protected by the GMDB and we assume she has no bequest

motive. If the insured survives until his retirement age, at the end of the policy period, he

will get the entire account value without GMDB protection and annuitize it for his retirement

life.
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We get the Bellman equation for the insured:

Vt(at, bt) = (1− φt)ζvB(bt) + max
ω

βφtE[Vt+1(at+1, bt+1) | at],(8)

subject to

VT+1(aT+1) =
Tmax∑
t=T+1

βt−(T+1)(
∏t−1

i=T+1
φi)u(c̄),(9)

c̄ =
aT+1∑Tmax

t=T+1

∏t−1
i=T+1 φi(1 + rf )T+1−t

,(10)

at+1 = at(ωt(1 + rt+1) + (1− ωt)(1 + gt)),

0 ≤ ωt ≤ 1,

kt+1 = kt(1 + rpt),

bt+1 = max(a1

∏t

i=1
(1 + rpi), at+1),

= max(kt+1, at+1),

where rt is the expected risky rate of return at time t, rf is the risk free rate of return, and

c̄ is annuitization amount after retirement. In our model, the retired insured will receive a

life time pay-out annuity2, and the monthly payout is c̄. The insured consumes c̄ and gets

the utility.

2.1.2 “WITH CONSUMPTION” CASE

For simplicity, we assume that the events (the consumption and the allocation) can

only occur at a discrete time. Therefore, state variables only change at integer time points

t = 1, 2, · · ·, T . The consumption, ct ∈ [0, at], is taken out from the two subaccounts in the

same ratio as the existing account value and are consumed immediately. We can get the

2Life time payout annuity is an insurance product that converts an accumulated investment into income
that the insurance company pays out over the life of the investor (Chen, et al. (2006)). Many papers study
life time payout annuities on pricing of these products, and how much and when to annuitize. The literature
includes Yaari (1965); Richard (1975); Milevsky and Young (2002); Brown (2001); Poterba (1997), Mitchell,
Poterba, Warshawsky, and Brown (1999); Brown and Poterba (2000); Brown and Warshawsky (2001); Kapur
and Orszag (1999); Blake, Cairns, and Dowd (2000), and Milevsky (2001).
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objective function as

(11)

max
ωt,ct

E

[ T∑
t=1

βt(
∏t−1

i=1
φi)u(ct)+βT (

∏T

i=1
φi)VT+1(aT+1)+

T∑
t=1

ζβt(
∏t−1

i=1
φi)(1−φi)vB(bt)

]
.

Once the beneficiary receives the bequest bt, which is protected by the GMDB, the

objective function for the beneficiary is

(12) max
ωBt ,c

B
t

E

[ TB∑
tB=t

βtB−t(
∏tB−1

i=t
φi)u(cBt ) + βTB−t(

∏TB

i=t
φi)vTB+1(bTB+1)

]
.

The beneficiary will maximize her own utility by optimally choosing her own consumption

cBt and investment allocation ωBt . As in the “without consumption” case, the beneficiary’s

investment is not protected by the GMDB and she has no bequest motive.

The derived Bellman equation for the insured is

Vt(at, bt) = max
ωt,ct

{
ut(ct) + βφtE[Vt+1(at+1, bt+1) | at] + ζ(1− φt)vt(bt)

}
,(13)

subject to

VT+1(aT+1) =
Tmax∑
t=T+1

βt−(T+1)(
∏t−1

i=T+1
φi)u(c̄),

0 ≤ ωt ≤ 1,

0 < ct ≤ at,

at+1 = (ωt(1 + rt+1) + (1− ωt)(1 + gt))(at − ct),

c̄ =
aT+1∑Tmax

t=T+1

∏t−1
i=T+1 φi(1 + rf )T+1−t

,

kt+1 = kt(1 + rpt)
at+1 − ct+1

at+1

,

bt+1 = max(kt+1, at+1).
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Following Hardy (2003), all state variables are denoted as (·)t− , (·)t+ , i.e. the value im-

mediately before and after the transactions at the discrete time t, respectively. Withdrawals

and consumptions occur at t−, then at t+, which is still at time t but after withdrawal, the

insured decides the amount to transfer between the fixed and the variable subaccounts. We

also assume that the beneficiary gets the bequest immediately at t+ just after the insured

dies at t+. Therefore, the Bellman equation will have 2 stages: at the 1st stage from t− to

t+, the insured gets the utility from consumption of withdrawal.

Vt−(at− , bt−) = max
ct

{
u(ct)

}
+
{
Vt+(at+ , bt+)

}
,(14)

=⇒ Vt−(at− ,mt) = max
ct

{
u(ct)

}
+
{
Vt+(at+ ,mt)

}
,(15)

where mt =
at−

bt−
,

at+ = at− − ct =

(
1− ct

at−

)
at− ,

and u(ct) + Vt+(at+ ,mt) =
c1−γ
t

1− γ
+

(
1− ct

at−

)1−γ

Vt+(at− ,mt).

It is easy to see that mt is same at t− and t+. Because

bt+ =
at+

at−
bt− =

(
1− ct

at−

)
bt− ,

mt+ =
at+

bt+
=

(
1− ct

at−

)
at−(

1− ct
at−

)
bt−

=
at−

bt−
= mt− .

At the second stage from t+ to (t+ h)−, the insured chooses a proportion ω to invest in the

variable account,

Vt+(at+ , bt) = (1− φt)ζv(max(at+, bt+)) + max
ωt

{
φtβ

hEVt+h−(at+h− , bt+h−)
}
,(16)

=⇒ Vt+(at+ ,mt) = (1− φt)ζv(max(at+,mt)) + max
ωt

{
φtβ

hEVt+h−(at+h− ,mt+h−)
}
,(17)

where at+h− = (ωerh + (1− ω)egh)at+ ,
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then we can get

Vt+(at+ ,mt) = (1− φt)ζv(max(at+, bt+)) +(18)

+ max
ωt

{
φtβ

hEVt+h−

(
at+((ωerh + (1− ω)egh)),

at+(ωerh + (1− ω)egh)

bt+eph

)}
.

2.2 Numerical Methodology

Let us first assume that the insured buys the variable annuity with GMDB options in

a lump sum at age 35. The insured can transfer and withdraw money every month. At

age 65, the insured retires and annuitizes the variable annuity to support his retirement life.

Let the expected risky rate of return r = 0.07; volatility of risky rate of return σ = 0.15;

growth rate in fixed account g = 0.04; inflation rate rf = 0.03; coefficient of relative risk

aversion γ = 1.8. By Charupat and Milevsky (2002), the optimal allocation to the risky

asset is ω? = 74% at any asset level in each time period t with the survival rate φ = 1 and

guaranteed rate rp = 0.

We will apply a trinomial lattice model in both “without” and “with consumption” cases.

