
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

12-4-2006

64 x 64 Bit Multiplier Using Pass Logic
Shibi Thankachan

Follow this and additional works at: http://scholarworks.gsu.edu/cs_theses

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Computer Science Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Recommended Citation
Thankachan, Shibi, "64 x 64 Bit Multiplier Using Pass Logic." Thesis, Georgia State University, 2006.
http://scholarworks.gsu.edu/cs_theses/31

http://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

64 × 64 BIT MULTIPLIER USING PASS LOGIC

by

SHIBI P.THANKACHAN

Under the Direction of A. P. Preethy

ABSTRACT

 Due to the rapid progress in the field of VLSI, improvements in speed, power and area

are quite evident. Research and development in this field are motivated by growing markets of

portable mobile devices such as personal multimedia players, cellular phones, digital camcorders

and digital cameras. Among the recently popular logic families, pass transistor logic is promising

for low power applications as compared to conventional static CMOS because of lower transistor

count. This thesis proposes four novel designs for Booth encoder and selector logic using pass

logic principles. These new designs are implemented and used to build a 64 x 64-bit multiplier.

The proposed Booth encoder and selector logic are competitive with the existing and shows

substantial reduction in transistor count. It also shows improvements in delay when compared to

two of the three published works.

INDEX WORDS: Algorithms, Multipliers, Booth encoder, Compressors, Wallace Tree, Adder

64 × 64 BIT MULTIPLIER USING PASS LOGIC

by

SHIBI P.THANKACHAN

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

In the College of Arts and Science

Georgia State University

2006

Copyright by

Shibi P. Thankachan
2006

64 × 64 BIT MULTIPLIER USING PASS LOGIC

by

SHIBI P.THANKACHAN

Major Professor: A. P. Preethy

Committee: Michael Weeks

 Saeid Belkasim

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2006

 iv

Dedicated to everyone who was a part of this
 for all the support

 v

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. A. P. Preethy, for her encouragement, advice and

guidance throughout my thesis work which made my graduate studies a wonderful experience of

my life. I am thankful for her innovative ideas and interest in new technologies which motivated

me to go forward in this prototype.

I would like to thank Dr. Saeid Belkasim and Dr. Michael Weeks for reviewing my

manuscript and providing me fine pointers to meet the standards.

I would like to thank my Papa and Mommy for their prayers and advice. I would also like

to thank my sisters and their families for their constant support.

I finally thank my loving husband for his valuable encouragement and support throughout

the academic program. Without his co-operation it would be difficult for me to make this

achievement.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. V

LIST OF TABLES .. VII

LIST OF FIGURES ...VIII

LIST OF ABBREVIATIONS ... X

CHAPTER 1. INTRODUCTION... 1
1.1 MOTIVATION: ...2

CHAPTER 2. MULTIPLIER ARCHITECTURE.. 4
2.1 BOOTH ENCODER AND PARTIAL PRODUCT GENERATOR:..5
2.2 BOOTH’S ALGORITHM: ..5
2.3 MODIFIED BOOTH ALGORITHM: ...7
2.4 COMPRESSORS: ..9
2.5 CARRY PROPAGATION ADDER: ...10

CHAPTER 3. RELATED WORK.. 10
3.1 BOOTH ENCODER AND PPG PROPOSED BY OHKUBO: ..13
3.2 BOOTH ENCODER AND PPG PROPOSED BY GOTO: ...15
3.3 BOOTH ENCODER AND PPG PROPOSED BY FRIED: ...17
3.4 BOOTH ENCODER AND PPG PROPOSED BY GROβSCHÄDL: ..19
3.5 BOOTH ENCODER AND PPG PROPOSED BY CHO: ...21

CHAPTER 4. PROPOSED WORK ... 23

4.1 BOOTH ENCODER MODULE.. 23
4.2 TWO MUX- NAND DESIGN: ...25
4.3 THREE MUX - XOR DESIGN: ..28
4.4 MUX- NAND DESIGN:...31
4.5 MUX- AND DESIGN: ...34

CHAPTER 5. COMPRESSION MODULE .. 37
5.1 CONVENTIONAL 3:2 COMPRESSORS: ...37
5.2 4:2 COMPRESSOR: ..40
5.3 XOR-XNOR IMPLEMENTATION OF 4:2 COMPRESSORS: ...43
5.4 CARRY PROPAGATION ADDER: ...46

CHAPTER 6. RESULTS... 49
6.1 COMPARISON OF BOOTH ENCODERS AND SELECTORS: ..49

CHAPTER 7. CONCLUSION.. 52
7.1 FUTURE WORK:..53

CHAPTER 8. BIBLIOGRAPHY ... 54

APPENDIX.. 55

 vii

LIST OF TABLES

Table 1. Radix-2 Booth recoding [4] .. 6

Table 2. Radix-4 Booth recoding [2] .. 7

Table 3. Partial product selections and operations... 12

Table 4. Booth encoding [3]... 15

Table 5. Truth table for race-free Booth algorithm [5].. 18

Table 6. Truth table for booth encoding.. 21

Table 7. Truth table of Two MUX- NAND design.. 25

Table 8. Truth table of three MUX- XOR design ... 28

Table 9. Truth table of MUX –NAND design.. 31

Table 10. Truth table of MUX– AND design... 34

Table 11. 32 input wallace tree for 64 bit operands using 3:2 compressors 38

Table 12. Comparing the delays of CSA using 3:2 and 4:2 compressors [4]........................ 39

Table 13. 32 input Dadda tree for 64 bit operands using 3:2 compressors 40

Table 14. 32 input Wallace tree for 64 bit operands using 4:2 compressors........................ 41

Table 15. Comparison of Booth encoders and selectors... 49

 viii

LIST OF FIGURES

Figure 1. Block diagram of multiplier architecture.. 4

Figure 2. Partial product generator using and gates [4] .. 5

Figure 3. Carry Save Adders [4]... 9

Figure 4. Modified Booth recoding pattern [4] ... 11

Figure 5. Example for a Modified Booth multiplication [4] .. 12

Figure 6. Booth Encoder [2].. 13

Figure 7. Pass- transistor multiplexer circuit [2] .. 13

Figure 8. Partial product generator [2].. 14

Figure 9. Booth encoder [3]... 16

Figure 10. Selector logic [3]... 17

Figure 11. Booth encoder [5]... 18

Figure 12. Partial product generator [5].. 19

Figure 13. Booth encoder [6]... 20

Figure 14. Partial product generator using radix -4 [6] ... 20

Figure 15. Booth encoder and PPG.. 22

Figure 16. CMOS implementation of Booth encoder ... 24

Figure 17. Block diagram of two MUX- NAND design .. 26

Figure 18. Two MUX- NAND design using pass logic principles .. 27

Figure 19. Block diagram of three MUX- XOR design .. 29

Figure 20. Pass logic implementation of three MUX- XOR design....................................... 30

Figure 21. Block diagram of MUX – NAND design.. 32

Figure 22. Mux- NAND design using pass logic .. 33

Figure 23. Block diagram of MUX- AND design .. 35

Figure 24. MUX- AND design using pass logic implementation ... 36

Figure 25. Block diagram of CSA [4] ... 37

Figure 26. 4:2 compressor [7] .. 41

Figure 27. 4:2 CSA tree for the wallace tree in table 14... 42

Figure 28. 4:2 compressors using CMOS logic [8].. 43

Figure 29. Block diagram of 4:2 compressor [7]... 44

Figure 30. 4:2 compressors using XOR-XNOR cell [7] .. 45

Figure 31. Conditional select adder.. 47

 ix

Figure 32. Conditional select adder block [1].. 48

Figure 33. Comparison of proposed booth encoder and selector logic designs with existing
designs .. 50

Figure 34. Comparison chart for delay.. 51

 x

LIST OF ABBREVIATIONS

CPA: Carry Propagation Adders

CSA: Carry Save Adders

FA: Full Adder

HA: Half Adder

LSB: Least Significant Bit

MSB: Most Significant Bit

PP: Partial Product

PPG: Partial Product Generator

MUX: Multiplexer

XCSA: XOR based Conditional Select Adder

BCGB: Block Carry Generation Block

 1

CHAPTER 1. INTRODUCTION

VLSI designers have used static CMOS style over the past few decades to design safe

and scalable circuits because of its simplicity. Classical logic design is based on a set of basic

logic gates: AND, OR, NAND, NOR, NOT, etc. These design techniques, when applied to MOS

designs prove to be very inefficient. CMOS circuits consist of two separate networks, one to pull

up the output to logic one and the other to pull down the output to logic zero. The pull up

network is connected between the output node and VDD, called as pMOS network (p-net). The

pull down network is connected between the output node and Vss and is called an nMOS network

(n-net). One of the disadvantages of the CMOS logic is that, the logic is implemented twice. The

n-net and the p-net both have all the information needed to implement the function. Hence, a

substantial amount of area is wasted in the CMOS designs. Also, the switching capacitance of a

static CMOS circuit is very large and hence is considered a drawback. Currently, there are four

factors making it necessary to examine alternative design styles to static CMOS; shrinking

feature sizes, increasing transistor counts, higher speed, and lower power. These factors gave rise

to pass transistor-based logic families. A pass transistor is an nMOS (or pMOS) transistor with

signal input fed to the drain (source) and the signal output taken from source (drain). The

propagation of the signal through the transistor is controlled by a signal applied to its gate. In the

case of an nMOS transistor, a logic one at the gate passes the input from source to drain circuit.

