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ABSTRACT

Essays on Accident Forgiveness in Automobile Insurance

BY

Fan Liu

June 29, 2012

Committee Chair: Martin F. Grace

Major Academic Unit: Department of Risk Management and Insurance

Accident forgiveness, often considered as a type of “premium insurance,” protects the insured
against a premium increase if an at-fault accident occurs. Although accident forgiveness has
received considerable attention in the auto insurance industry, there is little or no literature
on accident forgiveness in the actual contract. In this dissertation, I use dynamic modeling
to examine optimal insurance contracts with an accident forgiveness option and further use a
structural modeling approach to investigate the impacts of risk and time preferences on the
accident forgiveness contract purchase. This study attempts to improve our understanding
of the implications of this new type of insurance option.

The first essay develops an asymmetric learning model in which insurers compete to attract
policyholders. When information about previous at-fault accidents is not shared perfectly
by insurers in the market, information asymmetries arise between the initial insurer and the
rival insurer, as well as between the insured and the insurer. I design an auto insurance
contract with accident forgiveness that charges policyholders higher-than-market premiums
according to their risk types in the first period and then experience-rates both types in the
second period contingent on their previous at-fault accidents. Contrary to the prior litera-
ture, which elicits competition as the reason to temper the effects of experience rating, this
model is built such that accident forgiveness is the device to temper experience rating. This



contract attracts policyholders since it “forgives” at-fault accidents and provides “rewards”
in terms of coverage and premiums for those who remain accident-free.

Risk and time preferences influence a variety of economic behaviors. In the field of insurance
economics, attitudes toward risk and time are likely to affect the insurance purchase deci-
sion. As can be observed in the auto insurance market, when offered an optional accident
forgiveness policy from insurers, the insured shows different purchase patterns, regardless of
driving behavior. The question of whether and how individual risk aversion and discount
rates affect the accident forgiveness purchase decision is critical to understanding contract
design. In the second essay, by conducting a unique experiment under controlled laboratory
conditions, I examine the role of risk and time preferences in accident forgiveness contract
purchase and determine that individual discount rates and product prices are significant
factors. Interestingly, I also find evidence that less risk-averse policyholders generally be-
have more like risk-neutral agents when making insurance decisions. Risk attitudes affect
insurance decision-making only among those with a relatively high degree of risk aversion.
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Chapter 1

ACCIDENT FORGIVENESS IN THE AUTOMOBILE INSURANCE

CONTRACT

1.1 Introduction

In recent years, we have been hearing and seeing more about accident forgiveness policies on

TV, billboards, and in Internet forums. Accident forgiveness, often considered as “premium

insurance,” protects the insured against a premium increase if an at-fault accident occurs.

With accident forgiveness, insurance rates do not go up due to an accident. Insurance

companies know that drivers are fearful of the financial consequences of being in even the

most minor accidents, which is why insurers are promoting accident forgiveness policies.

Allstate successfully launched its accident forgiveness option in 2005 as part of its “Your

Choice Auto” insurance program. This offering fundamentally changed the type of products

traditionally offered by insurers by presenting consumers with more innovative features.1

Following Allstate’s lead, other major auto insurance companies in the U.S. market, such as

Geico (Government Employees Insurance Company), Progressive, and Travelers, have also

started offering their existing customers this feature (see Table 1.1).

Interestingly, most insurers offering accident forgiveness policies in the United States

provide this feature for “free” to their existing policyholders who have maintained an accident-

1“Your Choice Auto” consumers can choose from three packages: Platinum Protection, Gold Protection,
and the Allstate Value Plan. Based on their individual needs, consumers can choose among such features as
accident forgiveness, new safe driving rewards, and enhanced protection for new cars.
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Table 1.1. Top 10 Writers of PPA Insurance in the United States (2009)

Rank Group Market Share Offering Accident Forgiveness
1 State Farm Mutual 18.60% Guaranteed if accident free for 9 years
2 Allstate 10.50% As part of “Your Choice Auto”
3 Berkshire Hathaway 8.20% Guaranteed if accident free for 5 years
4 Progressive 7.50% Guaranteed if accident free for 3 years
5 Zurich Financial Services 6.40% As part of “Farmers Flex”
6 Nationwide Mutual 4.50% Guaranteed if accident free for 3 years
7 Liberty Mutual 4.40% Guaranteed if accident free for 5 years
8 USAA 4.10% Guaranteed if accident free for 5 years
9 Travelers 2.10% Guaranteed if accident free for 5 years
10 American Family Mutual 2.00% Guaranteed if accident free for 3 years

Note: Adapted from SNL Financial LC and insurance companies’ websites.

free record for a number of consecutive years. For example, Geico requires that policyholders

be accident free for five years to qualify for the accident forgiveness benefits.2 With Travelers’

accident forgiveness policy, customers who have been with Travelers for four years or more

and accident free for five years will not see a surcharge for their first qualifying accident.3

However, a few insurers sell accident forgiveness as an optional feature in the insurance con-

tract to all customers (see Table 1.1). For example, Allstate sells accident forgiveness as

part of its “Your Choice Auto Insurance” program and Farmers sells this feature as part of

its “Farmers Flex” program.4 In both programs, customers are allowed to purchase accident

forgiveness by paying an additional premium.

Although accident forgiveness has received considerable attention in the auto insur-

ance industry, there is little or no literature on accident forgiveness in the actual insurance

2See Geico’s official website at http://www.geico.com/information.
3See Traveler’s official website at https://www.travelers.com/personal-insurance/auto-insurance.
4“Farmers Flex” provides customers with a new set of options and features such as accident forgiveness

and a new car pledge package.
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contract.5 This paper contributes to the existing literature by developing an asymmetric

learning model to examine optimal insurance contracts in the market with accident forgive-

ness provided as an optional feature. My study attempts to improve our understanding of

this new policy feature in insurance contracting.

This paper develops a two-period model in which insurers compete to attract policy-

holders. Individuals are risk averse and subject to a possible income loss in each period. As

usual,6 the model presumes asymmetric information by assuming that the probability of loss

is not known initially by all insurers and at-fault accidents that occurred in the first period

are only observed by the initial insurer. When information about previous at-fault accidents

is not shared perfectly by the insurers in the market, information asymmetries arise between

the initial insurer and its rival insurer, as well as between the insured and the insurer. Re-

gardless of the assumption of no commitment in the prior literature (e.g., Nilssen, 2000), in

this model insurers are able to commit to the two-period contract but policyholders always

have the option to switch insurers ex post.7 I design an accident forgiveness policy that

charges policyholders higher-than-market premiums according to their risk types in the first

period and experience-rates both types in the second period contingent on their previous

at-fault accidents. Contrary to the prior literature, which elicits competition as the reason

5Nini (2009) empirically investigates claim reporting behavior in the auto insurance market that provides
accident forgiveness to policyholders. The author finds that changes in claim reporting behavior can account
for nearly all of the increase in claims. After controlling for differences in observable characteristics, Nini
shows that the increase in claim frequency is concentrated in relatively small claims and claims where the
policyholder is at-fault, suggesting that consumers without premium protection strategically choose not to
report such claims to the insurance company.

6Much effort has been spent on thinking about designing an auto insurance contract in a dynamic market
with the existence of asymmetric information (e.g., Cooper and Hayes, 1987; Dionne and Doherty, 1994;
Kunreuther and Pauly, 1985; Nilssen, 2000; and Rothschild and Stiglitz, 1976).

7This paper refers to such a situation as semi-commitment, consistent with the specification of Dionne
and Doherty (1994).



4

to temper the experience rating (e.g., Cooper and Hayes, 1987), this model is built such

that accident forgiveness is the device that tempers the experience rating and, of course, is

the incentive for policyholders to purchase it. Such an accident forgiveness contract attracts

policyholders because it “forgives” at-fault accidents and provides “rewards” in terms of

coverage and premiums for those who remain accident-free. By offering this feature to all

policyholders in the pool, the insurer appears to not only lock in its loyal customers but also

attract additional low-risk customers.

This paper’s other noteworthy contribution is analyzing individual accident forgiveness

purchases. I treat accident forgiveness explicitly as “premium insurance” where consumers

purchase premium protection that gives them the right to make at-fault claims without

experiencing an increase in their premiums. An insurance purchase decision, as an investment

decision under uncertainty, may be affected by individual risk and time preferences (e.g.,

Hirshleifer, 1966). By allowing randomization of both risk types of customers over contracts,

my results suggest a nondecreasing effect of the discount factor on the individual accident

forgiveness purchase. Further, risk-averse individuals are more likely to purchase accident

forgiveness if the expected utility provided by the insurance contract is above a certain

threshold. This finding differs from those in the prior literature, which suggest that risk-

averse individuals always purchase more insurance.

The paper is organized as follows. Section 2 discusses previous studies related to multi-

period insurance contracts. Section 3 introduces the features of accident forgiveness in the

current insurance market. Section 4 outlines the basic model and examines the characteri-
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zation for the optimal contract. Section 5 establishes the impact of the discount factor and

risk aversion on accident forgiveness purchases. Section 6 draws the study’s conclusions.
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1.2 Literature Review

Multi-period contracting is observed in different markets. In the auto insurance market,

consumers typically make repeat purchases. For example, in many countries, drivers purchase

automobile insurance with the same insurer for many years and the insurers use bonus-malus

systems to relate insurance premiums to an individual’s past experience (e.g., Dionne et

al., 2005; Dionne and Vanasse, 1992; Hey, 1985; Lemaire, 1985). Multi-period contracting

is also observed in workers’ compensation insurance, unemployment insurance, and many

other markets. The introduction of multi-period contracts in the analysis raises many issues,

such as time discounting, the commitment of the parties, myopic behavior, and information

asymmetry. Multi-period insurance contracts are set not only to adjust ex-post insurance

premiums or insurance coverage to past experience but also as a sorting device. They can

be a complement to or a substitute for standard self-selection mechanisms (Dionne, 2000, p.

194).

Cooper and Hayes (1987) were the first to consider a repeated insurance problem with

adverse selection. They use the Nash equilibrium concept in a two-period game where

the equilibrium must be separating.8 Cooper and Hayes introduce a second instrument

to induce self-selection: experience rating. Experience rating increases the cost to high-

risk individuals masquerading as low-risk individuals by exposing them to second-period

contingent coverage and premiums. The formal problem consists of maximizing the low-risk

policyholder’s two-period expected utility under the incentive compatibility constraints, the

8The authors implicitly assume that the conditions to obtain a Nash separating equilibrium in a single-
period contract are sufficient for an equilibrium to exist in their two-period model.
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nonnegative intertemporal expected profits constraint, and the no-switching constraints. By

assuming that the insurers commit to a two-period contract but the contract is not binding

on the insured, they show that the presence of a second-period competition limits the use

of experience rating as a sorting device. At equilibrium, high-risk individuals obtain full

insurance coverage and are not experience rated, whereas low-risk individuals receive only

partial insurance coverage and are experience rated.

Dionne and Doherty (1994) introduce renegotiation in long-term relationships in in-

surance markets. In a similar vein to Cooper and Hayes (1987), two-period contracts are

considered where the insured can leave the relationship at the end of the first period and

only the insurer is bound by a multi-period agreement. The difference with the Cooper-

Hayes model is in the possibility of renegotiation. Indeed, insurers are allowed to propose

altering the contract with their insured, which can be accepted or rejected. Dionne and

Doherty present an alternative model (extending that of Laffont and Tirole, 1990)9 that

involves semi-pooling in the first period followed by separation in the second. Their model

offers two contracts. One contract is selected only by high-risk types and the other by both

risk types; thus only the high risks can randomize over two contracts. Dionne and Doherty

conclude that partial coverage is offered in the first-period semi-pooling contract along with

full coverage offered to high risks in the second period. Further, both high risks and low

risks are experience rated in the second period. Other models of multi-period insurance

markets are not as closely related to this work as that of Cooper and Hayes (1987) and

9Laffont and Tirole (1990) fully characterize the equilibrium of a two-period procurement model with
commitment and renegotiation. They analyze whether renegotiated long-term contracts yield outcomes
resembling those under either non-renegotiated long-term contracts or a sequence of short-term contracts
and they link the analysis with the multiple-unit durable goods monopoly problem.
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Dionne and Doherty (1994). For example, Nilssen (2000) focuses on consumer lock-in under

a no-commitment assumption and illustrates that an equilibrium may exist with full pooling

in the first period and consumer lock-in in the second period.

In this paper, I build a two-period model in a competitive insurance market with sep-

aration in both periods. This model, an extension of both Cooper and Hayes (1987) and

Dionne and Doherty (1994), reveals that an accident forgiveness policy offered in the market

induces a policyholder’s willingness to stay with the same insurer. My model shares the

basic feature of Dionne and Doherty (1994) regarding multi-period insurance contracts; that

is, two contracts are offered, with asymmetric information between the insured and insurers.

However, my model differs in several respects. I focus primarily on providing a model with

full separation in both periods.10 Contracts are allowed to be selected by both high risks and

low risks, which means that both types can “randomize” over the contracts with accident

forgiveness. In the second period, not just the low risks but both the low and high risks are

experience rated. Finally, the main difference between my work and the previous literature

lies in the analysis of the insurance purchase decision. My findings indicate that the dis-

count factor between periods and the degree of risk aversion are important determinants of

accident forgiveness purchases.

10Separation in the first period is exactly the phenomenon observed in the automobile insurance market.
Practically, it is hard for insurers to pool different types of individuals together and offer them the same
contracts.
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1.3 Accident Forgiveness

When one is involved in an at-fault accident (or traffic violation), points against one’s driving

record are considered, depending on the description of the accident (or traffic violation)

and the insurer’s rating system. Surcharges or discounts on premiums are based on one’s

driving record. The more points one has, the worse the driving record becomes and the

higher the premium. For example, if one has an at-fault accident, according to the current

surchargeable point schedule in Massachusetts, the driving record can increase three to four

points, depending on the claim amount.11 However, with an accident forgiveness policy, the

points do not increase as much, if at all.12 By protecting the customer’s driving record,

accident forgiveness results in a reduction in the auto insurance premium.

In short, the availability of accident forgiveness varies by company. If available, it is

simply a built-in feature of an insurer’s regular auto insurance policy or can be purchased as

an option. Even if this feature is provided, it does not mean that an accident that occurred

before the purchase would be forgiven. Instead, it means that if an accident were to occur

in the future, it would be forgiven within the conditions and terms specified in the insurance

contract. The number of at-fault accidents allowed to be forgiven varies with the insurer.13

Even if accident forgiveness is part of a policy, having an accident “forgiven” by an insurance

company does not mean the accident is completely removed from one’s driving record. The

11The following is the current surchargeable point schedule in Massachusetts (see the official website of
the Massachusetts Office of Consumer Affairs and Business Regulation at http://www.mass.gov). A major
traffic violation (such as driving under the influence, or DUI) if worth five points; a major at-fault accident
(such as a claim over $2,000), four points; a minor at-fault accident (claim of $500 to $2,000), three points;
and a minor traffic violation (such as speeding), two points.

12These points will still apply to an at-fault accident and can be assessed by the state.
13This paper simply assumes that all at-fault accidents or traffic violations may be forgiven.
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accident will remain there even if the insurer offering the “forgiveness” does not consider it

when calculating the auto insurance premium.14

14In the United States, the length of time that an auto accident stays on one’s driving record varies
according to the state residency. For example, in Illinois any chargeable claim increases the price of insurance
for three years following the claim (Israel, 2004).
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1.4 The Model

1.4.1 Model Assumptions and the Sequence of the Game

I consider a two-period insurance market. Individuals (or the insured) are assumed to be risk

averse and in each period individuals are subject to a risk of financial loss. Individuals differ

solely by their probability of loss. High-risk individuals have a higher probability of experi-

encing a loss (accident) than low-risk individuals. The respective proportions of high and low

risks are assumed to permit a single-period Nash separating equilibrium to exist.15 Risk type

is private information to the individuals, and accidents are out of an individual’s control so

that no moral hazard arises. The insured share the same von Neumann-Morgenstern utility

function with the same per-period income.16 Two insurers (the initial insurer and a rival

insurer) in the market compete to attract the insured and are assumed to be risk neutral.

I assume that the incumbent initial insurer is the only one in the market to offer accident

forgiveness in contracts and observes its policyholders’ loss experience (there is no underre-

porting of accidents). Moreover, borrowing or lending by the insured is not permitted but

they are allowed to switch between insurers at no cost.

The game depicted in Figure 1.1 runs as follows:

1. At the beginning of the first period, the initial insurer offers an accident forgiveness

contract with premium α1
H and coverage β1

H to high-risk individuals and a premium

α1
L and coverage β1

L to low-risk individuals.

15Rothschild and Stiglitz (1976) prove that a competitive insurance market may have no equilibrium if
there are relatively few high-risk individuals who must be subsidized.

16The utility function U(.) is assumed to be twice continuously differentiable with U
′′
(.) < 0 < U

′
(.).
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Figure 1.1. The Depiction of Two-Period Model

2. The rival insurer simultaneously offers optimal one-period Rothschild/Stiglitz con-

tracts with αH and βH as premium and coverage, respectively, to high-risk individuals

and, αL and βL, respectively, to low-risk individuals. The optimal one-period Roth-

schild/Stiglitz contracts can be summarized as follows: High-risk individuals receive

full insurance; Low-risk individuals receive less than full insurance and the high-risk

individuals are indifferent between their contracts and the low-risk ones (Rothschild

and Stiglitz,1976).

3. Individuals choose among available contracts. Here (1− x) refers to the proportion of

high-risk individuals purchasing accident forgiveness contracts from the initial insurer

and (1− y) is the proportion for low risk individuals. Premiums are paid and the first

period ends. Wealth losses are realized and the insured who experienced a loss are
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compensated according to the first-period component of their contracts by receiving

the net reimbursement.17

4. At the beginning of the second period, contingent on having the first-period accident or

not, the initial insurer offers the existing insured four different contracts: αHA and βHA

as premium and coverage for high risks who had an accident in the previous period,

αHN and βHN as premium and coverage for high risks with no accident in the previous

period, αLA and βLA as premium and coverage for low risks who had an accident in

the previous period, and αLN and βLN as premium and coverage for low risks with no

accident in the previous period.

5. The rival insurer again offers repeated one-period contracts at the beginning of the

second period.

6. Individuals choose to either continue their contracts with the initial insurer or switch

to the one-period contracts provided by the rival insurer. Premiums are paid and

the second period elapses; wealth losses occur and are compensated according to the

contracts.

