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Figure 36: High-level view VisFlowConnect evaluation result 

(A) Evaluated visualization scene. (B) Complexity tree built for (A). (C) Original 

evaluation visualization scene.  

 

 

4.2.2. Mid-Level Detail View: 

The domain view visualization has lines connecting two axes. To evaluate this 

visualization scene, we first cluster the visualization into solid color space and background by use 
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figure and ground in Gestalt Law. We further decompose the visualization into smaller chunks by 

continuity. A complexity tree is built for the visualization and presented in Figure 37(b). Compare 

the complexity tree built for domain view and global view. It is clear the memory load needed to 

process the domain view visualization is less than what is needed for global view visualization. 

From the visualization scene, we can see the domain view visualization has less noise provided by 

lines and has much more of a focus point in the visualization.  
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Figure 37: Mid-level view VisFlowConnect evaluation result 

 (A) Evaluated visualization scene. (B) A complexity tree built for (A). (C) The 

original visualization scene.  

 

 

4.2.3. Low-Level Feature View: 

For the internal view visualization, we first cluster the graphics into two pieces using 

the symmetry rule. Then we further decompose the visualization scene using the  continuity rule. 
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The internal view visualization has cleaner graphics compare to the domain view visualization, 

but the evaluation result for conceptual chunking yields favor for domain view visualization. The 

reason for this is because in domain view visualization, there is a strong presence of solid space 

and background noise, but internal view visualization does not. Instead, in internal view, there are 

lines cutting through graphics and dividing up the space.  
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Figure 38: Low-level view VisFlowConnect evaluation result 

(A)  Evaluated visualization scene. (B) A complexity tree built for (A). (C) The 

original visualization scene.  

 

 

4.2.4. Evaluation Metrics 
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Table 5: Evaluation results in metrics format for VisFlowConnect. 

Relational 

Complexity

Visual Search Guidance Visualiza

tion 

Security 

Architect

ure chunking segmen

tation 

Color Motio

n 

Size 

(pix2) 

Orien

tation 

Number of 

Data 

Points 

High 

level  

34 6 0.65333 n/a 0.551

956 

0 n/a 

Mid level  12 4 0.4 n/a 0.453

943 

0 n/a 

VisFlow

Connect 

Low level  14 4 0.26666 n/a 0.238

313 

0 n/a 

 

 

There are no dataset statistics to come with the screen shots. Unfortunately, we are not 

able to state the number of data points used for each screen shots. From the statistics provided in 

table 5, we observe the following points: 

 Among the tree visualization views, the high-level view of visualization requires the 

most memory capacity load and sequential steps to complete the visual search task. 

The chunking number for global view visualization is more than twice as high as the 

other two views. It suggests that the visualization is designed to put too much memory 

load usage on the global view.  
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 There is a decreasing fashion of contrasting color usage once the user drills down from 

overview to feature view.  

 The target-distractor size ratio for VisFlowConnect is higher than NVisionIP’s. Earlier 

in the thesis we discuss the that higher size ratio means the visualization uses target 

and distrator size differences to highlight features of the visualization. In this particular 

visualization, the busyness of the lines leads users’ attention away from any focus 

point in the visualization. This may indicate that the target-distractor ratios can mean 

different things when we deal with different type of visualization.  

4.3. Evaluating RUMINT 

RUMINT is a security visualization system developed by Gregory Conti 

(http://rumint.org/). RUMINT is constructed by a main control program and seven visualization 

components. RUMINT sets itself apart from other visualization tool by allowing users the choice 

to use different visualization components interchangeably. In high level overview, the tool 

provides thumbnail display. In mid-level view, the tool provides a choice between parallel 

coordinate, glyph based animation display, and scatter plot to explore the dataset in more detail. In 

low-level view, the tool provides choices between scrolling text display, packet detail rainfall 

display, and byte frequency display. To evaluate RUMINT using complexity evaluation method, 

we built a complexity tree describing the critical complexity of the system for each level. The 
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PCAP dataset used to explore the tool is provided by the author, Gregory Conti, and contains 1797 

data points. The evaluated results are presented as following: 

4.3.1. High-Level Overview: 

 

 

 

Figure 39: High-level view RUMINT evaluation result 

(A) Evaluated visualization. (B) Complexity tree build for (A). 
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There are only four windows that need to be considered for further review from this 

level. Therefore, only four window nodes are included. Furthermore, the window itself does not 

need further decomposition, so entity nodes are immediately followed by the window nodes.  