A pMOS transistor exhibits similar behavior, except for a change in the control signal logic

level. If signals X and Y are connected to the gate and drain of an nMOS transistor, respectively,

then this is represented as X(Y) and read as ‘X passing Y’. When both nMOS and pMOS

transistors are used to pass a signal Y, the circuit is referred to as a CMOS transmission gate.

 2

1.1 Motivation:

 Multiplication is the key in arithmetic operation and multiplier plays an important role in

digital signal processing. Unfortunately, the major source of power dissipation in digital signal

processors is multipliers. In the past decade, researchers developed multipliers with the help of

CMOS logic, which has all the disadvantages as discussed earlier. Therefore, the design of

multipliers for digital signal processing applications should be efficient while still being able to

handle low-power applications. So, the proposed work is designed using pass logic principles,

which shows improvements over CMOS designs. Pass logic principle based circuits are able to

achieve better performance in area, power and speed when implemented in VLSI [1]. Several

case studies show that pass logic principle based design implements most functions with fewer

transistors which reduces the overall capacitance than static CMOS; thus, resulting in faster

switching times and lower power. Pass logic principle based design is a promising alternative to

static CMOS in deep sub-micron technology due to its better performance in power

consumption, speed and area.

One third of the multiplier space is occupied by the Booth encoder and selector logic [1-

3]. So a better design of Booth encoder and selector is vital. The main objective of this work is to

design and implement new Booth encoders and selector logics which are hardware efficient and

consequently power-aware. Various designs of these logic units are proposed in this work where

the number of transistors needed are less when compared to previously designed units. The gate

level implementations of these designs were tested for functionality using LoKon software

(www.bmtmicro.com/BMTCatalog/win/LoKon.html). The pass logic implementation of all the

gates (XNOR, XOR, NAND, NOR, AND, XOR-XNOR combination gate) and MUX used in

these circuits were simulated and verified for functionality using TopSPICE

 3

(www.penzar.com/TopSPICE.htm). Due to the limitation in the transistor count in the demo

version of TopSPICE, it was not able to simulate the entire circuit in transistor level. Further,

these designs were used to build 64 x 64 bit multiplier. The main reason for designing 64 x 64 bit

multiplier is the need for higher word width for signal process applications. This design is

scalable without any loss of merits. All the pass transistor circuits have been tested for fully

restored voltage at the output. Hence, when these circuits are combined to form the entire

multiplier, voltage drop will not cause a problem.

This thesis is structured as follows. After the introduction in Chapter 1, Chapter 2

explains the conventional architecture of the multiplier, the basic components and their

functions. It also throws light on the radix-4 algorithm which is used for Booth encoding

purpose. Chapter 3 discusses the various researcher’s designs and also points out the area used in

terms of number of transistors. Chapter 4 discusses about the proposed work which includes

various Booth encoder and selector logic designs. Chapter 5 suggests the design of entire

multiplier using these proposed works together with the compressor and carry propagation adder.

Chapter 6 deals with the results which show hardware reduction in terms of transistor counts for

Booth encoder and selector logic circuit. The final section deals with the conclusion and the

future work.

http://www.penzar.com/TopSPICE.htm

 4

CHAPTER 2. MULTIPLIER ARCHITECTURE

 A multiplier has two stages. In the first stage, the partial products are generated by the

Booth encoder and the partial product generator (PPG), and are summed by compressors. In the

second stage, the two final products are added to form the final product through a final adder.

Y Input Buffer X Input Buffer

Booth

Encoder Partial Product Generator
and Compressors

Figure 1. Block Diagram of Multiplier Architecture

 The block diagram of traditional multiplier is depicted in Figure 1. It employs a

booth encoder block, compression blocks, and an adder block. X and Y are the input buffers. Y is

the multiplier which is recoded by the Booth encoder and X is the multiplicand. PPG module and

compressor form the major part of the multiplier. Carry propagation adder (CPA) is the final

Carry Propagation Adder
(CPA)

Control
Signals

 5

adder used to merge the sum and carry vector from the compressor module. Each block is further

explained in this chapter in detail.

2.1 Booth Encoder and Partial Product Generator

Partial product generation is the very first step in binary multiplier. Partial product

generators for a conventional multiplier consist of a series of logic AND gates as shown in

Figure 2.

Figure 2. Partial Product generator using AND gates [4]

If the multiplier bit is ‘0’, then partial product row is also zero, and if it is ‘1’, then the

multiplicand is copied as it is. From the second bit multiplication onwards, each partial product

row is shifted one unit to the left. In signed multiplication, the sign bit is also extended to the left.

2.2 Booth’s Algorithm:

A.D. Booth proposed Booth encoding technique for the reduction of the number of partial

products [1]. This algorithm is also called as Radix-2 Booth’s Recoding Algorithm. Here the

multiplier bits are recoded as Zi for every ith bit Yi with reference to Yi-1 .This is based on the fact

that fewer partial products are generated for groups of consecutive zeros and ones. For a group of

consecutive zeros in the multiplier there is no need to generate any new partial product. We only

need to shift previously accumulated group partial product one bit position to the right for every

0 in the multiplier.

 6

 The radix-2 algorithms results in these observations [4]:

(a) Booth observed that whenever there was a large number of consecutive ones, the

corresponding additions could be replaced by a single addition and a subtraction

2j + 2j-1 + ……………+ 2i+1 + 2i = 2j+1 – 2i

(b) The longer the sequence of ones, the greater the savings.

(c) The effect of this translation is to change a binary number with digit set [0, 1] to a binary

signed-digit number with digit set [-1, 1].

The Radix-2 Booth algorithm Table 1 is give below:

Table 1. Radix-2 Booth recoding [4]

Yi Yi-1 Zi Explanation

0 0 0 No string of 1s in sight

0 1 1 End of string of 1s in Y

1 0 1 Beginning of string of 1s in Y

1 1 0 Continuation of string of 1s in Y

In this algorithm the current bit is Yi and the previous bit is Yi-1 of the multiplier Yn-1

 Yn-2…… Y1 Y0 are examined in order to generate the ith bit Zi of the recoded multiplier Zn-1 Zn-2

…….Z1 Z2. The previous bit Yi-1 serves only as the reference bit. The recoding of the multiplier

bits need not be done in any predetermined order and can be even done in parallel for all bit

positions. The observations obtained from the radix-2 Booth recoding are listed below:

• It reduces the number of partial products which in turn reduces the hardware and delay

required to sum the partial products. It adds delay into the formation of the partial

products.

 7

• It works well for serial multiplication that can tolerate variable latency operations by

reducing the number of serial additions required for the multiplication.

• The number of serial additions depends on the data (multiplicand)

• Worst case 8-bit multiplicand requires 8 additions

• 01010101 ⇔ 1 -1 1 -1 1 -1 1 -1

• Parallel systems generally are designed for worst case hardware and latency

requirements. Booth-2 algorithm does not significantly reduce the worst case number of

partial products.

Radix-2 Booth recoding is not directly applied in modern arithmetic circuits; however, it

does help in understanding the higher radix versions of Booth’s recoding. It doesn’t have

consecutive 1s or -1s. The disadvantages of the radix-2 Booth algorithm can be overcome by

using Modified Booth algorithm.