17Net reimbursement equals the indemnity paid under the insurance contract in a loss state minus the
premium paid out.
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1.4.2 Model Setup

The derivation of the optimal contract is obtained by maximizing the following problem (See

the Appendix A for notation used in the model):

maxα,β pL[U(W −D + β1
L) + δ[pLU(W −D + βLA) + (1− pL)U(W − αLA)]]

+(1− pL)[U(W − α1
L) + δ[pLU(W −D + βLN) + (1− pL)U(W − αLN)]],

(1.1)

which is the utility of low risks purchasing an accident forgiveness contract in the first

period and remaining with the same initial insurer for the second period. This maximization

problem is subject to the randomization constraints

pH [U(W −D + β1
H) + δ[pHU(W −D + βHA) + (1− pH)U(W − αHA)]]

+(1− pH)[U(W − α1
H) + δ[pHU(W −D + βHN) + (1− pH)U(W − αHN)]]

= (1 + δ)[pHU(W −D + βH) + (1− pH)U(W − αH)],

(1.2)

pL[U(W −D + β1
L) + δ[pLU(W −D + βLA) + (1− pL)U(W − αLA)]]

+(1− pL)[U(W − α1
L) + δ[pLU(W −D + βLN) + (1− pL)U(W − αLN)]]

= (1 + δ)[pLU(W −D + βL) + (1− pL)U(W − αL)];

(1.3)
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the self-selection constraints

pH [U(W −D + β1
H) + δ[pHU(W −D + βHA) + (1− pH)U(W − αHA)]]

+(1− pH)[U(W − α1
H) + δ[pHU(W −D + βHN) + (1− pH)U(W − αHN)]]

≥ (1− x){pH [U(W −D + β1
L) + δ[pHU(W −D + βLA) + (1− pH)U(W − αLA)]]

+(1− pH)[U(W − α1
L) + δ[pHU(W −D + βLN) + (1− pH)U(W − αLN)]]}

+x(1 + δ)[pHU(W −D + βL) + (1− pH)U(W − αL)],

(1.4)

pL[U(W −D + β1
L) + δ[pLU(W −D + βLA) + (1− pL)U(W − αLA)]]

+(1− pL)[U(W − α1
L) + δ[pLU(W −D + βLN) + (1− pL)U(W − αLN)]]

≥ (1− y){pL[U(W −D + β1
H) + δ[pLU(W −D + βHA) + (1− pL)U(W − αHA)]]

+(1− pL)[U(W − α1
H) + δ[pLU(W −D + βHN) + (1− pL)U(W − αHN)]]}

+y(1 + δ)[pLU(W −D + βH) + (1− pL)U(W − αH)];

(1.5)

the accident forgiveness constraints18

pHU(W−D+βHA)+(1−pH)U(W−αHA) = pHU(W−D+βH)+(1−pH)U(W−αH), (1.6)

pLU(W −D+βLA)+(1−pL)U(W −αLA) = pLU(W −D+βL)+(1−pL)U(W −αL); (1.7)

18Accident forgiveness as the policy feature binds the contract the initial insurer can offer in the second
period to policyholders who had an accident in the first period. I call these two constraints “accident
forgiveness constraints.”
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and the zero-profit constraint for the insurer

(1− x){[(1− pH)α1
H − pHβ1

H ] + δ[(1− pH)[(1− pH)αHN − pHβHN ] + pH [(1− pH)αHA − pHβHA]]}

+(1− y){[(1− pL)α1
L − pLβ1

L] + δ[(1− pL)[(1− pL)αLN − pLβLN ] + pL[(1− pL)αLA − pLβLA]]}

≥ 0.

(1.8)

The constraints shown in expressions (1.2) and (1.3) are randomization constraints that

ensure that both low and high risks are indifferent between their own one-period contracts

and the accident forgiveness contracts. With these constraints, the insured with the same risk

type will randomize over different contracts. Expression (1.4) is the self-selection constraint

for high risks and guarantees that high risks will not mimic low risks. High risks only

prefer a randomization over the one-period contract and the accident forgiveness contract

for high risks to a randomization over contracts for low risks. Expression (1.5) is the self-

selection constraint for low risks. The purpose of purchasing accident forgiveness is to allow

policyholders to have at-fault accidents without a premium increase. Expressions (1.6) and

(1.7) are accident forgiveness constraints and illustrate that the initial insurer providing

accident forgiveness contracts must keep its promise to offer policyholders with a first-period

accident the same second-period expected utility as the one they can obtain from uninformed

rival insurer. Expression (1.8) as a zero-profit constraint prevents insurers from offering

contracts at a loss.
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A policy designed for high risks obviously offers full insurance, since partial insurance

would simply provide incentives for imitation and offer an opportunity for renegotiation.19

The self-selection constraints (1.4) for high-risk individuals and (1.5) for low-risk individuals

can be rewritten as

U(W − α1
H) + δ[pHU(W − αHA) + (1− pH)U(W − αHN)]

≥ (1− x){pH [U(W −D + β1
L) + δ[pHU(W −D + βLA) + (1− pH)U(W − αLA)]]

+(1− pH)[U(W − α1
L) + δ[pHU(W −D + βLN) + (1− pH)U(W − αLN)]]}

+x(1 + δ)[pHU(W −D + βL) + (1− pH)U(W − αL)]

(1.4’)

and

pL[U(W −D + β1
L) + δ[pLU(W −D + βLA) + (1− pL)U(W − αLA)]]

+(1− pL)[U(W − α1
L) + δ[pLU(W −D + βLN) + (1− pL)U(W − αLN)]]

≥ (1− y){U(W − α1
H) + δ[pLU(W − αHA) + (1− pL)U(W − αHN)]}

+y(1 + δ)U(W − αH),

(1.5’)

respectively.

Similarly, the randomization constraint (1.2), the accident forgiveness constraint (1.6), and

the zero-profit constraint (1.8) can be also rewritten as

U(W − α1
H) + δ[pHU(W − αHA) + (1− pH)U(W − αHN)] = (1 + δ)U(W − αH), (1.2’)

19Full insurance means that the insured has the same utility regardless of loss experience, for example,
U(W −D + β) = U(W − α) or β = D − α.
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U(W − αHA) = U(W − αH), (1.6’)

(1− x){[(α1
H − pHD)] + δ[(1− pH)(αHN − pHD) + pH(αHA − pHD)]}

+(1− y){[(1− pL)α1
L − pLβ1

L] + δ[(1− pL)[(1− pL)αLN − pLβLN ] + pL[(1− pL)αLA − pLβLA]]}

≥ 0.

(1.8’)

1.4.3 Optimal Contracts with Asymmetric Information

This section characterizes and comments on the optimal two-period contracts with accident

forgiveness.

Optimal contracts characterization To characterize optimal contracts by solving

the maximization problem, one needs to determine whether the constraints are binding. Due

to the fact that competition and freedom of entry without transaction costs ensure that the

profit for each type of contract will be driven to zero, the zero-profit constraint is binding

with a Lagrangian multiplier λz > 0.

The self-selection constraint with λhss > 0 for high risks is necessary to ensure that

the high risks do not select the contracts for low risks. As usual, the constraint for low

risks cannot possibly be binding, because if the high risks were indifferent between the two

contracts, the low risks would strictly prefer their own contracts since only the high risks

have incentives to mimic the low risks.20 Thus, λlss = 0.

20In principal-agent theory, a principal faces two self-selection constraints: one for high risks not to mimic
low risks and one for low risks not to mimic high risks. Only one of these constraints is binding and the
other constraint that is indeed satisfied when ignored in the principal’s optimization program can be verified
ex post (Bolton and Dewatripont, 2005).
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Because the accident forgiveness constraints are binding, it follows

αHA = αH , αLA = αL, βHA = βH , βLA = βL. (1.9)

With Lagrange multipliers, let us substitute these values into the problem to simplify

the derivation and take the first-order condition of the maximization problem. Then one

obtains

U
′
(W − α1

L) =
λz(1− pL)(1− y)

(1− pL) + λlr(1− pL)− λhss(1− pH)(1− x)
, (1.10)

U
′
(W −D + β1

L) =
λzpL(1− y)

pL + λlrpL − λhsspH(1− x)
, (1.11)

U
′
(W − αLN) =

λz(1− pL)2(1− y)

(1− pL)2 + λlr(1− pL)2 − λhss(1− pH)2(1− x)
, (1.12)

U
′
(W −D + βLN) =

λzpL(1− pL)(1− y)

(1− pL)pL + λlr(1− pL)pL − λhsspH(1− pH)(1− x)
. (1.13)

Because pL < pH , comparing U
′
(W −α1

L) from (1.10) and U
′
(W −D+β1

L) from (1.11) yields

U
′
(W − α1

L) < U
′
(W −D + β1

L),

and, with the assumption of the utility function, U
′
> 0 and U

′′
< 0, we see

U(W − α1
L) > U(W −D + β1

L), (1.14)

which identifies the partial coverage for (α1
L, β

1
L) as the contract offered in the first period.
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Similarly, using U
′
(W−αLN) from (1.12) and U

′
(W−D+βLN) from (1.13), one obtains

U(W − αLN) > U(W −D + βLN), (1.15)

which also points to the partial coverage for the contract (αLN , βLN) offered in the second

period to low-risk individuals with no loss in the first period.

To determine αHN as the premium for high risks with no loss in the first period, I adopt

the concept of a “rent-constraint contract,” proposed by Laffont and Tirole (1990).21 The

idea is as follows. Considering that high risks would receive the full-insurance, fair-priced

policy in the repeated one-period contracts from the rival insurer, they would deviate to

adopt the strategy of accident forgiveness contracts, which involves an up-front premium in

the first period if the expectation of cost is no higher than the actuarially fair price from

the repeated one-period contracts. Thus, to participate in the accident forgiveness contract,

high risks with no first-period loss must receive a rent that is implicitly embodied by the

premium α. With competition, the insurer cannot offer a rent to the high risks greater than

that corresponding to the transfers paid in the first period, which are determined by the

value of x and y. Hence, the premium αHN can be written as αHN(x, y) and the rent given

to the high-risk individuals with no first-period loss can be derived from

(1− x)(α1
H − pHD) + (1− y)[(1− pL)α1

L− pLβ1
L] + δ[(1− x)(1− pH)(αHN(x, y)− pHD)] = 0.

21Laffont and Tirole (1990) explain the rent-constraint contract as a contract in which the principal would
wish to lower the rent but cannot because of the existence of the initial contract.
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Solving for αHN(x, y) yields

αHN(x, y) = pHD −
[(1− x)(α1

H − pHD) + (1− y)[(1− pL)α1
L − pLβ1

L]]

δ(1− x)(1− pH)
, (1.16)

which can be further written as

αHN(x, y) = pHD −
T (x, y)

δ(1− x)(1− pH)
, (1.16’)

where

T (x, y) = (1− x)(α1
H − pHD) + (1− y)[(1− pL)α1

L − pLβ1
L] (1.17)

is the net transfer paid to the insurer in the first period from both types. Obviously, T (x, y) =

0 when x = 1 and y = 1 (e.g., no one purchases the accident forgiveness policy).

Here, it is assumed that the rent paid to the low risks in the second period is zero.22 It

is seen that low risks with no loss in the first period will receive an actuarially fair premium

αLN . Moreover, to induce them to participate in the accident forgiveness contracts, more

coverage βLN will be given in the second period.

Apparently, the rent offered to high risks to participate in this contract is from both

intertemporal and cross-sectional subsidization. In other words, only if the insurer makes

a profit in the first period by charging a higher-than-market premium will it support the

rent given to policyholders in the second period, which results in α1
H > αHA > αHN and

α1
L > αLA > αLN . The high upfront premium for the two-period contract can be thought

22Laffont and Tirole (1990) demonstrate that there should be no efficiency gain if introducing the additional
rent by choosing a different normalization.
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of as an entry cost to the accident forgiveness contract with an experience-rating pricing

scheme.

Therefore, for given probabilities x (0 < x < 1) and y (0 < y < 1) that both high

and low risks will separate, the optimal two-period contract with accident forgiveness under

competitive conditions and with the insured permitted to switch contracts is characterized

as follows.

A separating policy exists for the first period, which is full coverage for high risks and

partial coverage for low risks. This is consistent with the one-period Rothschild/Stiglitz

contracts. However, a higher-than-market premium is charged for both types.

A separating policy exists for the second period, which is full coverage for high risks

even if they suffered first-period losses and partial coverage for low risks.

Pricing, however, is different. An experience-rated second-period policy is given for

low risks; that is, low risks who suffered no first-period loss receive more coverage with an

actuarially fair premium and those who did suffer losses receive Rothschild/Stiglitz contracts

for low risks in the second period. High risks also obtain an experience-rated second-period

policy; that is, high risks who suffered no first-period loss receive the rent and those who

suffered losses receive the Rothschild/Stiglitz contracts for high risks in the second period.

The rent is from both intertemporal and cross-sectional subsidization.

Comments To more fully characterize the optimal contract, I comment on three

important issues.
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Asymmetric information. When information about previous driving records is not

pooled across insurers, if an accident or violation occurs, it is observed only by the ini-

tial insurer responsible for covering it and not by any rival insurers23; thus asymmetries

of information arise. Contrary to what is believed by many to be common practice (e.g.,

automobile accidents as well as traffic violations are complete and freely available), states

vary in accident reporting regulations (see Table 1.2), and information maintained by state

agencies, such as motor vehicle records (MVRs), is not always available and is often far from

complete. More specifically, in some states, DUIs and other major traffic-related convictions

can even be expunged (see Table 1.3) from one’s motor vehicle record. The source of in-

formation asymmetry may also be the time lag in the learning process between the initial

insurer and its rivals. In other words, the initial insurer, in some sense, can be thought of

as the Stackelberg leader in the updating process. It is likely for the initial insurer to have

a comparative advantage over its rivals in monitoring its own policyholders. Over time, the

initial insurer obtains Bayesian updates on its policyholders’ loss distributions that are not

simultaneously available to its rivals. For example, if the insured vehicle is involved in an

accident, it usually takes some time for rival insurers to access this information, whereas the

initial insurer is required to be notified immediately. Moreover, through contractual relation-

ships with its policyholders, the initial insurer may also learn of more relevant risk-related

personal information, such as a medical history, which is unobservable to other insurers.

Insurer’s commitment to the contract. The way my model has been set up, it is assumed

that insurers can commit to the insurance contract through either enforced legislation or

23Consumer incentives to strategically withhold accident information from insurers are disregarded here.
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Table 1.2. State Accident Reporting Requirements

State Reported to DMV Reported to Law Enforcement
Alabama, Alaska, Arkansas,
Indiana, Missouri, Nevada, New
Hampshire, Ohio, Oklahoma,
Pennsylvania, Rhode Island,
Vermont, Wyoming

Yes No

Arizona, Delaware, Geor-
gia, Hawaii, Idaho, Kansas,
Kentucky, Louisiana, Maine,
Michigan, Montana, Nebraska,
North Carolina, North Dakota,
South Dakota, Virginia

No Yes

California, Colorado, Florida,
Illinois, Iowa, Maryland, Mas-
sachusetts, Minnesota, New Jer-
sey, New Mexico, New York,
Oregon, South Carolina, Ten-
nessee, Texas, Utah, Washing-
ton, West Virginia, Wisconsin

Yes Yes

Connecticut, Mississippi, Wash-
ington DC

No No

Note: Adapted from state DMV websites.

reputational effects. This is consistent with the general provision in the personal auto policy

drafted by the Insurance Services Office.24 In the termination provision, the named insured

can cancel at any time by returning the policy to the insurer. The insurer also has the right

of cancelation but for only three reasons25: (1) The premium has not been paid, (2) the

driver’s license of any insured has been suspended or revoked, or (3) the policy was obtained

through material misrepresentation. Futhermore, many states place additional restrictions

on the insurer’s right to cancel or not renew an auto insurance policy (e.g., state law may

require a longer period of advance notice to the insured).

24See 2005 edition of the Personal Auto Policy by the Insurance Services Office and Rejda (2009, Ch. 22
pp. 513-514)

25See Rejda (2009, Appendix B, pp. 668-669)
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Table 1.3. State DMV DUI Expungement Condition

State DUI Expungement Condition
Alabama, Alaska, Arizona, Arkansas,
Hawaii, Idaho, Illinois, Iowa, Kansas,
Kentucky, Louisiana, Maine, Mas-
sachusetts, Minnesota, Mississippi,
Montana, Nebraska, New Mexico,
New York, North Dakota, Ohio, Ok-
lahoma, Oregon, Rhode Island, South
Carolina, Tennessee, Texas, Vermont,
Washington, West Virginia, Wisconsin,
Wyoming, Washington DC

No

California Yes Complete all the conditions of your DUI
sentence.

Colorado Yes Only if the DUI happened before you
turned 21 and you have no other con-
victions to be expunged.

Connecticut Yes Wait 3 years if the DUI was a misde-
meanor; wait 5 years if it was a felony.

Delaware Yes You can only expunge the DUI if an ac-
quittal or dismissal terminated the un-
derlying charge.

Florida Yes Only an option if the DUI charge didn’t
involve manslaughter.

Georgia Yes You must have no other pending crimi-
nal charges and no other convictions of
the same or similar crime in the last 5
years.

Indiana Yes Only if your case was reversed or dis-
missed.

Maryland Yes Only if your case was dismissed or a
judge or jury acquitted you.

Michigan Yes The court decides on a case-by-case ba-
sis.

Missouri Yes Only if it was your first DUI.
Nevada Yes Only if the DUI wasn’t a felony.
New Hampshire Yes After 10 years.
New Jersey Yes All expungements are considered as

misdemeanors.
North Carolina Yes If you’re found not guilty or have a

criminal charge dismissed.
Pennsylvania Yes As long as your license wasn’t revoked

for being a habitual offender and you
weren’t a commercial driver at the time.

South Dakota Yes Varies by county.
Utah Yes After 10 years, as long as the conviction

wasn’t a felony.
Virginia Yes Only if the charges were dropped, you

were acquitted, or you received an ab-
solute pardon.

Note: Adapted from state DMV websites.
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The degree of “punishment.” The prior literature has already illustrated that the pres-

ence of second-period competition for consumers may limit but not destroy the use of ex-

perience rating as a sorting device (e.g., Cooper and Hayes, 1987). Since semi-commitment

settings are assumed, policyholders are not bound to the insurer. This results in punishment

for a first-period accident being tempered by the presence of rival insurers offering one-

period contracts in the second period. Therefore someone can argue that the insured does

not necessarily need to purchase accident forgiveness to be relieved of the previous accident.

However, one needs to determine that accident forgiveness as an insurance policy feature

offered at the beginning of the contracting in this model not only protects the insured from

higher future premiums but also rewards the insured with more favorable contract terms. In

other words, accident forgiveness is a device to temper the experience rating as well as lower

the incentive to switch.
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1.5 Purchase Decisions

Another question worth asking is whether any essential element affects the accident forgive-

ness purchase. The economic explanation of insurance purchases is a story of shifting risk.

For consumers, insurance purchases can be conceptualized as decisions in which they are

faced with risks that have some distributions of losses across probabilities. To reduce these

risks, consumers pay premiums and are compensated by benefits if the losses occur.

Prior literature examining the determinants for consumer insurance purchase decisions

mostly emphasizes how product quality, switching cost, and price affect consumer decisions

(e.g., Cummins et al., 1974; Dahlby and West, 1986; Laury and McInnes, 2003; Schlesinger

and Schulenburg, 1993) or argues that distorted beliefs concerning the probability and size

of potential losses affect consumer decisions about insurance (e.g., Johnson et al., 1993;

Kunreuther and Pauly 2004, 2005). However, insurance decision-making as behavior under

uncertainty may involve time discounting and risk attitude. This paper investigates the

importance of individual risk and time preferences in the insurance purchase decision.

This section completes the derivation of optimal contracts by determining the probabil-

ity of purchasing accident forgiveness contracts as a function of the discount factor and the

degree of risk aversion.