2.2.1 “WITHOUT CONSUMPTION” CASE

Based on Hull (1997), we use a trinomial lattice to do the calculation. Assume the

move-up factor is u = eσ
√

3∆t; the move-down factor d = 1/u; the mean value in the variable

account (S = ωa); the mean of the continuous log-normal distribution E[S] = ωaerh (assume

h = ∆t), and the variance is V ar[S] = ω2a2e2rh[eσ
2h−1]; the mean value in the fixed account

(F = (1 − ω)a) is E[F ] = (1 − ω)aegh, and variance is V ar[F ] = 0; and the covariance

Cov[F, S] = 0.

According to Boyle (1988), there are three conditions to apply to the trinomial lattice:

1. the probabilities sum to one;

2. the mean of the discrete distribution is equal to the mean of the continuous log-normal

distribution;

3. the variance of the discrete distribution is equal to the variance of the continuous distri-
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bution.

The above three conditions are,

pu + pm + pd = 1,(19)

puau+ pma+ pdad = a[ωerh + (1− ω)egh],(20)

pua
2u2 + pma

2 + pda
2d2 − (ωerh + (1− ω)egh)2 = ω2a2e2rh[eσ

2h − 1].(21)

By some algebraic transformation, we can get

pu =
Aω2 +Bω + C

(u− 1)(u− d)
,(22)

pd =
ω(erh − egh) + egh − 1

d− 1
− Aω2 +Bω + C

(d− 1)(u− d)
,(23)

pm = 1− Aω2 +Bω + C

(u− 1)(u− d)
− ω(erh − egh) + egh − 1

d− 1
+
Aω2 +Bω + C

(d− 1)(u− d)
,(24)

where

A = e(2r+σ2)h − 2e(r+g)h + e2gh,

B = (erh − egh)(2egh − d− 1),

C = (egh − 1)(egh − d).

Since

(25) Vt,j(ω) = (1− φ)ζv(bt,j) + βφ(puVt+1,j+1 + pmVt+1,j + pdVt+1,j−1),

to maximize Vt,j, we take the first derivative on ω, and we get the optimal ω:

(26) ω? = −(d− 1)BVt+1,j − Vt+1,j−1 + (u− 1)(Vt+1,jVt+1,j+1)[(u− d)(erh − egh)−B]

2A[(d− 1)(Vt+1,j−1 − Vt+1,j) + (u− 1)(Vt+1,j − Vt+1,j+1)]
.

By the no short-selling restriction, we know that ω ∈ [0, 1], so we only need to check 3

possible values of ω : 0, ω?, 1, and if ω? < 0 or > 1, we only need to check 0 or 1.
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We assume the insured can adjust his allocation at the beginning of each month, and

starting wealth level at time 0 is 1. The algorithm to do the numerical values can be done

as follows

1. Initialize account value at time 1: a1 = 1, and other parameter values;

2. Calculate the jump sizes u = eσ
√

3∆t, d =
1

u
and m = 1;

3. Build the tree for account value a by using jump sizes until age 65;

4. Set terminal value VT+1(aT+1) by using equation (9), (10);

5. For t = T to 1, at each time period, use backward induction to maximize the insured’s

utility:

5.1 Calculate the optimal allocation ω?t by (26);

5.2 Calculate the transition probabilities pu, pd and pm by plugging ω?t into (22), (23)

and (24);

5.3 Derive Vt by (25) until t = 1.

Let us first assume the base case is r = 0.07, g = 0.04, rf = 0.03, β = 0.97, rp = 0,

σ = 0.15, φ = 0.99, γ = 1.8, ζ = 0.5. Then, we will check the changes of allocation by giving

some shocks: (1) r = 0.055; (2) σ = 0.25; (3) γ = 2.5; (4) ζ = 0.2; (5) p = 0.03.

Figure 5 (age 45 allocation under “without consumption” case) shows that the amount

of money allocated to the variable account at age 45 when the option is at-the-money.

An “argument” between the beneficiary and the insured is a helpful way of looking at the

results. The insured prefers the allocation determined by Merton (1969) at all times and

benefit levels. At all stock-to-strike levels, the beneficiary prefers a more aggressive allocation

than the insured, as he is protected against downside risk. This effect is most pronounced

when the account is at-the-money. When the account is significantly out-of-the-money, the

downside protection is not very valuable and the beneficiary prefers an allocation near the

Merton level. Therefore, there is no argument. When the account is significantly in-the-

money, the beneficiary does not have a strong preference as he receives the strike in (nearly)

every case. Again, there is no argument as the beneficiary is (nearly) indifferent. It is only
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near the at-the-money level where the beneficiary has a strong and aggressive preference.

Figure 5: Age 45 allocation under without consumption case

The effect of the argument is clearly seen in this figure by the bumps around the at-the-

money area, which are in the middle, for all parameter levels. Parameter changes primarily

affect the level of the insureds preferred allocation rather than the size of the bump.

As the risky rate of return r decreases from 7% to 5.5%, the variable subaccount allocation

reduces from 73% to around 37%. For r = 7%, as the asset level goes up, the allocation

increases from 73%, which is a Merton allocation, to 77% (goes up 4%) around the at-the-

money area, and then goes down to Merton allocation again; for r = 5.5%, the allocation

increases from 36.7%, to 39% (goes up 2.3%), then goes down to 36.7%. As the risky

rate of return decreases, the risky subaccount will lose some attraction to both insured and

beneficiary.

As the stock market volatility increases, i.e. σ increases from 15% to 25%, the variable

subaccount allocation reduces from 73% to around 28%. For σ = 25%, as the asset level

goes up, the allocation increases from 26.6%, which is Merton allocation, to 28.2% (goes up

1.6%, compare to 4% at σ = 15%) around at the money area, and then goes down to Merton
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allocation again. As the volatility increases, the risky subaccount will not be as attractive

as in low volatility case to both insured and beneficiary. Consistent to Merton (1969) and

Charupat and Milevsky (2002), identical Sharpe Ratios produce identical results.

As insured’s risk aversion level increases, i.e. the coefficient of relative risk aversion γ

increases from 1.8 to 2.5, the allocation at all asset levels decreases about 27%, because the

more risk averse the policyholder is, the more conservative allocation decision they would

make. As γ = 2.5, the allocation increases from 52.7% to 55% (goes up 2.3%) around at the

money area.

When the roll-up rate rp increases from 0% to 3%, the bump area will move to a higher

asset level. At age 45, the highest “argument” point moves from a = 1 to 1.35, which is a

significant increase. The increase of the strike price of the GMDB option is the reason for

this move.

Decreasing the bequest motive from ζ = 0.5 to 0.2 will keep the allocation level the same

at almost all asset levels, but reducing the bequest motive makes insured care less about

beneficiary. The hump level around at the money area is reduced to 1.7%.

Figure 6: At the Money Allocation under without consumption case
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Figure 6 plots at the money allocation at all ages. It shows that at any parameter level,

as the insured gets older, he will care more about himself. As the policyholder ages, he has

less and less probability to die before retirement age. It is more likely that he, rather than his

beneficiary, will consume the assets. He will be more concerned about his post-retirement life

and keeping himself from outliving the assets during retirement. As a result, the “argument”

moves in favor of the insured, and the amount in the risky asset decreases. As the risky rate

of return r decreases from 7% to 5.5%, the risky account will be less attractive, as a result the

insured puts less money in the risky subaccount. As the stock market volatility increases, i.e.

