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STUDIES OF FACTORS AFFECTING RECURRENCE OF MYOMA AFTER 
MYOMECTOMY 

 
By 

 
Lu Wang 

 
Under the director of Yu-Sheng Hsu 

 

         This study is performed to evaluate the factors associated with the recurrence of myoma 

after Myomectomy. Identifying the factors of myoma recurrence will assist the patient and 

her gynecologist in deciding the most appropriate method of treatment according to her 

specific social, medical and emotional needs. Multiple logistic regression is used to 

determine the factors affecting the recurrence. ‘Age of Surgery’, ‘Tumor Size’, ‘Pelvic Pain” 

and the interaction between the ‘Age of Surgery’ and ‘Tumor Size’ are significant in the final 

model.  Kaplan-Meier method is used to calculate the cumulative recurrence rate. The 5 year 

cumulative recurrence rate is 24.32% and the 10 year cumulative recurrence rate is 32.57%.  
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FACTORS AFFECTING RECURRENCE OF 

LEIOMYOMA AFTER   MYOMECTOMY

Chapter 1 

INTRODUCTION 

          Uterine myomas, more commonly called fibroids, are benign neoplasms of uterine 

smooth muscle. They are the most common pelvic tumors in women. In the United States, 

uterine myomas are a leading cause of hospitalizations for gynecologyic disorders unrelated 

to pregnancy and the most frequent reason for Hysterectomy, accounting for 33% of all such 

surgeries annually. In principle, the fibroid tumors can cause infertility, distorting the uterine 

cavity or occluding tubes and altering vascularization. Women with these tumors experience 

heavy period, menorrhagia, anaemia and pelvic pain. Ultrasound is generally been used to 

detect fibroids. It is a painless, safe and reliable way to assess the uterus, ovaries and to look 

for uterine fibroids. In this process, sound waves, not radiation, are used to create pictures of 

uterus. When the finding fibroids are small and cause no symptoms, no treatment is required. 

However, in presence of symptomatic or large fibroids, hysterectomy is the conventional 

treatment, which completely removes the uterus. It is recommended for women older than 40 

and women younger than 40 who have completed childbearing. Hysterectomy is the only 

treatment with the guarantees that there will be no recurrence of fibroids. The drawback is 

that after hysterectomy, there is an increased prevalence of problems related to sagging 

pelvic organs such as “dropped bladder” (in medical terms these are known as genital 

prolapse, such as vaginal vault prolapse, enterocele, cystocele and rectocele). These 

conditions may cause symptoms, such as urination and defection disorders, and may require 

surgical repair. Also it has been shown that after hysterectomy, women tend to enter 

menopause earlier, by as much as four years according to one study. On top of that, as more 
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women have become better informed on health issues recent years, they have sought 

treatments that preserve the pelvic organs, especially in the presence of a benign disease. In 

principle, many women are strongly opposed to the removal of any organs, genital or 

otherwise, unless absolutely necessary.  

Uterine fibroid embolization (also known as uterine artery embolization) represents a 

fundamentally new approach to the treatment of fibroids. Embolization is a minimally 

invasive means of blocking the arteries that supply blood to the fibroids. The procedure was 

first used in fibroid patients in France as a means of decreasing the blood loss that occurs 

during myomectomy. It was discovered that after the embolization, while awaiting surgery, 

many patient's symptoms went away and surgery was no longer needed. The blockage of the 

blood supply caused degeneration of the fibroids and this resulted in resolution of their 

symptoms. This has led to the use of this technique as a stand-alone treatment for 

symptomatic fibroids.        
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Figure 1: UAE: A tiny particle is injected through blood vessels to block the arteries                   
               supplying fibroids 
 

As of this time, approximately 2000 to 3000 patients have had this procedure world-

wide. The expected average reduction in the volume of the fibroids is 50% in three months, 

with reduction in the overall uterine volume of about 35%. The long-term outcome is not 

known, in that the arteries could reopen or collateral vessels could be recruited which might 

allow regrowth of the fibroids. Therefore, it is not yet known if the fibroids can regrow.  The 

large majority of the patients that had this procedure are finished with childbearing and so 

few women have tried to become pregnant after this procedure. Thus far, at least a dozen 

patients have become pregnant after this procedure worldwide. As the outcome of pregnancy 

following UAE is not known, the procedure is not recommended for women who plan to 

have children.   
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When the conditions occur as seeking for fertility, Myomectomy is considered. It is a 

surgical procedure that allows the gynecologist surgeon to remove the fibroids and preserve 

the fertility. There are three methods for Myomectomy: Hysteroscopy, which involves 

inserting a lighted viewing instrument through the vagina and into the uterus; Laparoscopy, 

which uses a lighted viewing instrument and one or more small cuts (incisions) in the 

abdomen; Laparotomy, which uses a larger incision in the abdomen. The method used 

depends on the size, location and number of fibroids. Hysteroscopy can be used to remove 

fibroids on the inner wall of the uterus that have not grown deep into the uterine wall, such as 

intracavitary myomas that are inside the uterus and submucous myomas that are partially in 

the cavity and partially in the wall of uteru. Laparoscopy is usually reserved for removing 

one or two fibroids, up to about 2 inches across, that are growing on the outside of the uterus, 

such as pedunculated myomas. Laparotomy is uses to remove large fibroids, many fibroids at 

once or fibroids that have grown deep into the uterine wall.  

 

 

 

 

 

 

 

 

   Figure 2: Types of fibroids are classified by their location. 
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Myomectomy requires more expertise and surgical skills than Hysterectomy; it is 

more likely to result in prolonged surgery, significant blood loss and other postoperative 

complications. Therefore, it is not surprising that the average gynecologist tends to offer 

hysterectomy as a treatment for fibroids, rather than Myomectomy. 

