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AN EXTENSION OF RAMSEY'S THEOREM TO MULTIPARTITE GRAPHS

by

Brian Cook

Under the Direction of Guantao Chen

ABSTRACT

Ramsey Theorem, in the most simple form, states that if we are given a positive

integer l, there exists a minimal integer r(l), called the Ramsey number, such any par-

tition of the edges of Kr(l) into two sets, i.e. a 2-coloring, yields a copy of Kl contained

entirely in one of the partitioned sets, i.e. a monochromatic copy of Kl. We prove an

extension of Ramsey's Theorem, in the more general form, by replacing complete graphs

by multipartite graphs in both senses, as the partitioned set and as the desired monochro-

matic graph. More formally, given integers l and k, there exists an integer p(m) such

that any 2-coloring of the edges of the complete multipartite graph Kp(m);r(k) yields a

monochromatic copy of Km;k.

The tools that are used to prove this result are the Szemerédi Regularity Lemma

and the Blow Up Lemma. A full proof of the Regularity Lemma is given. The Blow-Up

Lemma is merely stated, but other graph embedding results are given. It is also shown

that certain embedding conditions on classes of graphs, namely (f, δ)-embeddability,

provides a method to bound the order of the multipartite Ramsey numbers on the

graphs. This provides a method to prove that a large class of graphs, including trees,

graphs of bounded degree, and planar graphs, has a linear bound, in terms of the number

of vertices, on the multipartite Ramsey number.

INDEX WORDS: Ramsey numbers, Multipartite Ramsey numbers, Regularity

Lemma, Blow-Up Lemma, p-arrangeable, d-degenerate.
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Chapter 1

Introduction and Notation

1.1 Notation

All graphs are simple, the number of verticies in a graph, say G = (V, E), is denoted

by |G|, and the number of edges is denoted by ||G||. When referring to the vertex set or

the edge set of some graph, we write V (G) or E(G) respectively. The degree of a vertex,

say v, is denoted by deg(v). The maximal degree of a vertex in a graph G is denoted by

∆(G). The average degree over all vertices is given by d(G).

Kk denotes the complete graph on k vertices. The graph Kn;k is the complete k-

partite graph with n vertices in each partite class. An embedding of a graph G into H

is a map f : V (G) → V (H) such that if v1v2 ∈ E(G), then f(v1)f(v2) ∈ E(H). If G and

H are graphs and there exists an embedding of H into G, we say that G is embeddable

into H, and that G is a subgraph of H, which is denoted by G ⊆ H. The chromatic

number of a graph G is denoted by χ(G), and is given by the minimal integer k such

that G ⊆ K|G|;k. For a particular graph G = (V, E), we de�ne an edge coloring with c

colors to be a map

χ : E → {1, 2, ..., c},

1
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which is referred to as a c-coloring on G. There is some abuse on the use of χ, but no

confusion should come from this. We introduce the vertex set Vk(n) = {V1, V2, .., Vk} as

the k-partite vertex set with |Vi| = n vertices in each class. A graph on Vk(n), say G, is

given by G = (Vk(n), E), where this means G ⊆ Kn;k. Given such a G, it is supposed

that |G| = nk.

The rest of the notation that we use is mostly standard and should be understood

by all. For example, R is the set of real numbers, (0, 1) is the open unit interval, bxc is

the �oor function, etc.

1.2 Background

This work is focused mainly on an extension of Ramsey's theorem, which is the

centerpiece of a branch of combinatorics called Ramsey theory. This theorem and the

proof are particularly nice, so we give them together.

(1.2.1) Theorem. Given natural numbers k1, k2, ..., kc, ki ≥ 2, there exists a minimal

natural number r(k1, k2, ..., kc) such that any c-coloring of Kr(k1,k2,...,kc) contains, for at

least one i, a monochromatic copy of Kki
in color i.

Proof. The proof when c = 2 is carried out by induction, and then induction is carried

out on c.

We see the obvious fact that r(3, 2) = r(2, 3) = 3, or more generally r(2, k) =

r(k, 2) = k for any k ≥ 2. Now assume that the theorem is true for all k1 ≥ 2 and k2 ≥ 2

with k1 + k2 ≤ l, where l ≥ 5. Consider k1 > 2 and k2 > 2 with k1 + k2 = l + 1, and let

N = r(k1 − 1, k2) + r(k1, k2 − 1).
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Let χ : E(KN) → {1, 2} be any 2-coloring. Select any vertex in KN , say v. De�ne

B1 = {w : χ(v, w) = 1},

and B2 similarly. As |B1|+ |B2| = N − 1 = r(k1− 1, k2)+ r(k1, k2− 1)− 1, we must have

either |B1| ≥ r(k1−1, k2) or |B2| ≥ r(k1, k2−1). Without loss of generality, assume that

the former inequality holds. The subgraph of KN induced by B1, say H, is two colored by

the restriction of χ to E(G). Because G is a complete graph and |G| ≥ r(k1 − 1, k2), the

induction hypothesis guarantees that we have either a monochromatic Kk1−1 in color one,

or a monochromatic Kk2 in color two. If the latter holds, then we are done. Otherwise,

in B1 we have a monochromatic Kk1−1 in color one, so that the restricted coloring on the

subgraph induced by B1

⋃
{v} contains a monochromatic Kk1 in color one.

Thus we have that the theorem is true for all k1, k2 > 1 with k1+k2 = l+1. Induction

then guarantees that the theorem is true when c = 2.

We now proceed with the induction on c. Assume that the theorem is true for

2 ≤ c ≤ C, and consider the case c = C + 1. Let k1, k2, ..., kC+1 ≥ 2 be given,

and let N = r(k1, r(k2, ..., kC+1)). Given any χ : E(KN) → {1, 2, ..., C + 1}, de�ne

χ∗ : E(KN) → {1, 2} by χ∗(e) = 1 if χ(e) = 1, and χ∗(e) = 2 otherwise. Because χ∗ is a

2-coloring, we can guarantee that under χ∗ we have a monochromatic Kk1 in color one,

or a monochromatic Kr(k2,...,kC+1) in color two. If the former holds, then we are done.

Otherwise, de�ne χ∗∗ : E(Kr(k2,...,kC+1)) → {1, 2, ..., C} on this Kr(k2,...,kC+1), monochro-

matic under χ∗, by χ∗∗(e) = i−1 if χ(e) = i. This is well de�ned. By induction, we have

under χ∗∗ some monochromatic Kkj
in color j − 1. This clearly gives a monochromatic

Kj in color j under χ. Thus, the case c = C + 1 is true, and induction then guarantees

that the theorem is true for c ≥ 2. 2
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This theorem can be stated in a slightly more general form, which is in fact only a

simple corollary to the above.

(1.2.2) Corollary. Given any graphs G1, ..., Gc, there exists a minimal integer

r(G1, ..., Gc) such that any c coloring of Kr(G1,...,Gc) contains, for at least one i, a

monochromatic copy of Gi in color i.

This minimal integer rc(G1, ..., Gc) is called the Ramsey number. When c = 2, this

is generally given simply by r(G1, G2), and the diagonal case, i.e. when all the Gi are

the same, is given simply by rc(G).

This method of proof of this theorem, and in fact all known proofs, give no hint at

what this actual number is in general and only a handful of exact values are known.

However, this method of proof does give an upper bound to this number, and such

bounds become the main focus of study. This is precisely the case with all the loosely

knit theorems in Ramsey theory.

In speci�c reference to Ramsey's theorem, there are numerous conjectures on Ramsey

number bounds in explicit cases. There is one in speci�c that has received some attention

that we focus on. The following is due to Burr and Erd®s [3]:

(1.2.3) Conjecture. Let d > 0. There exists a constant c = c(d) such that any graph

G with d(H) ≤ d for all H ⊆ G has r(G) ≤ c|G|.

This conjecture is still open, although there some progress has been made. Chavatal,

etc., have proven that a weaker conclusion is true [4].

(1.2.4) Theorem. Let d > 0. There exists a constant c = c(d) such that any graph G

with ∆(G) ≤ d has r(G) ≤ c|G|.