2.3 Modified Booth Algorithm:

The radix-2 disadvantages can be eliminated by examining three bits of Y at a time rather

than two. The modified Booth algorithm is performed with recoded multiplier which multiplies

only +a and +2a of the multiplicand, which can be obtained easily by shifting and/or

complementation. The truth table for modified Booth recoding is shown below:

Table 2. Radix-4 Booth Recoding [2]

Yi+1 Yi Yi-1 Zi+1 Zi Zi/2 Explanation

 8

0 0 0 0 0 0 No string of 1s in sight

0 0 1 0 1 1 End of strings of 1s

0 1 0 0 1 1 Isolated 1

0 1 1 1 0 2 End of string of 1s

1 0 0 -1 0 -2 Beginning of string of 1s

1 0 1 -1 1 -1 End a string, begin a new one

1 1 0 0 -1 -1 Beginning of string of 1s

1 1 1 0 0 0 Continuation of string of 1s

The main advantage of the modified Booth algorithm is that it reduces the partial

products to n/2.

The following gives the algorithm for performing sign and unsigned multiplication

operations by using radix-4 Booth recoding.

Algorithm: (for unsigned numbers)

• Pad the LSB with one zero

• Pad the MSB with two zeros if n is even and one zero if n is odd

• Divide the multiplier into overlapping groups of 3-bits

• Determine partial product scale factor from modified Booth-2 encoding table

• Compute the multiplicand multiplies

• Sum partial products

Algorithm: (for signed numbers)

• Pad the LSB with one zero

 9

• If n is even don’t pad the MSB (n/2 PP’s)

• Divide the multiplier into overlapping groups of 3-bits

• Determine partial product scale factor from modified Booth-2 encoding table

• Compute the multiplicand multiplies

• Sum partial products

Booth recoding is fully parallel and carry free. It can be applied to design a tree and array

multiplier, where all the multiples are needed at once. Radix-4 Booth recoding system works

perfectly for both signed and unsigned operations.

2.4 Compressors

A Carry-Save Adder (CSA) is a set of one-bit full adders, without any carry-chaining.

Therefore, an n-bit CSA receives three n-bit operands, namely a (n-1)..a (0), b (n-1)..b (0), and

cin (n-1)..cin (0), and generates two n-bit result values, sum (n-1)..sum (0) and cout (n-1)..

cout (0).

Figure 3. Carry Save Adders [4]

A carry save adder tree can reduce n binary numbers to two numbers having the same

sum in O (log n) levels. Carry save adder is also called a compressor and a Wallace Tree is

 10

constructed with CSAs. Wallace trees are CSAs in a tree structure used as a compressor. The

most important application of a carry-save adder is to add the partial products in integer

multiplication. From CSA separate sum and carry vector are obtained. In CSA, the output carry

is not passed to the neighboring cell but is saved and passed to the cell one position down.

2.5 Carry Propagation Adder

The final step in completing the multiplication procedure is to add the final terms in the

final adder. The Carry Propagation Adder, CPA, is a final adder used to add the final carry vector

to the final sum vector partial products to give the final multiplication result. This is normally

called a “Vector-merging” adder. The choice of the final adder depends on the structure of the

accumulation array. Various fast adders can be used as CPA. Some of them are Carry look-ahead

adder, Simple carry skip adder, Multi level carry skip adder, Carry- select adder, Conditional

sum adder and Hybrid adder. A Carry look-ahead Adder is an adder used in digital logic. All the

carry outputs are calculated at once by specialized look-ahead logic. But requires generate and

propagate signals. Simple carry skip adders looks for the cases in which carry out of a set of bits

are identical to carry in. Circuits for binary adders to efficiently skip a carry bit over two or more

bit positions with two or more carry-skip paths is called multilevel carry skip adders. In the 4-bit

carry select adder there are two 4-bit adders each of which takes a different preset carry-in bit.

The two sums and carry-out bits that are produced are then selected by the carry-out from the

previous stage. In conditional sum adder, sum and carry outputs at the first stage assume the

previous carry to be zero and sum and carry outputs at the second stage assume the previous

carry to be one. For CPA we can also combine any of these adders as a hybrid adder.

CHAPTER 3. RELATED WORK

http://en.wikipedia.org/wiki/Adder_%28electronics%29
http://en.wikipedia.org/wiki/Digital_logic

 11

 Fast multipliers are imperative for high speed and low power signal processing systems

and hence much thrust have been given to different design techniques. As explained in Chapter 2

multiplier consists of a Booth encoder, compressors, and carry propagation adders. The speed of

the multiplier can be enhanced by reducing the number of partial products and thus the Booth

algorithm plays a major role. In this chapter, we discuss about the related literature works for

number of Booth encoder and the selector logic and the several design methods used to reduce

the partial products.

 Booth encoding is a technique that leads to smaller, faster multiplication circuits, by

recoding the numbers that are multiplied. It is the standard technique used in chip design, and

provides significant improvements over the "long multiplication" technique. The widely used

Booth algorithm is the radix-4 based modified Booth algorithm proposed by McSorley where it

reduces the partial products into half. As the number of partial products reduces the number of

CSAs required for the compression module, the height of the Wallace tree is also reduced.

Figure 4. Modified Booth recoding pattern [4]

Modified Booth algorithm’s basic idea is that the bits Yi and Yi-1 are recoded into Zi and

Zi-1, while, Yi-2 serves as reference bit. In a separate step, Yi-2 and Yi-3 recoded into Zi-2 and Zi-3

with, Yi-4 serving as reference bit. This signifies that the modified Booth’s encoding partitions

input Y into a group of 3-bits with 1-bit overlap and generates the following five signed digits, 2,

1, 0, -1 and -2. Encoding on the each group reduces the number of partial products by factor of

2.

 12

Operations on the encoded digits performed with multiplier input X is illustrated in

Table 3.

Table 3. Partial Product Selections and Operations [4]

Recoded digit Booth’s operation on X Y2i-1 Y2i Y2i+1

0 Add 0 to PP {0 0 0, 1 1 1}

+1 Add X to PP {0 0 1, 0 1 0}

+2 Shift X left & add to PP {0 1 1}

-1 Add 2’s complementary X to PP { 1 0 1, 1 1 0}

-2 2’s complementary X & shift-add {1 0 0}

An example for radix-4 modified Booth algorithm is shown in Figure 5 [18]

Figure 5. Example for a Modified Booth multiplication [4]

 13

There are n/2 = 3 steps in this multiplication and in each step two multiplier bits are

considered. As a result, all shift operations are two bit positions shift and an additional bit for

storing the correct sign is required to properly handle the addition of 2A.

3.1 Booth Encoder and PPG proposed by Ohkubo

Ohkubo, et al., developed a CMOS multiplier using pass transistor multiplexer.

Figure 6. Booth encoder [2]

There were three control signals for complement, shifting and direction. The

complement signal was generated by XOR function and the Shift by the AND and MUX

operation. The partial products were obtained by the NAND and XOR operations.

Figure 7. Pass- transistor multiplexer circuit [2]

 14

The multiplexer used in Booth encoder itself used 8 transistors which used separate

transistors to design nMOS and pMOS.

Figure 8. Partial Product Generator [2]

 The PPG was implemented using NAND and XOR gates. Here the inputs were the

control signals generated by the Booth encoder and these signals were used to output the data

inputs Xi and Xi-1.

 Ohkubo, et al., work provided a speed advantage over conventional CMOS circuits

because the critical path gate stages were minimized using pass transistor multiplexer. The

drawback of Ohkubo’s work was that it consisted of more transistors and it produced

unnecessary glitches by the partial product generator. According to his design; any change in the

value of the partial products also caused a change all along the multiplier array, and the final

adder. This energy dissipation associated with the glitches in the modified Booth algorithm was

an important portion of the total energy dissipation of the whole multiplier and the issue has been

dealt by Fried [7] in his work. The total number of transistors for the encoder and selector logic

added up to 48 transistors which occupied a large amount of space.

 15

3.2 Booth Encoder and PPG proposed by Goto

 Goto, et al., was successful in reducing the number of transistors when compared

with Ohkubo’s work [3]. In Goto's work, there were two control signals used for generation of

sign of the partial product: Mj (for negative) and PLj (for positive). The modified Booth Selector

required four multiplexers which consumed a large area. Booth encoder and PPG module

constitute one third part of the entire multiplier design. In fact, Goto's work used the multiplicand

as the select signals in the selector, which was very different from the conventional method

which used the encoded signals as the select signals. However, encoded signals ran through the

two multiplexers in series, thus incurred more delay than some other multipliers which were

developed in later periods. Five gates were needed on the critical path. The truth table for the

Booth encoding as per Goto’s work is given in Table 4.

Table 4. Booth encoding [3]

 16

Here inputs are bj+1, bj and bj-1. The Booth encoder had four outputs and the selector had

two outputs. The design also used a number of inverters which resulted in power consumption.

In Goto’s work two signals had to be activated at the same time to perform a single operation.