1.5.1 Discount Factor

The discount factor is a provocative subject with important implications for many aspects

of economic behavior and public policy (e.g., Warner and Pleeter, 2001). In particular, the

discount factor is essential in making purchase decisions. The macroeconomics literature
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has provided evidence showing the relation between the discount factor and life insurance

purchase in a life cycle model (e.g., Fischer, 1973; Yaari, 1965).26 Articles related to dynamic

insurance contracts also illustrate the importance of the discount factor. Rubinstein and

Yaari (1983) show that multi-period insurance contracts can increase the welfare of both

the insurer and the insured when the number of periods is large and the discount rate is

small. Dionne and Doherty (1994) demonstrate the positive relation between the discount

factor and high risk drivers’ participation in the first-period pooling insurance. Kunreuther

(1996) uses the discount factor to explain why individuals have limited interest in voluntary

insurance purchases.

In multi-period contracting models with asymmetric information, the discount factor is

very important, such that it may affect optimal allocation in equilibrium. Laffont and Tirole

(1990) complete their derivation of the optimal procurement contract by proposing that the

proportion of good types’ separation from a semi-pooling contract does not increase with the

discount factor.27 Dionne and Doherty (1994) share the same feature of the nonincreasing

theorem but for an optimal insurance contract. Here, I posit that if both low and high risks

are introduced to randomize over different contracts, there exists a nondecreasing effect of

the discount factor on the accident forgiveness purchases for both types.

Proposition 1. The proportion of policyholders, both low and high risk, who purchase con-

tracts with accident forgiveness is nondecreasing with the discount factor.

26Yaari (1965) considers the subjective discount rate in the problem of uncertain lifetimes and life insurance
in the context of the expected utility hypothesis using a continuous time model. Fischer (1973) includes a
discount factor in the utility-of-consumption function and describes it as a measure of the defectiveness of
imagination or impatience.

27Laffont and Tirole (1990) refer good types to firms with lower project costs.
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Proof. Suppose y is the low risks’ equilibrium randomizing probability for a given discount

factor δ and, similarly, ỹ is for δ̃. Assume that δ < δ̃, then the low risks’ utility for two

periods with optimal y for δ can be written as

U(y, δ, α, β) = (1−y){U(α1
L, β

1
L)+δ[pLU(αLA, βLA)+(1−pL)U(αLN , βLN)]}+y{(1+δ)U(αL, βL)},

(1.18)

utility with optimal ỹ for δ̃ can be written as

U(ỹ, δ̃, α, β) = (1−ỹ){U(α1
L, β

1
L)+δ̃[pLU(αLA, βLA)+(1−pL)U(αLN , βLN)]}+ỹ{(1+δ̃)U(αL, βL)},

(1.19)

utility with ỹ for δ can be written as

U(ỹ, δ, α, β) = (1−ỹ){U(α1
L, β

1
L)+δ[pLU(αLA, βLA)+(1−pL)U(αLN , βLN)]}+ỹ{(1+δ)U(αL, βL)},

(1.20)

and utility with y for δ̃ can be written as

U(y, δ̃, α, β) = (1−y){U(α1
L, β

1
L)+δ̃[pLU(αLA, βLA)+(1−pL)U(αLN , βLN)]}+y{(1+δ̃)U(αL, βL)}.

(1.21)

Since y is an optimum for δ and ỹ is an optimum for δ̃, then U(y, δ, α, β) ≥ U(ỹ, δ, α, β) and

U(ỹ, δ̃, α, β) ≥ U(y, δ̃, α, β). This yields

U(y, δ, α, β) + U(ỹ, δ̃, α, β) ≥ U(ỹ, δ, α, β) + U(y, δ̃, α, β).
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So, adding (1.18) and (1.19) and then subtracting (1.20) and (1.21) yields

{U(α1
L, β

1
L) + δ[pLU(αLA, βLA) + (1− pL)U(αLN , βLN)]}(ỹ − y)

+{(1 + δ)U(αL, βL)}(y − ỹ)

+{U(α1
L, β

1
L) + δ̃[pLU(αLA, βLA) + (1− pL)U(αLN , βLN)]}(y − ỹ)

+{(1 + δ̃)U(αL, βL)}(ỹ − y)

≥ 0

(1.22)

and (1.22) can be further written as

(y − ỹ)(δ̃ − δ)[pLU(αLA, βLA) + (1− pL)U(αLN , βLN)− U(αL, βL)] ≥ 0. (1.22’)

From the optimal contract characterization, U(αLA, βLA) = U(αL, βL), U(αLN , βLN) >

U(αL, βL), and δ̃ > δ as assumed, and it is obvious that y ≥ ỹ. Because y and ỹ are optimum

for δ and δ̃, respectively, (1 − ỹ) ≥ (1 − y) proves the nondecreasing relation between the

discount factor and the proportion of low risks purchasing accident forgiveness contracts.

In a similar vein, using the same procedure, this nondecreasing relation can be proven for

high-risk policyholders as well.

This proposition states that when faced with a higher discount factor, the insured is

more willing to pay extra money to have a contract with accident forgiveness. The intuition

is follows. When the discount factor is low, it is costly for the insured to pay a positive

transfer in the first period to increase insurance possibilities in the second period. However,

when the discount factor is high, compared to the rival insurer’s one-period contract offered
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in the market, the accident forgiveness policy not only protects the insured from a higher

insurance rate if he experiences losses in the first period but also rewards him in the second

period for having no loss. Individuals who care more about their second-period expected

utility obviously prefer to purchase this accident forgiveness policy. Thus, it is clear that the

accident forgiveness purchase decision is driven to some extent by the discount factor.

1.5.2 Risk Aversion

This section examines how accident forgiveness purchases are affected by individual risk

attitude.

The standard economic theory is that risk-averse individuals confronted with sizable

hazards are willing to pay a more diversified insurer to bear the risk (e.g., Dionne and

Harrington, 1992). Schlesinger and Schulenberg (1987) argue that, in the usual insurance

literature, because a higher degree of risk aversion implies a greater relative emphasis on

downside risk, an increase in the level of risk aversion leads to the purchase of a higher level

of insurance coverage. Similar logic is employed by Johnson et al. (1993), who state that

risk-neutral consumers would purchase coverage at an actuarially fair price and that risk

aversion raises this reservation price. Ganderton et al. (2000) state that all risk-neutral or

risk-averse individuals would purchase insurance and undertake all relevant precautions to

the extent that the extra benefits from such actions exceed the marginal costs, less some

risk premium in the case of risk aversion. Laury and McInnes (2003) find that if one is even

slightly risk averse, one should always purchase insurance.
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The question arises as to whether the insured are going to purchase accident forgiveness

for more protection if they become more risk averse. In other words, is standard economic

theory also applicable to accident forgiveness purchases?

Proposition 2. There exists a threshold in terms of utility for both high and low risks above

which the proportion of policyholders who purchase contracts with accident forgiveness is

nondecreasing in their degree of risk aversion.

Proof. Let us assume a constant relative risk aversion (CRRA) utility function with Uγ(α, β) =

ω(α,β)1−γ

1−γ , where ω is a function of α and β and γ 6= 1 for convenience.28 Here γ is the pa-

rameter to measure risk aversion, with γ = 0 corresponding to risk neutrality, γ < 0 to risk

loving, and γ > 0 to risk averse. Suppose γ1 and γ2 with γ2 > γ1 > 0. As usual, if γ1 and

γ2 are assumed to have optima y1 and y2, respectively, the low risks’ utility for two periods

can be written as

U(y1, γ1, α, β) = (1− y1){Uγ1(α1
L, β

1
L) + δ[pLUγ1(αLA, βLA) + (1− pL)Uγ1(αLN , βLN)]}

+y1{(1 + δ)Uγ1(αL, βL)},
(1.23)

U(y2, γ2, α, β) = (1− y2){Uγ2(α1
L, β

1
L) + δ[pLUγ2(αLA, βLA) + (1− pL)Uγ2(αLN , βLN)]}

+y2{(1 + δ)Uγ2(αL, βL)},
(1.24)

U(y2, γ1, α, β) = (1− y2){Uγ1(α1
L, β

1
L) + δ[pLUγ1(αLA, βLA) + (1− pL)Uγ1(αLN , βLN)]}

+y2{(1 + δ)Uγ1(αL, βL)},
(1.25)

28The CRRA utility function is widely used in the literature on insurance purchase decisions (e.g., Brown
and Poterba, 2000; Charupat and Milevsky, 2002; Hong and Rios-Rull, 2007). The results for a constant
absolute risk aversion (CARA) utility function are also discussed in the Appendix B.
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U(y1, γ2, α, β) = (1− y1){Uγ2(α1
L, β

1
L) + δ[pLUγ2(αLA, βLA) + (1− pL)Uγ2(αLN , βLN)]}

+y1{(1 + δ)Uγ2(αL, βL)}.
(1.26)

Adding (1.23) and (1.24) and then subtracting (1.25) and (1.26) yields

(y1 − y2){Uγ2(α1
L, β

1
L) + δ[pLUγ2(αLA, βLA) + (1− pL)Uγ2(αLN , βLN)]

−Uγ1(α1
L, β

1
L)− δ[pLUγ1(αLA, βLA) + (1− pL)Uγ1(αLN , βLN)]

+(1 + δ)Uγ1(αL, βL)− (1 + δ)Uγ2(αL, βL)}

≥ 0.

(1.27)

With αLA = αL and βLA = βL, (1.27) can be further rewritten as

(y1 − y2){[Uγ2(α1
L, β

1
L)− Uγ1(α1

L, β
1
L)]− [Uγ2(αL, βL)− Uγ1(αL, βL)]

+δ(1− pL){[Uγ2(αLN , βLN)− Uγ1(αLN , βLN)]− [Uγ2(αL, βL)− Uγ1(αL, βL)]}} ≥ 0.

(1.27’)

To predict the sign of (y1 − y2) in (1.27’), we need to discuss the sign of [Uγ2(α
1
L, β

1
L) −

Uγ1(α
1
L, β

1
L)] − [Uγ2(αL, βL) − Uγ1(αL, βL)] + δ(1 − pL){[Uγ2(αLN , βLN) − Uγ1(αLN , βLN)] −

[Uγ2(αL, βL)− Uγ1(αL, βL)]}. To simplify the discussion, we define

g(ω(α, β)) = Uγ2(ω(α, β))− Uγ1(ω(α, β)), (1.28)



34

where ω(α, β) represents different contracts (e.g., contract (α1
L, β

1
L) or (αL, βL)). Then, we

only need to consider the possible sign of

g(ω(α1
L, β

1
L))− g(ω(αL, βL)) + δ(1− pL)[g(ω(αLN , βLN))− g(ω(αL, βL))]. (1.29)

Figure 1.2. g(ω) Function and Partial Derivatives of g(ω)

(a) g(ω) Function

(b) First-Order Partial Derivative of g(ω) (c) Second-Order Partial Derivative of g(ω)

The function g(ω) has the curvature shown in Figure 1.2(a). To discuss the sign of

(1.29), let us derive both first and second-order derivatives. The first-order derivative g
′
(ω) =

ω−γ2−ω−γ1 is positive if ω is smaller than the cutoff point ω and negative (or g is decreasing)

otherwise, as shown in Figure 1.2(b). The second-order derivative −γ2ω−γ2−1 + γ1ω
−γ1−1 is

negative if ω is smaller than the cutoff point ω̂ and positive otherwise, as shown in Figure

1.2(c). Although we know that ω(αLN , βLN) > ω(αL, βL) > ω(α1
L, β

1
L), the sign of (1.29) is

also determined by the cutoff points ω and ω̂. Here are three possible cases.
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Case 1: ω > ω(αLN , βLN) > ω(αL, βL) > ω(α1
L, β

1
L).29 It is straight forward to see that

g(ω(αL, βL))− g(ω(α1
L, β

1
L)) > g(ω(αLN , βLN))− g(ω(αL, βL)), (1.30)

from which

[Uγ2(α
1
L, β

1
L)− Uγ1(α1

L, β
1
L)]− [Uγ2(αL, βL)− Uγ1(αL, βL)]

+δ(1− pL){[Uγ2(αLN , βLN)− Uγ1(αLN , βLN)]− [Uγ2(αL, βL)− Uγ1(αL, βL)]} < 0,

(1.31)

and with (1.27’), (1−y2) ≤ (1−y1). This result illustrates the nonincreasing relation between

the proportion of low risks purchasing accident forgiveness contracts and the degree of their

risk aversion.

Case 2: ω̂ > ω(αLN , βLN) > ω(αL, βL) > ω(α1
L, β

1
L) > ω. With g

′
(ω) < 0 and g

′′
(ω) < 0,

g(ω(αL, βL))− g(ω(αLN , βLN)) > g(ω(α1
L, β

1
L))− g(ω(αL, βL)), (1.32)

which indicates the undetermined sign of (y1 − y2).

Case 3: ω(αLN , βLN) > ω(αL, βL) > ω(α1
L, β

1
L) > ω̂. With g

′
(ω) < 0 and g

′′
(ω) > 0,

g(ω(α1
L, β

1
L))− g(ω(αL, βL)) > g(ω(αL, βL))− g(ω(αLN , βLN)), (1.33)

which indicates that (1− y2) ≥ (1− y1). Unlike the previous two cases, this result points to

a nondecreasing relation between the proportion of low risks purchasing accident forgiveness

29To simplify the discussion, let us assume that ω(αL, βL)− ω(α1
L, β

1
L) = ω(αLN , βLN )− ω(αL, βL).
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Figure 1.3. 3D Plot of ω, γ, and y in Case 3

contracts and the degree of risk aversion. As shown in Figure 1.3, for those ω > ω̂, a higher

level of γ is associated with a lower level of y (or a higher level of 1− y).

Similar results can also be proven for high-risk policyholders.

The economic theory underlying the insurance predicts that more risk-averse drivers

(e.g., good drivers with a clean driving history) will be more willing to purchase accident

forgiveness policies. However, in practice, it is apparently not that simple. An informal

survey among acquaintances shows that some good drivers hesitate to pay for accident

forgiveness, even knowing that it protects their future premiums, whereas others consider it

a great deal. This proposition identifies a situation where more risk-averse individuals are

more likely to purchase accident forgiveness policy if the expected utility provided by this

insurance contract is higher than a utility threshold (e.g., the individual’s reservation utility).

To statistically test this proposition and further investigate the impact of risk attitude on

accident forgiveness contract purchases, Chapter 2 describes and conducts a well-designed

experiment.
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1.6 Conclusions

This paper is devoted to studying accident forgiveness policies as an option in auto insurance

contracts. Assuming a two-period contract, with a higher-than-market premium charged in

the first period, policyholders purchasing an accident forgiveness policy will be protected

against an increased second-period premium in the event of an at-fault accident. If there

is no accident, the policyholders are rewarded with more favorable contract terms in the

second period. In this model, experience rating can serve the same purpose, although its

effectiveness is tempered by the presence of accident forgiveness. By offering this feature to

all the insured instead of only low risks in the pool, the initial insurer may have an advantage

in attracting more customers.

The analysis of accident forgiveness purchase decisions finds that a higher discount factor

provides an incentive to policyholders to purchase accident forgiveness since the possibility

of any at-fault accident becomes of greater concern to their future premiums (or utility).

Moreover, examination of the impact of individual risk aversion on accident forgiveness

purchases suggests that, contrary to the previous findings that suggest a significantly positive

relation between risk aversion and the insurance purchase, there exists a threshold below

which accident forgiveness will be less affected by the degree of risk aversion. This interesting

finding may be helpful in providing a better understanding of why policyholders who are

good drivers may not be willing to purchase accident forgiveness at some point.
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1.7 Appendices

1.7.1 Appendix A: Notation

The notation used in this model is as follows:

• i = L,H: subscripts for high risk (H) types or low risk (L) types

• k = N,A: subscripts for accident (A) or no accident (N) in the first period

• D: size of insurable loss and assumed constant

• W : initial wealth and assumed constant

• pi: probability of having losses for risk type i

• U(.): individual utility function for the insured

• α: premium payable under insurance contract

• β: net indemnity paid under insurance contract in loss state

• (αi, βi): one-period Rothschild/Stiglitz contract for risk type i

• (α1
i , β

1
i ): insurance contract with accident forgiveness in the first period for risk type i

• (αik, βik): insurance contract accident forgiveness in the second period for risk type i
contingent on k in the first period

• x: proportion of high risks purchasing one-period contracts

• y: proportion of low risks purchasing one-period contracts

• δ: discount factor

• γ: degree of risk aversion

• λhss: Lagrangian multiplier for high risks’ self-selection constraint

• λlss: Lagrangian multiplier for low risks’ self-selection constraint

• λhr: Lagrangian multiplier for high risks’ randomization constraint

• λlr: Lagrangian multiplier for low risks’ randomization constraint

• λha: Lagrangian multiplier for high risks’ accident forgiveness constraint

• λla: Lagrangian multiplier for low risks’ accident forgiveness constraint

• λz: Lagrangian multiplier for zero-profit constraint
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1.7.2 Appendix B: Proof in the Case of CARA Utility

Proof of Proposition 2. Let us assume a CARA utility function with U(γ, ω) = 1 − e−γω,
where γ > 0 for convenience. If γ is the parameter to measure the risk aversion, suppose two
insured customers, one with γ1 and the other with γ2, and γ2 > γ1. The low-risk individuals’
utility for two periods can still be written as expressions (1.23), (1.24), (1.25), and (1.26).

Because γ1 and γ2 are assumed to have optima y1 and y2, respectively, one still has

U(y1, γ1, α, β) + U(y2, γ2, α, β) ≥ U(y2, γ1, α, β) + U(y1, γ2, α, β),

which can be further written as

(y1 − y2){[Uγ2(α1
L, β

1
L)− Uγ1(α1

L, β
1
L)]− [Uγ2(αL, βL)− Uγ1(αL, βL)]

+δ(1− pL){[Uγ2(αLN , βLN)− Uγ1(αLN , βLN)]− [Uγ2(αL, βL)− Uγ1(αL, βL)]}} ≥ 0.

Similar to what has been proven in the case of the CRRA utility, one can derive a new
function

g(ω) = Uγ2(ω)− Uγ1(ω) = e−γ1ω − e−γ2ω. (A1)

It is easy to determine that the cutoff point on the first-order derivative curve is

ω =
lnγ1

γ2

γ1 − γ2
. (A2)

For ω < ω, g
′
(ω) > 0.