This result has been improved by Chen and Schelp [5]. We need a de�nition.
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(1.2.5) De�nition. Let G be a graph of size n. If there exists an ordering of the

vertices v1, v2, ..., vn such that, with NLi
(vj) = {vk : vkvj ∈ E(G), k ≤ i} and NR(vi) =

{vj : vivj ∈ E(G), j > i}, we have

|
⋃

vα∈NR(vi)

NLi
(vα)| ≤ p

for all 1 ≤ i ≤ n, then G is p-arrangeable.

Chen and Schelp provide the following result for Ramsey numbers of p-arrangeable

graphs:

(1.2.6) Theorem. Let p > 0. There exists a constant c = c(p) such that any graph G

that is p-arrangeable has r(G) ≤ c|G|.

Theorem ?? is much an improvement to theorem ??. Given any graph that has all

vertices with deg(v) ≤ d, then this graph is at worst (d(d − 1) + 1)- arrangeable. Any

tree is 1-arrangeable. Chen and Schelp prove that all planar graphs are at worst 761-

arrangeable, which has subsequently been improved to 10-arrangeable by Kierstead and

Trotter [7]. The set of outer planar graphs is 3-arrangeable, which is also shown by Chen

and Schelp.

In a somewhat di�erent direction, there are the subdivisions of graphs. A graph G

is a subdivision if there exists a graph H such that G is obtained by replacing the edges

of H by paths of length 2. Subdivisions are not contained in the class of p-arrangeable

for any �xed p. However, Alon proves a linear bound for class of graphs that contains all

subdivisions [1].

(1.2.7) Theorem. Let G be a graph such that any two vertices of degree at least equal

to 3 are not adjacent, then r(G) ≤ 12|G|.
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These results are still a far cry from the conjecture of Burr and Erd®s, but by them-

selves are still quite interesting.

1.3 Overview

In the next chapter, we discuss one of the more useful tools in all of combinatorics,

the Szemerédi Regularity Lemma. A full proof is given, which requires some preliminary

work. The �rst section is dedicated to providing the required de�nitions and proving

some useful lemmas, which include the standard Cauchy-Schwarz inequality and also an

altered version with an error term. The second section of this chapter provides the rather

lengthy proof of the Regularity Lemma.

Chapter 3 is focused on graph embeddings, speci�cally embedding graphs into (ε, δ)-

super-regular graphs (de�ned in Chapter 2). The main result of this type, about graphs

of bounded degree, is formally known as the Blow Up Lemma. The Lemma is stated in

the �rst section, but not proven. The concept of (f, δ)-embeddability is also introduced

in this section. The second section of this chapter proves that the complete graphs �t

into this concept, while the following section proves that the p-arrangeable graphs are

(f, δ)-embeddable with f linear in |G|. The �nal section is a heuristic discussion on the

Burr-Erd®s conjecture.

Chapter 4 is devoted to the extension of Ramsey's Theorem and the Ramsey-type

numbers implied by it, dubbed the multipartite Ramsey numbers. The �rst section

provides the statement of the extension along with the proof. The next section provides

bounds on the multipartite Ramsey numbers in terms of (f, δ)-embeddability. More

speci�c bounds are then proven in the next section via alternate proofs of the extension

of Ramsey's Theorem. The �nal section provides lower bounds for these numbers for

complete multipartite graphs.



Chapter 2

The Regularity Lemma

2.1 Preliminary Ideas

For two disjoint vertex sets A and B of a graph G, we denote the number of edges

between A and B by e(A, B), and the density of A and B is de�ned by d(A, B) = e(A,B)
|A|·|B| ,

and is necessarily no larger than 1. For such disjoint vertex sets A and B of some graph,

we have the following de�nitions:

(2.1.1) De�nition. Let ε > 0 be given. A and B are ε-regular if for any X ⊂ A and

Y ⊂ B with |X| > ε|A| and |Y | > ε|B| we have that

|d(A, B)− d(X,Y )| < ε.

(2.1.2) De�nition. Let ε > 0 and δ > 0 be given. A and B are (ε, δ)-super-regular if

for any X ⊂ A and Y ⊂ B with |X| > ε|A| and |Y | > ε|B| we have that

d(X, Y ) > δ,

7
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and, given any a ∈ A and b ∈ B, also that

deg(a) > δ|B|

and

deg(b) > δ|A|.

We also require the following:

(2.1.3) De�nition. Let G = (V, E) be a graph and 0 < ε ≤ 1. A partition of V , say

P = {X0, X1, ..., Xα} is said to be ε-uniform if |X0| ≤ ε|V |, |Vi| = |Vj| for all 1 ≤ i, j ≤ α,

and all but at most εα2 of the pairs (Vi, Vj), 1 ≤ i < j ≤ α, are ε-regular.

We modify slightly this standard de�nition; we call an (ε, l)-uniform partition to be

the same as an ε-uniform partition, except that there are allowed to be εlα2 pairs that

are not ε-regular.

The �rst important result that we discuss is Szemerédi's Regularity Lemma. This is

actually a variant of the original regularity lemma, but still is similar, and the method of

proof, which follows that given in [1], is the same. In short, the original lemma implies

that every su�ciently large graph can be almost covered by an ε-uniform partition. The

version given below implies that l graphs on Vk(n) can simultaneously be almost covered

by an (ε, l)-uniform partition. The proof requires a few lemmas, the �rst of which is

loosely a continuity result about the density in bipartite pairs.

(2.1.4) Lemma. If V1 and V2 are disjoint vertex sets of a graph G, and A ⊆ V1 with

|A| ≥ α|V1|, B ⊆ V2 with |B| ≥ β|V2|, then

|d(X, Y )− d(A, B)| < (2− α− β),



9

and

|d2(X, Y )− d2(A, B)| < 2(2− α− β),

where d2(X, Y ) = (d(X, Y ))2.

Proof. We have that

0 ≤ e(V1, V2)− e(A, B) ≤ |V1 − A||V2|+ |V2 −B||V1| ≤ (1− α)|V1||V2|+ (1− β)|V2||V1|.

Then

d(V1, V2)− d(A, B) ≤ e(V1, V2)− e(A, B)|
|V1||V2|

< (2− α− β).

This result holds when we consider the graph Gc, the complement of G, which is given on

the same vertex set, but only has the edges that are not in G. In Gc, denote the density

as dGc , and denote the density in G by dG. This satis�es dGc = 1− dG, and so

dG(A, B)− dG(V1, V2) = (1− dGc(A, B))− (1− dGc(V1, V2)) = dGc(V1, V2)− dGc(A, B).

Thus

dG(A, B)− dG(V1, V2) ≤ (2− α− β),

as

dGc(V1, V2)− dGc(A, B) ≤ (2− α− β).

This proves the �rst result. The last assertion follows easily, as

|d2(X, Y )− d2(A, B)| = |d(X, Y )− d(A, B)| · |d(X, Y ) + d(A, B)| ≤ 2(2− α− β),

where we use the fact that each density is at most one. 2

The next lemma we prove is the well known Cauchy-Schwarz inequality.
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(2.1.5) Lemma. Let a1, a2, ..., an and b1, b2, ..., bn be two sequences of real numbers.

Then

(
n∑

i=1

aibi)
2 ≤

n∑
i=1

a2
i

n∑
j=1

b2
j .

Proof. Let

A =
n∑

i=1

a2
i ,

and

B =
n∑

i=1

aibi.

Consider
n∑

i=1

(
B

A
ai − bi)

2.

We have that

0 ≤
n∑

i=1

(
B

A
ai − bi)

2 =
n∑

i=1

(
B2

A2
a2

i − 2
B

A
aibi + b2

i ) =
B2

A
− 2

B2

A
+

n∑
i=1

b2
i .

Rearranging this gives

B2 ≤ A
n∑

i=1

b2
i .

This becomes

(
n∑

i=1

aibi)
2 ≤ (

n∑
i=1

a2
i )(

n∑
i=1

b2
i )

upon substituting in for A and B. 2

In particular, if we set b1, ..., bn = 1, we have

(
n∑

i=1

ai)
2 ≤ n(

n∑
i=1

a2
i ).