σ increases from 15% to 25%, a risk averse insured will take less risk by transfering money

from risky subaccount to risk free account. As the insured’s risk aversion level increases,

i.e. the coefficient of relative risk aversion γ increases from 1.8 to 2.5, the insured is more

concerned about the safety of the investment and will allocate less into risky subaccount.

The bequest motive ζ also has an effect, as the bequest motive decreases, the risky account

allocation will slightly decrease, which also means the “argument” between the policyholder

and the beneficiary decreases at all ages. Roll-up rate rp case is somewhat more complicated:

Increasing the roll-up rate rp increases the at the money allocation when the policyholder is

at a younger age; as the insured ages, the roll-up rate becomes less and less useful to protect

the beneficiary, and as a result, the risky asset allocation drops more quickly than the base

case, and finally converges to the base case allocation. Compared with all the parameter

shocks, changes in roll-up rate rp and bequest motive ζ will only change the allocation at

younger ages; as the insured ages, the allocation strategies converge. Changes in the risky

rate of return r, coefficient of relative risk aversion or volatility of stock market cause nearly

parallel shifts, which change not only at younger ages, but also at older ones.

2.2.2 “WITH CONSUMPTION” CASE

From t− to t+, there is consumption incurred. We take the first order condition on the
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first stage, and we will get

∂Vt−(at− ,mt)

∂ct
= c−γt −

(1− γ)

(
1− ct

at−

)−γ
Vt+(at− ,mt)

at−
.(27)

Let D =

(
1

(1− γ)Vt+(1,mt)

) 1
γ

, we can get

ct
at−

=
D

1 +D
.

To match the second stage, we need to modify the expression of D:

D =

(
1

(1− γ)Vt+(1,mt)

) 1
γ

=

(
(mte

rpt)1−γ

(1− γ)Vt+(mterpt,mt)

) 1
γ

.

At the second stage, immediately after the consumption, the insured may be dead and

the insurer will pay the GMDB amount to the beneficiary at t+. If the insured still survives,

he will choose allocation to the separate subaccounts. This will be the same procedure as in

the “without consumption” case.

Table 5: Common Parameters in the Base case

Strength of Bequest Motive ζ 0.5

Subjective Discount Rate β 0.97

Risk Free Rate rf 3%

Coefficient of Relative Risk Aversion γ 2

Growth Rate of Fixed Subaccount rg 4%

Expected Return of Risky Asset r 7%

Volatility of Risky Return σ 15%

GMDB roll-up rate rp 0

Annual Survival Rate φ 0.99

Annual Mortality Rate µ 0.01
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With the partial withdrawal option, one will see the behavior of the insureds change from

the previous case. To do the sensitivity tests, the values of base parameters are set as in

table 5.

a. Risk Aversion Sensitivity

Figure 7: At the Money Allocation with different γ under consumption case

The purpose of this sensitivity test is to discover the optimal choices for the policyholder

if all but one coefficient, relative risk aversion (γ), were kept constant. Figure 7 shows that

as the risk aversion level increases, the policyholder will less likely to invest money into the

variable subaccount. For all γ > 1, the proportion in the variable subaccount will decrease

as the insureds age. As γ increases, the proportion in the variable subaccount will decrease.

All of these are consistent as in the “without consumption” case. As γ < 1, since the insured

is not very risk averse, he will put all the money into his variable subaccount.

Figure 8 shows that the pre-retirement consumption ratio changes for different levels of

risk aversion. As risk aversion level increases, the consumption ratio in each period will
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Figure 35: Age 45 allocation with different σ when y = 0.01

Figure 36: Age 45 withdrawal proportion with different σ when y = 0.01

Figure 35 and 36 show, at age 45, the policyholder’s response in the allocation and

withdrawal choices given different equity market risks. If the expected risk on the market
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increases (annual volatility changes from σ = 15% to 25%), the insured fears for the invest-

ment risks, and he would like to decrease risky account allocation to keep the asset safe. At

the same time he would like to increase withdrawal ratio to consume more at the current

period. As volatility becomes larger, one can also observe the spike levels are lower, which

implies the risk averse beneficiary does not have much incentive to “argue” with the insured,

and the human capital effect also becomes smaller.

3.2.4 Rate of Return Sensitivity

The purpose of the rate of return sensitivity test was to discover the optimal choices for

the policyholder if only one coefficient, rate of return on risky asset, was changed. Figure 37

shows at-the-money asset allocation with different risky rate of return. When the risky rate

of return is low, the policyholder will have no incentive to do risky investments. Therefore,

the percentage of wealth held in the variable subaccount will be low. Given any levels of

risky rate of return, the allocation to risky account decreases as the insured ages from 35 to

65.

If one study the insured’s allocation choice facing different risky rate of return at age 45

(figure 38), one can find that the insured would like to transfer more assets to the variable

subaccount with higher expectation on equity market return. From this figure, one can also

observe two hump shapes incurred by the joint effects on allocation choices, i.e. the GMDB

effect (the hump around at-the-money area) and human capital effects (the hump at higher

asset level), which are consistent with the results derived in the risk aversion sensitivity test

example.

With a higher risky rate of return, the insured will also have more money to withdraw

from the account and consume to increase his living standards (Figure 39).
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Figure 37: At the Money Allocation with different r when y = 0.01

Figure 38: Age 45 allocation with different r when y = 0.01
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Figure 39: Age 45 withdrawal proportion with different r when y = 0.01

3.2.5 Unemployment Risk

Now the assumption of unemployment risk is added to our model. The policyholder is

assumed to face unemployment risk. Therefore, there are two states of labor income: state

1. y = ỹ, the policyholder is employed and receives a positive compensation ỹ > 0; state 2.

y = 0, the policyholder is unemployed and receives no income.

We assume the Markov transition probability matrix for wage shock is as follows

Π(yt+1|yt) =

 0.95 0.05

0.3 0.7


If the policyholder is employed at time t, he has a 95% chance to keep employed and

a 5% chance to get unemployed at time t + 1; if the policyholder is unemployed at time t,

his probability to find a job at t+ 1 is 30% and his probability of remaining unemployed at

t + 1 is 70%. The steady state probability of employment is π1 =
6

7
and the steady state
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probability of unemployment is π2 =
1

7
.

Figure 40 (age 45 allocation with y = 0.01 and y = 0.02) details the optimal allocation

choices for the insured given an earnings risk. Since the insured is rational, he will take

the unemployment risk into account when he allocates the wealth to maximize his utility.

Acknowledgment of the unemployment risk by the insured ensures that he has even less

expectation on his human capital than if he were in a “fixed income” situation. Therefore,

there is a smaller human capital effect on the insured’s allocation of funds with the acknowl-

edgment. Corresponding to the smaller effect is that allocation to the risky account is less

than it would be in a “fixed income” situation.