The second-order derivative of the g function also has a cutoff point, which can be
expressed as

ω̂ =
ln

γ21
γ22

γ1 − γ2
. (A3)

For ω < ω̂, g
′′
(ω) < 0 and for the previous cutoff value ω, it is easy to see that g

′′
(ω) < 0

for any ω ≤ ω.
It is also assumed that ω(α1

L, β
1
L), ω(αL, βL), and ω(αLN , βLN) represent ω′s with differ-

ent insurance contracts. From the design of the contracts, policyholders have ω(αLN , βLN) >
ω(αL, βL) > ω(α1

L, β
1
L). Further, it is assumed that ω > ω(αLN , βLN) > ω(αL, βL) >

ω(α1
L, β

1
L) and ω(αL, βL) − ω(α1

L, β
1
L) = ω(αLN , βLN) − ω(αL, βL). Then it is straightfor-

ward to see that

g[ω(αL, βL)]− g[ω(α1
L, β

1
L)] > g[ω(αLN , βLN)]− g[ω(αL, βL)],

which proves y1 − y2 ≤ 0.
If one assumes that ω̂ > ω(αLN , βLN) > ω(αL, βL) > ω(α1

L, β
1
L) > ω , with g

′
(ω) < 0

and g
′′
(ω) < 0, then

g[ω(αL, βL)]− g[ω(αLN , βLN)] > g[ω(α1
L, β

1
L)]− g[ω(αL, βL)],
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which indicates the undetermined sign of (y1 − y2).
If one assumes that ω(αLN , βLN) > ω(αL, βL) > ω(α1

L, β
1
L) > ω, with g

′
(ω) < 0 and

g
′′
(ω) > 0, it is obvious that

g[ω(α1
L, β

1
L)]− g[ω(αL, βL)] > g[ω(αL, βL)]− g[ω(αLN , βLN)],

which proves y1 − y2 ≥ 0.

Apparently, the results from the CARA utility assumption are similar to those proven
with the CRRA utility assumption.
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Chapter 2

WHY BUY ACCIDENT FORGIVENESS POLICIES?

2.1 Introduction

Risk and time preferences influence a variety of economic behaviors, such as investment and

portfolio choice. In the field of insurance economics, attitudes toward risk and time play

central roles in insurance decision-making.

An auto insurance accident forgiveness policy, also known as a “premium insurance”

policy, protects policyholders against a premium increase in the next period if an at-fault

accident occurs in the previous period. While accident forgiveness policies are popular, the

driving forces behind individual purchases are unclear.

A premium “locked-in” low rate guarantee as one of the features of an accident for-

giveness policy invokes the importance of time preferences in the purchase. Policyholders

who prefer to secure their future insurance premiums or, in other words, smooth their util-

ity over future periods are believed to have different purchase preferences over this policy

compared to those who are more concerned about current consumption relative to the fu-

ture. Moreover, as stated by Harrison and Rutström (2008), attitude toward risk is one of

the primitives of economies and characterizations of the distribution of risk attitudes can

be used to analyze the choice behavior under uncertainty. Prior research (e.g., Laury and

McInnes, 2003; Kunreuther and Pauly, 2005) predicts that risk-averse individuals always
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demand more insurance. However, this may not apply to the purchase of accident forgive-

ness. An experiment conducted in this paper shows that some good drivers (drivers with

a low probability of having accidents) are not interested in purchasing this optional policy

to protect their potential loss, even when the insurance price is actuarially fair. For both

the insurer and the insured, the question of how risk and time preferences affect individual

accident forgiveness purchases is critical to understanding such policy design.

In this paper, I address this question by conducting an experiment under controlled

laboratory conditions. The experiment consists of the following tasks: a lottery choice task,

a discount rate task, a simulated driving task, and an insurance purchase task. The random

lottery pair design is used in the lottery choice task to infer risk attitudes. I combine the

lottery choice task with the discount rate task to jointly infer discount rates over utility

since it is the concavity of the utility function that is important, and under expected utility

theory (EUT) this is synonymous with risk attitude. The simulated driving task is used to

assess subjects’ driving behavior. By offering insurance contracts conditional on observed

driving behavior in the insurance purchase task, I can construct a close representation of

a naturally-occurring auto insurance market in which insurance premiums are based upon

driver risk classifications.

The statistical specification in this paper involves the joint estimation of risk attitudes,

time preferences, and insurance decisions. I consider models that allow for both observable

individual characteristics and structural errors and assume both exponential and hyperbolic

(Mazur) specifications of the discount rate function. The estimates show moderate risk

aversion (γ=0.36) and a discount rate of 1.28 (or 0.88, assuming hyperbolic discounting), on
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average. To test the hypotheses of the impact of risk and time preferences on accident forgive-

ness purchases, I examine the data obtained from the experiment and find that individual

discount rates and policy prices have significantly negative effects on accident forgiveness

purchases. More importantly, inconsistent with the prior literature, which argues the pos-

itive impacts of risk aversion on insurance purchases, my data show that subjects with a

lower degree of risk aversion behave more like risk-neutral agents when making insurance

decisions. In other words, their degree of risk aversion does not contribute to their insurance

purchases. However, those with a higher degree of risk aversion make insurance decisions

that are significantly driven by their risk attitudes.

My study is unique in several ways: First, prior studies focus on explaining the de-

terminants of individual insurance purchases for the severe consequences arising from low-

probability high-loss events (e.g., earthquakes and floods). This paper contributes to the ex-

isting literature by addressing the impact of risk and time preferences on insurance decision-

making over events with moderately high probability but relatively low loss (e.g., premium

increases after auto accident).1 By centering the analysis on accident forgiveness purchases,

this study improves our understanding of this new policy as well as reveals important impli-

cations for insurance policy makers.

Second, only a few studies address the joint elicitation of risk and time preferences.

Andersen et al. (2008) was the first to focus on the formal theoretical link between elicited

risk attitudes and individual discount rates. I extend the existing literature by using full

information maximum likelihood in the joint elicitation of risk and time preferences. More

1A premium increase or surcharge after accidents ranges from 10% to 50% (see http://www.dmv.org).
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specifically, I further elicit risk and time preferences jointly with insurance decisions. More-

over, instead of using a probit model over the entire sample to investigate the impact of

risk preferences on accident forgiveness purchases, I adopt a conditional probit model in

which the level of risk aversion is controlled. Three subsamples are drawn by the centile of

risk aversion (e.g., below the 25th percentile, between the 25th and 75th percentiles, and

above the 75th percentile). The result shows that the impacts of risk aversion on accident

forgiveness purchases vary among these subsamples. The significantly positive effect is only

observable in the subsample with a higher level of risk aversion and this interesting finding is

consistent with the threshold explanation developed in Chapter 1 (Proposition 2 in Section

1.5.2).

Third, prior experimental literature studying insurance purchase decisions rarely classi-

fies a subject’s risk type. However, in practice, this is important. For most lines of insurance

products (e.g., homeowner insurance and auto insurance), insurers provide insurance con-

tracts to policyholders conditional on their risk types. Different risk types of policyholders

may follow different decision rules when purchasing insurance. By offering subjects an insur-

ance contract conditional on their driving behavior observed in the simulated driving task,

the design of this experiment enables us to infuse the experiment with realism.

Section 2 reviews both the insurance and the experimental literature on insurance

decision-making. Section 3 proposes testable hypotheses. Section 4 presents the experi-

mental design, which allows the joint estimation of risk and time preferences with insurance

purchase decisions. Section 5 outlines the estimation procedure. Section 6 examines the data

from the experiment and econometric analysis. Section 7 summarizes what may be improved
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in the experimental design and Section 8 draws some general conclusions. The appendices

document the instructions and parameters used in the experiment.
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2.2 Literature Review

Consumers often face decisions as to whether to purchase insurance. There is a vast literature

on insurance purchase decision-making.

Anderson (1974) evaluates the National Flood Insurance Program and concludes that

consumer awareness of a product’s existence and the level premium rates determine insurance

purchases. Kunreuther et al. (2001) and Kunreuther and Pauly (2004) formulate the idea

of decision-making costs and imperfect information in ways that help explain “anomalies”

in insurance markets. The authors find that individuals may face an explicit or implicit cost

to discovering the true probability of rare events and this cost constitutes a threshold that

might inhibit purchase. Further, Kunreuther and Pauly (2006) propose more details about

why consumer insurance-purchasing activities do not always produce results in the best in-

terest of the individuals at risk. The authors reveal that individuals for whom insurance may

be a financially attractive investment may be reluctant or unable to collect the information

they need to make decisions due to the time, effort, and costs associated with the process. In

addition, individuals may exhibit “misprocessing behavior,” including a misperception of the

risks, with simplified decision rules and reluctance to consider new alternatives. Krantz and

Kunreuther (2007) pursue a more Aristotelian theory of decision making, where preferences

are constructed based on the decision context and decision makers focus on goals, rather

than on maximizing happiness or utility. The authors attempt to show that this alternative

approach leads to new explanations of how people make insurance decisions. This paper

focuses on insurance decision-making over events with moderately high probability but rel-
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atively small loss (e.g., premium losses resulting from auto accidents) and investigates how

risk and time preferences affect insurance decisions.

Controlled laboratory experiments are an ideal testbed for insurance purchase decision

analysis (Laury et al., 2009). The most widely cited laboratory study of insurance purchase

decisions was conducted by Slovic et al. (1977). This involves a carefully-crafted experiment

in which subjects fill out a questionnaire that elicits their willingness to purchase actuarially

fair insurance in up to eight different situations. The probabilities and sizes of the losses are

systematically varied across questions, holding constant the expected value of the loss and

the actuarially fair premium. The authors find that the percentage of subjects purchasing

insurance is relatively low when the probability of loss is very low (and therefore the loss

amount is high) and systematically increases with the probability of loss.

McClelland et al. (1993) conduct an experimental study of insurance purchase decisions

in which groups of eight subjects participate in a Vickrey fifth-price auction and only half

of the subjects are able to buy insurance during a given round. The authors find that these

laboratory results are consistent with field evidence for low-probability hazards, for which

people appear to either dismiss the risks or worry too much about them. Ganderton et al.

(2000) present a series of experiments that confronted subjects with also focusing on low-

probability, high-loss situations. Subjects could earn income in each period and, in repeated

decision-making rounds, were asked whether they wished to purchase insurance at a stated

price. The authors illustrate that as loss events become more likely, loss amounts increase,

or the cost of insurance falls, subjects are more likely to buy indemnifying insurance, even

for the class of low probability risks that usually present problems in standard EUT.
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Laury and McInnes (2003) conduct an experiment that tests whether showing subjects

actuarially fair insurance prices reduces deviations from optimal (Bayesian) decision making.

The authors find significant differences in the decision rules used, depending on whether one

observes insurance prices. Although the majority of choices correspond to Bayesian updat-

ing, the incidence of optimal decisions is higher in sessions with an insurance option. Further,

Laury et al. (2009) undertake a systematic study to reexamine the issue of whether individu-

als tend to underinsure against low-probability, high-loss events relative to high-probability,

low-loss events. Their results counter prior experimental evidence, since they observe sub-

jects buying more insurance for lower-probability events than for higher-probability events,

given a constant expected loss and load factor, and the authors conclude that this may be

attributed to factors other than the relative probabilities of the loss events.

Insurance behavior in the laboratory is very sensitive to how the losses are framed and

the types of incentives used. When insurance decisions are presented in abstract terms, with

no money on the line, subjects were indeed less likely to insure against smaller probability

losses (Laury et al., 2009).2 This study builds on prior literature on the design of the

experiment by framing insurance decisions in a less abstract context (Laury et al., 2009;

Slovic et al., 1977) and expressing losses in dollar terms. More specifically, subjects in the

experiment face the potential loss of part or all of their earned amount from other tasks and

are asked to make decisions whether to purchase insurance. Further, by assessing subject’s

driving behavior from the simulated driving task and offering insurance contracts conditional

2In the study of McClelland et al. (1993), subjects participated in a Vickrey fifth-price auction. However,
behavioral patterns for bidding in an auction may not reflect decision-making patterns in naturally occurring
insurance markets.
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on the observed driving behavior, my experimental design reflects decision-making patterns

in naturally occurring auto insurance markets.
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2.3 Hypotheses

My goal is to develop an experiment to study the impacts of risk and time preferences on

accident forgiveness purchases. Before I present my experimental design, I wish to describe

two testable hypotheses concerning the effects of individual discount rates and the degree of

risk aversion and how they relate to the decision to purchase accident forgiveness coverage.

2.3.1 Individual Discount Rates

Time preference is a provocative subject with important implications for many aspects of

economic behavior and public policy (Warner and Pleeter, 2001). It is particularly essential

in insurance decision-making. The macroeconomic literature provides evidence of the relation

between the discount factor and life insurance purchases in a life cycle model (e.g., Fischer,

1973; Yaari, 1965).3 Articles related to dynamic insurance contracts further demonstrate

the importance of time preferences. Rubinstein and Yaari (1983) show that multi-period

insurance contracts can increase the welfare of both the insurer and the insured when the

number of periods is large and the discount rate is small. Dionne and Doherty (1994)

find a positive relation between the discount factor and high-risk driver participation in

the first-period pooling insurance. Kunreuther (1996) uses time preferences to explain why

individuals have limited interest in voluntary insurance purchases.

3Yaari (1965) considers the subjective discount rate when studying the problem of uncertain lifetimes
and life insurance in the context of the expected utility hypothesis using a continuous time model; Fischer
(1973) includes a discount factor in the utility-of-consumption function and describes it as a measure of the
defectiveness of imagination or impatience.
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As premium insurance, an important characteristic of accident forgiveness is that future

premiums will be locked in (e.g., there will be no surcharges on premiums) if this optional

policy is purchased. I argue that more patient policyholders prefer to smooth their utility

rather than have distinct differences over time. In other words, they care more about their

future premiums. To secure future premiums, they are more likely to purchase optional

accident forgiveness policies to increase the possibility of future insurance. This suggests

that policyholders with lower discount rates are more likely to have a higher demand for

accident forgiveness.

2.3.2 Degree of Risk Aversion

The impact of individual risk attitudes on insurance purchase decisions is the subject of

some debate in the literature. Schlesinger and Schulenberg (1987) argue that because a higher

degree of risk aversion implies a greater relative emphasis on downside risk, an increase in the

level of risk aversion leads to the purchase of a higher level of insurance coverage. Ganderton

et al. (2000) state that all risk-neutral or risk-averse individuals would purchase insurance

and undertake all relevant precautions to the extent that the extra benefits from such actions

exceed the marginal costs, less some risk premium in the case of risk aversion. Laury and

McInnes (2003) point out that all risk-averse people should purchase insurance, regardless

of whether one group is significantly more risk averse than the other. Kunreuther and Pauly

(2005) argue that as long as people are risk averse, people will be willing to pay a premium

greater than or equal to the expected value of losses from a set of uncertain events against

which they will be covered. The maximum amount that an individual will be willing to
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pay for coverage depends on her degree of risk aversion. However, the threshold explanation

(McClelland et al., 1993) predicts that risk-averse individuals will not buy insurance unless

they view the hazard as a problem worthy of concern. This threshold concept makes good

intuitive sense, since the authors point out that without some sort of threshold for concern,

people would spend their entire lives excessively protecting themselves against loss events.

As observed in the experiment, risk-averse drivers (e.g., drivers with good driving be-

havior) do not always purchase optional insurance. Even with an actuarially fair premium,

some still hesitate to purchase it. In line with the threshold explanation derived in Chapter

1, I argue that more risk-averse policyholders will be more likely to purchase accident for-

giveness if their degree of risk aversion is above a given threshold. The basic intuition is as

follows. An individual’s risk attitude determines the curvature of the utility function. For

policyholders with a relatively higher degree of risk aversion, the price for accident forgiveness

may be acceptable in terms of what they feel they are getting for the money. Then the more

risk-averse policyholders become, the more likely they will purchase accident forgiveness.

Meanwhile, policyholders with a lower degree of risk aversion behave more like risk-neutral

individuals. While risk averse, their degree of risk aversion does not affect their insurance

purchases. Other factors such as personal experience and the affordability of insurance prices

are more likely to contribute to their decisions.
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2.4 Experimental Procedures

A total of 60 subjects were recruited from across the Georgia State University campus to

participate in the experiment in December 2011. Their ages ranged from 18 to 57 (mean

= 22.5±5.9) and 39 of them subjects were female. The general recruitment message did

not mention a fee for showing-up or any specific range of possible earnings. Every subject

received a copy of the instructions and had time to read them after being seated in the lab.

Instructions for all tasks are presented in Appendix A.

In brief, each subject was asked to respond to four categories of tasks, including choices

over risky prospects, sooner versus later payment choices, simulated driving, and insurance

purchases. Most of these tasks involved a series of binary choices. All subjects also completed

a demographic survey covering their characteristics, as well as cigarette and alcohol use.

2.4.1 Choices over Risky Prospects

To elicit risk preferences, the experiment used the random lottery pair experimental design

of Hey and Orme (1994). A major advantage of this design over the others is that the task

is simple and context free. The task involves a modest extension of the display of Harrison

and Rutström (2009) in which lotteries are presented to the subjects in color on a computer

screen and the information on the probabilities of each pie slice is included. Figure 2.1

presents an example of such screen-shots, with the subject observed for the task.

A gain frame as well as a mixed frame of lotteries were included. In the gain frame

tasks, the prizes in each lottery are nonnegative and in the mixed frame some of the lotteries

involve gains and some involve losses. A total of 68% of the subjects were presented with
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the gain frame. In all, 40 lottery pairs were drawn at random from a set of 60 lottery pairs,

as shown in Table 2.12 of the Appendix. In the gain frame tasks, the prizes in each lottery

were $0, $5.00, $10.00 and $15.00. In the mixed frame tasks subjects were given an initial

endowment of $8.00 and the prizes were -$8.00, -$3.00, $3.00 and $8.00.4 Therefore, the

final outcomes for the mixed frame, inclusive of the endowment, were $0, $5.00, $11.00 and

$16.00. The probabilities used in each lottery ranged roughly evenly over the unit interval

with values of 0, 0.13, 0.25, 0.37, 0.5, 0.62, 0.75, and 0.87. These are based on the lottery

pairs developed by Harrison and Rutström (2009) and were presented sequentially. Although

there was often some similarity in the prizes and probabilities from task to task, the subject

did not know the exact lotteries to come, which can make the task of forming portfolios very

demanding (Hey and Lee, 2005a, 2005b). Subjects were instructed that one of the pairs from

the task would be randomly selected and that they would receive the alternative they chose

for that pair in the form of cash at the end of the session. Such random selection is intended

to avoid possible wealth effects from paying all choices sequentially during the experiment

and portfolio effects from paying all choices at the end of the experiment (Cox et al., 2011).

2.4.2 Sooner versus Later Payment Choices

Eliciting individual discount rates over monetary outcomes in the laboratory involves asking

the subject (implicitly or explicitly) to invest in a laboratory instrument. I applied the

experimental procedure introduced by Coller and Williams (1999) and expanded by Harrison

et al. (2002) in which subjects choose to receive a fixed amount on a given date or a fixed

4Negative prizes in the lotteries indicate potential loss.
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Figure 2.1. The Lottery Display for Risk Preference Tasks

amount plus $x some days later, where $x implies a rate of return on “saving” the amount

in the lab for some days.

This task used principal amounts of $30.00 and $60.00 and time horizons of seven, 14,

21, 28, 35, 42, 49, 56, 63, and 70 days (one to 10 weeks). Each subject made 40 choices: For

each horizon, they were offered four choices, with annual growth rates selected at random

between 5% and 200%. There was no front-end delay on the earlier option, so the choice was

between receiving money now and receiving it later, as illustrated in Figure 2.2. One decision

row was selected at random, to be paid out at the chosen date. All subjects were paid in cash

at the end of sessions for any immediate payment choices, as well as by PayPalTMfor any
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time-delayed payment choices.5 To ensure credibility of the payment instrument, a signed

certificate was given as a guarantee of the time-delayed payment.6

Figure 2.2. The Display for Time Preferences Task

The fraction of choices subjects made by selecting later payments in the discount rate

tasks is captured in Figure 2.3. Using a local polynomial regression with a 95% confidence

interval, even with higher interest rates (e.g., an annual growth rate of 200%), the fraction

of later payment choices (or fraction of LL choices in Figure 2.3) with a principal amount of

5PayPalTMis a private company providing an online payment service. On the payment date, I in-
structed PayPalTMto initiate a transfer for the subject’s payment amount to the e-mail address provided.
PayPalTMthen sent the subject an e-mail with a link to its online site where the subject could either register
as a user or log in if already member. The money was then immediately available for online purchases or
the subject could request that PayPalTMsend the money in a check with a few days’ delay or transfer the
money directly to the subject’s bank account.