This fact is used to prove the next lemma, which is somewhat of an improvement to the

Cauchy-Schwarz inequality.
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(2.1.6) Lemma. For positive real numbers x1, x2, ..., xl, let

S =
1

l

l∑
i=1

xi

and, for some j < l,

s =
1

j

j∑
i=1

xi.

If j ≥ αl and |S − s| ≥ β, then

1

l

l∑
i=1

x2
i ≥ S2 + αβ2.

Proof. Let j ≥ αl be given, and

s =
1

j

j∑
i=1

xi.

satisfy |S − s| ≥ β. With

Tj =
1

l − j

l∑
i=j+1

xi =
lS − js

l − j
,

and the Cauchy-Schwarz inequality, we have that

j∑
i=1

x2
i +

l∑
i=j+1

x2
i ≥ 1

j
(

j∑
i=1

xi)
2 +

1

l − j
(

l∑
i=j+1

xi)
2

= j(
1

j

j∑
i=1

xi)
2 + (l − j)(

1

(l − j)

l∑
i=j+1

xi)
2

= js2 + (l − j)T 2
j

Then

js2 + (l − j)T 2
j = js2 +

(lS − js)2

l − j
=

jls2 − (js)2 + (lS)2 − 2jlsS + (js)2

l − j
,
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or
l∑

i=1

x2
i ≥

jls2 + (lS)2 − 2jlsS

l − j
= lS2 +

jls2 + (lS)2 − 2jlsS − l2S2 − ljS2

l − j

or
l∑

i=1

x2
i ≥ lS2 +

jls2 − 2jlsS − ljS2

l − j
= lS2 +

lj

l − j
(S − s)2 ≥ lS2 + lαβ2.

Dividing through by l gives the result. 2

2.2 Statement and Proof of the Regularity Lemma

We are now in a position to state and prove a version of the Regularity Lemma. The

proof follows that given by Bollobas in [2].

(2.2.1) Lemma. Let 0 < ε < 1
2
be given, as well as positive integers k and L. There

exist integers M and N such that given any set G1, G2, ..., GL of graphs on Vk(n), where

n ≥ N , there exists a partition P = {Xi,j}m;k
i=1;j=1

⋃
{X0} of Vk(n) such that k ≤ m ≤ M ,

X0 is the exceptional class, Xi,j ⊆ Vj, and P is (ε, L)-uniform on each Gi.

Proof. Assume the statement is false, and let 0 < ε < 1
2
, k, L be given. We let f1(x) =

4x−2x, and fr(x) = f(fr−1(x)). Pick α(0) to be the minimum integer such that k21−α(0) ≤
ε5

8
and k

α(0)
< ε

2
. De�ne the sequence

{α(i) = fi(α(0))}T
i=1,

where we set T = b 4
ε5
c+ 1. Also, de�ne the sequence

βi =
i∏

j=0

α(j).

Let

n ≥ N = max{α(0)4
PT

i=0 α(i)+α(T ),
βT

1− ε
},
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M = βT−1, and let graphs G1, G2, ..., GL on Vk(n) be given. Start with a partition of

Vk(n) given by

P0 = {Xi,j}β0,k
i=1,j=1

⋃
{X0},

where |X0| ≤ εn
2
, and |Xi,j| = t0 = b n

α(0)
c. This is possible, as n > α(0), and for |X0| we

have at most t0k ≤ nk
α(0)

< εn
2
. By assumption, this partition is not (ε, L)-uniform so we

need to re�ne our partition.

Consider a pair (Xi,j, Xp,q), j 6= q, that is not ε-regular in Gl. Then there exist sets

Y(i,j),(p,q),l ⊆ Xi,j, Y(p,q),(i,j),l ⊆ Xp,q, such that |Y(i,j),(p,q),l| ≥ ε|Xi,j|, |Y(p,q),(i,j),l| ≥ ε|Xp,q|

and

|dl(Xi,j, Xp,q)− dl(Y(i,j),(p,q),l, Y(p,q),(i,j),l)| > ε,

where dl is the density in the graph Gl. For a pair (Xi,j, Xp,q) that is ε-regular in Gl, let

Y(p,q),(i,j),l = Y(i,j),(p,q),l = ∅. So, for any particular X(i,j), for each l we have sets

Y(i,j)(1,1),l, ..., Y(i,j)(β0,1),l, Y(i,j)(1,2),l, ..., Y(i,j)(β0,2),l, ...,

Y(i,j)(β0,j−1),l, Y(i,j),(1,j+1),l, ..., Y(i,j),(β0,k),l.

This gives a total of β0(k − 1)L sets.

There are a total of 2β0(k−1)L combinations of these sets. This de�nes equivalence

classes for the vertices of X(i,j) according to the maximal combination that a particular

vertex belongs to. We partition X(i,j) into α(1) sets by dividing each equivalence class

into sets of size

t1 = b t0
4α(0)

c,

where

α(1) = 4α(0) − 2α(0).

Any extra members are added to X0.
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The index of the initial partition is de�ned to be

I(P0) =
1

L
(

k
2

)
β2

0

L∑
l=1

∑
1≤i<j≤k

β0∑
p,q=1

d2
l (Xp,i, Xq,j)),

and 0 ≤ I(P0) ≤ 1. We now have a new partition of Vk(n), say

P1 = {Z0}
⋃
{Zi,j}β1,k

i=1,j=1,

where β1 = α(1)α(0). Our goal is to show that

I(P1) =
1

L
(

k
2

)
β2

1

L∑
l=1

∑
1≤i<j≤k

β1∑
p,q=1

d2
l (Zp,i, Zq,j)) ≥ I(P0) + C

for some positive number C that is independent of the partition, i.e., C depends on the

values of ε, k, and L.

We begin by de�ning

X i,j =
⋃
{Zr,j : Zr,j ⊆ Xi,j},

and

X(i,j),(p,q),l =
⋃
{Zr,j : Zr,j ⊆ X(i,j),(p,q),l}.

We have that

|Xi,j −X i,j| = t0 − Jt1 ≤ t0 − (4α(0) − 2α(0))(
t0

4α(0)
− 1) ≤ t0

2α(0)
+ 4α(0) ≤ ε5t0

8
.

This follows because we have

4α(0) ≤ 4
PT

i=0 α(i)+α(T ) ≤ n

α(0)
,
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and so

4
PT

i=0 α(i)+α(T ) ≤ t0

because the left hand side is an integer. Then

4α(0) ≤ t0
4α(0)

<
t0

2α(0)

Finally, we have chosen

21−α(0) <
ε5

8
.

Lemma ?? then gives, for each l,

|dl(Xi,j, Xp,q)− dl(X i,j, Xp,q)| <
ε5

4
,

and

|d2
l (Xi,j, Xp,q)− d2

l (X i,j, Xp,q)| <
ε5

2
.

It then follows that

1

L
(

k
2

)
β2

0

L∑
l=1

∑
1≤i<j≤k

β0∑
p,q=1

d2
l (Xp,i, Xq,j)) ≥ I(P0)−

ε5

2
.

For any pair (Xi,j, Xp,q) and each l, the Cauchy-Schwarz inequality gives

1

α(1)2

∑
Zr,j⊆Xi,j

∑
Zs,q⊆Xs,q

d2
l (Zr,j, Zs,q) ≥ [

1

α(1)2

∑
Zr,j⊆Xi,j

∑
Zs,q⊆Xs,q

dl(Zr,j, Zp,q)]
2,

and

[
1

α(1)2

∑
Zr,j⊆Xi,j

∑
Zs,q⊆Xs,q

dl(Zr,j, Zp,q)]
2 =

e2(X i,j, Xp,q)

(α(1)t1)2
= d2

l (X i,j, Xp,q),
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so that

1

α(1)2

∑
Zr,j⊆Xi,j

∑
Zs,q⊆Xs,q

d2
l (Zr,j, Zp,q) ≥ d2

l (X i,j, Xp,q).

Assume that some pair (Xi,j, Xp,q) is not ε-regular in Gl, and consider the set

X(i,j),(p,q),l. We have that |X(i,j),(p,q),l| ≥ ε|Xi,j|, so that

|X(i,j),(p,q),l −X(i,j),(p,q),l| ≤ |Xi,j −X i,j| ≤
ε5t0
8

≤
|X(i,j),(p,q),l|ε4

8
.