Myomectomy preserves the fertility for women, however, it has a big drawback: the fibroids 

may recur. Clinical studies have reported that the recurrence rates ranging from 5 to 30 %  

( Buttram & Reiter 1981) and the most updated paper showed 30% of recurrence rate. This 

wide range may be explained by different criteria used in diagnosis and deficiencies in long-

term follow-up. The effect of potential prognostic factors has still not been properly 

investigated.  

             Much research has been devoted to finding the factors affecting the recurrence after 

Myomectomy. A paper “Recurrence of fibroids after Myomectomy” published in 1991 

showed that there were no associations between risk of recurrence and age of the surgery or 

number of pregnancy before Myomectomy. It was also said that there was a steady increase 

in recurrence-ten years after Myomectomy and fewer recurrences in women who had had a 

single fibroid removed.  It also gave an explanation for the results: First, pregnancy may have 

a long lasting protective effect on the uterus that inhibits the growth of fresh fibroids. Second, 

women with small fibroids that have gone undetected at the time of surgery are both less 

likely to identifiable fibroids in the future. Third, women who have had one or more 

successful pregnancies after Myomectomy are more likely to use combined oral 

contraceptives. Another paper from Clinique Universitaire Baudeocque (Paris, France) 

published in year 2000 showed that Age, number of tumors are significant factors of 

recurrence; the pregnancy after Myomectomy is associated with a lower risk of recurrence 



 6

and it stated that the real risk of recurrence after Myomectomy is difficult to assess. A paper 

published in 1991 from several Docrots in Milan, Italy also found out that women gave birth 

to a child has a lower rate than those who did not; women with a single fibroid tended to 

experience a lower rate and the cumulative 10-year recurrence rate after Myomectomy was 

27% and the number of myomas removed at Myomectomy has been associated positively 

with the risk of recurrence. In 1998, “Recurrence rate after laparoscopic Myomectomy” was 

published and stated that out of 114 patients, the cumulative risk of recurrence rate was 

10.6% after 1 year, 31.7% after 3 years and 51.4% after 5 years; risk factors were number of 

myomas and depth of penetration.   

        A retrospective study of factors affecting recurrence after Myomectomy is conducted 

of 257 patients underwent Myomectomy from January 1st, 1992 to May 1st, 2007. All 

surgeries were done by one surgeon, Dr Hanafi.  

                                  

Sources of Data 

         Between 1992 and 2007, 257 women underwent Myomectomy with Dr. Hanafi at Saint 

Joseph Hospital. Patients’ surgery information has been collected from their charts and 

survey has been conducted through mails, phone calls and personal interview to get the 

patients’ pregnancy information after first Myomectomy. Due to the lack of participation of 

the survey and consequently censored at the time of their last follow-up visit, plus that the 

criteria at least one myoma is larger than 2cm,  out of the 257 patients, only 109 patients’ 

information were fully obtained at the cut off time May 1st 2007.  

          The patients’ data include BMI, their age at first Myomectomy surgery, number of 

pregnancy before the surgey, whether or not have had deliveries before the surgery, number 
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of myoma, the largest size of the myoma, willingness of conceive after the surgery, 

pregnancy after the surgery, five symptoms before the surgery (heavy period, irregular period, 

dysmen, dyspar, pelvic pain) and the response variable Recurrence.  The age of those 109 

patients is ranged from 23 to 50 and their average age is 36. The BMI is ranged from 16.91 to 

56.68 and has an average of 29.5.    

            Based on Dr. Hanafi 30 years of experience, BMI, willingness of conceive, size of 

tumor and the age at first surgery are clinically important. And the paper published before 

showed that the number of Myomas is the significant factor. BMI has been discreted into 

four groups: Less than 18.5-Light weight; Between 18.5 and 24.9-Normal Weight; Between 

25 and 29.9-Overweight; greater than 30-Obesity. Age and tumor size are discreted into three 

groups: 20-30; 30-40 and 40-50 for age and 2-4cm; 4-6cm and greater than 6cm. Graph these 

three discreted factors associate with their recurrence rate, interesting patterns can be seen. 

BMI Group BMI N Rec RR
Light Weight <18.5 2 1 50%

Normal 18.5-24.9 30 11 37%
Over weight 25-29.9 31 8 26%

Obesity >30 46 16 35%

 

BMI VS RR

20%
25%
30%
35%
40%
45%
50%
55%

<18.5 18.5-24.9 25-29.9 >30

Light Weight Normal Over weight Obesity

R
R

 

 Table1: BMI versus Recurrence Rate 
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           From the table1, it is surprising that the heavier the weight the lower the rate of 

recurrence.  And the lowest recurrence rate occurred at the Over weight group, which is 26%.  

 

Age Group N Rec RR
20-30 9 3 33%
30-40 77 30 39%
40-50 23 3 13%

 

 

Age VS RR

10%

15%

20%

25%

30%

35%

40%

20-30 30-40 40-50

Age 

R
R

 

 Table2: Age Groups versus BMI 

 

          The table 2 has shown increasing rate from 20-30 to 30-40 and decreasing rate from 

30-40 to 40-50. However, for the age group of 20-30, there are only 9 observations.  

 

Size Group N Rec RR
2-4 cm 59 24 41%
4-6 cm 27 8 30%
6+ cm 23 4 17%
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Tumor Size  VS RR

15%

20%

25%

30%

35%

40%

45%

2-4 cm 4-6 cm 6+ cm 

Size

R
R

 

 Table 3: Tumor Size versus Recurrence Rate 

 

             Table 3 has shown a linear relationship between the tumor size and the rate of 

recurrence. This indicates that as the tumor size gets larger, the rate of recurrence gets lower.  

 

Pregnancy Before VS RR

31%

32%

33%

34%

Yes No

Pregnancy

R
R

 

 Table 4: Pregnancy Before versus Recurrence Rate 

         Table 4 has shown that whether the patients have pregnancy before the first surgery 

does not make much difference. The recurrence rate for pregnancy before is 33% compare 

with non-pregnancy 32%. 