For example when +2A was needed the PLj and 2Xj signals were active, and the logical product

of PLj and 2Xj choose +2A as the partial product. When –A was needed, the logical product of Mj

and Xj choose the correct partial product. So this caused complexity as well as making larger

delay path.

Figure 9. Booth encoder [3]

 The Booth encoder consists of AND, XOR, NOR and NAND operations. Number

of inverters was also used in this circuit. The outputs obtained are the control signals for

complement and the shift. Two separate signals for positive and negative are also generated.

 17

Figure 10. Selector logic [3]

The SEL component used here performed the multiplexer action. The main disadvantage

of Goto’s work was that encoded signals ran through the two multiplexers in series and it

incurred more delay than some other multipliers which were developed in later periods. Five

gates were needed on the critical path.

3.3 Booth Encoder and PPG proposed by Fried

The unnecessary glitches from Goto’s design were eliminated by Fried’s design of a new

two-gate-delay implementation of the Booth encoder and partial product generator. He proposed

two approaches to eliminate the unnecessary glitches in the Booth algorithm. One was to latch all

the partial products and allow them to change only after steady-state was reached in the encoder

and partial product generator. This was achieved by using a clock derivative from the global

clock, whose duty cycle was defined according to the slowest path in the Booth implementation.

However, this approach required large area and dissipates a lot of energy by itself. The second

approach was to synchronize all the paths in Booth encoder and partial product generator.

 18

Table 5. Truth table for race-free Booth algorithm [5]

Input Signals Output Signals

Y2i+1 Y2i Y2i-1 NEG X1 X2P ZP

0 0 0 0 0 1 1

0 0 1 0 1 0 1

0 1 0 0 1 0 0

0 1 1 0 0 1 0

1 0 0 1 0 1 0

1 0 1 1 1 0 0

1 1 0 1 1 0 1

1 1 1 1 0 1 1

Figure 11. Booth encoder [5]

 19

Figure 12. Partial product generator [5]

 In the Booth encoder XOR-XNOR gates were used to generate the control signals for the

PPG. Four control lines were used in the PPG for each row to get the required output. The load,

for each column in each row, on XI and X2P was one gate, and NEG was loaded with two gates.

The additional control line ZP was loaded with one gate. All the paths were equalized to have

exactly same propagation delay by using only XOR-XNOR gates till the last stage. But the

penalty for this fast and race-free implementation was the higher transistor count for the partial

product generators. The full CMOS implementation of the partial product generator consisted of

24 transistors when compared to only 15 for the conventional implementation.

3.4 Booth Encoder and PPG proposed by Groβschädl

 The partial product generator developed by Groβschädl was used for two different types

of operands; integers and binary polynomials. For integer mode it was done by modified Booth

recoding technique and for polynomial by a digital serial polynomial multiplier.

 20

Figure 13. Booth encoder [6]

 For encoding multiplier was partitioned into overlapping groups of three bits (bi+1, bi, bi-

1) with i= 0, 2, 4, 6, …. Each group had its own encoder circuit which produced the control

signal inv (invert), trp (transport, and shl (shift left). When control signal inv = 1 then the PP is

negative. When control signal trp =1 means the PP = ± A (no shift left). When shl = 1, a one bit

left-shift was performed. The PP= 0 was generated by trp = shl = 0.

Figure 14. Partial Product Generator using radix -4 [6]

 21

 The PPG required A (the multiplicand) and A’ as an input, and the multiplexers selected

between A and A’. The ANDOR gates performed a left- shift if multiplication by -2 or 2 was

desired.

 But the Booth encoder and PPG circuit consisted of large number multiplexers, inverters,

AND gates and XOR gates. As a result the circuit used more number of transistors when

compared to some other designs.

3.5 Booth Encoder and PPG proposed by Cho

 In 2003, Cho, et al., developed a new Booth encoder and the selector with a fewer

number of components. They developed a new encoder based on the modified Booth algorithm.

Table 6. shows the truth table of the operations developed by Cho [1]:

Table 6. Truth Table for Booth encoding

In their design they described Booth function as three basic operations, which they called

‘direction’, ‘shift’, and ‘addition’ operation.

 22

Direction determined whether the multiplicand was positive or negative, shift explained

whether the multiplication operation involved shifting or not and addition meant whether the

multiplicand was added to partial products. The expressions for Booth encoding were stated

below as [1]:

 Direction, Dm = Ym+1;

Shift, Sm = Ym-1 · (Ym+1 ⊕ Ym) + Ym-1’ · (Ym+1 ⊕ Ym)

 = Ym+1 ⊕ Ym;

 Addition, Am = Ym-1 ⊕ Ym;

Figure 15. Booth encoder and PPG

The Booth encoder was implemented using two XOR gates and the selector using 3

MUXes and an inverter which counted to a total of 40 transistors.

Careful optimization of the partial-product generation can lead to some substantial delay

and hardware reduction. Keeping this in mind, some designs are proposed in Chapter 4.

 23

CHAPTER 4. PROPOSED WORK

4.1 Booth Encoder Module

For the design of a faster multiplier, we should either reduce the number of partial

products or increases the summation of partial products. The Booth algorithm reduces the

number of partial products. Based on the available literature, we propose a few designs of the

Booth encoder and selector logic. The proposed designs are based on modified Booth recoding

system using radix-4 multiplication where it reduces the number of partial products to half. The

multiplicands are replicated and separate carry and sum vectors are obtained at the output of the

compressor. Hence Booth recoding is fully parallel and carry free. Moreover, it can be applied

to design a tree and array multiplier, where all the multiples are needed at once. Radix-4 Booth

recoding system works perfectly for both signed and unsigned operations.

The Booth encoder constitutes one third part of the multiplier circuit, so it is significant to

have an efficient design for the partial product generator. Modified Booth algorithm successfully

proved to reduce the partial products by half. To further enhance the performance of the

multiplier in terms of power, area and delay, pass logic principle can be incorporated. Novel

Booth encoder designs using pass logic principle are proposed in this section which combines the

benefits of low power consumption and reduced chip area when compared to other conventional

designs.

In Cho’s design [1], the Booth encoder consisted of two XOR gates and PPG consisted

of three MUXes and one inverter which count to a total of 40 transistors. In order to compute the

number of transistors sown in Figure 13, it has been redrawn using CMOS logic. CMOS circuit

using a Booth encoder with the operational expressions mentioned above is shown in Figure 14

 24

Ym

Ym+1

Ym-1

Ym

Ym+1
Dm

Sm

Ym-1

Am

Ym

Ym+1

Ym-1

Ym

Ym+1
Dm

Sm

Ym-1

Am

Figure 16. CMOS implementation of Booth Encoder

The Booth encoder itself shown above has a total of 26 transistors including three

inverters. Conventional static CMOS is reliable, robust and noise tolerant, but, today's VLSI

design trends are bringing requirements of increased speed and reduced power dissipation.

Accordingly, many researchers have investigated the use of pass logic based principle designs to

achieve the speed low power dissipation. In order to get the best design for Booth encoder and

selector logic, we tried different techniques and successfully came up with four final designs.

The proposed designs are named – Two MUX- NAND Design, Three MUX- XOR

Design, MUX- NAND Design and MUX- AND Design. The first part denotes the number of

 25

MUXes in the selector logic and the second part denotes the logic gates used to select data

inputs, Xn or Xn-1.

4.2 Two MUX- NAND Design:

In Two MUX- NAND design, the inputs are multiplier bits Y m+1, Y m and Y m-1.

Table 7. Truth table of Two MUX- NAND Design

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

Neg, SFT and ADD are the control signals. U is an intermediate signal added to get the

desired operations using the input signals Y m+1, Y m and Y m-1. The Neg signal is same as the

input signal Y m+1 and it shows whether the partial product is positive or negative. SFT signal

is the shift signal used to select between data inputs Xn and Xn-1 where Xn-1 is the shifted

version of Xn. When SFT = 0 Xn is passed down the MUX and when SFT = 1 Xn-1 is passed

down the MUX. In the truth table SFT = 1 for Y= 000 and 111 even though no shifting

operation is needed for these combinations. This is done to get the XNOR implementation of

 26

SFT signal. But this will not hurt the encoding process since it is blocked at the second MUX

level on the selector logic. SFT signal also determines the selection of X or 2X operation. The

ADD signal is active when the addition process takes place. The ADD signal can be

configured to determine the other operations like 0, ±X and ±2X. When ADD=0, PPn inhibits

the addition. When ADD=1, ±X and ±2X are produced as PPn. The schematic diagram of the

design is in Figure 17.