Lemma ?? now gives

|dl(X(i,j),(p,q),l, X(p,q),(i,j),l)− dl(X(i,j),(p,q),lX(p,q),(i,j),l)| ≤
ε4

4
,

Also

|X(i,j),(p,q),l| ≥ |X(i,j),(p,q),l| − |X(i,j) −X(i,j)| ≥ (ε− ε

α(0)2α(0)
)|X i,j| ≥ (1− 2−7)ε|X i,j|.

A simple use of the triangle inequality gives

|dl(X i,j, Xp,q)− dl(X(i,j),(p,q),lX(p,q),(i,j),l)| ≥ ε− ε4

4
− ε5

4
≥ 15

16
ε.

We let

S = dl(X i,j, Xp,q) =
1

α(1)2

∑
Zr,j⊆Xi,j

∑
Zp,q⊆Xs,q

dl(Zr,j, Zp,q),

and

s = dl(X(i,j),(p,q),l, X(p,q),(i,j),l) =
1

A1A2

∑
Zr,j⊆X(i,j),(p,q),l

∑
Zu,q⊆X(p,q),(i,j),l

dl(Zr,j, Zu,q),
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where A1 is the number of sets Zr,j ⊆ X(i,j),(p,q),l, and A2 is the number of sets Zs,q ⊆

X(p,q),(i,j),l. We have that

A1A2

α(1)2
=
|X(i,j),(p,q),l||X(p,q),(i,j),l|

|X i,j|, |Xp,q|

With the fact that

|S − s| ≥ 15

16
ε,

Lemma ?? gives

1

α(1)2

∑
Zr,j⊆Xi,j

∑
Zs,q⊆Xs,q

d2
l (Zr,j, Zs,q) ≥ d2

l (X i,j, Xp,q) +
|X(i,j),(p,q),l||X(p,q),(i,j),l|

|X i,j||Xp,q|
152

162
ε2,

or

1

α(1)2

∑
Zr,j⊆Xi,j

∑
Zs,q⊆Xs,q

d2
l (Zr,j, Zp,q) ≥ d2

l (X i,j, Xs,q) +
3

4
ε4

Then we have that

I(P1) =
1

L
(

k
2

)
(β1)2

L∑
l=1

∑
1≤i<j≤k

β1∑
p,q=1

d2
l (Zp,i, Zq,j))

satis�es

I(P1) ≥
1

L
(

k
2

)
β2

0

L∑
l=1

∑
1≤i<j≤k

β0∑
p,q=1

d2
l (Xp,i, Xq,j)) +

3

4
ε5,

as at least εL
(

k
2

)
β2

0 pairs are not ε-regular. Which gives the desired result, namely,

I(P1) ≥ I(P0)−
ε5

2
+

3

4
ε4 ≥ I(P0) +

ε5

4
.
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Moreover, we have that

|Z0| ≤ |X0|+ β0k
t0

2α(0)
≤ |X0|+

kn

2α(0)
< εn.

We now generate a sequence of partitions P0,P1, ...,PT , none of which, by assump-

tion, is (ε, L)-regular on all L graphs. We note that all partitions exist, as n > βT

1−ε
and

for Z0 in Pi, we have, for every i ≤ T, that

|Z0| ≤ |X0|+
i∑

j=0

kn

2α(j)
≤ εn

2
+

kn

2α(0)−1
< εn.

Moreover, we have that

I(Pi) ≥ I(Pi−1) +
ε5

4

because

4α(i) ≤ ti
2α(i)

,

which is proven similarly to the case when i = 1.

Thus, as none of the partitions is (ε, L)-regular, we have that

I(PT ) > T
ε5

4
> 1.

This is a contradiction, and so one of our partitions P0,P1, ...,PT−1 must be (ε, L)-regular

on all L graphs, and each partite class is partitioned into at most M sets. This proves

the result. 2



Chapter 3

Embedding Lemmas

3.1 Bounded Degree Graphs

One of the most well known graph embedding lemmas is called the Blow-Up Lemma.

We do not attempt to provide a proof, but the lemma is as follows:

(3.1.1) Lemma. Given a graph G of size g, and positive parameters δ, ∆, there ex-

ists a positive number ε = ε(δ, ∆, g) such that the following holds: For arbitrary posi-

tive integers n1, n2, ..., ng, replace the vertices v1, v2, ..., vg of G with disjoint vertex sets

V1, V2, ..., Vg of sizes n1, n2, ..., ng. We create two graphs, the �rst, H, is obtained by re-

placing each edge (vi, vj) of G by the complete bipartite graph for (Vi, Vj). The second

graph R is obtained by replacing each edge (vi, vj) of G by an arbitrary (ε, δ)-super-

regular pair between (Vi, Vj). Any graph S with ∆(S) ≤ ∆ that is embeddable into H is

also embeddable into R.

For proof, the reader can see [8], where the result is proven using a randomized algorithm.

The main goal of this chapter is to consider embedding more general classes of graphs

than just those of bounded degree by using the Blow-Up Lemma as a loose model. To do

19



20

this, we introduce a de�nition. This provides us with the ability to make more general

statements later on without specifying a particular class of graphs.

(3.1.2) De�nition. Let G be a collection of graphs, and f : G× (0, 1) → N. If, for every

δ ∈ (0, 1), there exists ε > 0 such that any G ∈ G is embeddable into any (ε, δ)-super-

regular graph on Vχ(G)(f(|G|, δ)), then G is said to be (f, δ)-embeddable.

It is only a small step to relax the Blow-Up Lemma to a statement in terms of this

idea. However, as we see in this chapter, many more classes of graphs can be studied

with this de�nition because we have the ability to vary the function f . To go so far as

to loosen the statement of the Blow-Up Lemma, something we are about to do, we in

fact need one small result. To make this result more general, we introduce a new class

of graphs.

(3.1.3) De�nition. If G is a graph with n vertices such that there exists a sequence of

the vertices of G, say v1, v2, ..., vn, such that

NL(vi) = {vj : vivj ∈ E(G), j < i},

satis�es |NL(vi)| ≤ d, then G is d-degenerate.

For a given d, we set Dd to be the class of d-degenerate graphs. If Bd is the class of

graphs with maximum degree at most d, then it is easily seen that Bd ⊆ Dd. Hence the

following result holds for Bd as well.

(3.1.4) Lemma. Let H ∈ Dd. We have that χ(H) ≤ d + 1.

Proof. If G is any graph with at most d+1 vertices, then the result is trivially true. Now

assume that the result is true with for all graphs G ∈ Dd with |G| ≤ n, and let H ∈ Dd

with |H| = n + 1. Then there exists a sequence of the vertices of H, say v1, ..., vn, vn+1,
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that proves that H is d-degenerate. The induced subgraph from the vertices v1, ..., vn, say

H ′, is also d-degenerate, so that the induction hypothesis gives us that H ′ is embeddable

into Kn;d+1. As vn+1 has at most d neighbors in H, there exists a color class, say Vα,

that contains no neighbors of vn+1. Thus, any selection of a vertex not previous mapped

to in this color class for the image of vn+1 su�ces as we are embedding into a complete

graph. Because there are n + 1 vertices in each color class, this is guaranteed to work. 2

There is a stronger version of Lemma ??, stated in terms of maximum degree, known

as Brooks' Lemma. More speci�cally:

(3.1.5) Lemma. If G is a connected graph that is not a complete graph or an odd cycle,

then χ(G) ≤ ∆(G).

It is now simply a small step to ensure that the Blow-Up Lemma actually says what was

stated above.

(3.1.6) Lemma. For each ∆, B∆ is (|G|, δ)-embeddable.

Proof. We let δ ∈ (0, 1) be given, as well as ∆. For each i = 1, 2, ..., ∆ + 1, the Blow-

Up Lemma asserts that we have an εi such that each graph G ∈ B∆ with χ(G) = i is

embeddable into any (εi, δ)-super-regular graph on Vi(|G|), as G is easily embeddable

into K|G|,i. This covers all G ∈ B∆ by lemma ??. Thus, for any δ ∈ (0, 1), we select

ε = min{εi, 1 ≤ i ≤ ∆ + 1}.