A further observation is that there is not a great difference between allocations made

whether employed or unemployed for either y = 0.01 or y = 0.02. Given the Markov

transition matrix above, the unemployed policyholder is expected to wait only 3 months

(1/0.3) for a new job. Since three months is a negligible amount of time overall, a rational

policyholder will not reduce the risky allocation by much for this reason. Consistent with the

previous analyses, at any income level two hump shapes are seen: the hump shape around

the “at-the-money” area is caused by the GMDB “arguments” between the insured and his

beneficiary, and the other hump shape is from human capital effects.

In figure 40, as the stock to strike level is low (as a/b < 3), the allocation by the

policyholder with low income (y = 0.01) is greater than the allocation would be if his income

were higher (y = 0.02). The occurrence is counter-intuitive, because the insured with higher

income means he has higher human capital and he needs to put more money in the variable

subaccount. The counter-intuitive result is due perhaps to model limitations, because the

model assumes that the policyholder consumes all periodic income in the current period.

This induces an “over consumption” problem and distorts the results when the asset level is

low. The distortion caused by the “over consumption”, or over spending, is redressed once

the policyholder withdraws funds in order to cover the additional living costs.

Figures 43 (Age 45 withdrawal proportion when y = 0.01) and 44 (Age 45 withdrawal

proportion when y = 0.02) below shows the effect the policyholder has once he begins the
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withdrawal of funds from the VA account.

Figure 40: Age 45 allocation with earning risk when y = 0.01&0.02

Figure 41: At the Money withdrawal proportion with earning risk when y = 0.01
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Figure 42: At the Money withdrawal proportion with earning risk when y = 0.02

Figure 43: Age 45 withdrawal proportion with earning risk when y = 0.01
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Figure 44: Age 45 withdrawal proportion with earning risk when y = 0.02

Figure 41 and 42 show at-the-money pre-retirement (from age 35 to 65) withdrawal

proportion with y = 0.01 and y = 0.02. The insured in the employed state will not withdraw

at all, because he can live well by his outside income; the unemployed insured has to withdraw

money from the VA account to support his living, but he withdraws at a decreasing ratio as

he ages because he has to lower his living standards and consume less to save more for his

retirement costs.

When the insured is unemployed, he has to withdraw from the VA account to support his

life. From figure 43 and figure 44, age 45 withdrawal proportion with unemployment risk,

one can observe that the more money the unemployed policyholder has, the smaller ratio he

withdraws. It can be explained from several aspects. First, “diminishing marginal utility

of consumption” is at work here. As the asset level is low, the insured has to withdraw a

large proportion to cover the living expense. As the asset level increases, the absolute value

of consumption is still increasing, but the consumption ratio is decreasing. Also because of

the concavity of the utility function, the insured’s satisfaction does not increase as much as

his consumption, therefore the consumption ratio will not proportionally increase as asset

73



allocation in both states to save more for his retirement.

Figure 48: Age 45 allocation with earning risk when y = 0.01&0.02 in a bad job market

Figure 49: Age 45 withdrawal ratio with earning risk when y = 0.01 in a bad job market
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Figure 50: Age 45 withdrawal ratio with earning risk when y = 0.02 in a bad job market

Figures 49 and 50 shows the policyholder’s withdrawal proportion at age 45 when y = 0.01

and y = 0.02 respectively. In both figures, one can observe that the policyholder withdraws

less in both states than in the base case. When the policyholder is employed, he will be

more concerned about unemployment, because the job market is bad and it is hard to

get reemployed. This will result in a smaaller withdrawal ratio. When the policyholder

is unemployed, he expects to wait more periods to get a new job than in the base case.

Therefore he will also decrease the withdrawal ratio.

If the job market is weak, which means that the probability for an unemployed individual

to find a job in the next time period is small, i.e. 10%, while it is hard for an employed

individual to lose his job, i.e. 0.005%. Then the Markov transition probability matrix for

wage shock will become

Π(yt+1|yt) =

 0.995 0.005

0.1 0.9



79



The steady state probability of employment is π1 ≈ 0.9524 and the steady state probability

of unemployment is π2 ≈ 0.0476.

Figure 51: Age 45 allocation with earning risk when y = 0.01&0.02 in a weak job market

In comparison to the base case, figure 51 shows that the risky asset allocations are greater

than in the base case. If the policyholder is employed, he will find his job position is safer

than in the base case and will prefer a riskier allocation. If the policyholder is unemployed,

he will expect to take a longer time looking for a job, but once he finds one, he will less likely

to be fired. He may also take a more aggressive allocation than when he is unemployed in

the base case. Moreover, one can observe that the difference between the allocation choices

in the employed and unemployed states are greater than in the base case, especially near the

second hump (the human capital hump). The larger difference is caused by the difficulty in

finding a new job and the stability in the current job position.

80



Figure 52: Age 45 withdrawal ratio with earning risk when y = 0.01 in a weak job market

Figure 53: Age 45 withdrawal ratio with earning risk when y = 0.02 in a weak job market

Figures 52 and 53 shows the policyholder’s withdrawal proportion at age 45 when y = 0.01

and y = 0.02 respectively. In both figures, one can observe that the policyholder withdraws
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more in both states than in the base case. Once the policyholder is placed in a job, he will

have safe long term safe human capital, and this will increase his withdrawal ratio as in the

“fixed income” case. Also, an unemployed policyholder requires a longer period to get a job,

but once he gets it, he will lock in “safe” human capital.

4 Optimal Allocation and Consumption with Guaran-

teed Minimum Death Benefits with Labor Income

and Term Life Insurance

In this section, the model of the previous sections is extended by incorporating optimal

term life insurance demand. Because human capital is often the largest asset an investor

possesses when he is young, protecting human capital from potential risks also should be

considered as a part of overall investment advice. The risk of the loss of the policyholder’s

human capital – the mortality risk – to the household can be partially hedged by a term

life insurance policy. Since a GMDB can also help policyholders hedge the risk of the loss

of human capital, GMDB options and term life insurance can be considered as substitute

goods. However, they are not perfect substitute goods. GMDB and term life have their

own properties: Term life insurance has no correlation with equity markets, and it is purely

regarded as a protection for human capital; the variable annuity products follow the perfor-

mance of equity markets, and the GMDB is a protection against downside risks on equity

markets. In the following section, we are trying to check if the GMDB options add value to

the VA contract even if a term life policy is available.

4.1 Models

Let us first take a look at “without GMDB” case: an individual purchases a variable

annuity contract without GMDB option and makes a lump sum deposit to the variable

annuity account. Once the insured receives labor income at the beginning of period t, he will
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make his consumption decision. If labor income is not enough to support his consumption,

he will make a decision to withdraw from the VA account. At the same time, he will also

decide whether he needs a term life policy to help his beneficiary in case of his own premature

death. After consumption, withdrawal and term life purchase decisions, still at time t, the

policyholder will decide the optimal allocation between the fixed and variable subaccounts

in the VA account. If the policyholder dies at time t, the amount in the VA account at,

will be inherited by his beneficiary. In addition to the bequest from the policyholder’s VA

account, the beneficiary also gets the term life policy payment F c
t . If the insured survives

until his retirement age, at the end of the policy period, he will get the entire account value

and annuitize it for his retirement life.