Ym+1

Ym

Ym-1

Neg

ADD

SFT
10

Xn-1Xn

Neg

1 0

SFT

U

PPn

Ym+1

Ym

Ym-1

Neg

ADD

SFT
10

Xn-1Xn

Neg

1 0

SFT

U

PPn

MUX

M

MUX

Figure 17. Block Diagram of Two MUX- NAND Design

The SFT signal is obtained by the XNOR operation of Y m and Y m-1. The U is an intermediate

signal obtained by the XNOR operation of Y m and Y m+1 . The ADD signal is easily generated by

NAND operation of U and SFT. ADD signal selectively outputs the PPn. For contiguous number

of ones and zeros, the ADD signal will be zero thus outputting a zero as PPn or one otherwise.

 27

The XOR in the PPG is used to selectively complement the signals. The XOR in the PPG is used

to complement the signals whenever necessary. U and SFT signals are obtained by the XOR-

XNOR operation [8] of Y m and Y m+1 and Y m and Y m-1 respectively. The implementation of Two

MUX- NAND Design in pass logic circuit is shown in Figure 18.

Figure 18. Two MUX- NAND Design using pass logic principles

The partial product generation is simplified using these encoded signals. For example,

when Y = 010, SFT = 0 and it selects Xn data from MUX1 and it passes through the XOR gate.

The XOR gate will complement the signal only if Neg = 1. At this instant ADD = 1 and Xn is

obtained at the output. The output is obtained only when ADD signal is 1. SFT, ADD and Neg

signals together determine whether 0, ±X or ±2X should be produced at the output. In this

implementation XOR-XNOR circuit is used to generate control signals. MUX, NAND and XOR

are implemented using transmission gates. So a fully restored output is obtained. The transistor

Y m Y m - 1

Ym Y m - 1

Y m
Ne

Y m+1

Y m Y m+1

UU ’
U’

Ne
M

Xn-1

M

Ne

M

0

P

P

SFT

Y m Y m - 1

Ym Y m - 1

Y m
Neg

Y m+1

Y m Y m+1

UU ’
U’

SFT
SFT

ADD

Xn
Neg

M
Xn-1

M

Neg

M
SFT

SFT

0
PPn

P

 28

count for the Booth encoder is 17 and the selector is 15. When compared with Cho’s 20

transistors for selector part we saved 5 transistors for one bit. So for a 64 x 64 bit multiplier we

saved 320.

4.3 Three MUX - XOR Design:

 This design uses the input signals Y m+1, Y m and Y m-1 to generate three control signals

which generates the partial products.

Table 8. Truth Table of Three MUX- XOR Design

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

0

0

0

1

1

1

0

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

0

0

1

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

0

0

1

V

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

0

0

1

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

0

0

0

1

1

1

0

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

0

0

1

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

0

0

1

V

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

1

1

1

1

0

ADD

1

0

0

1

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

 The Neg signal determines whether the partial product is negative or positive. The SFT

signal is the shift signal used to determine the selection of X or 2X operation. V is an intermediate

signal generated for ADD signal. ADD signal is the signal which is active wherever the addition

 29

takes place. It is also the final control signal which selects operations like 0, ±X and ±2X. The

schematic diagram of the design is shown in Figure 19.

Xn Xn-1Ym-1

Ym

Ym+1

ADDNeg

Neg

0 1

1

0

1 0

Neg
PPn

V

SFT
Xn Xn-1Ym-1

Ym

Ym+1

ADDNeg

Neg

0 1

1

0

1 0

Neg
PPn

V

SFT

MUX

M

MUX

Figure 19. Block diagram of Three MUX- XOR Design

The Neg signal is same as Y m+1. The SFT signal is produced as an XNOR function of

Y m and Y m-1. The V signal is generated as the MUX output using inputs Y m and Y m-1’. It is then

XORed with Neg to get ADD signal which selectively outputs the data. Xn and Xn-1 are the data

inputs. PPG consists of two MUX and a XOR. The XOR in the PPG is used to complement the

signals whenever necessary. M is the output from the first MUX. In the design these components

 30

are implemented using pass logic principles. SFT and XOR signals are implemented as feed back

circuit [8].

Figure 20. Pass logic implementation of Three MUX- XOR Design

Using these encoded signals, the partial products are simplified. For example, when SFT

is 0 or 1 the signals are obtained at the output of the MUX1 and it is complemented with the Neg

signal. But only when ADD signal is 1, then output we will get the ±X or ±2X according to

whether the current Shift signal is 0 or 1, otherwise no operation is performed and zero will be

the output. Here the MUX and XOR are implemented using transmission gates. So a fully

restored output is obtained. The transistor count for the Booth encoder is 18 and the selector is

13. Since there will be 32 pairs of selector part this will reduce the hardware and power

consumption to a large extend when compared with Cho’s and other researchers work.

Ym+

Y

Ne
Y

Y - 1

Y
Y - 1

X

Ne

Ne

M

Ne
X -1

ADD

Neg ’

Ne ’

Ne

M

AD ’

Ym+1

Ym

Neg
Ym

Ym - 1

Ym
Ym- 1

SFT
SFT

X

V ADD

Neg

Neg

M

Neg
Xn-1

SFT

M
Neg’ SFT

PPn

SF Neg

Neg’
SFT

SFT

ADD

ADD ’

 31

4.4 MUX- NAND Design:

In the MUX- NAND design, extra control signals, U and ADD are added to get the

desired operations using the input signals Y m+1,Y m and Y m-1.

Table 9. Truth table of MUX – NAND Design

1

1

1

1

0

0

0

0

Neg

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

W

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

1

1

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

W

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

1

1

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

The SFT signal is the shift signal used to determine the selection of X or 2X operation. U

and SFT signals are obtained by the XOR-XNOR operation [8] of Y m and Y m+1 and Y m and

Y m-1 respectively. The W signal can be configured to determine the other operations like 0, ±X

and ±2X. The schematic diagram of the design is shown below:

 32

10

Xn-1Xn

Ym+1

Ym

Ym-1

Neg

ADD

SFT

Neg

ADD’

PPn

SFT

U

10

Xn-1Xn

Ym+1

Ym

Ym-1

Neg

ADD

SFT

Neg

ADD’

PPn

SFT

U

MUX

M

Figure 21. Block diagram of MUX – NAND Design

The Neg signal tells us whether the operation is positive or negative and it is same as

Y m+1. The ADD signal is obtained by NAND operation of U and SFT. The ADD signal generates

the PPG output. The XOR in the PPG is used to complement the signals whenever necessary.

 33

Figure 22. MUX- NAND Design using pass logic

 The partial products are simplified using these encoded signals. For example, when SFT

is 0 or 1 the signals are obtained at the output of the Mux1 and it is complemented with the Neg

signal. But only when ADD signal is 1, the enable pin will be active and it passes the XOR

output through it. When the enable pin is 0 then the ADD’ signal will be active which triggers the

nMOS and as a result a good 0 will pass as the output. Thus the various operation 0, ±X or ±2X

are obtained by enabling and disabling the enable pin. Here the last transmission gate and the N-

type transistor form the enable pin. When ever the ADD signal is one the enable pin becomes

active otherwise the ADD’ will trigger the n-type transistor and it will pass a good zero to output.

The Booth Encoder part will count to 17 and the selector part as 14 transistors. So the total will

be 31 i.e. 9 transistors less than other researcher’s work.

Ym Ym-1

Ym Ym-1

Ym

Neg
Ym+1

Ym
Ym+1

UU’
U’

SFT
SFT’

SFT’

ADD

SFT

Neg
M

Xn-1

Xn

M’

M

Neg

SFT

PPn

ADD

SFT’

 34

4.5 MUX- AND Design:

In this design, U and W are the intermediate signals, to get the desired operations using

the input signals Y m+1, Y m and Y m-1.

Table 10. Truth table of MUX– AND Design

1

1

1

1

0

0

0

0

Neg

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

W

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

1

1

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

W

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

OutputsInputs

1

1

1

1

0

0

0

0

Neg

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFTY m-1YmY m+1

1

1

1

1

0

0

0

0

Neg

1

1

0

1

1

0

0

0

0

1

1

U

10111

0-x011

0-x101

1-2x001

12x110

0x010

0x100

10000

SFT

Operation

Y m-1YmY m+1

OutputsInputs

The SFT signal is the shift signal used to determine where there is any shifting in the

multiplication process. SFT also selects the data input according to whether it is 0 or1. The W

signal can be configured to determine the other operations like 0, ±X and ±2X.