6The certificate was signed by the director of the Center for the Economic Analysis of Risk at Georgia
State University. The payment date, payment amount, and payment methods were clearly specified on the
certificate.
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$30.00 is still very low (below 25%), as illustrated in Figure 2.3(a). In other words, regarding

payment choices between receiving $30.00 today and $30.00 plus $x some days later, most

subjects opted to receive immediate payments. The low fraction of later payment choices

may be explained by the fact that smaller amounts are discounted more than larger amounts.

On the other hand, the fraction of later payment choices with a principal amount of $60.00

is much higher, as shown in Figure 2.3(b), and carries more information that can be used to

elicit individual discount rates. Hence, further analysis is focused on choices with $60.00 as

the principal amount.

Figure 2.3. Choices of Later Payment and Interest Rate Offered

(a) Principal Amount of $30.00 (b) Principal Amount of $60.00

2.4.3 The Simulated Driving Task

Understanding the policyholder’s driving behavior is essential due to the fact that the pricing

of accident forgiveness is conditional on the policyholder’s driving skills. To infer a subject’s

driving behavior in the laboratory environment, this study used a driving simulator similar

to that shown in Figure 2.7 of Appendix A. Driving simulators have been used in many
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contents. For example, Strayer et al. (2003) used simulated driving tasks to examine the

effects of hands-free cell phone conversations on traffic safety. Rutström (2011) assessed the

risk attitudes of drivers and characteristic biases in how they form beliefs over travel times

by using a simulated driving scenario.

The simulator comprised networked microprocessors and one high-resolution display.

In addition, a steering wheel, gas pedal, brake pedal, and automatic transmission were

part of the simulator equipment. The simulator incorporated proprietary vehicle dynamics,

traffic scenarios, and road surface software to provide realistic scenes and traffic conditions.

Measures of real-time driving performance, such as travel time, driving speed, brake, gas,

and steering wheel inputs, were stored to grade subject’s driving skills.

The task consisted of an unpaid practice drive and a paid drive. Subjects were provided

with detailed instructions for each drive. By carrying out the unpaid drive, subjects famil-

iarized themselves with the equipment. Different routes were designed for the unpaid and

paid drives to reduce any negative learning effects that could bias the estimation.

Earnings for this task were determined by each subject’s driving performance. Violations

and the relevant penalties7 were clearly specified in the instructions. Violations included

speeding, collision, and running a red light or a stop sign. To control for time effects on

driving performance, subjects were also required to finish the driving task within a specific

time frame.8 Failure to do so resulted in a reduced payment.9 The earnings for the paid

drive was either $30.00 or $60.00, depending on the total number of penalty points earned.10

7For the detailed penalty schedule, please see Table 2.11 in Appendix A.
8Subjects were instructed to finish the paid drive within five minutes.
9For every 10-second delay, subjects received one penalty point.

10Subjects who obtained more than five penalty points were paid $30.00.
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Figure 2.4. Violations and Penalty Points

(a) Frequency of Violations

(b) Distribution of Penalty Points
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Further, earnings from this task would be used as endowments for participating in the next

insurance purchase tasks. Figure 2.4 illustrates the frequency of violations in each category

and the distribution of violation points in the sample.

2.4.4 The Insurance Purchase Task

Framing must be carefully dealt with when conducting experiments in the context of insur-

ance. Experimental evidence shows that framing an insurance task as an abstract gamble or

as a loss makes a difference to subjects. Hershey and Schoemaker (1980), using hypothetical

questions, find that subjects exhibit more risk aversion in choices that are presented in an

insurance context than in mathematically equivalent choices presented as standard gambles.

Similarly, Laury et al. (2009) state that when insurance decisions are presented in abstract

terms, with no money on the line, it is hard to elicit subjects’ preferences of insuring against

losses and subjects are more likely to buy insurance. To elicit individual preferences over

accident forgiveness, insurance decisions were framed in a less abstract context and losses

were expressed in dollar terms. Earnings obtained from the driving task were then used as

endowments to minimize a found-money effect and to make the loss more real to subjects

(Camerer and Hogarth, 1999; Harrison et al., 2005).

Determined by their driving performance in the previous task, subjects were classified

as either high risk or low risk, with high risks being those who earned $30.00 from the driving

task. Subjects were asked to make an insurance purchase decision for each question in a set

of six questions varying in the loss settings, as shown in Figure 2.5. The subjects faced a

potential loss of part or all of this earned amount but potential losses were never larger than
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a subject’s available amount in order to avoid confounding the size of losses with bankruptcy

considerations.11 Subjects of the same risk type faced the same set of insurance purchase

questions. By offering optional insurance to fully cover potential loss, I imply subjects’

preferences for an accident forgiveness policy.

Figure 2.5. Display for the Insurance Purchase Task

When examining the insurance decision by the experiment, it is not a simple question

to ask subjects whether to purchase insurance without adjusting the probability of loss and

the insurance load. One feature of the premium loss is its relatively high probability. For

example, the probability of the premium loss from auto accidents can be much higher than

that caused by a flood or an earthquake. This experiment sets probabilities of a potential

loss at (0.4, 0.6) for high risks and (0.1, 0.2) for low risks while controlling the constant

expected value of the loss with $6.00 for low risks and $12.00 for high risks. In addition,

the insurance loads are set to be 0.5, 1.0, and 1.5. When the load is set at 0.5, the price of

11Loss from a premium increase after an at-fault accident is relatively low with a relatively high probability
compared to loss from other events (e.g., earthquakes). By providing full coverage to the potential loss in
the task, I replicate the main feature of the accident forgiveness policy, which is simply full coverage for the
loss from the premium increase.



62

insurance is 50% of the expected value of the loss, indicating subsidization; when the load is

1.0, the insurance is actuarially fair; and when the load is 1.5, the price of insurance is 1.5

times the expected value of the loss, indicating an overcharge or high loading. Combining

the choices for the probability of loss and the insurance load represents a within-subjects

factorial design and yields the six decisions for each type, as shown in Table 2.14. At the

end of this task, one decision row is selected at random to be played out.
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2.5 Econometrics

To estimate risk attitudes, two broad methods are used. One approach is to calculate the

bounds implied by the observed choices, typically using utility functions that have only a

single parameter to be inferred (e.g., Holt and Laury, 2002). The limitation of this approach is

that one must infer the bounds that make the subject indifferent between the switch points,

and such inferences become virtually incoherent statistically when there are two or more

parameters. The other more preferable approach involves direct estimation by maximum

likelihood of some structural model of a latent choice process in which the core parameters

defining risk attitudes can be estimated, in the manner pioneered by Camerer and Ho (1994)

and Hey and Orme (1994).12 This is the approach used here and is outlined as follows.

Assume that utility function is defined by

U(x) =
(w + x)(1−γ)

1− γ
, (2.1)

where w is some measure of background consumption (e.g., endowment), x is the lottery

prize in the risk preference tasks, and γ 6= 1 is the parameter to be estimated. For γ = 1,

assume U(x) = ln(w + x) if needed. Thus, γ is the coefficient of CRRA: γ = 0 corresponds

to being risk neutral, γ < 0 to being risk loving, and γ > 0 to being risk averse. Let there

be k possible outcomes (e.g., k = 4) in the lottery. Under EUT the probabilities for each

outcome k, pk, are those induced by the experimenter, so the expected utility is simply the

12Details of this structural estimation approach are reviewed by Harrison and Rutström (2008).
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probability-weighted utility of each outcome in each lottery i,

EUi =
∑

k=1,...,4

(pk × Uk). (2.2)

The expected utility for each lottery pair is calculated for a candidate estimate of γ and the

index

∇EU = EUR − EUL (2.3)

is calculated, where EUL is the “left” lottery and EUR is the “right” lottery in the risk

preference tasks. This latent index, based on latent preferences, is then linked to the observed

choices using a standard cumulative normal distribution function Φ(.), as13

prob(lotteryR) = Φ(∇EU). (2.4)

An important extension of this core model is to allow for subjects to make errors (e.g.,

mistakes due to carelessness and inattentiveness). The notion of error here is the probability

of choosing a lottery that is not one when the EU of that lottery exceeds the EU of the other

lottery. One important error specification, due originally to Fechner and popularized by Hey

and Orme (1994), posits the latent index as

∇EU =
(EUR − EUL)

µ
(2.5)

13A logit specification can also be applied.
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instead of equation (2.3) where µ is a structural “noise parameter” used to allow errors from

the perspective of the deterministic EUT model.

Thus, the likelihood of the observed responses, conditional on EUT and the CRRA

specifications being true, depends on the estimates of γ and µ given the above statistical

specifications and observed choices. The conditional log-likelihood would be

lnLRA(γ, µ; y, w,X) =
∑
i

((lnΦ(∇EU)|yi = 1) + (lnΦ(1− (∇EU))|yi = 0)), (2.6)

where yi = 1 (or 0) denotes the choice of the option “right” (or “left”) lottery in risk

preference task i and X is a vector of individual characteristics reflecting age, sex, race, and

so on.

When eliciting individual discount rates, it is the concavity of the utility function that

is important, and under EUT this is synonymous with risk attitudes. Andersen et al. (2008)

point out that one cannot infer the level of the individual discount rate without knowing

that there exists an identification problem which implies that risk attitudes and discount

rates cannot be estimated based on discount rate experiments alone but, instead separate

tasks to identify the influence of risk preferences must also be implemented. The authors

propose a structural model that involves the joint estimation of risk and time preferences.

Specifically, if one assumes that EUT holds for the choices over risky alternatives and

that discounting is exponential, then the subject is indifferent between two income options

ML and MR if and only if

U(ML) =
1

(1 + δ)t
U(MR), (2.7)
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where U(ML) is the utility of the monetary outcome ML for immediate delivery, δ is the

discount rate, t is the horizon for the delivery of the later monetary outcome MR, and the

utility function U is separable and stationary over time.

A similar specification for risk aversion is employed for the discount rate choices. The

discounted utility of the “left” option (sooner payments) is given by

PVL =
(ML)1−γ

1− γ
(2.8)

and the discounted utility of the “right” option (later payments) is given by

PVR =
1

(1 + δ)t
(MR)1−γ

1− γ
. (2.9)

An index of the difference between these present values, conditional on γ and δ, can then be

defined as

∇PV =
(PVR − PVL)

ν
, (2.10)

where ν is a noise parameter for the discount rate choices, just as µ is for the risk aversion

choices.

Thus, the likelihood of the discount rate responses, conditional on EUT, CRRA, and

exponential discounting specifications being true, depends on the estimates of γ, δ, µ, and

ν, given the observed choices. The conditional log-likelihood is

lnLDR(γ, δ, µ, ν; y, w,X) =
∑
i

((lnΦ(∇PV )|yi = 1) + (lnΦ(1− (∇PV ))|yi = 0)), (2.11)
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where yi = 1 (or 0) denotes the “right” or “left” choice, respectively, in the discounting rate

task i.

The joint log-likelihood of the risk aversion and discount rate responses can then be

written as

lnL(γ, δ, µ, ν; y, w,X) = lnLRA + lnLDR. (2.12)

Further, when eliciting individual insurance preferences, both the concavity of the utility

function and the discount rates are important. A similar specification is employed. The

present value of the “buying” option is given by14

PUbuy =
1

(1 + δ)t
(w − α)1−γ

1− γ
(2.13)

and the present value of the “not buying” option is given by

PUnbuy =
1

(1 + δ)t
[p ∗ (w −D)1−γ

1− γ
+ (1− p) ∗ w

1−γ

1− γ
], (2.14)

where w is the endowment earned from the driving task, D is the potential loss, p is the loss

probability for each insurance task, and α is the insurance premium.

The index of the difference can then be defined as

∇PU = PUbuy − PUnbuy. (2.15)

14To simplify the problem, full coverage is assumed.
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Following the same logic, one can derive the joint log-likelihood of the risk aversion,

discount rates, and insurance purchase responses as

lnL(γ, δ, µ, ν; y, w,X) = lnLRA + lnLDR + lnLINS (2.16)

with the conditional log-likelihood of the insurance purchase as

lnLINS(γ, δ, µ, ν; y, w,X) =
∑
i

((lnΦ(∇PU)|yi = 1) + (lnΦ(1− (∇PU))|yi = 0)) (2.17)

where yi = 1 (or 0) denotes the choice of “buying” or “not buying”, respectively, in the

insurance purchase task i.
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2.6 Results

2.6.1 Joint Estimation

Table 2.1 presents the maximum likelihood estimates for joint estimation risk attitudes and

discount rates allowing homogeneity. In addition to assuming exponential discounting, this

section also considers hyperbolic (Mazur) discounting. A hyperbolic specification (Mazur,

1987) assumes that individuals have discount rates that decline with the horizon they face.

The functional form (2.9) can be replaced by

PVR =
1

1 + δ ∗ t
(MR)1−γ

1− γ
. (2.18)

The CRRA parameter γ is estimated at 0.356. The estimate of the discount rate is around

1.284 in the exponential discounting and 0.889 in the hyperbolic discounting. Further, there

is evidence of noise in the decision process since the p-values for both µ and ν are statistically

significant.

It is an easy matter to allow γ and δ to be linear functions of the observable charac-

teristics of individuals. Binary indicators are included for sex, age over 25, and race (Asian,

Black, or White).15 Dummies are also included for those having a problem with smoking

or alcohol. Each of the core parameters γ and δ is specified as a linear function of these

characteristics and the model is estimated using maximum likelihood. Tables 2.2 and 2.4

report joint estimations allowing heterogeneity with exponential and hyperbolic discounting,

respectively. Allowing for demographic effects for γ and δ improves the prediction of the

15The base category is a group of other races, including Hispanic-Americans and mixed race.
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Table 2.1. Joint Estimates of the EUT Model Allowing Homogeneity

(a) Assuming Exponential Discounting
Parameter Estimate Standard Error p-Value 95% Conf. Interval

γ 0.356 0.032 0.000 0.293 0.419
δ 1.284 0.199 0.000 0.893 1.674
µ (for RA) 0.939 0.080 0.000 0.782 1.096
ν (for IDR) 1.366 0.289 0.000 0.799 1.934

(b) Assuming Hyperbolic (Mazur) Discounting
Parameter Estimate Standard Error p-Value 95% Conf. Interval

γ 0.353 0.032 0.000 0.290 0.416
δ 0.889 0.101 0.000 0.691 1.088
µ (for RA) 0.941 0.080 0.000 0.783 1.100
ν (for IDR) 1.372 0.290 0.000 0.803 1.942

Note 1: γ refers to risk attitude.
Note 2: δ refers to the discount rate.
Note 3: µ refers to structural error for risk attitudes (RA).
Note 4: ν refers to structural error for individual discount rates (IDR).

model by increasing the aggregate log-likelihood from −2420.1541 to −2341.4523 with the

exponential discounting specification and from −2413.9438 to −2331.7474 with the hyper-

bolic discounting specification. Women and non-smokers are significantly more risk averse

in the sample. Whites are more risk averse than Black or Asian subjects. Meanwhile, the

marginal effects for individual discount rates are reported in Tables 2.3 and 2.5. Individual

discount rates are more sensitive to race than to other factors. Whites seem more patient

than other races in the discounting tasks.

2.6.2 Tests of Hypotheses

The probit model is applied to investigate the role of risk attitudes and discount rates in

accident forgiveness purchases. The tests of the hypotheses are divided into two parts. The
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Table 2.2. Joint Estimates of the EUT Model Allowing Heterogeneity: Exponential
Discounting

Parameter Estimate Standard Error p-Value 95% Conf. Interval

Age25γ 0.081 0.063 0.197 -0.042 0.206
Femaleγ 0.109 0.049 0.027 0.012 0.205
Asianγ 0.187 0.083 0.025 0.023 0.351
Blackγ 0.245 0.074 0.001 0.098 0.391
Whiteγ 0.286 0.092 0.002 0.106 0.467
Smokerγ -0.233 0.065 0.000 -0.360 -0.105
AlcoholUseγ -0.079 0.064 0.219 -0.205 0.047
Consγ 0.081 0.082 0.323 -0.080 0.243

Age25δ 0.048 0.395 0.902 -0.726 0.824
Femaleδ -0.232 0.026 0.387 -0.758 0.294
Asianδ -1.447 0.447 0.001 -2.323 -0.571
Blackδ -0.958 0.305 0.002 -1.556 -0.359
Whiteδ -1.961 0.512 0.000 -2.965 -0.958
Smokerδ 0.214 0.243 0.378 -0.262 0.692
AlcoholUseδ 0.245 0.330 0.457 -0.401 0.892
Consδ 1.439 0.367 0.000 0.719 2.159

µ (for RA) 0.832 0.073 0.000 0.688 0.975
ν (for IDR) 1.074 0.214 0.000 0.653 1.494

Note 1: γ refers to risk attitude.
Note 2: δ refers to the discount rate.
Note 3: µ refers to structural error for risk attitudes (RA).
Note 4: ν refers to structural error for individual discount rates (IDR).

Table 2.3. Marginal Effects: Exponential Discounting

Parameter Estimate Standard Error p-Value 95% Conf. Interval

Age25δ 0.211 1.745 0.904 -3.209 3.631
Femaleδ -0.873 1.140 0.444 -3.109 1.361
Asianδ -3.227 1.542 0.036 -6.250 -0.203
Blackδ -2.601 1.368 0.057 -5.282 0.080
Whiteδ -3.626 1.524 0.017 -6.614 -0.637
Smokerδ 1.011 1.417 0.476 -1.766 3.789
AlcoholUseδ 1.174 1.838 0.523 -2.428 4.777

Note 1: Marginal effects are measured at the means of the independent variables.
Note 2: δ refers to the discount rate.
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Table 2.4. Joint Estimates of the EUT Model Allowing Heterogeneity: Hyperbolic (Mazur)
Discounting

Parameter Estimate Standard Error p-Value 95% Conf. Interval

Age25γ 0.088 0.064 0.169 -0.037 0.215
Femaleγ 0.117 0.050 0.020 0.018 0.217
Asianγ 0.208 0.080 0.010 0.050 0.366
Blackγ 0.264 0.079 0.001 0.109 0.419
Whiteγ 0.313 0.089 0.000 0.138 0.487
Smokerγ -0.238 0.065 0.000 -0.367 -0.109
AlcoholUseγ -0.095 0.067 0.158 -0.228 0.037
Consγ 0.057 0.082 0.484 -0.103 0.219

Age25δ -0.008 0.273 0.975 -0.545 0.527
Femaleδ -0.171 0.175 0.328 -0.516 0.172
Asianδ -0.971 0.267 0.000 -1.496 -0.446
Blackδ -0.597 0.159 0.000 -0.910 -0.284
Whiteδ -1.404 0.360 0.000 -2.111 -0.697
Smokerδ 0.131 0.160 0.411 -0.182 0.445
AlcoholUseδ 0.210 0.204 0.302 -0.189 0.610
Consδ 0.647 0.184 0.000 0.286 1.008

µ (for RA) 0.834 0.072 0.000 0.693 0.976
ν (for IDR) 1.061 0.209 0.000 0.651 1.471

Note 1: γ refers to risk attitude.
Note 2: δ refers to the discount rate.
Note 3: µ refers to structural error for risk attitudes (RA).
Note 4: ν refers to structural error for individual discount rates (IDR).