This completes the proof. 2
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3.2 Complete Multipartite Graphs

We begin this section by de�ning the class of graphs Ck0 = {Kn,k : k ≤ k0}. Studying

this class of graphs gives us, in the opinion of the author, the most interesting result of

this chapter, Corollary ??. To achieve this, we need to employ the following Lemmas.

The �rst, stated without proof, is due to Erd®s. The second guarantees that (ε, δ)-super-

regular graphs on Vk(n) have many copies of Kk if ε is small.

(3.2.1) Lemma. Let Ai be given for i = 1, ..., k, |Ai| = N for each i, and let m ∈ N be

given. If G ⊆ A1 × ... × Ak and |G| ≥ Nk−1/m(k−1)
, then there exist sets Bi ⊆ Ai such

that |Bi| = m for all i and B1 × ...×Bk ⊆ G.

(3.2.2) Lemma. Let k ≥ 2 and δ > 0 be given. There exists an ε > 0 and a func-

tion gk(δ) such that any graph H that is (ε, δ)-super-regular on Vk(N) contains at least

gk(δ)N
k subgraphs isomorphic to Kk.

Proof. The result is shown by induction on k. Let k = 2, and H be any (ε, δ)-super-

regular graph on V2(N) where ε is arbitrary. Each vertex in V1 has at least δN neighbors

in V2, so that there are at least δN2 edges in H. This proves the case k = 2.

Now assume that the result is true for k = k0. Let δ be given. Denote by ε' and

gk0(δ/2) the parameters guaranteed by the induction for the choice of k0 and δ/2. Pick

ε = min{ε′δ

2
,

δ

2(k − 2)
},

and gk0+1(δ) = (δ/2)k0gk0(δ/2). Also, let H be any (ε, δ)-super-regular graph on Vk0+1(N).

Pick v ∈ Vk0+1, and consider Ni(v) = {w : w ∈ Vi, vw ∈ E(H)} for i = 1, ...k0.

It follows from the (ε, δ)-super-regularity of H that |Ni(v)| ≥ δN for each i. Let us

randomly choose a set of N ′
i(v) ∈ Ni(v) of size bδNc for each i. Denote the k0-partite

induced subgraph on (N ′
1(v), ..., N ′

k0
(v)) by H1. For some i, in the pair (N ′

i(v), N ′
j(v)), at
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most ε(δN) of the vertices of N ′
i(v) have less than δ(δN) neighbors in N ′

j(v). Thus, for this

i, there are at most ε(k0−1)N vertices in N ′
i(v) that have less than δ(δN) neighbors in all

pairs (N ′
i(v), N ′

j(v)). Let N̄i(v) ⊆ N ′
i(v) be a collection of size N∗ = b(δ− ε(k0−1))Nc ≥

(δ/2)N such that each vertex in N̄i(v) has at least δ(δN) neighbors in each Nj(v), j 6= i.

After doing so for each i, let the induced subgraph on (N̄1(v), ..., N̄k0(v)) be given by H2.

Now for any pair (N̄i(v), N̄j(v)), any vertex in N̄i(v) has degree at least δ(N∗) −

ε(k0 − 1)N∗ ≥ (δ/2)(δN/2). Also, the condition εN ≤ ε′((δ/2)N) implies now that we

have that H2 is (ε′, δ/2)-super-regular (isomorphically) on Vk0(N
∗), where N∗ ≥ (δ/2)N .

Thus, by induction, we have that H2 contains at least

gk0(δ/2)N∗k0 ≥ (δ/2)k0gk0(δ/2)Nk0 = gk0+1(δ)N
k0

copies of Kk.

To �nish the proof, we sum over all possible vertices of v ∈ Vk0+1 and obtain

gk0+1(δ)N
k0+1 copies of Kk0+1 in H. Thus, induction gives the result for all k. 2

Putting these two lemmas together gives us the following result for the class of com-

plete multipartite graphs with bounded chromatic number.

(3.2.3) Lemma. Given k0, there exists a function g(δ) such that Ck0 is (g(δ)−|G|
k0−1

, δ)-

embeddable.

Proof. Given k0, let Km;k ∈ Ck0 and also let δ be given. From Lemma ??, there exists

an A and an ε such that any (ε, δ)-super-regular graph on Vk′(n) contains at least Ank′

copies of Kk′ , where 2 ≤ k′ ≤ k0.

With this ε and A, let H be any (ε, δ)-super-regular graph on Vk(N), where N ≥

A−|Km;k|k0−1
> A−mk−1

. We then have at least ANk > Nk−1/mk−1
copies of Kk in H. By

appealing to Lemma ??, we can then guarantee a copy of Km,k in H. 2



24

We now have the previously mentioned corollary.

(3.2.4) Corollary. Let G be a class of graphs with bounded chromatic number. There

exists an f such that G is (f, δ)-embeddable.

3.3 p-arrangeable Graphs

A slightly more interesting example of a class of graphs to study is the collection of

p-arrangeable graphs. For some �xed p, de�ne Pp to be the collection of graphs that are

p-arrangeable. Similar to the class of graphs with bounded degree, we have that Pp ⊆ Dp,

so that Lemma ?? again applies. Also similar to the class of bounded degree graphs, we

have that Pp is (f, δ)-super-regular with f linear.

(3.3.1) Lemma. For a �xed p, Pp is (b2δ−p|G|c+ 1, δ)-embeddable.

Proof. Let δ > 0 and p ≥ 1 be given. Also, let G be p-arrangeable with |G| = n and

χ(G) = k. Set

ε =
δp

(p + 1)2p
,

and, for convenience, A = 2δ−p. Finally, let H be any (ε, δ)-super-regular graph on

Vk(N), N ≥ An.

We denote the collections of an assignment of the vertices of G into color classes of

G by V1, V2, ..., Vk, and let Vk(N) = {W1, W2, ...,Wk}. We embedd the vertices of G into

H according to a sequence v1, v2, ..., vn which proves that G is p-arrangeable. We map

h : V (G) → V (H) such that

1. If vα ∈ Vβ, then h(vα) ∈ Wβ,

2. If vα1vα2 ∈ E(G), then h(vα1)h(vα2) ∈ E(H),
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3. With vα ∈ Vβ, V (α, i) = {h(vj) : 1 ≤ j ≤ i, vivj ∈ E(G)}, and x = |V (α, i)|, we

have a subset W ′
β ⊆ Wβ such that |W ′

β| ≥ δx|Wβ| = δxN and all vertices of W ′
β are

adjacent to all vertices of V (α, i).

To guarantee that this can be done, we proceed inductively. Let v1 ∈ Vβ. Any

selection of a vertex in Wβ as h(v1) obviously satis�es 1. and 2. It follows from the fact

that all pairs (Wβ, Wβ′) are (ε, δ)-super-regular that any choice for f(v1) has degree at

least δN in each pair, so that 3. is satis�ed as well.

Now assume that the vertices h(v1), ..., h(vi) have been selected and 1.-3. are satis�ed.

With vi+1 ∈ Vγ, by 3. we have a set W ′
γ where each vertex is adjacent to all vertices of

V (i + 1, i). Any selection of a vertex in W ′
γ as h(vi+1) satis�es 1. and 2.. However, we

must use care in selecting h(vi+1) to ensure that 3. is again satis�ed. It is clear that we

only need to consider V (α, i + 1) when vαvi+1 ∈ E(G) and α > i + 1.

Given a particular α > i + 1 with vα ∈ Vν and vαvi+1 ∈ E(G), consider V (α, i + 1).

We have the obvious fact that |V (α, i + 1)| = 1 + |V (α, i)|. In Wν there is a subset W ′
ν

of size δx−1N , with x = |V (α, i + 1)|, that is adjacent to all vertices of V (α, i) of size

δx−1N . Because x ≤ p, δx ≥ ε, and so W ′
ν and W ′

γ are larger than εN . It follows that

at most εN of the vertices of W ′
γ are adjacent to less than δ|W ′

ν | of the vertices of W ′
ν .