 10

 A classification table is made for the factor willingness of conceive.  

                                                Full Records On Patients 
                                                                  109  

                    Desire Pregnancy    ←    → NO Desire Pregnancy   
                                    65                                                           44 

                                    ↓                         ↓      
        ← →                   ←  → 

               Pregnancy    No Pregnancy                   Pregnancy      No Pregnancy      
                      8                      57                              5                      39 

                                  ↓         ↓            ↓         ↓  
              

Recurrence:         3                      22                           3                      8 

           With patients who desire pregnancy, the recurrence rate is 37.5% for those patients 

actually got pregnancy and 38.6% who did not get pregnancy. And among those patients who 

do not desire pregnancy, the recurrence rate is 60% for those who became pregnancy and 

20.5% who did not get pregnancy. And there were 38.5% of patients who desire to conceive 

had a recurrence and only 25% of those who did not desire to conceive experienced 

recurrence.  
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                           Chapter 2 

 
METHODOLOGY 

 
Method of Analysis 

 
          The data of patients’ consists primarily of dichotomous variables. Variables such as 

Pregnancy-before, willingness-to-conceive, whether or not having any symptoms, the 

response variable-recurrence is also a binary variable. Many different methods are available 

to analyze this data; however, for this study multiple logistic regression has been chosen as 

an optimal method to use for the dichotomous variables. The goal of the method is to select 

those variables that result in a best model to predict the factors that affecting the recurrence 

of Myomectomy.  

                         

Statistical Analysis 

 

         A univariate analysis was conducted on each of the independent variables to determine 

which variables were significant in predicting the recurrence after Myomectomy. Variables 

whose univariate test has a P-value < 0.25 is a candidate for the model along with all 

variables of known clinical importance. The 0.25 level is suggested to be used as a screening 

criterion for variable selection is based on work by Bendel and Afifi( 1977) on linear 

regression and on the work by Mickey and Greenland (1989) on logistic regression.  
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Label Test Chi-Square DF P> Chi-Square
BMI Likelihood Ratio 0.0012 1 0.9726
Age of Surgery Likelihood Ratio 5.1041 1 0.0239
Pregnancy Before Likelihood Ratio 0.9364 1 0.3332
Delivery Likelihood Ratio 0.0591 1 0.8079
Number of Myoma Likelihood Ratio 0.0027 1 0.9585
Tumor Size Likelihood Ratio 7.3906 1 0.0066
Single Tumor Likelihood Ratio 0.0007 1 0.9784
Willing To Conceive Likelihood Ratio 2.1917 1 0.1388
Pregnancy After Surgery Likelihood Ratio 1.1 1 0.2943
Heavy Period Likelihood Ratio 0.3278 1 0.5669
Irregular Period Likelihood Ratio 0.2353 1 0.6276
Dyspar Likelihood Ratio 0.002 1 0.9643
Dysmen Likelihood Ratio 1.3333 1 0.2482
Pelvic Pain Likelihood Ratio 1.0118 1 0.3145

   

      Table 5: Results from Univariate Test.  

          Another method to variable selection is to use a stepwise method in which variables 

are selected from the model in a sequential fashion based solely on statistical criteria. 

Stepwise selection of variables is widely used in linear regression. All major software 

packages have either a separate program or an option to perform this type of analysis for the 

logistic regression. 

 

Parameter DF Estimate Standard 
Error

Wald Chi-
Square

Pr> Chi-
Square

Intercept 1 3.5732 2.0102 3.1596 0.0755
Age of surgery 1 -0.1046 0.0494 4.4799 0.0343
Tumor Size 1 -0.3734 0.1323 7.9728 0.0047
Willing to conceive 1 0.7306 0.4924 2.202 0.1378
Dysme 1 0.6641 0.4877 1.8542 0.1733
Pelvic Pain 1 1.1277 0.5696 3.9206 0.0477

Analysis of Maximum Likelihood Estimates

 

 Table 6: Results from stepwise selection with SLE=0.4, SLS=0.3.                               
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         Table 5 and Table 6 showed that Age of surgery, tumor size and pelvic pain are 

potentially significant.   

 

 Variable Transformation 

          Once a model that contains the essential variables has been established, the assumption 

of linearity in the logit should be checked. Two methods to assess this problem: Design 

variables and fractional polynomials. A design variable uses a scatter plot smooth, plotting 

the results on the logit scale. Unfortunately, scatter plot smoothing methods are not easily 

extended to multivariable models and thus have limited applicability in the model refinement 

step. Another more analytic approach is to use the method of fractional polynomials, 

developed by Royston and Altman (1994) to do transformation. We wish to determine what 

value of px  yields the best model for the covariate. Royston and Altman propose replacing 

full maximum likelihood estimation of power by a search through a small but reasonable set 

of possible values. For a single continuous covariate, the logit, which is linear in the 

covariate is  

10),( βββ xxg +=                  

Where β  denotes the vector of model coefficients. One way to generalize this function is to 

specify it as    

j

J

j
j xFxg βββ )(),(

1
0 ∑

=

+=  

          The functions 1)( P
j xxF =  are a particular type of power function. The value of the 

first function is 1)(1
PxxF = . In theory, the power P1, could be any number, but in most 

applied settings it makes sense to try to use something simple. Royston and Altman (1994) 
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propose restricting the power to be among those in the set ϑ = (-2,-1,-0.5, 0, 0.5, 1, 2, 3). 

Where P1=0 denotes the log of the variable. The remaining functions are defined as  

 






=

≠
=

−−

−

11

1

),ln()(

,
)(

jjj

jj
p

j ppxxF

ppx
xF

j

                   

for j=2…J and restricting powers to those in ϑ .  