Table 2.5. Marginal Effects: Hyperbolic (Mazur) Discounting

Parameter Estimate Standard Error p-Value 95% Conf. Interval

Age25δ -0.016 0.518 0.975 -1.033 1.001
Femaleδ -0.301 0.325 0.354 -0.940 0.336
Asianδ -1.187 0.367 0.001 -1.906 -0.468
Blackδ -0.859 0.286 0.003 -1.421 -0.297
Whiteδ -1.441 0.342 0.000 -2.112 -0.771
Smokerδ 0.269 0.364 0.460 -0.444 0.983
AlcoholUseδ 0.447 0.460 0.331 -0.454 1.350

Note 1: Marginal effects are measured at the means of the independent variables.
Note 2: δ refers to the discount rate.
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first part includes general models and the second part includes conditional models that reflect

different levels of risk aversion.

Table 2.6 presents the results assuming exponential discounting and Table 2.9 assuming

hyperbolic discounting. Model 1 in Table 2.6(a) includes only the variable δ and the premium

while Model 3 also includes the key variable γ. For both models, the individual discount

rate parameter δ is an important factor in insurance decision-making and its effect is highly

significant (p < 0.05). The negative coefficient confirms my hypothesis that policyholders

with lower discount rates (or high discount factors) are more likely to purchase an accident

forgiveness policy. Table 2.7 reports the marginal effects of discount rates evaluated at all

levels of risk aversion. The results show that more patient individuals are more likely to

purchase accident forgiveness at all levels of risk aversion.

Surprisingly, the effect of risk attitudes on insurance purchases exhibits a pattern. Con-

trary to the prior literature (e.g., Laury and McInnes, 2003; Kunreuther and Pauly, 2005),

which predicts a positive effect of the degree of risk aversion on insurance purchases, this

positive effect is insignificant overall (p = 0.577 in Model 2 and p = 0.269 in Model 3 of

Table 2.6(a)). This implies that, measured at the means, the effect of risk aversion on the

demand for insurance is not significant.

However, when the level of risk aversion is controlled for, significantly positive effects of

risk aversion on insurance purchases are observed. More specifically, three subsamples are

defined by centile of risk aversion over all samples. Models 4 to 6 in Table 2.6(b) include

observations with a degree of risk aversion below the 25th percentile, between the 25th and

75th percentiles and above the 75th percentile, respectively. Note that for less risk averse
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Table 2.6. Insurance Purchase Probit Models, Assuming Exponential Discounting

(a) General Models

Variables Model 1 Model 2 Model 3

δ (discount rate) -0.253** -0.386**
(0.099) (0.154)

γ (risk attitude) 0.379 -1.131
(0.680) (1.023)

Premium -0.114*** -0.106*** -0.118***
(0.021) (0.021) (0.022)

Constant 1.596*** 1.030*** 2.204***
(0.289) (0.304) (0.609)

Observations 360 360 360

(b) Conditional Models
(based on γ below the 25th percentile, 25th to 75th percentiles, and above the 75th percentile)

Variables Model 4 (γ ≤ 0.22) Model 5 (0.22 ≤ γ < 0.45) Model 6 (γ ≥ 0.45)

δ (discount rate) -0.192 -0.913*** 1.025
(0.163) (0.342) (0.935)

γ (risk attitude) 0.156 -1.938 17.794***
(2.055) (2.395) (7.170)

Premium -0.192*** -0.128*** -0.112**
(0.039) (0.030) (0.055)

Constant 2.361*** 3.204** -8.908**
(0.850) (1.270) (3.848)

Observations 90 180 90

Note 1: *** p < 0.01, ** p < 0.05, * p < 0.1.
Note 2: The 25th and 75th percentiles of γ are 0.22 and 0.45, respectively.
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individuals, risk attitude does not contribute to insurance coverage decisions. On the other

hand, the risk preferences of those with a higher degree of risk aversion significantly affect

their insurance purchases (p < 0.01 in Model 6 of Table 2.6(b)). This pattern is consistent

with the threshold argument described in Section 2.3.2, that more risk averse policyholders

will be more likely to purchase accident forgiveness if their degree of risk aversion is above

a given threshold.

Table 2.8 reports the conditional marginal effects of risk preferences evaluated over

different levels of risk aversion and illustrates how the marginal effects of risk aversion γ

significantly differ, depending on an individual’s level of risk aversion. Figure 2.6 shows that

for individuals with a relatively high degree of risk aversion (e.g., subjects with risk aversion

γ ≥ 0.45 in the samples), an increase in their degree of risk aversion raises the insurance

demand significantly.

Further, the effects of insurance prices in all models are observed to be significant. This

suggests that when premiums are relatively high individuals have less incentive to purchase

insurance, which is consistent with previous studies (e.g., Cummins et al., 1974).

Table 2.7. Conditional Marginal Effects of Time Preferences (δ) Evaluated at Different
Risk Aversion Levels

γ dy/dx Std. Err. z P<|z| 95% Conf. Interval

0 -0.103 0.025 -4.05 0.000 -0.153 -0.053
0.1 -0.109 0.030 -3.60 0.000 -0.169 -0.050
0.2 -0.116 0.036 -3.16 0.002 -0.187 -0.044
0.3 -0.121 0.042 -2.86 0.004 -0.204 -0.038
0.4 -0.125 0.047 -2.66 0.008 -0.218 -0.033
0.5 -0.129 0.050 -2.57 0.010 -0.228 -0.030
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Table 2.8. Conditional Marginal Effects of Risk Preferences (γ) Evaluated at Different Risk
Aversion Levels

γ dy/dx Std. Err. z P<|z| 95% Conf. Interval

0 0.042 0.563 0.08 0.940 -1.062 1.147
0.05 0.042 0.559 0.08 0.940 -1.054 1.139
0.10 0.042 0.555 0.08 0.939 -1.046 1.131
0.15 0.042 0.551 0.08 0.939 -1.039 1.123
0.20 0.041 0.547 0.08 0.939 -1.031 1.115
0.25 -0.563 0.615 -0.92 0.360 -1.770 0.642
0.30 -0.585 0.675 -0.87 0.385 -1.909 0.737
0.35 -0.605 0.724 -0.83 0.404 -2.025 0.815
0.40 -0.620 0.761 -0.81 0.415 -2.113 0.872
0.45 4.843 1.028 4.71 0.000 2.827 6.859
0.46 5.314 1.313 4.05 0.000 2.740 7.888
0.47 5.691 1.559 3.65 0.000 2.634 8.748
0.48 5.951 1.726 3.45 0.001 2.566 9.336
0.49 6.077 1.789 3.40 0.001 2.569 9.585
0.50 6.061 1.738 3.49 0.000 2.653 9.469

Figure 2.6. Conditional Marginal Effects of Risk Aversion γ with 95% Confidence Intervals
(Evaluated at γ = 0.45, 0.46, . . . , 0.50)
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Table 2.9. Insurance Purchase Probit Models, Assuming Hyperbolic Discounting

(a) General Models

Variables Model 1 Model 2 Model 3

δ (discount rate) -0.721*** -1.194***
(0.272) (0.446)

γ (risk attitude) 0.379 -1.472
(0.680) (1.072)

Premium -0.116*** -0.106*** -0.122***
(0.021) (0.021) (0.022)

Constant 1.899*** 1.030*** 2.878***
(0.363) (0.304) (0.802)

Observations 360 360 360

(b) Conditional Models
(based on γ below the 25th percentile, 25th to 75th percentiles, and above the 75th percentile)

Variables Model 4 (γ ≤ 0.22) Model 5 (0.22 ≤ γ < 0.45) Model 6 (γ ≥ 0.45)

δ (discount rate) -0.479 -1.865** 1.790
(0.466) (0.777) (1.382)

γ (risk attitude) 0.399 -1.687 18.028***
(1.888) (2.367) (6.426)

Premium -0.187*** -0.129*** -0.112**
(0.038) (0.032) (0.055)

Constant 2.449** 3.563** -9.282***
(1.006) (1.467) (3.451)

Observations 90 180 90

Note 1: *** p < 0.01, ** p < 0.05, * p < 0.1.
Note 2: The 25th and 75th percentiles of γ are 0.22 and 0.45, respectively.
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2.7 Reflection

Learning the best way of conducting an experiment is crucial to obtaining useful and valid

results. Experiments allow a researcher to try to learn something new about the world, an

explanation of “why” something happens. When designing an experiment, a researcher must

follow all of the steps of the scientific method, from making sure that the hypothesis is valid

and testable, to using controls and statistical tests. This section reviews the experimental

procedure and comments on what could be improved.

Subjects. The experiment in this paper used students (undergraduates and graduates)

from Georgia State University as subjects. The use of students in studies of consumer

behavior is widespread (Enis et al., 1972). Entire classrooms of potential respondents are

readily available to academic researchers at little or no cost and these subjects generally

follow instructions rapidly and accurately. But these advantages obscure the key question:

Do these student responses accurately reflect the behavioral patterns of other consumers (e.g.,

auto policyholders) in the market? Few would deny that students are consumers, but they

are typically psychologically, socially, and demographically different from other segments of

the population. For example, age is an essential element for consumer segments in the auto

insurance market (Crocker and Snow, 1986). Auto insurance premiums are set much higher

for policyholders aged 16 to 25. The reason is simple: Per mile driven, younger drivers are

more likely to crash than older drivers (National Highway Traffic Safety Administration, 2008

Traffic Safety Facts). Most subjects in the sample are between 18 and 25 (82%) and most

are therefore covered under their parents’ auto policies. A lack of driving or policy purchase
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experience may affect their choices when making accident forgiveness purchases. That is to

say, students’ responses to insurance purchase questions may have some variances with those

of general policyholders in the market. I believe improvements could certainly be made in

this study by recruiting field participants. An efficient way to do this is to collaborate with

insurers and use their policyholders as subjects in the insurance policy study. Recruiting real

policyholders in the experiment would undoubtedly bring about better insight into insurance

policy design.

Driving Behavior. By observing subjects’ driving behavior in the simulated driving

task, each subject’s risk type is determined and used for pricing them in the insurance

purchase task. Using a simulated driving task is believed to successfully replicate subjects’

driving behavior (e.g., Strayer et al., 2003). However, this approach may have drawbacks.

Driving on a simulator requires good hand-to-eye coordination. Although subjects were

given one practice drive with the simulator before the paid drive, some subjects may still be

uncomfortable with the driving scenarios due to different individual learning curves. Thus,

driving behaviors observed from the driving task may be partially explained by relatively

poor skills on the simulator rather than true driving skills. In a similar vein, some subjects

are“safe” drivers not because they have better driving skills but because they are better

at computer racing games. One possible way to solve this problem is to use a driving

simulator that enables a subject to drive in a virtual space while operating the controls



80

of an actual vehicle.16 However, this can be very expensive.17 Another way is to provide

questionnaires that ask about a subject’s driving history (e.g., speeding tickets and at-fault

accidents). Inducing subjects to tell the truth about their driving history may improve our

understanding of the driving behavior observed in the simulated driving task.

Insurance Contract. In the insurance purchase task, by offering optional insurance

to fully cover the potential loss, we imply subjects’ preferences for an accident forgiveness

policy. However, an accident forgiveness policy in the real market is provided as an optional

endorsement attached to the main policy.18 If this is the case, decisions about accident

forgiveness policies may be affected by portfolio effects. For example, policyholders who

purchase both collision and comprehensive benefits may hesitate to get accident forgiveness

because they think they already spent enough money on auto insurance while those who

only purchase liability insurance just cannot wait to have it. An ideal solution would be to

offer subjects a basic auto policy (e.g., liability, collision and comprehensive policy) first and

then ask them to make decisions on accident forgiveness. In such way, we may obtain more

information about their decision-making processes.

16This type of driving simulator is widely used for driver safety education. For example, the Drive Square
Simulation SystemTMmanufactured by Drive Square is the most versatile driving simulator on the market.
See http://www.drivesquare.com for details.

17Driving simulators range in size and price, from $20,000 desktop systems to $100,000,000 full-vehicle
simulators.

18An endorsement is a written document attached to an insurance policy that modifies the policy by
changing the coverage afforded under the policy. An endorsement can add coverage for acts or things not
covered as a part of the original policy and can be added at the inception of the policy or later during the
term of the policy.
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2.8 Conclusions

While most of experimental literature dwells on controlled laboratory experiments to study

insurance purchase decisions, close resemblance to the real insurance market is rare. This

study is exploratory because some of the instruments and procedures have not been previ-

ously employed for the purpose of generating behavioral data on insurance policy issues in

the same way that they are in this study.

In my design, the experiment consists of the following tasks: a lottery choice task, a

discount rate task, a simulated driving task, and an insurance purchase task. The lottery

choice task and the discount rate task are used to infer risk attitudes and discount rates.

Due to the fact that the pricing of accident forgiveness is conditional on the policyholder’s

driving skills in the market, a simulated driving scenario is used in the driving task to

assess the subject’s driving behavior. By offering insurance contracts conditional on the

observed driving behavior in the insurance purchase task, I construct a close representation

of a naturally-occurring auto insurance market in which insurance premiums are based upon

driver risk classifications.

Prior literature examining the determinants for individual insurance purchase decisions

mostly emphasizes how product quality, switching costs, and price affect consumer decisions

(e.g., Schlesinger and Schulenburg, 1993) or argues that distorted beliefs concerning the

probabilities and sizes of potential losses affect consumer decisions about insurance (e.g.,

Kunreuther and Pauly, 2004, 2005). Despite this evidence, much is yet to be understood on

the roles of risk and time preferences in insurance decision-making. This paper builds on
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the prior literature on insurance decision-making and theorizes about the role that risk and

time preferences play on purchase decisions of accident forgiveness policies. More specifically,

two hypotheses are proposed with respect to the effects of individual discount rates and the

degree of risk aversion on the accident forgiveness purchase decision: (a) Policyholders with

lower discount rates are more likely to have a higher demand for accident forgiveness and (b)

more risk-averse policyholders are more likely to purchase accident forgiveness if their degree

of risk aversion is above a given threshold. A summary of findings is provided in Table 2.10.

The findings illustrate that both individual discount rates and insurance price are neg-

atively associated with accident forgiveness purchases. Interestingly, the data show that

subjects with a relatively low degree of risk aversion behave more like risk neutral agents

when making insurance decisions. In other words, their degree of risk aversion does not con-

tribute to their insurance purchases. However, the insurance decisions of those with a higher

degree of risk aversion are significantly driven by their risk attitudes. These findings imply

that a specific segment of policyholders may be targeted in promoting accident forgiveness

policies and that for policyholders whose purchase decisions are less driven by risk attitude,

additional incentives (e.g., a good driver discount) may be considered to be bundled with an

accident forgiveness policy.

Table 2.10. Summary of Findings

Low Level of Risk Aversion High Level of Risk Aversion

δ (discount rate) negative effects on purchasing AF negative effects on purchasing AF
γ (risk attitude) no effect positive effects on purchasing AF

Note 1: The high level of risk aversion refers to the degree of risk aversion above the 75th percentile.
Note 2: AF refers to accident forgiveness policies.
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2.9 Appendices

2.9.1 Appendix A: Instructions

Choices over risky prospects This is a task where you will choose between prospects
with varying prizes and chances of winning. You will be presented with a series of pairs where
you will choose one of them. There are 40 pairs in the series. For each pair, you should
choose the one you prefer to play. You will actually get the chance to play one of these you
choose, and you will be paid according to the outcome of that choice.

If you are selected to do this task with the mixed frame, an initial endowment $8 will
be given at the beginning of the task. So, these losses are simply framed losses and you will
be faced with no personal loss.

Here is an example of what the computer display of such a pair of prospects will look
like (see Figure 2.1).

The outcome of the prospects will be determined by the draw of a random number
between 1 and 100. Each number between, and including, 1 and 100 is equally likely to
occur. In fact, you will be able to draw the number yourself using two 10-sided dice.19

In the above example the left one pays five dollars ($5) if the number on the ball drawn
is between 1 and 40, and pays fifteen dollars ($15) if the number is between 41 and 100. The
blue color in the pie chart corresponds to 40% of the area and illustrates the chances that
the ball drawn will be between 1 and 40 and the prize will be $5. The orange area in the pie
chart corresponds to 60% of the area and illustrates the chances that the ball drawn will be
between 41 and 100 and the prize will be $15.

Now look at the pie in the chart on the right. It pays five dollars ($5) if the number
drawn is between 1 and 50, ten dollars ($10) if the number is between 51 and 90, and fifteen
dollars ($15) if the number is between 91 and 100. As with the one on the left, the pie slices
represent the fraction of the possible numbers which yield each payoff. For example, the size
of the $15 pie slice is 10% of the total pie.

Each pair of prospects is shown on a separate screen on the computer. On each screen,
you should indicate which one you prefer to play by clicking on one of the buttons beneath
the prospects.

After you have worked through all of the pairs, you will then roll two 10-sided dice until
a number between 1 and 40 comes up to determine which pair will be played out. Finally,
you will roll the two 10-sided dice to determine the outcome of the one you chose.

For instance, suppose you picked the one on the left in the above example. If the random
number was 37, you would win $5; if it was 93, you would get $15. If you picked the one on
the right and drew the number 37, you would get $5; if it was 93, you would get $15.

The payoff for this task will be paid out at the end of the session with cash.

Sooner versus later payment choices In this task you will make a number of
choices between receiving an amount of money on a “sooner” date or a different amount of

19One die shows 0-9, the other shows 00-90. If they hit 0 and 00, it is defined as 100.
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money on a “later date”. The sooner date will always be today while the later date will vary
from 1 to 10 weeks from today. An example of decision screen is shown below (see Figure
2.2). You will make all decisions on a computer.

This screen shows four decisions. Each decision is presented on a different row. You
will choose between these two options by clicking the button under the option you prefer.

We will present you with 10 of these decision screens, with each screen having 4 choices
for you to make (totally 40 choices). You must make all 4 choices on the decision screen before
moving to the next decision screen. While on a single decision screen, the only difference
between decisions is that the dollar amounts of the future payment will change. However,
different decision screens will have different dollar amounts and future payment dates.

You will be paid for one of these decisions. You will select one of 10 decision sheets
by rolling a 10-sided die, and then rolling a 4-sided die again to pick one decision on that
screen.

You will receive the money on the date stated in your preferred option: If you receive
some money today, then it is paid out at the end of the task with cash; If you receive some
money to be paid in the future, then it will be paid to you via PayPalTMon the specified
date.

If you receive some money to be paid in the future you will also receive a written
confirmation at the end of the experiment which guarantees that the money is to be paid to
you on that date.