Thus there exists a portion of the vertices of W ′
γ that satisfy 3. for this choice of α.

Here is where we need to use the fact that G is p-arrangeable. We have that

|
⋃

vα∈NR(vi+1)

NLi+1
(vα)| ≤ p.

Hence, for any vα adjacent to vi+1, α > i + 1, it follows then that NLi+1
(vα) is one of at

most 2p−1 distinct possible subsets of

⋃
vα∈NR(vi+1)

NLi+1
(vα),
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noting that vi+1 is contained in each set. Any two right neighbors of vi+1 in the same

color class, say vα and vβ, with NLi+1
(vα) = NLi+1

(vβ) have the same selection set. With

k color classes, it then follows that there are at most k2p−1 selection sets that contain all

possible right neighbors of vi+1. For any of these possible selection sets, there are more

than (1 − ε)|W ′
γ| vertices of W ′

γ that, if chosen for h(vi + 1), have a suitable number of

neighbors, namely δ percent, in reference to a particular selection set. To guarantee that

3. is again satis�ed, note that |W ′
γ| ≥ δpN , so we have at least

δpN − k2p−1εN =
1

2
δpN ≥ n

vertices of W ′
γ that we can choose for h(vi+1) that satisfy 3. Note that we have tacitly

applied Lemma ?? to bound k. Because |G| = n, this guarantees that there is a choice

for h(vi+1) that has not been selected for any previous vertex. This process can continue

by induction until all h(vj), 1 ≤ j ≤ n, have been selected. 2

3.4 Some Notes on d-degenerate Graphs

The d-degenerate graphs have been introduced to provide a nice way to bound chro-

matic numbers. However, it turns out that these are precisely the same graphs considered

by the Burr-Erd®s conjecture.

(3.4.1) Proposition. G is a graph such that every subgraph H of G has δ(H) ≤ d if

and only if G is d-degenerate.

Proof. We prove necessity by induction. If |G| ≤ d, then this is trivial. Assume now

that this is true for all G with H ⊆ G implying δ(H) ≤ d and |G| ≤ M . Take G to be

such a graph with |G| = M + 1. Then G has at least one vertex of degree at most d.

Select such a vertex as vM+1. Then G′ = G − vM+1 has |G′| = M , and H ⊆ G′ implies
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H ⊆ G, so that H ⊆ G′ implies δ(H) ≤ d. Therefore, the induction hypothesis implies

the result for G′, and thus the result is true for G with our choice of vM+1. Induction

then guarantees the result.

Now let G be d degenerate and G = n. Then we have a sequence of the vertices of

G that proves that G is d-degenerate, say v1, ...vn. For any H ⊆ G, there exists a vertex

of H with largest index in reference to the d-degenerate sequence, say vα. Obviously, in

H, deg(vα) ≤ d, so that δ(H) ≤ d. This proves the result. 2

In reference to the embedding methods of this chapter, the idea of d-degenerate is

much more informative than the subset criterion. d-degenerate graphs however elude the

concept of (f, δ)-embeddability without appealing directly to Corollary ??. To be more

general about what we can do, let us extend the idea of degenerate graphs.

(3.4.2) De�nition. Let f : N → N be an non-decreasing function. A graph G is f -

degenerate if there exists a sequence of the vertices of G, say v1, v2, ..., vn, such that, for

all i,

|NL(vi)| ≤ f(i).

We shall denote the class of f -degenerate graphs by Df , and, more importantly, we

let Df,k0 = {G : G ∈ Df , χ(G) ≤ k0}.

(3.4.3) Proposition. Let G ∈ Df,k0 . De�ne

ζ(n) =

f(n)∑
j=1

(
n

j

)
.

If 0 < δ < 1 is given, then for any

ε ≤ δf(n)

2k0ζ(n)
,
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we have that G is embeddable into any (ε, δ)-super-regular graph on Vχ(G)(b2δf(n)nc+1).

We do not explicitly prove this result. To actually do so is essentially to provide a

reproduction of the proof of Lemma ??. Recovering the case for d-degenerate graphs

amounts to setting f(i) = d for all i. In this particular case, we do see that the size of

the color classes does grow linearly with |G|, and the extra bounding of the chromatic

number is in fact unnecessary. On the other hand, in this case it is true this result implies

that must let ε decreases as a polynomial in |G|. It is this inability to �x ε that results in

the failure of this method to prove the Burr-Erd®s conjecture even though Corollary ??

guarantees that in some we can actually do so.



Chapter 4

Ramsey's Theorem on Multipartite

Hosts

4.1 The Theorem and the Proof

The goal here is to color complete multipartite graphs and search for forced monochro-

matic subgraphs. However, some care needs to be taken when we are looking for some

prescribed subgraph. Consider a graph G with chromatic number k. If we 2-color KN,k′ ,

can we guarantee a monochromatic copy of G if N is su�ciently large? A negative an-

swer is easily given if k′ < r(k). To see this, let χ be a two coloring Kk′ that admits

no monochromatic copy of Kk, which exists as k′ < r(k). We induce a new coloring on

KN,k′ by mapping the color classes bijectively to the vertices of K ′
k by the use of some

function f . We induce χ′ on KN,k′ by coloring an edge vw, v ∈ Vα, w ∈ Vβ, by setting

χ′(vw) = χ(f−1(Vα)f−1(Vβ)). Then χ′ admits no monochromatic graph with chromatic

number at least k, hence no G. This motivates us to make the following de�nition.

29
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(4.1.1) De�nition. For a set of graphs G1, ..., Gm, let r = rm(χ(G1), ..., χ(Gm)). The

multipartite Ramsey number pm(G1, ..., Gm) is de�ned be the minimal integer N such

that any m-coloring of KN,r contains a monochromatic copy of Gi in color i, for some i.

This section is dedicated to proving that this de�nition makes sense, i.e., that the

number pm exists. Before we present the proof, we need to prove the following:

(4.1.2) Lemma. Let G be a graph on Vk(n) and e(G) > (
(

k
2

)
− 1)n2. Then G contains

a copy of Kk.

Proof. In Kn,k, we have nk di�erent copies of Kk. Each edge of Kn,k belongs to nk−2 of

these copies. Thus, removing a single edge from Kn,k destroys at most nk−2 copies of Kk,

and to destroy all copies of Kk, we must remove at least nk

nk−2 = n2 edges. As Kn,k has(
k
2

)
n2 edges, any graph on Vk(n) with more than (

(
k
2

)
− 1)n2 edges must contain a copy

of Kk. 2

Now with the aid of the Regularity Lemma and the Blow-Up Lemma we can prove

what could be considered our main theorem.

(4.1.3) Theorem. Given graphs G1, G2, ..., Gc, there exists an integer N such that any

c-coloring of KN ;r, r = r(χ(G1), χ(G2), ..., χ(Gc)), contains a monochromatic copy of Gi

in color i for some 1 ≤ i ≤ m.

Proof. We let δ = 1
4c
. De�ne n = max{|Gi|}, k = max{χ(Gi)}, ∆ = (k − 1)n, and

again denote the standard Ramsey number r(χ(G1), χ(G2), ..., χ(Gc)) simply by r. Also,

we assume that χ(Gi) ≥ 2 for each i. By the Blow-Up Lemma, there exists an εi > 0,

i = 2, 3, ..., k, such that any (εi, δ)-super-regular graph on Vχ(Gi)(m), m ≥ n, contains

a copy of Gi. This follows because ∆(Gi) ≤ ∆ for all i and each Gi is a subgraph of

Kn;χ(Gi).
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Pick

ε = min{ε1

2
,
ε2

2
, ...,

εc

2
,

1

2cr2
,

1

4kc
}.

This gives that 0 < ε < 1
2
. We pick now N such that the Regularity Lemma with c

graphs on Vr(N) has an (ε, c)-uniform partition with sets of size S with (1 − εk)S ≥ n.

We do not care about the exceptional class and ignore it.

Let χ : E(KN ;r) → {1, 2, ..., c} be an arbitrary coloring, and de�ne the graphs Hj =

(Vr(N), χ−1(j)). We apply the Regularity Lemma with ε and c for this set of graphs. Let

the guaranteed (ε, c)-uniform partition of the vertex set of Vr(N) be given by the disjoint

vertex sets Ai,j, where Ai,j is the i'th set in the j'th partite class, 1 ≤ i ≤ α, 1 ≤ j ≤ r.