The insured’s objective function in the “without GMDB” case can be written as

(43)

max
ωt,dt,Pt

E

[ T∑
t=1

βt(
∏t

i=1
φi)u(ct)+β

T (
∏T

i=1
φi)VT+1(aT+1)+

T∑
t=1

βt(
∏t−1

i=1
φi)(1−φt)ζv(at+F

c
t )

]
,

where P is the premium of the term-life policy; F c is the face amount of the policy; dt

is the amount of the withdrawal from the policy. vB is the beneficiary’s value function,

and it depends on the policyholder’s bequest motive ζ which measures the importance of

the beneficiary’s benefits to the policyholder. Once the beneficiary gets the bequest, she

will maximize her own utility by optimal allocations and withdrawals. The beneficiary’s

objective function can be written as

(44) max
ωBt ,c

B
t

E

[ TB∑
tB=t

βtB−t(
∏tB−1

i=t
φi)u(cBt ) + βTB−t(

∏TB

i=t
φi)vTB+1(aBTB+1)

]
.

In this case, if the insured dies at time t, the bequest amount received by the beneficiary is

aBt = at + F c
t . When the insured deposits in the VA account, the beneficiary has TB years

until her retirement age. When the insured dies, the beneficiary will receive the bequest and

has TB − t years until retirement age and will transform the money into a lifetime payout
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annuity after she retires. In these TB − t years, she will optimally withdraw to consume

and will optimally allocate the amount between risky and risk-free investments. She will get

the terminal value aBTB+1 at the beginning of TB + 1st year. However, we do not assume a

bequest motive for the beneficiary.

From the insured’s objective function, we can derive his Bellman equation as follows

(45) Vt(at) = max
ωt,dt,Pt

{
ut(ct) + (1− φt)ζv(at + F c

t ) + βφtE[Vt+1(at+1) | at, rt]
}

subject to

ct ≡ yt + dt, 0 ≤ dt ≤ at,

at+1 = (ωt(1 + rt+1) + (1− ωt)(1 + gt))(at − dt), 0 ≤ ωt ≤ 1,

aT+1 = (ωT (1 + rT+1) + (1− ωT )(1 + gt))(aT − dT ),

c̄ =
aT+1∑Tmax

t=T+1

∏t−1
i=T+1 φi(1 + rf )T+1−t

,

VT+1(aT+1) =
Tmax∑
t=T+1

βt−(T+1)(
∏t−1

i=T+1
φi)u(c̄),

F c
t =

Pt
(1− φt)(1 + η)

, 0 ≤ Pt < dt + yt,

η is the loading element, which refers to the amount that must be added to the pure premium

to cover other expenses, profit, and a margin for contingencies. The other notation is the

same as the previous section. c̄ is the periodic consumption after retirement, and we assume

it is the level periodic payment from the variable annuity account. c̄ can be derived from

the terminal account value as follows,

aT+1 = (ωT (1 + rT+1) + (1− ωT )(1 + gt))(aT − dT )(46)

= c̄

Tmax∑
t=T+1

∏t−1

i=T+1
φi(1 + rf )

T+1−t,

c̄ =
aT+1∑Tmax

t=T+1

∏t−1
i=T+1 φi(1 + rf )T+1−t

.(47)
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Then we consider the “with GMDB” case: an individual purchases a variable annuity

contract with GMDB options and makes a lump sum deposit to the variable annuity ac-

count. Once the insured receives labor income at the beginning of period t, he will make

the consumption decision. If labor income is not enough to support his consumption, he will

make a decision to withdraw from the VA account. Simultaneously, the GMDB level will

be reduced proportionally with the withdrawal ratio. At the same time, he will decide if

he needs a term life policy to help his beneficiary after his own premature death. After the

consumption, withdrawal and term life purchase decision, still at time t, the policyholder

will decide the optimal allocation choice between the fixed and variable subaccounts in the

VA account. If the policyholder dies at time t, the amount in the VA account, which is

protected by the GMDB (bt), will be inherited by his beneficiary. In addition to the bequest

from the policyholder’s VA account, the beneficiary also gets the term life policy payment

(F c
t ).

If the insured has labor income and is holding a term-life insurance policy, the objective

function is

(48)

max
ωt,dt,Pt

E

[ T∑
t=1

βt(
∏t

i=1
φi)u(ct)+β

T (
∏T

i=1
φi)VT+1(aT+1)+

T∑
t=1

βt(
∏t−1

i=1
φi)(1−φt)ζvB(bt+F

c
t )

]
,

where vB is the beneficiary’s value function. The beneficiary gets the bequest (F c
t + bt) and

maximizes her own utility by optimal allocations and withdrawals. The objective function

for the beneficiary is as follows,

(49) max
ωBt ,c

B
t

E

[ TB∑
tB=t

βtB−t(
∏tB−1

i=t
φi)u(cBt ) + βTB−t(

∏TB

i=t
φi)VTB+1(bBTB+1)

]
.

If the insured dies at time t, the bequest amount received by the beneficiary is bBt = bt+F
c
t .

She will get the terminal value bBTB+1 at the beginning of TB + 1st year.
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From the insured’s objective function, we can derive the insured’s Bellman equation

Vt(at, bt) = max
ωt,dt,Pt

{
ut(ct) + (1− φt)ζvB(bt + F c

t ) + βφtE[Vt+1(at+1, bt+1) | at, rt]
}

(50)

subject to

a1 = b1,

ct ≡ yt + dt, 0 ≤ dt ≤ at,

at+1 = (ωt(1 + rt+1) + (1− ωt)(1 + gt))(at − dt), 0 ≤ ωt ≤ 1,

kt+1 = kt(1 + rf )
at+1 − dt+1

at+1

,

bt+1 = max(kt+1, at+1),

F c
t =

Pt
(1− φt)(1 + η)

, 0 ≤ Pt < dt + yt,

VT+1(aT+1) =
Tmax∑
t=T+1

βt−(T+1)(
∏t−1

i=T+1
φi)u(c̄).

c̄ is the insured’s periodic consumption after retirement, and we assume it is the level periodic

payment from the variable annuity account. c̄ can be derived from the terminal account value

as in the “no GMDB” case.

We can see that if the policyholder buys a VA product with GMDB options and term

life policy, the beneficiary is protected against the loss of the insured’s human capital and

investment risk simultaneously. Any policyholder with bequest motive will be better off

purchasing both. Because these two products are partial substitutes for each other, the

policyholder needs to consider the costs and benefits of having both products.

As before, we denote state variables as (·)t− ,(·)t+ to solve the maximization problem, i.e.

the value immediately before and after the transactions at the discrete time t, respectively.