 

4.3.2. Mid-Level Detail View: 
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Figure 40: Mid-level view RUMINT evaluation result 

 (A) The evaluated visualization scene. (B) The relational complexity decomposing 

key. The visualization is grouped by different color. Each color represents a gestalt law. (C) The 

original visualization scene without group marking. (D) The complexity tree builds for (A).  

 

 

For mid-level view, the user has the choice to view between parallel coordinate, glyph 

animation, binary rainfall, and scatter plot. After our investigation, we found that binary rainfall is 

the most complex visual scene in which to conduct a visual search. Therefore, we chose the binary 

rainfall as the evaluating scene.  
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4.3.3. Low-Level Feature View: 
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Figure 41: Low-level view RUMINT evaluation result. 

 (A) The evaluation visualization scene. (B) The color key for the gestalt laws used to 

decompose relation complexity in (A). (C) The original visualization scene without group 

marking. (D) Complexity tree built for (A).  

 

 

For low-level view, users have the choice between detail byte rainfall visualization and 

text rainfall display. For rainfall display, the user only needs to see one horizontal line at once. 

Therefore the binary rainfall is more complex to use for visual search. Because of binary rainfall 

complexity, we choose to use it to determine the relational complexity  
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4.3.4. Evaluation Metrics 

 

Table 6: Evaluation results in metrics format for RUMINT. 

Relational Complexity Visual Search Guidance Visualization Security 

Architect

ure 

chunking segmenta

tion 

Color Motio

n 

Size 

(pix2) 

Orien

tation 

Number of 

Data 

Points 
High 

level  

4 3 0.333

33

n/a 0.430

64

0 1797 

Mid level  10 4 0.333

33

n/a 0.321

69

0 421 

RUMINT 

Low level  22 5 0.333

33 

n/a 0.202

84 

0 40 

 

 

From the statistics provided in table 6, we observe the following points: 

 The memory capacity load required for performing a visual search with RUMINT 

forms a pyramid shape. The load requirements steadily increase while the number of 

data points decrease.  

 Throughout the visualization flow, RUMINT has the same color ratio to guide users’ 

attention. This suggests the visualization was not designed to use color to highlight 

visualization features.  

 The visual search size ratio decreases when the number of data points decrease. 
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 RUMINT’s high-level overview window is a different type of visualization compared 

to NVisionIP and VisFlowConnect. Just based on the evaluation statistics, it seams 

RUMINT is better designed, as suggested by the small amount of chunking and steady 

segmentation numbers. This might not be a fair assumption because RUMINT’s 

overview visualization is designed to give users a control panel to choose among 

different available visualizations compared with the other two visualizations trying to 

show all the data points in the overview visualization.   

4.4. Discussions 
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Table 7: Evaluation metrics view of each visualization. 

Relational Complexity Visual Search Guidance Visualiza

tion 

Security 

Architect

ure 

chunking segmenta

tion 

Color Motio

n 

Size 

(pix2) 

Orien

tation 

Number of 

Data 

Points 
High 

level  

4 3 0.333

33

n/a 0.430

64

0 1797 

Mid level  10 4 0.333

33

n/a 0.321

69

0 421 

RUMIN

T 

Low level  22 5 0.333

33 

n/a 0.202

84 

0 40 

High 

level  

19 4 0.699

99

n/a 0.175

25

0 1667 

Mid level  38 4 0.405

63

n/a 0.271

21

0 n/a 

NVisionI

P 

Low level  6 3 0.233

33 

n/a 0.058

95 

0 n/a 

High 

level  

34 6 0.653

33

n/a 0.551

956

0 n/a 

Mid level  12 4 0.4 n/a 0.453

943

0 n/a 

VisFlow

Connect 

Low level  14 4 0.266

66 

n/a 0.238

313 

0 n/a 

 

 

It is interesting to see that each visualization forms a distinct shape based on the 

complexity chunking scores. The RUMINT visualization application forms a pyramid shape. The 

NVisionIP visualization forms approximately a diamond shape and the VisFlowConnect 

visualization forms approximately an hourglass shape. Different shapes indicate different capacity 

load flow control for visualizations. Based on the statistics provided by table 7, RUMINT is the 
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application that requires the least memory capacity and processing power. On the contrary, 

VisFlowConnect is the application requiring the most memory capacity and processing power 

over the others. Despite the fact that VisFlowConnect need the most memory capacity power, 

VisFlowConnect score higher on visual search guidance compare to other visualizations. At this 

point, we cannot, based on the evaluation metrics, go about ranking the visualizations. First of all, 

we are lacking an overall scoring scheme that can combine the three major evaluation fields 

(relational complexity, visual search guidance, and security architecture). Secondly, the 

evaluation metrics and complexity tree design are heavily based on theories that are not backed up 

by exhaustive experiments’ statistics.  