De�ne an auxillary graph H on Vr(α) by letting the vertex pair (vi,j, vi′,j′) (j 6= j′) be

an edge if the pair of sets (Ai,j, Ai′,j′) is ε-regular. We have at most εc(rα)2 < α2 of the

pairs not ε-regular, so that Lemma ?? guarantees that H contains a copy of Kr.

On this copy of Kr in H, we de�ne a coloring based on the color densities of the

pairs in the (ε, c)-uniform partition. Let the partitioned vertex sets corresponding to this

copy of Kr be labeled as X1, ..., Xr. Under χ, there are c induced graphs, one for each

color, on each bipartite pair (Xi, Xj) with i 6= j. The sum of the densities of all c graphs

adds to 1, so that there exists at least one with density at least 1
c
. We pick a color with

density at least 1
c
, say from the graph Gj, and color the corresponding edge of our copy

of Kr with color j. This gives a c-coloring of Kr, and hence, from Ramsey's theorem,

there exists a monochromatic copy of Kχ(Gl) in color l in our copy of Kr.

For each of the vertices of our monochromatic Kχ(Gl), denote the associated vertex

sets as A1, A2, ..., Aχ(Gl). Each pair is ε-regular with density at least 1
c
in some color. For

any given Ai, less than ε|Ai| vertices have degree less than (1
c
− ε)|Ai| ≥ |Ai|

2c
. Thus, at

most ε(χ(Gl) − 1) vertices exist in Ai with degree less than 1
2c
|Ai| in all pairs (Ai, Aj),

j 6= i. Denote by Yi the set Ai minus these low degree vertices, with some extra vertices

removed, if needed, to make |Yi| = |Yj| for each 1 ≤ i, j ≤ χ(Gl). We have that
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1 − ε(χ(Gl) − 1) > 1
2
, so that for all |B| ≤ 2ε|Yi|, |C| ≤ 2ε|Yj|, we have |B| ≥ ε|Ai|,

|C| ≥ ε|Aj|, and

|d(B, C)− d(Yi, Yj)| < |d(B, C)− d(Ai, Aj)|+ |d(Ai, Aj)− d(Yi, Yj)| ≤ 2ε.

Thus, each pair (Yi, Yj) is 2ε-regular. Also

d(B, C) ≥ d(Ai, Aj)− ε ≥ 1

c
− 1

4kc
>

1

4c
= δ.

Moreover, ε(χ(Gl) − 1) < 1
4c

implies that in each pair any vertex has degree at least

( 1
2c

)|Ai| − ε(χ(Gl)− 1)|Ai| ≥ 1
4c
|Yi| = δ|Yi|.

Thus, each pair (Yi, Yj) is (2ε, δ)-super-regular, and therefore also (εl, δ)-super-regular

since 2ε ≤ εl, as if some vertex set is (ε, δ)-super-regular, then it is (ε′, δ)-super regular

for ε′ ≥ ε. Because |Yi| > (1− ε(χ(Gl) − 1))|Ai| ≥ (1− εk)S ≥ n, the Blow-Up Lemma

then guarantees that the graph on Y1, ..., Yχ(Gl) contains a copy of Gl. This proves the

theorem. 2

4.2 Bounds for (ε, δ)-embeddable Classes of Graphs

The proof of Theorem ?? provides no e�ective upper bound for the integer pm. Of

course it is desirable to know precisely what this number is, or at least have an e�ective

method to calculate the precise number, for any given set of graphs. This is, as is the case

with the regular Ramsey numbers, something that is well beyond our reach. However,

we can pick apart the proof of Theorem ?? and use the results of the last chapter to yield

a method that provides more reasonable bounds. The �rst thing that we can take is the

following:
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(4.2.1) Lemma. Let c > 1 and a set of natural numbers a1, a2, ..., ac be given, as well

as n ∈ N. With γ = max{ai} and r = rc(a1, a2, ..., ac), we have that for δ = 1
4c

and

any given ε > 0 su�ciently small, there exists an A such that any c-coloring on KAn,r

contains, for at least one i, a monochromatic graph that is (2ε, δ)-super-regular on Vai
(N)

where n ≥ N .

Proof. The proof is similar to the proof of Theorem ??, and note that any ε < 1
4γc

is

su�ciently small.

Let c > 1, a1, a2, ..., ac, and ε be given. We apply the Regularity Lemma with ε,

k = r(a1, a2, ..., ac), and L = c to give an M and an N such that any c graphs on Vk(m)

have an (ε, L)-uniform partition when m > N . Now set A = M
(1−γε)

.

Take any c-coloring, say χ, on KAn,k, and let E(Gi) = χ−1(i) for i = 1, ..., c. We have

a partition of Vk(An) that is (ε, c) uniform on each Gi. Ignoring the exceptional class,

the size of each of the sets in the partition is at least n. As in Theorem ??, we end up

with a monochromatic graph that is Vai
(s), for some i, where s > An

M
.

This graph is ε-regular in each pair, and the density is at least 1/c. We have at

most εs of the vertices in each pair with degree less than 1/2c. There are γ = max{ai}

pairs, so we lose at most γεs vertices in each partite class, and keep those that have large

enough degree. To make this nice, we keep equivalent numbers of vertices in each class.

To guarantee that this works, any vertex that we have kept in some pair loses at most

γε percent of its degree, so each vertex has degree at least 1/(2c)− γε > 1/(4c) = δ.

Since we keep more than (1− γε)s ≥ (1− γε)An/M vertices, the result follows with

A = M
1−γε

. 2

With this Lemma, it is in fact not too di�cult to modify the proof of Theorem ??

to assure that, for a given ∆, the class of graphs with maximum degree at most ∆ has a

linear bound on the multipartite Ramsey number. The idea of (δ, f)-embeddable mimics
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the form of the Blow-Up Lemma to achieve the same e�ect for other classes of graphs.

More precisely:

(4.2.2) Theorem. Let G be a collection of graphs that is (f, δ)-embeddable. If χ is

bounded on G then

pm(G1, ..., Gm) ≤ A max
i

f(Gi,
1

4m
)

for any G1, ..., Gm ∈ G and some suitable constant A.

Proof. We let G be such a collection of graphs, and let ε be given from the choice of δ

with the fact that G is (f, δ)-embeddable. Now choose any graphs G1, ..., Gm ∈ G and let

N = maxi f(Gi,
1

4km
).

From Lemma ??, we have, with our choice of ε′ = ε
2
, an A such that any m-coloring

of KAN ;rm(χ(G1),...,χ(Gm)) contains, for some i, a monochromatic graph H that is (ε′, δ)-

super-regular on KN ;χ(Gi). From our choice of N , we see that Gi is embeddable into this

graph H. 2

We note in passing that this provides a bound for the regular Ramsey numbers well,

as the chromatic number is bounded. Now from Lemma ??, we have the following:

(4.2.3) Corollary. Given k0 and m, there exists a constant A > 1 such that

pm(G1, ..., Gm) ≤ Ank0−1

for any graphs G1, ..., Gm with χ(Gi) ≤ k0 and n = maxi |Gi|.

Also, from Lemma ?? we have the analogue of the result of Chen and Schelp on any

number of colors.
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(4.2.4) Corollary. Given p and m, there exists a positive constant A such that

pm(G) ≤ A|G|

for any graph G ∈ Pp.

4.3 Alternate Proofs

This section is motivated by a simple conjecture due to Erd®s.

(4.3.1) Conjecture. limk→∞(r(k))1/k exists.

If this limit exists, then it is known to be within
√

2 and 4. For bipartite Ramsey number,

the analogue of this is well known. Namely:

(4.3.2) Conjecture. limk→∞(p2(Kn,2))
1/n exists.

If this limit exists, then it is known to be within
√

2 and 2. We have yet to provide any

bounds tight enough to prove this last statement, but the upper bound is accomplished in

this section, and the lower bound in the next. We in fact can make a stronger conjecture.