 35

Ym+1

Ym-1

Neg

W

SFT
10

Xn-1Xn

Neg

U

SFT

PPn

Ym+1

Ym-1

Neg

W

SFT
10

Xn-1Xn

10

Xn-1Xn

Neg

U

SFT

PPn

MUX

M

Figure 23. Block Diagram of MUX- AND Design

The Neg signal tells us whether the operation is positive or negative and it is same as

Y m+1. The W signal is obtained by AND operation of U and SFT. The XOR in the PPG is used to

complement the signals whenever necessary. Xn and Xn-1 are the data inputs. M is the output

signal from MUX. The partial product generations are simplified using these encoded signals.

The W signal is fed to the NOR gate where the output ±X or ±2X is available only when W signal

is 0 which also depends on whether the current SFT signal is 0 or 1, otherwise no operation is

performed and zero will be the output. The MUX- AND design in pass logic circuit is shown in

Figure 24.

 36

Figure 24. MUX- AND Design using pass logic implementation

Here the mainly the feed back circuit [8] of XOR-XNOR combination is used. MUX,

AND and NOR are implemented by using transmission gates. So a fully restored output is

obtained. The transistor count for the Booth encoder is 16 and the selector is 13. When compared

with Cho’s 20 transistors for selector part we saved 7 transistors.

 This section discussed various Booth encoder and selector design and all these designs

had total number of transistors count less than the published works.

Y m Y m -1

Y m Y m -1

Y m

Ne
Y m+

Y m
Y m+1

U

SFT

W

X n-1

X

P ’
P

NegM

M
Neg

Xn

Y m Y m -1

Y m Y m -1

Y m

Neg
Y m+

Y m
Y

U

SFT

X n-1

P ’

PPn

SFT

SFT

P

M

M

SFT
U

 37

CHAPTER 5. COMPRESSION MODULE

 The next step in the multiplication process is the addition of the partial products. For this

purpose carry save adders or generally called Wallace trees are used. The basic idea behind this

process is as follows:

• Use only half adders in the first row (no partial product reduction)

• Reduce the partial product from eight to seven with the second row

• Reduce the partial products from seven to six with the third row

• Continue this reduction process until there are only two final partial products

Each reduction step (except the first non-reduction step) is performing by reducing the top

three partial products to two partial products with an adder row. The rest of the partial products

are left alone until the next reduction step.

 5.1 Conventional 3:2 compressors:

The conventionally used compressors are 3:2 compressors where there are three inputs and

two outputs.

Z

Figure 25. Block Diagram of CSA [4]

YX

CS

ZYX

CS

CSA

 38

In the design of 64×64-bit multiplier, the 3:2 compressors output is shown as a tabular

method in Table 11.

Table 11. 32 input Wallace Tree for 64 bit operands using 3:2 Compressors

2111122……….222222

2111333……….333331

2113444……….444421

2134555……….55553

2347777……….77752

25910101010……….10101041

4121515151515……….1515113

12222222222222……….222210

32323232323232……….3232

01234567….6263

2111122……….222222

2111333……….333331

2113444……….444421

2134555……….55553

2347777……….77752

25910101010……….10101041

4121515151515……….1515113

12222222222222……….222210

32323232323232……….3232

01234567….6263

 In Wallace trees, we reduce the number of operands at the earliest opportunity, i.e., if

there are m bits in a column, we immediately apply m/3 full adders to that column. Since the

number of bits to sum has been reduced by three fold at each level, the depth of the Wallace tree

is O (log N), where N is the initial number of bits. This tends to minimize the overall delay by

making the final CPA as short as possible. Here the total number of full adders is 1910.

The delay of the fast adder is not a smoothly increasing function of the word width. In

Dadda trees, we reduce the number of operands to the next lower number using the fewest

number of full adders and half adders. The Table 12 below shows the maximum numbers of

inputs for an h-level carry save adder tree.

 39

Table 12. Comparing the delays of CSA using 3:2 and 4:2 compressors [4]

Number of Operands

Number of Levels

using (3,2)

Number of Levels

using (4:2)
Equivalent Delay

3

4

5-6

7-8

9

10-13

14-16

17-19

20-28

29-32

33-42

1

2

3

4

4

5

6

6

7

8

8

1

1

2

2

3

3

3

4

4

4

5

1.5

1.5

3

3

4.5

4.5

4.5

6

6

6

7.5

 From the table shown above, we can see that 7, 8, or 9 operands require only 4 CSA

levels. As a result, the cost of the carry save adders can be reduced and there will be an optimum

view on the point of hardware.

The carry save adders redone by means of Dadda’s strategy is given as Table 13..

 40

Table 13. 32 input Dadda Tree for 64 bit operands using 3:2 Compressors

3

 By using Dadda tree the number of Full Adders (FA) is reduced to 1890. But height of

the tree is 8. The height of the Wallace tree can be further reduced by using the 4:2 compressors.

So in this work, 4:2 compressors are used to achieve hardware reduction.

 5.2 4:2 Compressor:

 To increase the speed of the partial product summation we must not only reduce the

number of levels, but also assure that all the signals originated in the carry save adders of the

lower positions (i = 1,..,N-1) do not contribute to the delay of the signal in the position N. Hence

for this thesis the number of FAs is reduced by using 4:2 compressors.

2111 112……….22 22 22
2113 233……….33 33 31
2134 344……….44 44 4

2346 666……….66 66 2

2579 999……….99 9 5 1

4811111……….1114
8111111……….1111

2222222……….224

3333333……….33

0124567….66 3 6 …. 7 6 5 4 2 1 0

3 3 …. …… 3 3 3 3 3 3 3

4 2 2 …. …… 2 2 2 2 2 2 2

2111 12……….22 22 22
2113 233……….33 33 31
2134 344……….44 44 4

2346 666……….66 66 2

2579 999……….99 9 5 1

4811111……….1114
1 1 1 1 …. …… 1 1 1 1 1 1 8

6

 41

Figure 26. 4:2 Compressor [7]

A 4:2 compressor consists of five inputs and three outputs and can be implemented with

two stages of full-adders connected in series as shown in Figure 24. Here we get separate sum

and carry vectors as the output. The Wallace tree with 4:2 compressors is shown in the Table 14.

Table 14. 32 input Wallace Tree for 64 bit operands using 4:2 Compressors

Here the number of levels is reduced to half. Here the number of full adders is reduced to

960. Moreover, an adder tree using 4:2 compressor will have a more regular structure and lower

delay than a CSA using 3:2 compressor. So here the delay is only 1.5 times when compared with

3:2 compressors (Refer to Table 11). So the delay for 64×64-bit multiplier using 3:2

221 1 222…….222 1 1

224 4 444…….444 4
268 8 888…….886 2
816116 16 1616…….118
323232 32

3
32 3232…….332

012 4567….663

221 1 222…….222 1 1

224 4 444…….444 4
268 8 888…….886 2
816116 16 1616…….118
323232 32

3 2 6 …. 7 6 5 4 1 0

32 32 …. 32 323 …

63

 42

compressors is 8, whereas, the delay for 64×64-bit multiplier using 3:2 compressors is only 6.

This Wallace tree principle can be further used to implement a 64×64-bit multiplier. 64×64-bit

multiplier implementation using 4:2 compressor is shown in Figure 27.

0

0,63
0,63

1,64
1,641,64

2,651,642,65

1,64
1,65

1,65
2,66

2,662,67

CPA

K+1

K

K K K K K K K

K
K

K

K

K

K

0

0,63
0,63

1,64
1,641,64

2,651,642,65

1,64
1,65

1,65
2,66

2,662,67

CPA

K+1

K

K K K K K K K

K
K

K

K

K

K

1

Figure 27. 4:2 CSA tree for the Wallace tree in Table 14.

 The Wallace tree implemented using 4:2 compressors gave a regular structure since it’s a

multiple of four. Each block represents a k bit wide. The outputs coming from each block are the

sum and the carry vectors. The left arrow used in the Figure 27 indicates the shifting of carry

vector. The blocks are arranged in the order of weight. The signals can be extracted wherever

possible. These vectors are then merged in the carry propagation adder.

 43

The gate level implementation of 4:2 compressor in shown in Figure 28. The direct

implementation of 4:2 compressor using CMOS logic design required seven transistors to

implement each XOR gate [7]. Furthermore, the inverters used in the design increased the

switching activity and hence the power consumption too.