Implementation of the method requires, for J=1, fitting 8 models that is P1<ϑ . The best 

model is the one with the largest log likelihood. The process is repeated with J=2 by fitting 

the 36 models obtained from the distinct pairs of powers, that is, ( )2,1 pp ∈  ϑϑ ×  and the 

best model is again the one with the largest log likelihood.    

          The relevant question is whether either of the two best models is significantly better 

than the linear model. Let L(1) denote the log likelihood for the linear model, J=1, and P1=1, 

and L(P1) denote the log likelihood for the best J=1 model and L(P1,P2) denote the log 

likelihood for the best J=2 model. Then compare the partially likelihood ratio test with the 

linear model to the best J=1 model, is approximately distributed as chi-square with 1 degree 

of freedom under the null hypothesis of linearity in x. The partial likelihood ratio test 

comparing the best J=1 model to the best J=2 model is approximately distributed as chi-

square with 2 degrees of freedom. Similarly, the partial likelihood ratio test comparing the 

linear model to the best J=2 model is distributed approximately as chi-square with 3 degrees 

of freedom.  

        ‘Age of surgery’ and ‘Tumor size’ are the continuous variables in the model that need to 

be checked for linearity.  
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Transformation Models -2 Log L

Best J=2 model: 130.0698

Best J=1 model: 131.9099

Linear model: 133.189

DF Chi-Sqare P>Chi-Square

1 1.2791 0.2580

2 1.8401 0.3984

3 3.1192 0.3736

Partially Likelihood Test

( )xxxAge ln33 ∗+=

3xAge =

( )1,1 pG
( )[ ]2,1,1 pppG

( )[ ]2,1,1 ppG
 

 Table 7: Variable ‘Age of Surgery’ Transformation 

 

         Age transformation table has shown the best J=1 model, best J=2 model and the 

comparisons with the linear model. However, the transformation models are not significantly 

different than the linear model; therefore, linear model is selected.  Same process for the 

variable ‘Tumor size’, and the linear model is selected too.   

 

Interaction 

          Interaction effects are an important consideration for any model and must be 

thoroughly explored to determine if there is a significant interaction that should be included 

in the final model. In any model an interaction between two variables implies that the effect 

of one of the variables is not the same over levels of the each other. The final decision as to 

whether an interaction term should be included in a model should be based on statistical as 

well as practical considerations. The correlation for each of the variable is calculated to 

assess the significant interaction.  
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Recurrence BMI
Age of 
Surgery

Pregnancy 
Before Delivery

Number of 
Myoma

Tumor 
Size

Single 
Tumor

Willing To 
Conceive

Pregnancy 
After

Heavy 
Period

Irregular 
Period Dyspar Dysmen

Recurrence 1.00
BMI 0.00 1.00
Age of 
Surgery -0.21 0.11 1.00
Pregnancy 
Before 0.09 -0.03 0.19 1.00
Delivery -0.02 0.07 0.19 0.64 1.00
Number of 
Myoma 0.00 -0.01 0.00 -0.23 -0.31 1.00
Tumor Size -0.24 0.00 -0.08 -0.13 -0.06 0.17 1.00

Single Tumor 0.00 -0.13 0.02 0.20 0.14 -0.62 0.02 1.00
Willing To 
Conceive 0.14 -0.05 -0.16 0.14 -0.02 0.05 -0.04 0.06 1.00
Pregnancy 
After 0.10 -0.23 -0.11 -0.01 -0.17 0.03 -0.01 0.02 0.01 1.00

Heavy Period -0.06 0.13 0.09 -0.19 -0.02 0.03 0.04 -0.04 -0.21 -0.22 1.00
Irregular 
Period 0.05 0.05 0.00 -0.08 0.00 0.05 -0.02 -0.03 0.07 -0.12 0.06 1.00

Dyspar 0.00 -0.03 -0.17 0.01 0.08 0.00 0.04 -0.09 -0.11 -0.12 0.24 -0.21 1.00

Dysmen 0.11 -0.02 -0.19 -0.19 -0.11 -0.01 -0.01 -0.02 -0.17 -0.09 0.23 -0.08 0.37 1.00
Pelvic Pain 0.10 -0.09 0.06 0.06 -0.06 -0.07 0.16 0.17 -0.01 0.01 0.12 -0.02 -0.11 -0.23

 

 Table 8: Correlation of the variables 

           The correlations among variables indicate the possible multicollinearity problem. The 

final model should be carefully examined and the interpretation also should be done with 

caution. A stepwise logistic regression with all the main variables and the interactions is 

conducted to determine whether any of those interactions are significant with SLE=0.15 and 

SLS=0.15. Only the interaction between Age of surgery and Tumor size turn out to be 

significant in the model.  

Parameter DF Estimate Standard 
Error

Wald Chi-
Square

Pr> Chi-
Square

Intercept 1 11.6422 4.9733 5.4802 0.0192
Age of Surgery 1 -0.3102 0.1375 5.0905 0.0241
Tumor Size 1 -1.8179 0.9624 3.5683 0.0589
Pelvic Pain 1 0.9076 0.5326 2.9036 0.0884
Age * Tumor size 1 0.0412 0.0264 2.4401 0.1183

Analysis of Maximum Likelihood Estimates

 

 Table 9: Final Model of Logistic Regression 
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          Based on the results of the variable selection process, a final model has been developed 

to determine the risk factors associated with recurrence of fibroids. The final logistic 

regression model is: 

 

( ) TumorsizeAgepelvicpainTumorsizeAge

TumorsizeAgepelvicpainTumorsizeAge

e
ex **04128.0*9076.0*8179.1*3102.06422.11

**04128.0*9076.0*8179.1*3102.06422.11

1
ˆ

++−−

++−−

+
=π  
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Goodness of Fit 

          Once the model is established, it is important to determine if the model is a good fit of 

the data. Also, we need to know if the model is a good predictor for the response variable. 