(4.3.3) Conjecture. For a �xed k, limk→∞(p2(Kn,k))
1/n exists.

The bounds given in this section and the next are strong enough to say that for a �xed

k, there exists a constant A such that if this limit exists then it is between
√

2k−1 and A.

We achieve this by presenting direct proofs, considering only the case for 2-colorings.

The second proof is based on Lemma ??, while the �rst is based on the following idea.

(4.3.4) Lemma. Let integers m > 0 and k > 1 be given, and let G be any graph on

Vk(Nk(m)), where Nk(m) = 22k−1m2k−2m. There exists set A1, ..., Ak, Ai ⊆ Vi, such that
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each pair (Ai, Aj), j 6= i, is either a complete bipartite graph or an empty graph, and

|Ai| = m for 1 ≤ i ≤ k.

Proof. We shall proceed with induction on k, beginning with the case k = 2.

Let G be any graph on V2(N2(m)), where N2(m) = m22m. Take any set A′
2 ⊆ V2 with

|A′
2| = 2m. In V1, the pigeonhole principle guarantees that we have at least m vertices

that have the same neighborhood in A2. Let A1 denote such a set. Every vertex in A1

is either a neighbor of all of the vertices of A′
2 or none of them. Hence at least half of

the vertices of A′
2 are neighbors of A1, or half are not neighbors of all vertices of A1.

Therefore we have a set of m vertices in A′
2 that form an empty graph or a complete

graph with A2. Calling this subset A1 gives the result for k = 2 with the pair (A1, A2).

Now assume that the result is true for k = q for all m with Nq(m) = 22q−1m2q−2m,

and let G be a graph on Vq+1(Nq+1(m)) with Nq+1(m) = 22qm2q−1m. Let us note the fact

that a subgraph of a complete (empty) multipartite graph is again a complete (empty)

multipartite graph.

By induction and the fact that Nq+1(m) = Nq(2m), we have sets A′
i ⊆ Vi, i = 1, ..., q,

such that each pair (A′
i, A

′
j) is either empty or complete, and each |A′

i| = 2m. The total

number of vertices all of the A′
i's is 2qm. In Vq+1, we have more than m22qm vertices,

and as 2x ≥ 2x for all integers x, there exists a set of vertices Aq+1 ⊆ Vq+1 such that each

v ∈ Aq+1 has the same neighborhood in each A′
i for all 1 ≤ i ≤ q, and |Aq+1| = m. In

the pair (A′
i, Aq+1), we have at least half of the vertices of A′

i are either adjacent to all

the vertices of Aq+1, or are adjacent to none of the vertices of Aq+1. Such a collection is

then titled Ai. Then (Ai, Aq+1) is either empty or complete for each i ≤ q. The result

now holds with the sets A1, .., Aq+1.

Induction then gives the result for all k and m. 2

We now present the alternate proofs of the c = 2 case of Theorem??.
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(4.3.5) Theorem. Let m, k ∈ N be given. There exists an integer M such that any

two coloring of the edges of KM ;r(k), where r(k) denotes the Ramsey number of k, has a

monochromatic copy of Km;k.

Proof. (1) Given k, denote r(k) by r. Let M = 22r−1m2r−2m, and χ be any 2-coloring

of the edges of KM ;r in colors, say, red and blue. By the previous lemma, in the blue

subgraph we have sets Ai ⊆ Vi such that |Ai| = m and each pair (Ai, Aj) is either empty

or complete. Consider now a copy of Kr, where each vertex vj, ordered in any fashion,

is associated a the set Ai. We two color the edges of Kr in the following way: for each

edge vivj, assign one color if the pair (Ai, Aj) is complete, and the other color if this

pair is an empty graph. By Ramsey's Theorem, we have a monochromatic copy of Kk.

Without loss of generality, assume that the associated pairs are A1, ..., Ak. From the way

the coloring of Kr was de�ned, we see that the induced subgraph from the pairs is either

empty, or a complete k-partite graph. If the latter holds, then we are done; if the former

holds, then in the red graph, each pair is complete and again we are done. 2

Proof. (2) For m and k given, and set r = r(k). Pick M = (2
(

r
k

)
)mk−1

. Consider any

2-coloring χ of the edges of the graph KM,r. From the de�nition of r, each copy of Kr has

a monochromatic copy of Kk. Also, any monochromatic copy of Kk can �ll this condition

for at most M r−k copies of Kr. There are a total of M r copies of Kr, so that we have at

least Mk monochromatic copies of Kk.

Let V1, ..., Vk be selected so that this collection has at least the average number of

monochromatic copies of Kk. This average number is Mk/
(

r
k

)
. Also, it is true that at

least half of these are in the same color, say red. Now let G ⊆ V1 × ... × Vk be de�ned

by a = (v1, ..., vk) ∈ G if and only if the graph on the vertices v1, ..., vk is monochromatic
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in red. As |G| ≥ Mk/(2
(

r
k

)
), the previous Theorem ?? gives a subset of G of the form

B1 × ...×Bk with |Bi| = m for each i because

Mk

(2
(

r
k

)
)

=
Mk

M1/(mk−1)
= Mk−1/mk−1

.

This gives a monochromatic copy of Km,k. 2

The �rst proof gives the bound

(4.3.6) Corollary. p2(Kn;k) ≤ 22r(k)−1n2r(k)−2n.

The second proof gives

(4.3.7) Corollary. p2(Kn;k) ≤ (2
(

r
k

)
)nk−1

.

The latter bound is very e�ective for the bipartite case, achieving the known bound of

2m. The former achieves a simple exponential upper bound in terms of m for all (�xed)

values of k. These justify the statements made in the beginning of the section about

bounding any potential limits above. The lower bounds are justi�ed in the next section.

4.4 A Lower Bound

To prove a lower bound is somewhat more complicated than in the case for the regular

Ramsey numbers. However, the bipartite case is very nice, as r(2) = 2. We isolate this

case and begin with it, noting that the methods we employ are probabilistic.

(4.4.1) Proposition. pm(Kn;2) ≥ n
e

√
mn.
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Proof. Let Kn;2 be given, and consider KN ;2 with N ≥ n. If we randomly color the edges

of KN ;2 with m colors, each color having probability 1/m, then the probability that some

�xed copy of Kn,2 to be monochromatic is m1−n2
. There are

(
N

n

)2

copies of Kn;2 in KN ;2. Treating these all independently, we see that

(
N

n

)2

m1−n2

is an upper bound for the probability that some copy of Kn;2 is monochromatic. If this

probability is less than one, then there exists an m-coloring of KN ;2 that admits no

monochromatic copy of Kn;2. Using the inequality

(
x

y

)
≤ eyxy

yy

for positive integers x ≥ y gives the result. 2

To prove the more general case, we must be able to count the number of copies Kn;k

contained in the larger graph KN ;r(k). This turns out to be a daunting task. However,

we can over count this number quite a bit and in the end still obtain a reasonable result.

We present the over counting separately.

(4.4.2) Proposition. Let N ≥ n. Given Kn;k, there are less than

(
Nr

nk

)
(nk)!

(n!)k

copies of Kn;k in KN ;r, where r ≥ k.
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Proof. Let us pick any nk vertices from KN ;r. There are less than

(
nk

n

)
·
(

(k − 1)n

n

)
· ... ·

(
n

n

)

copies of Kn;k on this set of vertices. This simpli�es to

(nk)!

(n!)k

upon expanding each term into factorials. As there are
(

Nr
nk

)
ways of choosing nk vertices

in KN ;r, the result follows. 2

Now the lower bound follows.

(4.4.3) Proposition. pm(Kn;k) ≥
√

2m
er

m(k−1)n/2.

Proof. Following the same method employed in the bipartite case, we see that if

(
Nr

nk

)
(nk)!

(n!)k
m1−(k

2)n2

< 1,

then N < pm(Kn;k). We have that

(
Nr

nk

)
(nk)!

(n!)k
m1−(k

2)n2 ≤ (eNr)nk

(nk)nk

(nk)nk

2(n−1)k
m1−(k

2)n2

Setting the right hand side less than one gives

N <

√
2m

er
m(k−1)n/2,

which proves the result. 2
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