We assume the policyholder is employed and receives labor income yt at t−. Withdrawal,

consumption and term life purchase also occur at t−. Then the insured decides the amount

to transfer between the fixed and the variable subaccounts at t+, which is still at time t

86



but after the receipt of income, withdrawal, consumption and term life purchase. We also

assume that the beneficiary gets the bequest immediately at t+ just after the insured dies

at t+. Therefore, the insured’s Bellman equation can be expressed by two-stage Bellman

equations. At the 1st stage from t− to t+, the insured gets the utility from consumption

which is equal to the sum of optimal withdrawal from the variable annuity account and labor

income minus the term life premium. Since there is mortality risk and bequest motives, if

the policyholder dies before retirement, the beneficiary will get the utility from the bequest

at t+. At the 2nd stage from t+ to t + 1−, the insured maximizes his utility by allocating

optimally the amount between two subaccounts.

In the “no GMDB” case, the bequest amount is equal to the account value at at the

moment of insured’s death. The insured’s two-stage bellman equations are as follows

1. From t− to t+

Vt−(at−) = max
dt,Pt

{
u(ct) + ζ(1− φt)vB(at− − dt + F c

t ) + Vt+(at+)
}

(51)

= max
dt,Pt

{
u(yt + dt − Pt) + ζ(1− φt)vB(at− − dt + F c

t ) + Vt+(at − dt)
}

= max
dt,Pt

{
u(yt + dt − Pt) + ζ(1− φt)ψt(at− − dt + F c

t )1−γ + Vt+(at− − dt)
}
.

Under the CRRA assumption, we derive a constant factor6 ψt at period t to make vB(at−−

dt + F c
t ) = ψt(at− − dt + F c

t )1−γ, given ψt < 0 if γ > 1 ,and ψt > 0 if γ < 1.

2. From t+ to (t+ 1)−

Vt+(at+) = max
ωt

{
βφtEVt+1−(at+1−)

}
.(52)

By taking the first order condition of dt and Pt on Vt−(at−), we get

(53) Pt =
1 + A1

1 + A1

(1−φt)(1+η)

dt +
yt − A1at

1 + A1

(1−φt)(1+η)

where A1 =

[
ζψt(1− γ)

1 + η

]−1/γ

.

6Same as in Section 3
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From the above equation, we can see that the term life premium Pt is linearly related to

withdrawal amount dt from the account, given 0 ≤ Pt ≤ dt + yt. Since A1 is positive, Pt

grows in pace with the withdrawal amount dt and income yt, and is negatively correlated

with wealth level at. If the insured withdraws from the VA account, the beneficiary will

get a lower bequest from the VA account, and the insured is willing to buy more term life

insurance to transfer his wealth to his beneficiary. If the account value at is high, term life

is not very important any more.

If the variable annuity account contains a GMDB option, the insured’s two-stage Bellman

equations are as follows,

1. From t− to t+

Vt−(at− , bt−) = max
dt,Pt

{
u(ct) + ζ(1− φt)vB(bt+ + F c

t ) + Vt+(at+)
}

(54)

= max
dt,Pt

{
u(ct) + ζ(1− φt)vB(bt

at − dt
at

+ F c
t ) + Vt+(at+)

}
,

=⇒ Vt−(at− , bt−) = max
dt,Pt

{
u(y + dt − Pt) + ζ(1− φ)vB(bt

at − dt
at

+ Ft) + Vt+(at − dt)
}

(55)

= max
dt,Pt

{
u(y + dt − Pt) + ζ(1− φ)ψt(bt

at − dt
at

+ Ft)
1−γ + Vt+(at − dt)

}
.

2. From t+ to (t+ 1)−

(56) Vt+(at+ , bt+) = max
ωt

{
βφEVt+1−(at+1− , bt+1−)

}
.

By taking the first order condition of dt and Pt on Vt− , we get

(57) Pt =
1 + A1bt

at

1 + A1

(1−φ)(1+η)

dt +
y − A1bt

1 + A1

(1−φ)(1+η)

where A1 =

[
ζψt(1− γ)

1 + η

]−1/γ

.

With GMDB, the term life premium is also linearly related to the withdrawal amount dt

from the account. As in the “no GMDB” case, Pt grows in pace with the withdrawal amount

dt and the income yt. If there is no withdrawal, i.e. dt = 0, Pt is negatively correlated with
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the GMDB level bt, because the term life is partially substituted for by the GMDB protection.

If dt > 0, we find that a higher asset level at reduces the term life demand. The GMDB level

bt also negatively correlates with the term life demand.

4.2 Numerical Methodology

In the case of “with both GMDB and term life insurance”, we use two-stage Bellman

equations to get the numerical results and apply a 2-Dimensional lattice. We solve the

policyholder’s utility optimization problem by backward induction (month by month) from

the retirement age t = T (at the beginning of age 65, T = 360) to t = 1 (at the beginning of

age 35). We use the same settings of Â and B̂ in Section 3 7.

All state variables are denoted as (·)t− , (·)t+ . We assume the terminal value at time

(T + 1)− by using

(58) c̄ =
aT+1−∑Tmax

t=T+1

∏t−1
i=T+1 φi(1 + rf )T+1−t

,

(59) VT+1−(aT+1−) =
Tmax∑
t=T+1

βt−(T+1)(
∏t−1

i=T+1
φi)u(c̄).

After we get the terminal values, we can maximize the insured’s utility backward from

T+ to 1−.

a. Transition from (t+ 1)− to t+

As indicated before, the insured decides the allocation between the fixed and variable

subaccounts in this time interval. We apply the trinomial tree to solve for the optimal

allocation. Given GMDB level bi, let

(60) at+1− = at+ ×
(

1/u 1 u
)
,

for all nodes on at+ . Since at+1− might not be always on those 51 nodes we defined in advance,

7We apply the method in section 3 to discretize beginning-of-period fund value A and Guaranteed Mini-
mum Death Benefit level B into Â and B̂
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we need to use cubic spline interpolation to get the values of Vt+1−(aj+1, bi), Vt+1−(aj, bi),

and Vt+1−(aj−1, bi).

The probabilities pu, pd, and pm have been derived in equations (34), (35) and (36). Then

at any given GMDB level bi, we derive

(61) Vt+(aj, bi) = βφ(puVt+1−(aj+1, bi) + pmVt+1−(aj, bi) + pdVt+1−(aj−1, bi)),

for i = 1, 2, · · ·, 51 and j = 1, 2, · · ·, 51, where Vt+(·, ·) is a 51× 51 matrix at time t+.

b. Transition from t+ to t−

The insured needs to determine the optimal withdrawal dt and the term life premium Pt.

At any given GMDB level bi:

1. Initialize the withdrawal amount dt,k = aj − aj−k for all k < j; the term life premium

Pt can be obtained from equation (57) corresponding to different dt,k, given 0 ≤ Pt ≤ dt,k+yt;

2. For all k’s, we derive

(62) V k
t−(aj, bi) = ut(dt,k + yt) + (1− φt)ζψt(max(bi−k, ai−k) + F c

t )1−γ + Vt+(aj−k, bi−k)

where F c
t =

Pt
(1− φt)(1 + η)

.