Finally, we like to check if the overall patterns of the model are relevant in representing the 

predicted outcomes. Hosmer Lemeshow(HL) goodness-of-fit can be used for some of the 

above purposes. The null hypothesis being tested with HL test is that the model is a good fit. 

HL divided the data into g=10 deciles of risk groups to do the comparisons between the 

observed to the expected number of outcomes for value of x. The first group containing the 

n1prime=n/10 subjects having the smallest estimated probabilities, and the last group 

containing the n10prime=n/10 subjects having the largest estimated probabilities. The HL 

test uses a Pearson Chi-Square statistic   
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          The distribution of Ĉ  was determined by simulation studies to be approximately 

2χ with 8 degrees of freedom (Hosmer and Lemeshow, 1980). The HL test rejects the fit of 

logistic model at α  level when αχ −〉 1
2
8 , C . 

 

Observed Expected Observed Expected
1 11 0 0.69 11 10.31
2 11 2 1.44 9 9.56
3 11 1 1.93 10 9.07
4 11 3 2.54 8 8.46
5 11 4 3.06 7 7.94
6 11 4 3.69 7 7.31
7 11 4 4.32 7 6.68
8 11 6 5.43 5 5.57
9 11 6 5.85 5 5.15
10 10 6 7.06 4 2.94

DF Pr>Chisq
8 0.9472

Hosmer and Lemeshow Goodness-Of-Fit Test

Chi-Square
2.7828

Partition for the Hosmer and Lemeshow Test

Recurrence = 1 Recurrence = 0Group Total

 

 Table 10: HL Goodness fit test 

          The large P-value from Table proved that the model is a good fit of the data. 

 

ROC  

           Sensitivity and specificity are two diagnostic measurements used to assess the model 

in terms of reliability the model to classify observations correctly. Sensitivity is the 

probability of correct classification among all true positives. On the other hand, the 

specificity is the probability of correct classification among all true negatives. Sensitivity and 

Specificity rely on a single cut point to classify a test results as positive. The most commonly 
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used measurement to gauge the classification method is the area under the ROC curve 

(Receiver operating Characteristic), which is a plot of sensitivity versus 1-specificity overall 

possible cut points. This curve, ranges from zero to one, provided a measure of the model’s 

ability to discriminate between those subjects who experience the outcome of interest versus 

those who don’t. If the objective was to choose an optimal cut point for purpose of 

classification, one might select a cut point that maximizes one of sensitivity and specificity, 

while fixed the other one. The other way to gauge the discrimination power is to find the 

point, where sensitivity equals to the specificity. For example, if the cutoff point yield 

sensitivity =specificity=0.9, then the method is very good. 

 

Recur=1 Recur=0 Recur=1 Recur=0
5% 36 7 66 0 100 9.6 64.7 0
10% 34 12 61 2 94.4 16.4 64.2 14.3
15% 32 21 52 4 88.9 28.8 61.9 16
20% 30 31 42 6 83.3 42.5 58.3 16.2
25% 28 36 37 8 77.8 49.3 56.9 18.2
30% 25 41 32 11 69.4 56.2 56.1 21.2
35% 23 52 21 13 63.9 71.2 47.7 20
40% 20 56 17 16 55.6 76.7 45.9 22.2
45% 16 57 16 20 44.4 78.1 50 26
50% 11 61 12 25 30.6 83.6 52.2 29.1
55% 8 64 9 28 22.2 87.7 52.9 30.4
60% 7 66 7 29 19.4 90.4 50 30.5

Specificity False
Positive

False
Negative

Prob
Level

Correct Identifies Incorrect Identifies Sensitivity

 

  Table 11: Sensitivity and Specificity with different probability Level  
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             Figure 3: Sensitivity and Specificity 

 

              Figure 4: ROC Curve 
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As a general rule,  

If ROC=0.5: this suggests no discrimination 

If 0.7< ROC< 0.8, this is considered acceptable discrimination 

If 0.8< ROC< 0.9, this is considered excellence discrimination 

If ROC> 0.9, this is considered outstanding discrimination. 

                          

               

Percent Concordant 73.4 Somers' D 0.471
Percent Disconcordant 26.3 Gamma 0.473
Percent Tied 0.3 Tau-a 0.21
Pairs 2628 C 0.736

Association of Predicted Probabilities and Observed Responses

 
 
                  Table 12: ROC Value  
 
      The Area under the curve is 0.736, which is considered acceptable discrimination. 
 
 
Cross Validation 

          Five fold Cross-Validation is used to examine the accuracy of the ROC found in the 

final model. The original 109 patients’ data has been partitioning into five sub-data. Of the 

five sub-data, a single sub-data is retained as the validation data for testing the model, and the 

remaining four are used as training data. The same main effects and interactions terms used 

to find the final model are adopted here for the training data. A new model is created and 

substituted into the retained testing data. A final ROC value is calculated for this testing data. 

The cross-validation process repeated five times with each of those sub-data used exactly 

once as testing data. The five ROC results are averaged and compare with the final model in 

order to calculate the shrinkage. Randomization plays an important role in this cross-
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validation procedure. The original data is randomly assigned to those five sub-data. Proc Plan 

is used in SAS to accommodate this process.  

                

Training Data Subdata

0.814 0.718
0.735 0.667
0.747 0.688
0.766 0.556
0.75 0.726

Average 0.7624 0.671

Shrinkage     0.7624-0.671=0.0914  

                   Table 13: Example of Cross Validation  

Repeat the process five times; the average shrinkage of AUC is 0.12.        
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Survival Analysis 

         Survival analysis has been conducted in order to find out the cumulative proportion of 

the patients who did not have the recurrence of fibroids. The Kaplan-Meier estimator (also 

known as product limit estimator) is used. It estimates the survival function for life-time data. 