Practice drive instructions In this practice drive you are going to drive on a sim-
ulator (see Figure 2.7) in a suburban environment for about 3 minutes (from the starting
point at the intersection of 7th Avenue and A Street to the parking lot at the intersection of
7th Avenue and G Street). Please see the attached map (Figure 2.8) for the detailed driving
directions.

You must follow all basic traffic rules while you are driving in the simulator. After you
are done with this drive we will review your driving report generated by the software and
recorded by the experimenter. The following lists the violations that will be counted in your
driving report:

• Running red lights

• Running stop signs

• Speeding (5 miles above the imposed speed limit)

• Collisions

This is for practice only and you will earn no money based on this drive. Do you have any
questions?

Paid drive instructions How do you feel? Do you have any feeling of nausea at all?
Would you like to get up and move around, perhaps have some water?
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Figure 2.7. Driving Simulator

Figure 2.8. Map for the Unpaid Practice Drive
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It is time to have paid drive in the simulator. It will be similar to the test drive you
did, but you will be paid for this formal drive. Your earnings will be determined by your
driving performance.

In this formal drive, you are going to drive in a suburban environment (from the starting
point at the intersection of 5 Avenue and G Street to the ending point at the intersection of
5 Avenue and H Street). Please see the attached map (Figure 2.9) for the detailed driving
directions. You are required to finish this driving task within 5 minutes. Remember that
you must follow all basic traffic rules while you are driving in the simulator.

Figure 2.9. Map for the Paid Drive

After you are done with this drive we will review your driving report generated by the
software. The following lists (Table 2.11) the violations that will be counted in your driving
report:

If you have less than 5 points (including 5 points) for traffic violations, you will earn
$60.00; otherwise, you will earn $30.00.

Your earnings for this task will be used as principal for the next insurance task. Only
after you finish both tasks, your net earnings will be calculated at the end of the session.

Insurance purchases In this task you will make choices about a series of prospects.
Each prospect has the possibility of a negative outcome. In each prospect, you will be
allowed to buy insurance against the negative outcome, although you are not required to
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Table 2.11. Driving Violation Penalties
Violations Penalties
Collisions 5 points each

Running stop signs 2 points each
Running red lights 2 points each

Travel time longer than 5 min 1 point every 10 seconds
Speeding (5 miles above the imposed speed limit) 1 point each

buy the insurance. There are 6 pairs in the series. For each pair, you should choose the one
you prefer to have (purchase insurance or not). You will get the chance to play one of the
decisions you choose, and you will be paid according to the outcome of that prospect.

You will use the amount you have earned from the previous driving task as the initial
endowment in this task. All losses here are simply framed losses and you will never incur
any personal losses.

Here is an example of what the computer display of such a pair of insurance choices will
look like (see Figure 2.5):

In the above example the first choice shows no insurance purchase and if the 10-sided
die shows 1-4, the subject will lose $30.00 they earned from driving task. The second choice
shows insurance purchase by paying $9.60 as the premium and he will lose nothing and get
full pay no matter which number the die shows (the net earnings will be $30.00 - $9.60).

Similar to this pair, there will be 6 pairs. After you finish all these pairs, you will have
a chance to review all previous decisions without revising any of them. You will then roll
a 6-sided die to determine which pair of choices will be played out. Finally, you will roll a
10-sided die to determine the outcome of the choice you chose.

The net earnings from both driving task and insurance choices task will be paid via
PayPalTMafter 4 weeks. You will receive a written confirmation which guarantees that the
money is to be paid to you on that date.
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2.9.2 Appendix B: Survey Questions

Q1: What is your age?

Q2: What is your gender?
Female
Male

Q3: Which of the following categories best describes you?
White
African-American
African
Asian-American
Asian
Hispanic-American
Hispanic
Mixed Race
Other

Q4: What is your major?
Accounting
Economics
Finance
Business Administration, other than Accounting, Economics, or Finance
Education
Engineering
Health Professions
Public Affairs or Social Services
Biological Sciences
Does not apply
Math, Computer Sciences, or Physical Sciences
Social Sciences or History
Humanities
Psychology
Other Fields
Does not apply

Q5: What is your class standing?
Freshman
Sophomore
Junior
Senior
Masters
Doctoral
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Does not apply

Q6: What is the highest level of education you expect to complete?
Bachelor’s degree
Master’s degree
Doctoral degree
First professional degree
High school diploma or GED
Less than high school

Q7: What was the highest level of education that your father (or male guardian) completed?
Less than high school
GED or High School Equivalency
High school
Vocational or trade school
College or university

Q8: What was the highest level of education that your mother (or female guardian) com-
pleted?
Less than high school
GED or High School Equivalency
High school
Vocational or trade school
College or university

Q9: What is your citizenship status in the United States?
U.S. Citizen
Resident Alien
Non-Resident Alien
Other Status

Q10: Are you a foreign student on a Student Visa?
Yes
No

Q11: Are you currently...
Single and never married?
Married?
Separated, divorced or widowed?

Q12: On a 4-point scale, what is your current GPA if you are doing a Bachelor’s degree, or
what was it when you did a Bachelor’s degree? This GPA should refer to all of your course
work, not just the current year. Please pick one:
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Between 3.75 and 4.0 GPA (mostly A’s)
Between 3.25 and 3.74 GPA (about half A’s and half B’s)
Between 2.75 and 3.24 GPA (mostly B’s)
Between 2.25 and 2.74 GPA (about half B’s and half C’s)
Between 1.75 and 2.24 GPA (mostly C’s)
Between 1.25 and 1.74 GPA (about half C’s and half D’s)
Less than 1.25 (mostly D’s or below)
Have not taken courses for which grades are given.

Q13: How many people live in your household? Include yourself, your spouse and any de-
pendents. Do not include your parents or roommates unless you claim them as dependents.

Q14: Please select the category below that best describes the total amount of INCOME
earned in 2010 by the people in your household (as “household“ is defined in question 13).
Consider all forms of income, including salaries, tips, interest and dividend payments, schol-
arship support, student loans, parental support, social security, alimony, and child support,
and others.
$15,000 or under
$15,001 - $25,000
$25,001 - $35,000
$35,001 - $50,000
$50,001 - $65,000
$65,001 - $80,000
$80,001 - $100,000
$100,001 - $150,000
over $150,000
Prefer not to answer

Q15: Please select the category below that best describes the total amount of INCOME
earned in 2010 by your parents. Again, consider all forms of income, including salaries, tips,
interest and dividend payments, social security, alimony, and child support, and others.
$15,000 or under
$15,001 - $25,000
$25,001 - $35,000
$35,001 - $50,000
$50,001 - $65,000
$65,001 - $80,000
$80,001 - $100,000
over $100,000
Don’t Know
Not applicable
Prefer not to answer
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Q16: Do you work part-time, full-time, or neither?
Part-time
Full-time
Neither

Q17: How much money do you typically spend each day using cash and your debit card (in
dollars)?

Q18: Do you currently smoke cigarettes?
No
Yes

Q19: If you do smoke, approximately how many packs do you smoke in one day?

Q20: A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How
much does the ball cost?

Q21: If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 ma-
chines to make 100 widgets?

Q22: In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes
48 days for the patch to cover the entire lake, how long would it take for the patch to cover
half of the lake?

Q23: How would you characterize your religious beliefs? Please check the one that best
represents them.
Atheism
Buddhism
Christianity - Baptist
Christianity - Catholic
Christianity - Lutheran
Christianity - Methodist
Christianity - Other
Hinduism
Islam
Judaism
Nonreligious or Agnostic
Other
Prefer not to answer

Q24: Have you bet more than you could really afford to lose?
Never
Sometimes
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Most of the time
Almost always

Q25: Still thinking about the last 12 months, have you needed to gamble with larger amounts
of money to get the same feeling of excitement?
Never
Sometimes
Most of the time
Almost always

Q26: When you gambled, did you go back another day to try to win back the money you
lost?
Never
Sometimes
Most of the time
Almost always

Q27: Have you borrowed money or sold anything to get money to gamble?
Never
Sometimes
Most of the time
Almost always

Q28: Have you felt that you might have a problem with gambling?
Never
Sometimes
Most of the time
Almost always

Q29: Has gambling caused you any health problems, including stress or anxiety?
Never
Sometimes
Most of the time
Almost always

Q30: Have people criticized your betting or told you that you had a gambling problem,
regardless of whether or not you thought it was true?
Never
Sometimes
Most of the time
Almost always
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Q31: Has your gambling caused any financial problems for you or your household?
Never
Sometimes
Most of the time
Almost always

Q32: Have you felt guilty about the way you gamble or what happens when you gamble?
Never
Sometimes
Most of the time
Almost always

Q33: How often do you have a drink containing alcohol?
Never
Monthly or less
Two to four times a month
Two to three times per week
Four or more times per week

Q34: How many drinks containing alcohol do you have on a typical day when you are drink-
ing?
1 or 2
3 or 4
5 or 6
7 to 9
10 or more

Q35: How often do you have six or more drinks on one occasion?
Never
Less than monthly
Monthly
Two to three times per week
Four or more times per week

Q36: How often during the last year have you found that you were not able to stop drinking
once you had started?
Never
Less than monthly
Monthly
Two to three times per week
Four or more times per week
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Q37: How often during the last year have you failed to do what was normally expected from
you because of drinking?
Never
Less than monthly
Monthly
Two to three times per week
Four or more times per week

Q38: How often during the last year have you needed a first drink in the morning to get
yourself going after a heavy drinking session?
Never
Less than monthly
Monthly
Two to three times per week
Four or more times per week

Q39: How often during the last year have you had a feeling of guilt or remorse after drinking?
Never
Less than monthly
Monthly
Two to three times per week
Four or more times per week

Q40: How often during the last year have you been unable to remember what happened the
night before because you had been drinking?
Never
Less than monthly
Monthly
Two to three times per week
Four or more times per week

Q41: Have you or someone else been injured as a result of your drinking?
No
Yes, but not in the last year
Yes, during the last year

Q42: Has a relative or friend, or a doctor or other health worker, been concerned about your
drinking or suggested you cut down?
No
Yes, but not in the last year
Yes, during the last year
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2.9.3 Appendix C: Parameters of Experiments

Table 2.12: Lotteries in Experiments

Pairs Prize 1 Prize 2 Prize 3 Prize 4 Prob L1 Prob L2 Prob L3 Prob L4 Prob R1 Prob R2 Prob R3 Prob R4
G1 0 5 10 15 0.38 0.62 0 0 0.75 0 0 0.25
G2 0 5 10 15 0.62 0 0.38 0 0.75 0 0 0.25
G3 0 5 10 15 0.13 0.38 0.49 0 0 1 0 0
G4 0 5 10 15 0.38 0 0.62 0 0.49 0 0.13 0.38
G5 0 5 10 15 0 0.25 0.5 0.25 0 0.13 0.74 0.13
G6 0 5 10 15 0.75 0 0 0.25 0.62 0 0.38 0
G7 0 5 10 15 0 0.5 0.5 0 0.13 0.25 0.62 0
G8 0 5 10 15 0 0.25 0 0.75 0 0.13 0.49 0.38
G9 0 5 10 15 0 0.75 0 0.25 0 0.62 0.38 0
G10 0 5 10 15 0.13 0.25 0.62 0 0 0.62 0.38 0
G11 0 5 10 15 0 0.74 0.13 0.13 0 0.62 0.38 0
G12 0 5 10 15 0 0.37 0.26 0.37 0 0.25 0.5 0.25
G13 0 5 10 15 0 0.62 0.38 0 0 0.75 0 0.25
G14 0 5 10 15 0.25 0 0.5 0.25 0.13 0 0.87 0
G15 0 5 10 15 0 0.25 0.5 0.25 0 0.13 0.87 0
G16 0 5 10 15 0.38 0 0.62 0 0.25 0.75 0 0
G17 0 5 10 15 0.13 0.74 0 0.13 0 1 0 0
G18 0 5 10 15 0.62 0.38 0 0 0.87 0 0 0.13
G19 0 5 10 15 0.13 0.62 0.25 0 0.25 0.25 0.5 0
G20 0 5 10 15 0 0.13 0.49 0.38 0 0.25 0 0.75
G21 0 5 10 15 0.13 0.74 0.13 0 0.25 0.5 0.25 0
G22 0 5 10 15 0.13 0.49 0.38 0 0.25 0 0.75 0
G23 0 5 10 15 0.13 0 0.25 0.62 0 0 1 0
G24 0 5 10 15 0 0.62 0.38 0 0.13 0.25 0.62 0
G25 0 5 10 15 0.75 0.25 0 0 0.87 0 0 0.13
G26 0 5 10 15 0 0.37 0.26 0.37 0 0.25 0.62 0.13
G27 0 5 10 15 0 0.13 0.87 0 0 0.25 0.5 0.25
G28 0 5 10 15 0 0.62 0.13 0.25 0 0.49 0.38 0.13
G29 0 5 10 15 0.87 0 0 0.13 0.75 0.25 0 0
G30 0 5 10 15 0 1 0 0 0.13 0.38 0.49 0
G31 0 5 10 15 0 0.13 0.74 0.13 0 0.25 0.5 0.25
G32 0 5 10 15 0.13 0 0.13 0.74 0 0 0.62 0.38
G33 0 5 10 15 0.75 0 0 0.25 0.38 0.62 0 0

Continued on next page
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Table 2.12 – continued from previous page
Pairs Prize 1 ($) Prize 2 ($) Prize 3 ($) Prize 4 ($) Prob L1 Prob L2 Prob L3 Prob L4 Prob R1 Prob R2 Prob R3 Prob R4
G34 0 5 10 15 0.37 0.37 0 0.26 0.13 0.87 0 0
G35 0 5 10 15 0.25 0.62 0.13 0 0.37 0.26 0.37 0
G36 0 5 10 15 0 0.13 0.62 0.25 0 0.25 0.25 0.5
G37 0 5 10 15 0 0.87 0.13 0 0.13 0.62 0.25 0
G38 0 5 10 15 0.87 0 0 0.13 0.62 0.38 0 0
G39 0 5 10 15 0.13 0.62 0.25 0 0 0.87 0.13 0
G40 0 5 10 15 0.49 0 0.13 0.38 0.38 0 0.62 0
G41 0 5 10 15 0.25 0.5 0.25 0 0.13 0.87 0 0
G42 0 5 10 15 0.25 0 0.75 0 0.13 0.49 0.38 0
G43 0 5 10 15 0.25 0 0.75 0 0.38 0 0 0.62
G44 0 5 10 15 0 0 1 0 0.13 0 0.25 0.62
G45 0 5 10 15 0.13 0.87 0 0 0.25 0.5 0.25 0
G46 0 5 10 15 0 0.62 0.38 0 0 0.74 0.13 0.13
G47 0 5 10 15 0.38 0 0 0.62 0.25 0 0.75 0
G48 0 5 10 15 0 0.25 0.5 0.25 0 0.37 0.26 0.37
G49 0 5 10 15 0.25 0.5 0.25 0 0.13 0.74 0.13 0
G50 0 5 10 15 0 0 0.62 0.38 0.13 0 0.13 0.74
G51 0 5 10 15 0.37 0.26 0.37 0 0.25 0.62 0.13 0
G52 0 5 10 15 0 0.25 0.25 0.5 0 0.13 0.62 0.25
G53 0 5 10 15 0.13 0 0.87 0 0.25 0 0.5 0.25
G54 0 5 10 15 0 0.49 0.38 0.13 0 0.62 0.13 0.25
G55 0 5 10 15 0 0.25 0.62 0.13 0 0.37 0.26 0.37
G56 0 5 10 15 0.25 0.75 0 0 0.38 0 0.62 0
G57 0 5 10 15 0.13 0.25 0.62 0 0 0.5 0.5 0
G58 0 5 10 15 0 1 0 0 0.13 0.74 0 0.13
G59 0 5 10 15 0.13 0.87 0 0 0.37 0.37 0 0.26
G60 0 5 10 15 0.25 0.25 0.5 0 0.13 0.62 0.25 0
M1 -8 -3 3 8 0.38 0.62 0 0 0.75 0 0 0.25
M2 -8 -3 3 8 0.62 0 0.38 0 0.75 0 0 0.25
M3 -8 -3 3 8 0.13 0.38 0.49 0 0 1 0 0
M4 -8 -3 3 8 0.38 0 0.62 0 0.49 0 0.13 0.38
M5 -8 -3 3 8 0 0.25 0.5 0.25 0 0.13 0.74 0.13
M6 -8 -3 3 8 0.75 0 0 0.25 0.62 0 0.38 0
M7 -8 -3 3 8 0 0.5 0.5 0 0.13 0.25 0.62 0
M8 -8 -3 3 8 0 0.25 0 0.75 0 0.12 0.49 0.38
M9 -8 -3 3 8 0 0.75 0 0.25 0 0.62 0.38 0

Continued on next page
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Table 2.12 – continued from previous page
Pairs Prize 1 ($) Prize 2 ($) Prize 3 ($) Prize 4 ($) Prob L1 Prob L2 Prob L3 Prob L4 Prob R1 Prob R2 Prob R3 Prob R4
M10 -8 -3 3 8 0.13 0.25 0.62 0 0 0.62 0.38 0
M11 -8 -3 3 8 0 0.74 0.13 0.13 0 0.62 0.38 0
M12 -8 -3 3 8 0 0.37 0.26 0.37 0 0.25 0.5 0.25
M13 -8 -3 3 8 0 0.62 0.38 0 0 0.75 0 0.25
M14 -8 -3 3 8 0.25 0 0.5 0.25 0.13 0 0.87 0
M15 -8 -3 3 8 0 0.25 0.5 0.25 0 0.13 0.87 0
M16 -8 -3 3 8 0.38 0 0.62 0 0.25 0.75 0 0
M17 -8 -3 3 8 0.13 0.74 0 0.13 0 1 0 0
M18 -8 -3 3 8 0.62 0.38 0 0 0.87 0 0 0.13
M19 -8 -3 3 8 0.13 0.62 0.25 0 0.25 0.25 0.5 0
M20 -8 -3 3 8 0 0.13 0.49 0.38 0 0.25 0 0.75
M21 -8 -3 3 8 0.13 0.74 0.13 0 0.25 0.5 0.25 0
M22 -8 -3 3 8 0.13 0.49 0.38 0 0.25 0 0.75 0
M23 -8 -3 3 8 0.13 0 0.25 0.62 0 0 1 0
M24 -8 -3 3 8 0 0.62 0.38 0 0.13 0.25 0.62 0
M25 -8 -3 3 8 0.75 0.25 0 0 0.87 0 0 0.13
M26 -8 -3 3 8 0 0.37 0.26 0.37 0 0.25 0.62 0.13
M27 -8 -3 3 8 0 0.13 0.87 0 0 0.25 0.5 0.25
M28 -8 -3 3 8 0 0.62 0.13 0.25 0 0.49 0.38 0.13
M29 -8 -3 3 8 0.87 0 0 0.13 0.75 0.25 0 0
M30 -8 -3 3 8 0 1 0 0 0.13 0.38 0.49 0
M31 -8 -3 3 8 0 0.13 0.74 0.13 0 0.25 0.5 0.25
M32 -8 -3 3 8 0.13 0 0.13 0.74 0 0 0.62 0.38
M33 -8 -3 3 8 0.75 0 0 0.25 0.38 0.62 0 0
M34 -8 -3 3 8 0.37 0.37 0 0.26 0.13 0.87 0 0
M35 -8 -3 3 8 0.25 0.62 0.13 0 0.37 0.26 0.37 0
M36 -8 -3 3 8 0 0.13 0.62 0.25 0 0.25 0.25 0.5
M37 -8 -3 3 8 0 0.87 0.13 0 0.13 0.62 0.25 0
M38 -8 -3 3 8 0.87 0 0 0.13 0.62 0.38 0 0
M39 -8 -3 3 8 0.13 0.62 0.25 0 0 0.87 0.13 0
M40 -8 -3 3 8 0.49 0 0.13 0.38 0.38 0 0.62 0
M41 -8 -3 3 8 0.25 0.5 0.25 0 0.13 0.87 0 0
M42 -8 -3 3 8 0.25 0 0.75 0 0.13 0.49 0.38 0
M43 -8 -3 3 8 0.25 0 0.75 0 0.38 0 0 0.62
M44 -8 -3 3 8 0 0 1 0 0.13 0 0.25 0.62
M45 -8 -3 3 8 0.13 0.87 0 0 0.25 0.5 0.25 0