Figure 28. 4:2 Compressors using CMOS logic [8]

5.3 XOR-XNOR Implementation of 4:2 Compressors:

For achieving low power consumption and area, a 4:2 compressor developed using pass

logic principles using XOR-XNOR combination[8] The sum and carry expressions are given by:

S=H ⊕ Cin and Cout = H’A+H Cin’ where H= A ⊕ B. The pass logic design equations for the sum

and carry outputs are given as:

 44

S = H’(Cin) + H(Cin’)

C = H’(A) + H(Cin’)

 The block diagram of the 4:2 compressors using the pass logic principle is shown in

Figure 29.

Figure 29. Block Diagram of 4:2 Compressor [7]

 The equations for sum and carry are rewritten as

S = H3’(Cin) + Cin (H3’) + Cin’(H3)

C = H3’(X4) + H3 (Cin)

where H3 = X1 ⊕ X2⊕ X3 ⊕ X4.

The diagram for the 4:2 compressors using XOR-XNOR cell is shown in Figure 30.

 45

Figure 30. 4:2 compressors using XOR-XNOR cell [7]

 The 4:2 compressor is constructed by coupling two circuits by feedback to generate both

XOR and XNOR functions. This circuit saves two transistors when compared with its

conventional design. In this circuit, due to the regenerative feedback introduced by the pull-down

(nMOS) and the pull-up (pMOS) transistors, the threshold voltage drop is completely eliminated

from both the outputs, thereby providing the full voltage swing at the outputs under all input

conditions. But this feedback is going to adversely affect the maximum operating frequency of

the circuit. Also for proper functioning of the circuit under various operating conditions the

transistor sizes must be carefully chosen.

The main advantages of this circuit are listed below.

• There is no direct path from the power supply to the ground for any input combination,

there by eliminating the short-circuit power component.

 46

• The total number of capacitances generated for this cell is less than that of all the other

adders.

• Reliable operation of the circuit is guaranteed when the supply voltage is scaled down.

This 4:2 compressor designed with low power pass logic based XOR-XNOR combination

requires only 28 transistors while the conventional design takes up to 40 transistors. Moreover,

due to the presence of both XOR and XNOR outputs, the carry generation multiplexers do not

need any extra inverters and none of the inputs need any inverters. Furthermore, it provides full

voltage swing at all nodes in the circuit.

5.4 Carry Propagation Adder:

 The final step in completing the multiplication procedure is to add the final sum and carry

vectors in the final adder. In this work, conditional select adders are used. The adder is an XOR

based implementation which minimizes gate counts and critical path delay. The following

expressions describe how to determine a sum and a carry using XOR function.

Sum =A ⊕ B ⊕ C

Sum = if ((A ⊕ B) = = 1) then Sum = Cin’;

 else if ((A ⊕ B) = = 0) then Sum = Cin

Carry = if ((A ⊕ B) = = 1) then Cout = Cin;

 else if ((A ⊕ B) = = 0) then Cout = A;

The block diagram of the conditional select adder is given in Figure [31]

 47

XOR

A

B A

Cin

SUM

Cout
0

1

Cin’

Cin
0

1

XOR

A

B A

Cin

SUM

Cout
0

1

Cin’

Cin
0

1

MUX

MUX

Figure 31. Conditional select adder

 The adder consists of only one XOR gate and two Multipliers. The various carry

propagation adders used in the existing designs are having more critical path delay than Cho’s

design. So in this work, we have adopted Cho’s carry propagation adder for better results.

According to Cho’s design, fourteen XOR based conditional select adder (XCSA) blocks and a

separated carry generation block were combined to make the carry propagation adder. Each

modularized XCSA consists of an 8-bit sum generator and a carry generator. The carries of each

XCSA are transmitted to the block carry generation block (BCGB).

 48

Cin

BC0

Figure 32. Conditional Select Adder Block [1]

 The XCSA has only 10 gate delays when compared with other designs. Goto and

Ohkubo’s work explained earlier in the related works are having 12 and 13 respectively.

 49

CHAPTER 6. RESULTS

6.1 Comparison of Booth Encoders and selectors

 The comparison of the proposed designs of the Booth encoder and the selector logic with

the existing designs is shown in Table 15. The novel designs of Booth encoder and the selector

show substantial reduction in hardware.

Table 15. Comparison of Booth encoders and selectors

Ohkubo,

et al.,

Work

[2]

Goto,

et al.,

Design

[3]

Cho,

et al.,

Design

[1]

Proposed

Two

MUX-

NAND

Design

Proposed

Three

MUX-

XOR

Design

Proposed

MUX-

NAND

Design

Proposed

MUX –

AND

Design

Critical Path

(gate)
6 5 3 4 4 4 4

Booth

Encoder

(transistor

count for one

bit pair)

30 36 20 17 18 17 16

Selector

(transistor

count for one

bit)

18 32 20 15 13 14 13

Total 48 68 40 32 31 31 29

 50

 The proposed designs use only 13 transistors when compared to 18 to 32 in the existing

designs for selector logic for one bit. Since encoder and selector part occupies one third of the

entire multiplier architecture, considerable reduction of hardware can be achieved through these

proposed designs. Comparing MUX – AND Design with Goto, et al., Design, 20 transistors were

saved for one bit pair. The proposed designs saved 2 to 30 transistors when compared with the

published Booth encoders. Similarly, for the selector logic 5 to 19 transistors were saved for one

bit when matching with the existing designs. When comparing with Cho’s work for Booth

encoder, for one bit pair MUX- AND Design saved 4 transistors. So for a 64 x 64 bit multiplier,

there are 32 pairs of Booth encoder and hence a total of 128 transistors are saved. Similarly, with

the selector logic, 7 transistors are saved for one bit pair. So for 64 x 64 bit multiplier, there are

64 selector logic parts and a total of 448 transistors are saved. So a total of 576 transistors are

saved for one 64 x 64 bit multiplier.

0

10

20

30

40

50

60

70

80

Ohkubo, et.al. Goto, et. al Cho, et. al I - Two Mux-
NAND Design

II - Three Mux-
XOR Design

III - Mux-
NAND Design

IV- Mux – AND
Design

Design Names

N
um

be
r o

f T
ra

ns
is

to
rs

Booth Encoder Selctor Total

Figure 33. Comparison of Proposed Booth encoder and selector logic designs with existing

designs

 51

 Figure 33 shows that the proposed designs give an improvement in the hardware

reduction when compared with the existing designs.

0
1
2
3
4
5
6
7
8
9

10

Ohkubo et al.,
Design

Goto et al.,
Design

Cho et al.,
Design

I - Two Mux-
NAND Design

II - Three Mux-
XOR Design

III - Mux-
NAND Design

IV- Mux –
AND Design

Designs

C
rit

ic
al

 P
at

h
(g

at
e)

Series1

Figure 34. Comparison Chart for Delay

 The chart shown in Figure 34 gives the comparison of proposed designs delay with the

existing designs. It can be seen that the delay is uniform throughout the four proposed designs.

The chart also shows reduction in gate delay by two and one units when compared with Ohkubo

and Goto’s designs.

 52

CHAPTER 7. CONCLUSION

Multiplication is a frequently encountered operation, especially in signal processing

applications. So the development of a multiplier is vital for applications in portable mobile

devices such as personal multimedia players, cellular phones, digital cam coders and digital

cameras. Many designs have been proposed for Booth encoder and selector logic using CMOS

over the past decades. But those designs when implemented in CMOS resulted in higher

transistor count. In our research, pass logic was found to be more efficient than CMOS logic.

Booth encoder and selector logic occupies one third of the entire multiplier architecture. So

careful optimization of these logic parts will result in a considerable reduction of hardware.

In this work, we proposed four new designs for Booth encoder and selector logic with

less number of transistors than the published ones. The architecture was based on a modified

Booth-encoding scheme, which reduced the number of partial-products by half compared to a

traditional implementation. Using the pass logic based implementations; the number of

transistors was reduced, resulting in hardware-reduced and consequently power-aware designs.

The proposed Booth encoder and selector logic can be successfully used to build a 64 x 64 bit

multiplier. Our new designs are fully scalable without the loss of merits.

The proposed designs saved up to 30 transistors when compared with the published

Booth encoders. Similarly, for the selector logic 19 transistors were saved for one bit when

matching with the existing designs. Critical path is uniform throughout the four proposed

designs. The proposed designs gate delay was reduced by two and one units when compared with

Ohkubo and Goto’s designs. The gate level implementations of these designs were tested for

functionality using LoKon software. The pass logic implementation of all the gates (XNOR,

 53

XOR, NAND, NOR, AND, XOR-XNOR combination gate) and MUX used in these circuits

were simulated and verified for functionality using TopSPICE.

7.1 Future Work

 The present work on the new multiplier architecture can be further extended in various

directions.