In medical research, it might be used to measure the fraction of patients living for a certain 

amount of time after surgery. An economist might measure the length of time people remain 

unemployed after a job loss. An engineer might measure the time until failure of machine 

parts.  

          An important advantage of the Kaplan-Meier curve is that the method can take into 

account "censored" data — losses from the sample before the final outcome is observed (for 

instance, if a patient withdraws from a study). On the plot, small vertical tick-marks indicate 

losses, where patient data has been censored. When no truncation or censoring occurs, the 

Kaplan-Meier curve is equivalent to the empirical distribution. 

         A plot of the Kaplan-Meier estimate of the survival function is a series of horizontal 

steps of declining magnitude which, when a large enough sample is taken, approaches the 

true survival function for that population. The value of the survival function between 

successive distinct sampled observations is assumed to be constant. 

         Let S(t) be the probability that an item from a given population will have a lifetime 

exceeding t. For a sample from this population of size N let the observed times until death of 

N sample members be 
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Corresponding to each ti is ni, the number "at risk" just prior to time ti, and di, the number of 

deaths at time ti.  

The nonparametric maximum likelihood estimate of S(t) is  

( ) ∏
〈

−
=

tt i

ii

i
n
dn

tŜ  

When there is no censoring, ni is just the number of survivors just prior to time ti. With 

censoring, ni is the number of survivors less the number of losses (censored cases). It is only 

those surviving cases that are still being observed (have not yet been censored) that are "at 

risk" of an (observed) death 

 

 

     Figure 5: Kaplan-Meier Cumulative Recurrence Rate 
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        Figure 6: Kaplan-Meier Survival Rate 

 

       Figure 6 shows the survival curve. It seems that the recurrence rate is much higher for 

the first 4 years comparing with the next 10 years. This could be an important information for 

medical doctors who give advises to patients.  
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Chapter 3 

RESULTS 

Odds Ratio 

          After check the goodness fit of the model, the consideration of the interpretation of 

logistic regression coefficients can be made, especially with the independent variable is 

dichotomous. Odds ratio is a measure of impacts of independent variables which has been 

widely used, especially in medical field. The odds are a way representing probabilities, it 

approximates how much more likely (or unlikely) it is for the outcome to be present among 

those levels of dichotomous variables. In the study, ‘Pelvic pain’ is a dichotomous variable 

and it is significant in the final model. The odds ratio for ‘Pelvic pain’ is 2.478, and the 95% 

confidence interval is (0.873, 7.40). The interpretation of this could be that the patients who 

experience the symptom ‘Pelvic pain’ are approximately 2.5 times of having recurrence to 

those patients who don’t experience the symptoms. However, the confidence interval 

contains one, the odds ration 2.5 may not be that significant. 

          From the survival study, the 5 year cumulative recurrence rate is 24.32% and the 10 

year cumulative recurrence rate is 32.57%. Factors are significant in the final model are ‘Age 

of surgery’, ‘Tumor size’, ‘Pelvic pain’ and the interaction between the ‘Age of surgery’ and 

‘Tumor size’.   
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Chapter 4 

DISCUSSION 

        The result from the cross validation has a very big shrinkage in average and this may be 

caused by the small sized dataset. Partial Least Square method might be an option of this 

Logistic regression model and will be conducted in a future study.   

       A patient with symptomatic uterine myoma wants to know the chances of recurrence of 

myoma after Myomectomy and the factors that may affect recurrence if she chooses this 

surgery as her treatment option. Recent literature reviews have suggested that the variation in 

length of follow-up and criteria for recurrence make it difficult to compare the results of 

previous studies.  

Recurrence of myoma after Myomectomy has been reported based on diagnosis by palpation, 

by systematic transvaginal ultrasonography, or by the need for a second surgery. The current 

study used transvaginal ultrasonography to diagnose recurrence, counting only tumors that 

were at least 2cm in diameter. The crude recurrence rate used in other studies represents the 

minimum myoma recurrence rate and will underestimate the true recurrence rate, which was 

calculated by method of Kaplan-Meier.  

           This risk should not rule out the use of Myomctomy. The recurrence occurs after quite 

a long time after the surgery; patients could use this time to have children. The risk of 

recurrence is linked with the persistence of small nuclei within the myometrium, which are 

undetectable during the operation. It would be an advantage to know what the growth factors 

are, and how to use those factors to identify groups at high risk of recurrence who could then 

benefit from more suitable treatment strategies or drug treatment to prevent recurrence.  
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SAS CODE 

   
*************Rename*******************; 
data lu.finaldata2; 
set lu.finaldatafull; 
rename ID=Var1  
       recurrence=Y 
       height=var2 
       weight=var3 
       BMI=var4 
       age_1st_myo=var5 
       preg_before=var6 
    delivery=var7 
       number_of_leiomyoma=var8 
       tumor_size=var9 
       single_tumor=var10 
       willing_to_conceive=var11 
       pregnancy_after_myomectomy=var12 
       heavy=Var13 
    irregular=Var14 
    dyspar=Var15 
    dysmen=var16 
    pelvic_pain=var17 
    ; 
    run; 
 
**************Discretize age, tumor-size , number of tumor, BMI*********; 
data lu.discretedata; 
set lu.finaldata; 
if Age_1st_myo < 30 then Agegroup1=1; else Agegroup1=0; 
if Age_1st_myo > 30 and Age_1st_myo < 40 then Agegroup2=1; else 
Agegroup2=0; 
if BMI < 24.9 then BMIgroup1=1; else bmigroup1=0; 
if BMI > 24.9 and BMI < 29.9 then BMIgroup2=1; else bmigroup2=0; 
if BMI > 30 then BMIgroup3=1; else bmigroup3=0; 
if tumor_size > 1.9 and tumor_size < 4 then sizegroup1=1; else 
sizegroup1=0; 
if tumor_size > 4 and tumor_size < 6 then sizegroup2=1; else sizegroup2=0; 
if number_of_leiomyoma < 4.1 then numbergroup=1; else numbergroup=0; 
run; 
 