From the above equation, one can see that as the policyholder withdraws money from

the account, the GMDB level will also be reduced proportionally. Numerically, we need to

reduce the Vt− diagonally;

3. Let Vt−(aj−k? , bi−k?) = max(Vt−(bi−1, ai−1), · · ·, Vt−(bi−k, ai−k)), so we can locate the po-

sition of the maximum Vt− in the 51 × 51 space. The maximum Vt− is not necessarily

on the matrix nodes, but it must be between the diagonal points Vt−(aj−k?−1, bi−k?−1) and

Vt−(aj−k?+1, bi−k?+1);
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4. Choose the optimal withdrawal dt to maximize Vt− by using quadratic interpolation,

(63)


a2
j−k?−1 aj−k?−1 1

a2
j−k? aj−k? 1

a2
j−k?+1 aj−k?+1 1



α1

α2

α3

 =


Vt−(aj−k?−1)

Vt−(aj−k?)

Vt−(aj−k?+1)


then we can derive the value of the parameters α1, α2 and α3 which are used to estimate

Vt− ,

(64)


α1

α2

α3

 =


a2
j−k?−1 aj−k?−1 1

a2
j−k? aj−k? 1

a2
j−k?+1 aj−k?+1 1


−1

Vt−(aj−k?−1)

Vt−(aj−k?)

Vt−(aj−k?+1)


By using the calculated values of α1, α2 and α3, we can solve for the optimal withdrawal

amount dt and the optimal term life policy F c
t by maximizing the following equation.

(65) max
dt

{
ut(dt + yt) + ζ(1− φt)ψt(bi

aj − dt
aj

+ F c
t )1−γ + α1(aj − dt)2 + α2(aj − dt) + α3

}
subject to

0 ≤ dt ≤ aj,

A1 = [
ζψt(1− γ)

1 + η
]−1/γ Pt =

1 + A1bt
at

1 + A1

(1−φ)(1+η)

dt +
y − A1bt

1 + A1

(1−φ)(1+η)

,

0 ≤ Pt ≤ dt,k + yt,

F c
t =

Pt
(1− φt)(1 + η)

.

We repeat the “transition from (t + 1)− to t+” and the “transition from t+ to t−” until

t = 1−. We can get the optimal asset allocation ωt and optimal withdrawal amount dt from

age 65 to age 35.

In the remainder of this section, some numerical sensitivity tests have been done. We
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assume the base case parameter values are as follows,

Table 11: Common Parameters in the Base case

Loading element of Term Life η 0.1

Strength of Bequest Motive ζ 1

Subjective Discount Rate β 0.97

Risk Free Rate rf 0.03

Coefficient of Relative Risk Aversion γ 2

Growth Rate of Fixed Subaccount rg 0.04

Return of Risky Asset r 0.07

Volatility of Risky Return σ 0.15

GMDB roll-up rate rp 0

Annual Survival Rate φ 0.99

Annual Mortality Rate µ 0.01

Labor Income y 0.01

In the following analyses, all adjustments are made monthly. This is a little unrealistic,

because the term life insurance demand F c
t might not be able to be adjusted monthly in real

life. Results might change if F c
t is not so easily adjustable. In figure 54 and figure 55, the life

insurance demand at age 35 are checked, given different at-the-money asset levels 8, and we

find that as the at-the-money wealth level decreases, the demand for the term life insurance

increases at any risk aversion levels and any given insurance loadings. In the comparison

of the term life insurance demand with γ = 2 and γ = 3 (Figure 56), one can see that

when the asset level is low, people are willing to buy a term life insurance policy for their

beneficiaries. From the figure, as η = 0, there is no difference in determining the term life

insurance demands for poor people in the γ = 2 case and the γ = 3 case; as η = 0.5, the

difference in the term life insurance demand between different risk aversion levels is also very

small when the wealth level is low. The difference expands as the asset level rises, because

rich insureds have alternative way to give bequests to their beneficiaries. Therefore people’s

incentives to buy term life insurance will decrease as their wealth level increases. One can

also find that risk aversion levels matter in determining the term life insurance demand: the

8At any asset level, we use a35 = b35
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higher the risk aversion is, the higher the term life demand is.

Figure 54: Age 35 Term Life Insurance Demand with γ = 3

Figure 55: Age 35 Term Life Insurance Demand with γ = 2
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Figure 56: Term Life Insurance Demand comparison with different γ

The basis points which the insured is willing to pay for the GMDB at the beginning

of the contract are derived in Table 12. In doing that, the quadratic interpolation method

is applied to estimate the basis points of GMDB options. We know that for an identical

expected rate of return r1, any policyholder with a bequest motive will be better off in a VA

account with GMDB than in a VA account without GMDB protection. This implies that r1

in an with GMDB account is equal to r1 + ε in an without GMDB account for some ε > 0.

Given three expected rates of return r1 < r2 < r3, we get the policyholder’s utility at age

35 in the “no GMDB” account; the utility the policyholder can get in a VA account with

GMDB should be between the utilities of no GMDB accounts with r1 and r3 (given r3 is

large enough).

We assume ṽ is the utility of the GMDB account with r1 at age 35; v1, v2 and v3 are the

utilities of the no GMDB accounts with expected rate of return r1, r2 and r3
9 respectively.

v1, v2 and v3 can be expressed by the quadratic forms of r1, r2 and r3 as follows,

9We assume r1 = 7%, r2 = 7.2% and r3 = 7.5%.
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(66)


r2

1 r1 1

r2
2 r2 1

r2
3 r3 1



θ1

θ2

θ3

 =


v1

v2

v3


We can derive the parameter values of θ1, θ2 and θ3 by

(67)


θ1

θ2

θ3

 =


r2

1 r1 1

r2
2 r2 1

r2
3 r3 1


−1

v1

v2

v3


By using the parameters, we can derive

(68) ṽ = θ1(r1 + ε)2 + θ2(r1 + ε) + θ3.

We solve the above equation (68) for ε, and then 10000ε is denoted as the basis points

that the insured is willing to pay. From table 12, one can find that at any given risk

aversion level, the basis points decrease as at-the-money asset level decreases. The less risk

averse the policyholder is, the smaller the basis points he is willing to pay. This means less

risk averse policyholders are reluctant to pay costs for the GMDB protection. This can be

partially explained by the fact that our model does not allow policyholders to save their

labor income, and the only way for poor people to leave bequest is to buy a term life policy.

The poor insureds may regard the term life insurance as an efficient tool to transfer the

wealth to their beneficiary. Therefore, a poor insured is willing to pay less for the GMDB

and buy more term life insurance. Life insurance has some substitute effects on the GMDB.

Also as η increases, the policyholder will have to pay more premium for the optimal term

life benefit. Therefore, the attractiveness of term life will decrease, and the policyholders

are willing to pay a little more for GMDB and buy less term life coverage. It may also be

explained by the fact that the term insurance is adjustable monthly in this model while the
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GMDB is locked-in at t = 0.