• The design can be simulated to check the power consumption.

• Other methods can be incorporated with this to further improve the delay.

• In order to completely analyze the performance, the circuit can be extended to chip level

where the delays due to wiring, interconnects and PAD are included.

 54

CHAPTER 8. BIBLIOGRAPHY

1. Ki-seon Cho, Jong-on Park, Jin-seok Hong, Goang-seog Choi, “54x54-bit Radix-4

Multiplier based on Modified Booth Algorithm,” ACM, Proceedings of the 13th ACM

Great Lakes symposium on VLSI, pp. 233-236, April 2003

2. N. Ohkubo, et. al., "A 4.4ns CMOS 54x54-b Multiplier Using Pass-Transistor

Multiplexer", IEEE J. of Solid-State Circuits, vol. 30, no. 3, pp. 251-257, Mar., 1995

3. G. Goto, et. al., "A 4.1-ns Compact 54×54-b Multiplier Utilizing Sign-Select Booth

Encoders", IEEE J. of Solid-State Circuits, vol. 32, no. 11, pp. 1676-1681, Nov. 1997

4. Computer Arithmetic Algorithms by Israel Koren, 2nd Edition, A K Peters, Natick,

Massachusetts, 2002

5. Rafael Fried, “Minimizing Energy Dissipation in High-Speed Multipliers”, ACM,

International Symposium on Low Power Electronics and Design, pp. 214-219, 1997

6. Johann Groβschadl, “A Unified radix-4 Partial Product Generator For Integers And

Binary Polynomials”, IEEE Symposium on Circuits and Systems, vol. 3, pp. 567-570,

May 2002

7. Damu RadhaKrishnan, “A New low Power CMOS Full Adder”, IEE Electronics Letters

vol.35, No. 21, pp. 1792-1794, October 1999

8. D. RadhaKrishnan and A. P. Preethy, “Low Power CMOS Pass Logic 4-2 Compressor

for High Speed Multiplication”, IEEE Midwest Symposium on Circuits and Systems,

vol. 3, pp. 1296-1298, August 2000

 55

APPENDIX

 The proposed designs are constructed and functionally simulated in gate level using the

software LoKon V2.4. For all proposed designs two snap shots for selected operations (X, -X, 2X,

-2X, 0) are shown. The red line indicates logic one and black line indicates logic zero.

Two MUX- NAND Design:

Output PPn: X

Figure A-1. Snap Shot Showing X operation

 In Figure A-1 inputs Ym+1 = 0, Ym = 0 and Ym-1 = 1. The inputs Xn and Xn-1 are given one

and zero respectively. SFT becomes 0 and it selects the data input Xn as one from the MUX on

the top. Since Neg=0 , Xn is passed as one through the XOR gate uncomplemented. Since ADD

 56

signal at this instant is one, the MUX at the bottom outputs PPn as Xn in logic one state (Refer to

Table 28).

Output PPn: -X

Figure A-2. Snap Shot Showing -X operation

The inputs Ym+1 = 1, Ym = 0 and Ym-1 = 1 are shown in Figure A-2. The inputs Xn and Xn-1 are

given one and zero respectively. SFT becomes 1 and it selects the data input Xn as one from the

MUX on the top. Since Neg= 1, Xn is complemented and passed as zero through the XOR gate.

Since ADD signal at this instant is one, the MUX at the bottom outputs PPn as Xn in logic zero

state (Refer to Table 28).

 57

Three MUX- XOR Design:

Output PPn: 2X

Figure A-3. Snap Shot Showing 2X operation

The inputs Ym+1 = 0, Ym = 1and Ym-1 = 1 are shown in Figure A-3. The inputs Xn and Xn-1 are

given zero and one respectively. SFT becomes 1 and it selects the data input Xn-1 as one from the

MUX on the top. Since Neg= 0, Xn-1 is uncomplemented and it passes as one through the XOR

gate. Since ADD signal at this instant is one, the MUX at the bottom outputs PPn as Xn-1 in logic

one state (Refer to Table 29).

 58

Output PPn: -2X

Figure A-4. Snap Shot Showing -2X operation

The inputs Ym+1 = 1, Ym = 0 and Ym-1 = 0 are shown in the Figure A-4. The inputs Xn and Xn-1

are given zero and one respectively. SFT becomes 1 and it selects the data input Xn-1 as one from

the MUX on the top. Since Neg= 1, Xn-1 is complemented and passed as zero through the XOR

gate. Since ADD signal at this instant is one, the MUX at the bottom outputs PPn as Xn-1 in logic

zero state (Refer to Table 29).

 59

MUX -AND Design

Output PPn: Zero

Figure A-5. Snap Shot Showing Zero operation

The inputs Ym+1 = 0, Ym = 0 and Ym-1 = 0 are shown in Figure A-5. The inputs Xn and Xn-1 are

given one and one respectively. SFT becomes 1 and it selects the data input Xn-1 as one from the

MUX on the top. Since Neg= 0, Xn-1 is uncomplemented and it passes as one through the XOR

gate. Since ADD signal at this instant is zero, the MUX at the bottom outputs logic zero as PPn

(Refer to Table 30).

 60

Figure A-6. Snap Shot Showing Zero operation

The inputs Ym+1 = 1, Ym = 1 and Ym-1 = 1 are shown in Figure A-6. The inputs Xn and Xn-1 are

given one and one respectively. SFT becomes 1 and it selects the data input Xn-1 as one from the

MUX on the top. Since Neg= 1, Xn-1 is complemented and it passes as zero through the XOR

gate. Since ADD signal at this instant is zero, the MUX at the bottom outputs logic zero as PPn

(Refer to Table 30).

Due to the unavailability of transistors in LoKon software, the final MUX- NAND design

was not able to simulate.

 61

Pass Logic Implementation of the components using TopSPICE

 The various components in the proposed designs were implemented in pass logic and

were simulated using TopSPICE software. Due to the number of transistor limit in the demo

version of the software, the entire circuit was not able to simulate. The snap shots of the various

components simulated using software and its graphical output is shown.

AND Gate

 In MUX-AND design we use AND gate to selectively output the data inputs. So AND

gate implemented in pass logic was simulated in TopSPICE. The technology used was 0.25µ and

the voltage was 3V. The pass logic equation for AND gate is given below.

 Y = A’ (0) + A (B)

Figure A-7. Pass Logic Implementation of AND Gate

 62

Figure A-8. Waveform of AND Gate from TopSPICE

NAND Gate

Figure A -9. Pass Logic Implementation of NAND Gate

 63

In Two MUX-NAND and MUX- AND designs, we used NAND gate to selectively output

the data inputs as the PPn. The NAND gate simulated in TopSPICE is shown in Figure A -9. The

technology used was 0.25µ and the voltage was 3V. The pass logic equation for NAND gate is

given below.

Y = A’ (1) + A (B’)

Figure A-10. Waveform of NAND gate from TopSPICE

 64

NOR Gate

In MUX-AND design NOR gate was used to selectively output PPn. So NOR gate

implemented in pass logic was simulated in TopSPICE. The technology used was 0.25µ and the

voltage was 3V. The pass logic equation for NOR gate is given below.

Y = A’ (B’) + A (0)

Figure A-11. Pass Logic Implementation of NOR Gate

 65

Figure A-12. Waveform of NOR gate from TopSPICE

XOR-XNOR Combination Gate

 XOR-XNOR combination gate was the main component used in the designs to reduce the

number of transistors. In this circuit, without using the transmission gate the fully restored output

was obtained by the regenerative feedback circuit. In all the four proposed designs, this circuit

was used. This was simulated and the graph with separate plots for XOR and XNOR gates are

shown below. The technology used is 0.25 µ and the voltage supply was 3V. The pass logic

expression for XOR-XNOR combination gate is given below.

 XOR = A’ (B) + B’ (A) + AB (0)

 XNOR = A (B) + B (A) +A’ B’ (1)

 66

Figure A-13. Pass Logic Implementation of XOR-XNOR Combination Gate

 67

Figure A-14. Waveform of XOR-XNOR Combination gate from TopSPICE

MUX Gate

In all the four proposed designs Mux was used to used to selectively pass zero or

(±X, ±2X). In order to obtain a fully restored output, transmission gate was used. Transmission

gate was implemented by parallel connection of nMOS and pMOS transistor. The technology

used is 0.25 µ and the voltage supply was 3V. The pass logic expression for XOR-XNOR

combination gate is given below.

 Y = S’ (A) +S (B)

 68

Figure A-15. Pass Logic Implementation of MUX

 69

Figure A-16. Waveform of MUX from TopSPICE