 
********logistic regression model**********; 
 
Proc logistic data=lu.finaldata2 descending ; 
model y=var4-var17/selection=stepwise sle=0.4 sls=0.3 lackfit; 
run; 
 
Univariate Analysis; 
 
%macro logitreg(label,tvarlist); 
ODS OUTPUT Logistic.GlobalTests=testout; 
proc logistic descending data=lu.myoma2; 
model y= &tvarlist; 
run; 
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data one; 
label="&label"; 
run; 
 
data testout; 
merge one testout(obs=1); 
run; 
 
data report;  
set report testout;    
run; 
%mend; 
 
%logitreg(var4,var4); 
  
********Run var2 first!!!!********; 
Data total; 
Set testout; 
Run; 
 
%macro lu ; 
%do i=3 %to 17; 
%logitreg (var&I, var&i); 
Data total; 
Set total testout; 
Run; 
%end; 
%mend; 
 
%lu; 
*********correlations*************************; 
 
 
proc corr data=lu.finaldata outp=lu.Corr noprint; 
var recurrence BMI age_1st_myo preg_before delivery number_of_leiomyoma 
tumor_size single_tumor  
willing_to_conceive pregnancy_after_myomectomy heavy irregular dyspar 
dysmen pelvic_pain; 
run; 
********************* Included interaction with BMI, PB***********; 
Proc logistic data=lu.finaldata2 descending ; 
model y=var4-var17 var5*var9 var5*var17 var9*var17 var4*var5 var4*var9 
var4*var17 var6*var5 var6*var9 var6*var17 
var8*var5 var8*var9 var8*var17/selection=stepwise sle=0.3 sls=0.2; 
run;    
 
*************Variable Transformation****************; 
 
data one; 
set lu.finaldata1; 
p1=-2;p2=-1;p3=-0.5;p4=0;p5=0.5;p6=1;p7=2;p8=3; 
run; 
%macro fractional(var); 
data out1factor out2factor; 
        if 1=1 then delete; 
  run; 
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%do n=1 %to 8; 
data sample&n; 
       set one; 
    if &var=0 then u1=0; 
    else do; 
            if p&n=0 then u1=log(&var);else u1=&var**p&n; 
       end; 
       run; 
proc logistic descending data=sample&n outest=out&n; 
       model y=u1; 
       run; 
data out&n; 
  merge out&n one(obs=1); 
  f1=p&n;D=-2*_lnlike_; 
  keep f1 D; 
  run; 
data out1factor; 
        set out1factor out&n; 
  run; 
%do m=1 %to 8; 
data sample&n&m; 
       set one; 
      /* if p&n=0 then u1=log(var65);else u1=var65**p&n; 
       if p&m=p&n then u2=log(var65)*u1;else if p&m=0 then 
u2=log(var65);else u2=var65**p&m;*/ 
      if &var=0 then u1=0; 
   else do; 
            if p&n=0 then u1=log(&var);else u1=&var**p&n; 
      end; 
 
      if &var^=0 then do; 
       if p&m=p&n then u2=log(&var)*u1; 
    else if p&m=0 then u2=log(&var);else u2=&var**p&m; 
    end; 
   else u2=0; 
       run; 
proc logistic descending data=sample&n&m outest=out&n&m; 
       model y=u1 u2; 
       run; 
data out&n&m; 
  merge out&n&m one(obs=1); 
  f1=p&n;f2=p&m;D=-2*_lnlike_; 
  keep f1 f2 D; 
  run; 
data out2factor; 
        set out2factor out&n&m; 
  run; 
%end; 
%end; 
%mend fractional; 
%fractional(var11); 
 
proc iml; 
        use out1factor; 
  read all var{f1 D} into model1; 
  close out1factor; 
  L1=model1[1,2]; P1=model1[1,1]; 
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  nrow1=nrow(model1); 
  do i=2 to nrow1; 
      if model1[i,1]=1 then L=model1[i,2]; 
   if model1[i,2]<L1 then do; 
               L1=model1[i,2];P1=model1[i,1]; 
   end; 
  end; 
  use out2factor; 
  read all var{f1 f2  D} into model2; 
  close out2factor; 
  L2=model2[1,3]; P21=model2[1,1];P22=model2[1,2]; 
  nrow2=nrow(model2); 
  do i=2 to nrow2; 
      if model2[i,3]<L2 then do; 
               L2=model2[i,3];P21=model2[i,1];P22=model2[i,2]; 
   end; 
  end; 
   
  if L-L1>3.84 then do; /*chi-sq(.95,1)=3.84; chi-sq(.95,2)=5.99; 
chi-sq(.95,3)=7.81;*/ 
     if L1-L2>5.99 then print 'the best is model2 with power' 
P21  'and' P22; 
     else print 'the best is model1 with power' P1; 
  end; 
  else do; 
           if L-L2>7.81 then print 'the best is model2 with power' P21 
'and' P22; 
     else print 'the best is linear model' ; 
  end; 
  quit; 
 