Continued on next page
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Table 2.12 – continued from previous page
Pairs Prize 1 ($) Prize 2 ($) Prize 3 ($) Prize 4 ($) Prob L1 Prob L2 Prob L3 Prob L4 Prob R1 Prob R2 Prob R3 Prob R4
M46 -8 -3 3 8 0 0.62 0.38 0 0 0.74 0.13 0.13
M47 -8 -3 3 8 0.38 0 0 0.62 0.25 0 0.75 0
M48 -8 -3 3 8 0 0.25 0.5 0.25 0 0.37 0.26 0.37
M49 -8 -3 3 8 0.25 0.5 0.25 0 0.13 0.74 0.13 0
M50 -8 -3 3 8 0 0 0.62 0.38 0.13 0 0.13 0.74
M51 -8 -3 3 8 0.37 0.26 0.37 0 0.25 0.62 0.13 0
M52 -8 -3 3 8 0 0.25 0.25 0.5 0 0.13 0.62 0.25
M53 -8 -3 3 8 0.13 0 0.87 0 0.25 0 0.5 0.25
M54 -8 -3 3 8 0 0.49 0.38 0.13 0 0.62 0.13 0.25
M55 -8 -3 3 8 0 0.25 0.62 0.13 0 0.37 0.26 0.37
M56 -8 -3 3 8 0.25 0.75 0 0 0.38 0 0.62 0
M57 -8 -3 3 8 0.13 0.25 0.62 0 0 0.5 0.5 0
M58 -8 -3 3 8 0 1 0 0 0.13 0.74 0 0.13
M59 -8 -3 3 8 0.13 0.87 0 0 0.37 0.37 0 0.26
M60 -8 -3 3 8 0.25 0.25 0.5 0 0.13 0.62 0.25 0

Table 2.13: Sooner versus Later Payments in Experiments

Block Horizon (Weeks) Principal ($) Annual Growth Sooner Amount ($) Sooner Horizon (Days) Later Payment ($) Later Horizon (Days)
1 1 30 0.05 30 0 30.03 7
1 1 30 0.1 30 0 30.06 7
1 1 30 0.15 30 0 30.09 7
1 1 30 0.2 30 0 30.12 7
1 1 30 0.25 30 0 30.14 7
1 1 30 0.3 30 0 30.17 7
1 1 30 0.4 30 0 30.23 7
1 1 30 0.5 30 0 30.29 7
1 1 30 0.75 30 0 30.43 7
1 1 30 1 30 0 30.58 7
1 1 30 1.25 30 0 30.72 7
1 1 30 1.5 30 0 30.87 7
1 1 30 1.75 30 0 31.01 7
1 1 30 2 30 0 31.15 7
2 1 60 0.05 60 0 60.06 7
2 1 60 0.1 60 0 60.12 7

Continued on next page
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Table 2.13 – continued from previous page
Block Horizon (Weeks) Principal ($) Annual Growth Sooner Amount ($) Sooner Horizon (Days) Later Payment ($) Later Horizon (Days)

2 1 60 0.15 60 0 60.17 7
2 1 60 0.2 60 0 60.23 7
2 1 60 0.25 60 0 60.29 7
2 1 60 0.3 60 0 60.35 7
2 1 60 0.4 60 0 60.46 7
2 1 60 0.5 60 0 60.58 7
2 1 60 0.75 60 0 60.87 7
2 1 60 1 60 0 61.15 7
2 1 60 1.25 60 0 61.44 7
2 1 60 1.5 60 0 61.73 7
2 1 60 1.75 60 0 62.02 7
2 1 60 2 60 0 62.31 7
3 2 30 0.05 30 0 30.06 14
3 2 30 0.1 30 0 30.12 14
3 2 30 0.15 30 0 30.17 14
3 2 30 0.2 30 0 30.23 14
3 2 30 0.25 30 0 30.29 14
3 2 30 0.3 30 0 30.35 14
3 2 30 0.4 30 0 30.46 14
3 2 30 0.5 30 0 30.58 14
3 2 30 0.75 30 0 30.87 14
3 2 30 1 30 0 31.15 14
3 2 30 1.25 30 0 31.44 14
3 2 30 1.5 30 0 31.73 14
3 2 30 1.75 30 0 32.02 14
3 2 30 2 30 0 32.31 14
4 2 60 0.05 60 0 60.12 14
4 2 60 0.1 60 0 60.23 14
4 2 60 0.15 60 0 60.35 14
4 2 60 0.2 60 0 60.46 14
4 2 60 0.25 60 0 60.58 14
4 2 60 0.3 60 0 60.69 14
4 2 60 0.4 60 0 60.92 14
4 2 60 0.5 60 0 61.15 14
4 2 60 0.75 60 0 61.73 14
4 2 60 1 60 0 62.31 14

Continued on next page
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Table 2.13 – continued from previous page
Block Horizon (Weeks) Principal ($) Annual Growth Sooner Amount ($) Sooner Horizon (Days) Later Payment ($) Later Horizon (Days)

4 2 60 1.25 60 0 62.88 14
4 2 60 1.5 60 0 63.46 14
4 2 60 1.75 60 0 64.04 14
4 2 60 2 60 0 64.62 14
5 3 30 0.05 30 0 30.09 21
5 3 30 0.1 30 0 30.17 21
5 3 30 0.15 30 0 30.26 21
5 3 30 0.2 30 0 30.35 21
5 3 30 0.25 30 0 30.43 21
5 3 30 0.3 30 0 30.52 21
5 3 30 0.4 30 0 30.69 21
5 3 30 0.5 30 0 30.87 21
5 3 30 0.75 30 0 31.30 21
5 3 30 1 30 0 31.73 21
5 3 30 1.25 30 0 32.16 21
5 3 30 1.5 30 0 32.60 21
5 3 30 1.75 30 0 33.03 21
5 3 30 2 30 0 33.46 21
6 3 60 0.05 60 0 60.17 21
6 3 60 0.1 60 0 60.35 21
6 3 60 0.15 60 0 60.52 21
6 3 60 0.2 60 0 60.69 21
6 3 60 0.25 60 0 60.87 21
6 3 60 0.3 60 0 61.04 21
6 3 60 0.4 60 0 61.38 21
6 3 60 0.5 60 0 61.73 21
6 3 60 0.75 60 0 62.60 21
6 3 60 1 60 0 63.46 21
6 3 60 1.25 60 0 64.33 21
6 3 60 1.5 60 0 65.19 21
6 3 60 1.75 60 0 66.06 21
6 3 60 2 60 0 66.92 21
7 4 30 0.05 30 0 30.12 28
7 4 30 0.1 30 0 30.23 28
7 4 30 0.15 30 0 30.35 28
7 4 30 0.2 30 0 30.46 28

Continued on next page
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Table 2.13 – continued from previous page
Block Horizon (Weeks) Principal ($) Annual Growth Sooner Amount ($) Sooner Horizon (Days) Later Payment ($) Later Horizon (Days)

7 4 30 0.25 30 0 30.58 28
7 4 30 0.3 30 0 30.69 28
7 4 30 0.4 30 0 30.92 28
7 4 30 0.5 30 0 31.15 28
7 4 30 0.75 30 0 31.73 28
7 4 30 1 30 0 32.31 28
7 4 30 1.25 30 0 32.88 28
7 4 30 1.5 30 0 33.46 28
7 4 30 1.75 30 0 34.04 28
7 4 30 2 30 0 34.62 28
8 4 60 0.05 60 0 60.23 28
8 4 60 0.1 60 0 60.46 28
8 4 60 0.15 60 0 60.69 28
8 4 60 0.2 60 0 60.92 28
8 4 60 0.25 60 0 61.15 28
8 4 60 0.3 60 0 61.38 28
8 4 60 0.4 60 0 61.85 28
8 4 60 0.5 60 0 62.31 28
8 4 60 0.75 60 0 63.46 28
8 4 60 1 60 0 64.62 28
8 4 60 1.25 60 0 65.77 28
8 4 60 1.5 60 0 66.92 28
8 4 60 1.75 60 0 68.08 28
8 4 60 2 60 0 69.23 28
9 5 30 0.05 30 0 30.14 35
9 5 30 0.1 30 0 30.29 35
9 5 30 0.15 30 0 30.43 35
9 5 30 0.2 30 0 30.58 35
9 5 30 0.25 30 0 30.72 35
9 5 30 0.3 30 0 30.87 35
9 5 30 0.4 30 0 31.15 35
9 5 30 0.5 30 0 31.44 35
9 5 30 0.75 30 0 32.16 35
9 5 30 1 30 0 32.88 35
9 5 30 1.25 30 0 33.61 35
9 5 30 1.5 30 0 34.33 35

Continued on next page
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Table 2.13 – continued from previous page
Block Horizon (Weeks) Principal ($) Annual Growth Sooner Amount ($) Sooner Horizon (Days) Later Payment ($) Later Horizon (Days)

9 5 30 1.75 30 0 35.05 35
9 5 30 2 30 0 35.77 35
10 5 60 0.05 60 0 60.29 35
10 5 60 0.1 60 0 60.58 35
10 5 60 0.15 60 0 60.87 35
10 5 60 0.2 60 0 61.15 35
10 5 60 0.25 60 0 61.44 35
10 5 60 0.3 60 0 61.73 35
10 5 60 0.4 60 0 62.31 35
10 5 60 0.5 60 0 62.88 35
10 5 60 0.75 60 0 64.33 35
10 5 60 1 60 0 65.77 35
10 5 60 1.25 60 0 67.21 35
10 5 60 1.5 60 0 68.65 35
10 5 60 1.75 60 0 70.10 35
10 5 60 2 60 0 71.54 35
11 6 30 0.05 30 0 30.17 42
11 6 30 0.1 30 0 30.35 42
11 6 30 0.15 30 0 30.52 42
11 6 30 0.2 30 0 30.69 42
11 6 30 0.25 30 0 30.87 42
11 6 30 0.3 30 0 31.04 42
11 6 30 0.4 30 0 31.38 42
11 6 30 0.5 30 0 31.73 42
11 6 30 0.75 30 0 32.60 42
11 6 30 1 30 0 33.46 42
11 6 30 1.25 30 0 34.33 42
11 6 30 1.5 30 0 35.19 42
11 6 30 1.75 30 0 36.06 42
11 6 30 2 30 0 36.92 42
12 6 60 0.05 60 0 60.35 42
12 6 60 0.1 60 0 60.69 42
12 6 60 0.15 60 0 61.04 42
12 6 60 0.2 60 0 61.38 42
12 6 60 0.25 60 0 61.73 42

Continued on next page
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Table 2.13 – continued from previous page
Block Horizon (Weeks) Principal ($) Annual Growth Sooner Amount ($) Sooner Horizon (Days) Later Payment ($) Later Horizon (Days)

12 6 60 0.3 60 0 62.08 42
12 6 60 0.4 60 0 62.77 42
12 6 60 0.5 60 0 63.46 42
12 6 60 0.75 60 0 65.19 42
12 6 60 1 60 0 66.92 42
12 6 60 1.25 60 0 68.65 42
12 6 60 1.5 60 0 70.38 42
12 6 60 1.75 60 0 72.12 42
12 6 60 2 60 0 73.85 42
13 7 30 0.05 30 0 30.20 49
13 7 30 0.1 30 0 30.40 49
13 7 30 0.15 30 0 30.61 49
13 7 30 0.2 30 0 30.81 49
13 7 30 0.25 30 0 31.01 49
13 7 30 0.3 30 0 31.21 49
13 7 30 0.4 30 0 31.62 49
13 7 30 0.5 30 0 32.02 49
13 7 30 0.75 30 0 33.03 49
13 7 30 1 30 0 34.04 49
13 7 30 1.25 30 0 35.05 49
13 7 30 1.5 30 0 36.06 49
13 7 30 1.75 30 0 37.07 49
13 7 30 2 30 0 38.08 49
14 7 60 0.05 60 0 60.40 49
14 7 60 0.1 60 0 60.81 49
14 7 60 0.15 60 0 61.21 49
14 7 60 0.2 60 0 61.62 49
14 7 60 0.25 60 0 62.02 49
14 7 60 0.3 60 0 62.42 49
14 7 60 0.4 60 0 63.23 49
14 7 60 0.5 60 0 64.04 49
14 7 60 0.75 60 0 66.06 49
14 7 60 1 60 0 68.08 49
14 7 60 1.25 60 0 70.10 49
14 7 60 1.5 60 0 72.12 49
14 7 60 1.75 60 0 74.13 49

Continued on next page
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Table 2.13 – continued from previous page
Block Horizon (Weeks) Principal ($) Annual Growth Sooner Amount ($) Sooner Horizon (Days) Later Payment ($) Later Horizon (Days)

14 7 60 2 60 0 76.15 49
15 8 30 0.05 30 0 30.23 56
15 8 30 0.1 30 0 30.46 56
15 8 30 0.15 30 0 30.69 56
15 8 30 0.2 30 0 30.92 56
15 8 30 0.25 30 0 31.15 56
15 8 30 0.3 30 0 31.38 56
15 8 30 0.4 30 0 31.85 56
15 8 30 0.5 30 0 32.31 56
15 8 30 0.75 30 0 33.46 56
15 8 30 1 30 0 34.62 56
15 8 30 1.25 30 0 35.77 56
15 8 30 1.5 30 0 36.92 56
15 8 30 1.75 30 0 38.08 56
15 8 30 2 30 0 39.23 56
16 8 60 0.05 60 0 60.46 56
16 8 60 0.1 60 0 60.92 56
16 8 60 0.15 60 0 61.38 56
16 8 60 0.2 60 0 61.85 56
16 8 60 0.25 60 0 62.31 56
16 8 60 0.3 60 0 62.77 56
16 8 60 0.4 60 0 63.69 56
16 8 60 0.5 60 0 64.62 56
16 8 60 0.75 60 0 66.92 56
16 8 60 1 60 0 69.23 56
16 8 60 1.25 60 0 71.54 56
16 8 60 1.5 60 0 73.85 56
16 8 60 1.75 60 0 76.15 56
16 8 60 2 60 0 78.46 56
17 9 30 0.05 30 0 30.26 63
17 9 30 0.1 30 0 30.52 63
17 9 30 0.15 30 0 30.78 63
17 9 30 0.2 30 0 31.04 63
17 9 30 0.25 30 0 31.30 63
17 9 30 0.3 30 0 31.56 63
17 9 30 0.4 30 0 32.08 63

Continued on next page
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Table 2.13 – continued from previous page
Block Horizon (Weeks) Principal ($) Annual Growth Sooner Amount ($) Sooner Horizon (Days) Later Payment ($) Later Horizon (Days)

17 9 30 0.5 30 0 32.60 63
17 9 30 0.75 30 0 33.89 63
17 9 30 1 30 0 35.19 63
17 9 30 1.25 30 0 36.49 63
17 9 30 1.5 30 0 37.79 63
17 9 30 1.75 30 0 39.09 63
17 9 30 2 30 0 40.38 63
18 9 60 0.05 60 0 60.52 63
18 9 60 0.1 60 0 61.04 63
18 9 60 0.15 60 0 61.56 63
18 9 60 0.2 60 0 62.08 63
18 9 60 0.25 60 0 62.60 63
18 9 60 0.3 60 0 63.12 63
18 9 60 0.4 60 0 64.15 63
18 9 60 0.5 60 0 65.19 63
18 9 60 0.75 60 0 67.79 63
18 9 60 1 60 0 70.38 63
18 9 60 1.25 60 0 72.98 63
18 9 60 1.5 60 0 75.58 63
18 9 60 1.75 60 0 78.17 63
18 9 60 2 60 0 80.77 63
19 10 30 0.05 30 0 30.29 70
19 10 30 0.1 30 0 30.58 70
19 10 30 0.15 30 0 30.87 70
19 10 30 0.2 30 0 31.15 70
19 10 30 0.25 30 0 31.44 70
19 10 30 0.3 30 0 31.73 70
19 10 30 0.4 30 0 32.31 70
19 10 30 0.5 30 0 32.88 70
19 10 30 0.75 30 0 34.33 70
19 10 30 1 30 0 35.77 70
19 10 30 1.25 30 0 37.21 70
19 10 30 1.5 30 0 38.65 70
19 10 30 1.75 30 0 40.10 70
19 10 30 2 30 0 41.54 70
20 10 60 0.05 60 0 60.58 70

Continued on next page
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Table 2.13 – continued from previous page
Block Horizon (Weeks) Principal ($) Annual Growth Sooner Amount ($) Sooner Horizon (Days) Later Payment ($) Later Horizon (Days)

20 10 60 0.1 60 0 61.15 70
20 10 60 0.15 60 0 61.73 70
20 10 60 0.2 60 0 62.31 70
20 10 60 0.25 60 0 62.88 70
20 10 60 0.3 60 0 63.46 70
20 10 60 0.4 60 0 64.62 70
20 10 60 0.5 60 0 65.77 70
20 10 60 0.75 60 0 68.65 70
20 10 60 1 60 0 71.54 70
20 10 60 1.25 60 0 74.42 70
20 10 60 1.5 60 0 77.31 70
20 10 60 1.75 60 0 80.19 70
20 10 60 2 60 0 83.08 70

Table 2.14: Insurance Purchase in Experiments

Initial Endowment ($) Exp Loss ($) Prob of Loss Loss Amt ($) Ins Load Ins Premium ($) Risk Type
60.00 6.00 0.1 60.00 0.5 3.00 L
60.00 6.00 0.1 60.00 1 6.00 L
60.00 6.00 0.1 60.00 1.5 9.00 L
60.00 6.00 0.2 30.00 0.5 3.00 L
60.00 6.00 0.2 30.00 1 6.00 L
60.00 6.00 0.2 30.00 1.5 9.00 L
30.00 12.00 0.4 30.00 0.5 6.00 H
30.00 12.00 0.4 30.00 1 12.00 H
30.00 12.00 0.4 30.00 1.5 18.00 H
30.00 12.00 0.6 20.00 0.5 6.00 H
30.00 12.00 0.6 20.00 1 12.00 H
30.00 12.00 0.6 20.00 1.5 18.00 H
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