The complexity evaluation method is a heuristic evaluation method that analyzes 

critical memory capacity load needed to perform problem detection in the form of visual search in 

security visualization. In previous chapters, we point out the main problem in security 

visualization literature is that there is no census standardization in evaluation method, design 

guidelines, or centralized database. This leads the development of security visualization literature 

into a bottleneck. The main goal of the complexity evaluation method is to solve some portion of 

the big problem -- a way to compare different security visualizations without redoing evaluation 

for visualizations by each research group.  
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Because of the domain independent character, the biggest advantage of the complexity 

evaluation method is that the evaluation result can be compared without redundant work for 

different problem detection security visualizations. Furthermore, many security visualization 

designs do not have solid supporting background. Most of the time, the visualization design is 

based on arbitrary decisions. We hope, once the complexity evaluation method is mature, 

engineers can use the complexity evaluation method to backup the visualization design with 

strong cognitive psychological science.  

The complexity evaluation method is not mature yet. As we can see, there is still a lot 

of work ahead of us to perfect this method. The method needs improvement and we must close 

gaps from the design perspective as well as further user study to strengthen the proposed 

methodology.  

First of all, the interaction between visualization and users is not one of the evaluation 

criteria. The interaction methodology can heavily affect users’ experience and performance with 

visualization tools. Heavy use of memory capacity can be reduced down through filtering and 

other interaction methodologies. To measure memory capacity through the complexity evaluation 

method without including interaction as part of the package can be a bit unfair.  

Secondly, we need a stricter rule to decompose visual scenes through gestalt law. The 

current proposed rule has many holes. For example, there is no strict termination decompose 
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point. Also, we need a more complete mapping between what rules can be used on what 

visualizations. This can not be done until exhaustive user study is complete to test what the 

majority of people intuit.  

Thirdly, we need to come up a calculation formula to sum up all information about 

memory capacity associated with visualizations extracted out from the complexity tree for easier 

ranking and comparing. Currently, there are 21 numbers associated with a visualization (the 

numbers fill up quantitative metrics for a visualization). It is hard to rank which one of the 

visualizations is more efficient based on these numbers. Clearly, there are relationships connected 

with memory capacity factors (define in formula 1 to formula 4). The next big step for the 

complexity evaluation method is to figure out what the relationships are and summarize them in 

one single formula that computes memory capacity for each visualization. 
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5. Conclusion  

Computer security visualization has gained much attention in the past few years. In 

particular, the visualization techniques are used to perform intrusion detection through visual 

search. Recently more attention has been focused on the development of evaluation methods that 

help standardization in visualization design and compare different visual techniques objectively. 

Popular evaluation methods include user study, usability inspection, and quantitative evaluations. 

In general, they suffer from subjectivity and the evaluation results are hard to compare across 

applications. .   

In this research, we propose a new heuristic model for evaluating the complexity of the 

computer security visualization interface. This complexity evaluation method is designed to 

evaluate the efficiency of visual search in security visualization. Our complexity evaluation 

method is based on research in cognitive psychology along with characteristics found in majority 

of the security visualizations. The two main components of our complexity evaluation method are 

the complexity tree and evaluation metrics. Complexity tree is the graph representation captures 

the visualization interface structure and the cognitive memory required to process the information. 

The tree is composed by window nodes, relation nodes, and entity nodes,  describing the 



 

 

visualization structure and cognitive memory distribution. Evaluation metrics is a quantitative 

metrics that summarizes information in complexity tree in numerical forms. Evaluation metrics is 

designed to integrate security visualization characters and cognitive memory load in order to 

measure how well the visual technique is designed to for visual search. The evaluation metrics is 

designed for quick and easy comparison of visualization designs while the complexity tree help 

maintain the objectiveness of the method. The main goal for developing this complexity 

evaluation method is to guide computer security visualization design and compare different 

visualization designs.  

Finally, to demonstrate the usefulness of our method, we compare several well known 

computer security visualization systems such as NVisionIP, VisFlowConnect, and RUMINT. The 

comparison between visualizations shows interesting patterns and characteristics. At this moment, 

the complexity evaluation method is still immature. We have not yet tested our evaluation results 

against user studies. Our next step is to ask people to evaluate visualizations using our complexity 

evaluation method and compare the results to test consistency in the proposed method. We will 

evaluate visualizations using both conventional evaluation methods and complexity evaluation 

method, and then compare their results. Furthermore, the proposed method has the potential to be 

extended to other areas of information visualization.
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