***********CROSS VALIDATION*************************; 
 
data a; 
        set lu.myoma2(keep=var1);run; 
 
proc plan seed=30000; 
        factors var1=109; 
  output data=a out=b; 
run; 
data b; 
        set b; 
  seq=_n_; 
  if seq<=22 then group=1; 
  else if seq>22 and seq<=44 then group=2; 
  else if seq>44 and seq<=66 then group=3; 
  else if seq>66 and seq<=88 then group=4; 
  else group=5; 
  run; 
proc sort data=b;by var1;run; 
 
 
data lu.trial6; 
        merge lu.myoma2 b; 
  by var1; 
  run; 
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proc sort data=lu.trial6; 
by group;run; 
 
data group1 group2 group3 group4 group5;  
set lu.trial6; 
if group=1 then output group1; 
else if group=2 then output group2; 
else if group=3 then output group3; 
else if group=4 then output group4; 
else output group5; 
run; 
 
data group1234; 
set group1 group2 group3 group4; 
run; 
 
data group1235; 
set group1 group2 group3 group5; 
run; 
 
data group1245; 
set group1 group2 group4 group5; 
run; 
 
data group1345; 
set group1 group3 group4 group5; 
run; 
 
data group2345; 
set group2 group3 group4 group5; 
run; 
*** For Group 5***; 
Proc logistic data=group1234 descending ; 
model y=var4-var17 var5*var9 var5*var17 var9*var17 var4*var5 var4*var9 
var4*var17 var6*var5 var6*var9 var6*var17 
var8*var5 var8*var9 var8*var17/selection=stepwise sle=0.15 sls=0.15; 
run; 
 
data group5m; 
set group5; 
A=-0.1665*var5-0.4706*var9+0.8982*var17;  
run; 
 
proc logistic data=group5m descending; 
model y=A; 
run; 
 
********for group4******; 
proc logistic data=group1235 desc; 
model y=var4-var17 var5*var9 var5*var17 var9*var17 var4*var5 var4*var9 
var4*var17 var6*var5 var6*var9 var6*var17 
var8*var5 var8*var9 var8*var17/selection=stepwise sle=0.15 sls=0.15; 
run; 
data group4m; 
set group4; 
A=-0.0921*var5-0.2866*var9; 
run; 
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proc logistic data=group4m descending; 
model y=A; 
run;    
 
********For group 3*******; 
proc logistic data=group1245 desc; 
model y=var4-var17 var5*var9 var5*var17 var9*var17 var4*var5 var4*var9 
var4*var17 var6*var5 var6*var9 var6*var17 
var8*var5 var8*var9 var8*var17/selection=stepwise sle=0.15 sls=0.15; 
run; 
data group3m; 
set group3; 
A=-0.1526*var5-0.4979*var9+0.9995*var16+1.8035*var17; 
run; 
 
 
proc logistic data=group3m descending; 
model y=A; 
run;    
 
*******For group 2*******; 
proc logistic data=group1345 desc; 
model y=var4-var17 var5*var9 var5*var17 var9*var17 var4*var5 var4*var9 
var4*var17 var6*var5 var6*var9 var6*var17 
var8*var5 var8*var9 var8*var17/selection=stepwise sle=0.15 sls=0.15; 
run; 
 
data group2m; 
set group2; 
A=-0.3335*var5-1.899*var9+0.2402*var6+0.0464*var5*var9; 
run; 
 
 
proc logistic data=group2m descending; 
model y=A; 
run;    
 
******For group 1*******; 
proc logistic data=group2345 desc; 
model y=var4-var17 var5*var9 var5*var17 var9*var17 var4*var5 var4*var9 
var4*var17 var6*var5 var6*var9 var6*var17 
var8*var5 var8*var9 var8*var17/selection=stepwise sle=0.15 sls=0.15; 
run; 
 
data group1m; 
set group1; 
A=-0.3798*var5-2.4964*var9+1.0510*var11+5.6351*var17+0.0644*var5*var9-
1.0496*var9*var17; 
run; 
 
proc logistic data=group1m descending; 
model y=A; 
run;   
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**********************ROC************************; 
Ods listing close; 
ODS output Logistic.Classification=classification; 
Proc logistic data=lu.myoma2 descending ; 
model y=var4-var17 var5*var9 var5*var17 var9*var17 var4*var5 var4*var9 
var4*var17 var6*var5 var6*var9 var6*var17 
var8*var5 var8*var9 var8*var17/selection=stepwise sle=0.15 sls=0.15 ctable 
outroc=fit details pprob= (0.05 to 0.6 by 0.05); 
run; 
ods trace off; 
 
data fit1; 
set fit; 
if _step_^=6 then delete; 
run; 
 
proc gplot data=fit1; 
plot _sensit_*_1mspec_; 
run; 
 
ODS listing close; 
ODS output Logistic.parameterestimates=logisticmodelinfo; 
Proc logistic data=lu.myoma2 descending ; 
model y=var4-var17 var5*var9 var5*var17 var9*var17 var4*var5 var4*var9 
var4*var17 var6*var5 var6*var9 var6*var17 
var8*var5 var8*var9 var8*var17/selection=stepwise sle=0.15 sls=0.15; 
run; 
data roc3; 
set roc1; 
if _step_^=6 then delete; 
run; 
 
data roc2; 
set roc3; 
spec=1-_1mspec_; 
run; 
symbol1 i=join v=none; 
proc gplot data=roc2; 
plot _sensit_*_prob_=1 spec*_prob_=1 / overlay haxis=0 to 1 by 0.25 
vaxis=0 to 1 by 0.1; 
run; 
 

**********SURVIVAL********; 
 
data lu.survival1; 
set lu.survival; 
Duraition=INTCK('month',first_surgery_date,date); 
run; 
 
data lu.kaplan1; 
set lu.kaplan; 
retain stemp 1; 
stemp=stemp*(1-recurrence/atrisk); 
survival=stemp; 
CRR=1-stemp; 
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run; 
 
goptions reset=global 
         rotate=landscape 
   gunit=pct 
   htext=2.5 
   ftext=centb 
   gsfmode=replace 
   device=pscolor 
   gaccess=gsasfile; 
 
symbol1 color=blue i=step1j line=1 w=3; 
axis1 label=(a=90 h=2 c=black"Survival") order=(0.4 to 1 by 0.1); 
axis2 label=(h=2 c=black"Months") order=(0 to 190 by 10); 
proc gplot data=lu.kaplan1; 
plot survival*duration/vaxis=axis1 haxis=axis2; 
run; 
 
 
***********************************************; 
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