By incorporating optimal choices of the insured, the insurance company can price the

GMDB in a risk neutral way (Table 13). From that table, one can see that the gap between

the price from the insurer’s perspective and the price evaluated from the insured’s perspective

is very large, even when the term life loading factor is increased to η = 0.5. The reason there

is little influence from the term life loading factor increase is that the increase of η does not

change the insured’s allocation and withdrawal choices significantly, but the insurer prices

the GMDB by considering the insured’s allocation and lapse choices. Therefore the GMDB

price is still much higher than the amount the insured is willing to pay.

Table 12: GMDB at the money basis points at age 35 from insured’s perspective

At the money

Account Value
γ η = 0 η = 0.1 η = 0.5

1 3 2.177285617 2.400562312 3.293030008

0.927743486 3 1.966135023 2.169414838 2.983092028

0.860707976 3 1.746936916 1.929426976 2.660911555

0.798516219 3 1.520668824 1.681812085 2.328635989

0.740818221 3 1.287852328 1.427278767 1.988576075

0.687289279 3 1.049560852 1.166851376 1.641915008

0.637628152 3 0.810416601 0.905675891 1.295146776

1 2 1.676527952 1.839097421 2.477152309

0.927743486 2 1.558313657 1.708742323 2.298101408

0.860707976 2 1.438205208 1.576889229 2.118201469

0.798516219 2 1.317333512 1.444628011 1.942116934

0.740818221 2 1.198946465 1.315253524 1.770765382

0.687289279 2 1.083839266 1.189776982 1.605799822

0.637628152 2 0.973051224 1.069179023 1.447886546

1 0.5 0.713440359 0.778438667 1.023804069

0.927743486 0.5 0.686895282 0.74987376 0.987981559

0.860707976 0.5 0.661334275 0.722357689 0.953425041

0.798516219 0.5 0.636698439 0.695828493 0.920064632

0.740818221 0.5 0.612932947 0.670228353 0.887834322

0.687289279 0.5 0.589987089 0.645503645 0.85667218

0.637628152 0.5 0.567814305 0.621604932 0.826520452

96



Table 13: GMDB fair price VS. insured’s expected price at age 35

γ η
GMDB

fair price

Insured’s

willingness to pay

3 0 0.002592358 0.000218

3 0.1 0.0026 0.000240

3 0.5 0.002622991 0.000329

2 0 0.002978453 0.000168

2 0.1 0.002985554 0.000184

2 0.5 0.003012131 0.000248

0.5 0 0.003169028 0.000071

0.5 0.1 0.003169035 0.000078

0.5 0.5 0.003169039 0.000102

At-the-money account value is a = b = 1

5 Conclusions

In this paper, we apply a dynamic utility based model to derive optimal transfer and

withdrawal choices for insureds who have variable annuity accounts with GMDBs.

In section two “Optimal Consumption and Allocation in Variable Annuities with Guaran-

teed Minimum Death Benefits”, we discuss “without consumption” and “with consumption

(partial withdrawal)” cases are explored in-depth.

In the “without consumption” case, as the insured’s age increases, so too does the concern

for himself, reflected in an increase in money transfers from the variable subaccount to the

fixed subaccount. At any given age, as the coefficient of risk aversion γ or market volatility σ

go up, or the risky asset rate of return r goes down, the allocation to the variable account will

go down; while if the bequest motive ζ goes up, the allocation to the variable subaccount will

go up. The findings with regard to the roll-up rate rp were complicated: increasing the roll-

up rate rp increases the at-the-money allocation when the insured is young, but allocation

decreases very fast as age increases, before converging to the Merton allocation point.

In the “with consumption (partial withdrawal)” case, we derive similar results for the
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insured’s allocation choice as in the “without consumption” case, and some exciting results

for optimal withdrawal decisions. As the insured ages, he will reduce the wealth in the

variable subaccount for any parameter values. The consumption rate for each period is

positively correlated with the coefficient of risk aversion γ; the higher the bequest motive, the

lower the consumption rate; if γ < 1, a higher roll-up rate rp increases the consumption rate,

while if γ > 1, a higher roll-up rate rp decreases the consumption rate; greater volatility σ

decreases the consumption rate; a higher risky rate of return r results in a higher consumption

rate. At any given age (e.g. at age 45), the coefficient of risk aversion γ reduces the risk

taking incentive for the insured, i.e. reduces the risky allocation around the at-the-money

area; a higher bequest motive ζ pushes the insured to take risky decisions around the at-the-

money area; if the insured is promised some roll-up rate rp, he will transfer more money to

the variable subaccount, at the same time we will see the trigger point to take risky decisions

move up; a higher expected risky rate of return r also gives insured incentive to take more

risk.

In both cases, insureds will apply a more aggressive investment strategy by transferring

more money into variable subaccount when they have a GMDB rider, especially when the

asset value is around the at-the-money level. If the insured puts more amounts into the

variable subaccount, the GMDB is more and more valuable in protecting downside risk.

In section three, we incorporate the insured’s periodic labor income in our model. We

explore two scenarios, i.e., a “fixed labor income” case and “stochastic labor income” case.

If the insured is assumed to get fixed labor income, he will have a stable and substantial

human capital, which is similar to a risk-free bond investment. The insured’s allocation

choice will be much more aggressive than in the “no income” case we discuss in section two.

In the “stochastic labor income” case, since the insured faces earnings risk, the allocation

choice is less aggressive than the “fixed labor income” case. In both cases, at any given age,

we will observe two hump shapes for an insured with a bequest motive. One is incurred by

the GMDB argument around stock to strike area; the other is incurred by the human capital

effect.
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In section four, we add the term life insurance policy to check the GMDB value. By

considering the optimal choice of allocation, withdrawal and term life policy purchase, the

GMDB option is priced from the insurer’s perspective by plugging the optimal choice into the

risk-neutral model. By comparing the basis points derived from both the insured’s and the

insurer’s perspectives, we find that the GMDB is too expensive for the insured at any given

risk aversion level, while the demand of term life policy does not change noticeably regardless

of the availability of GMDB. Therefore, our work suggests that fairly priced GMDBs may

not be good investments if term life insurance is an available option. It is possible that the

results may change if the term insurance face amount is not continuously adjustable or an

external savings vehicle is available.

6 Future Extensions

There are several extensions we plan to do in the future. So far, we assume the variable

annuity with GMDB is the only investment vehicle in the model. According to our assump-

tion, people purchase the GMDB contract in a lump sum and use up the labor income in

each period. With these assumptions, the policyholder will incur “over consumption” when

his total wealth becomes low. In future trials, one or more dimensions will be added to

the current model, allowing for investment into other vehicles where the policyholder can

choose to invest wealth in riskless and/or risky accounts. In this work, the policyholder’s

labor income is not correlated with the investment market, however, if we assume that the

policyholder’s labor income is correlated with the equity market, then the risk/return profile

of policyholder’s human capital should be quite different. Concurrently, the policyholder’s

choice should vary from the obtained results.

The return of premiums and roll-up benefits were considered in our paper. There are

other features of GMDBs, e.g. Ratchet and Resetting GMDB. We may extend our model to

study these two features. Furthermore, the current study focuses on the demand side, but in

future research, this can be extended to discuss the interaction between demand (insureds)
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and supply (insurers) sides.
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