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AN OPTIMAL SOLUTION ON SCREENING AND TREATMENT OF

CHLAMYDIA TRACHOMATIS AND NEISSERIA GONORRHOEAE

by

XIN WEI

Under the Direction of Dr.Guantao Chen

ABSTRACT

We propose a resource allocation model for the management of the fund for the screening

and treatment of women infected by Chlamydia trachomatis and Neisseria gonorrhoeae .

The goal is to maximize the number of infected women cured of Chlamydia trachomatis and

Neisseria gonorrhoeae infections. The population going for screening is divided into groups

by ages and races. The group number is dynamic. Different groups have different infection

rates. There are four possible test assays and four possible treatments. We employed a

two-phase algorithm to solve the problem. The first phase is small so an exhaustive method

is applied, while the second phase is transformed to a knapsack problem and a dynamic

programming method is applied.

INDEX WORDS: operations research, mix-integer programming, dynamic programming,

knapsack problem
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CHAPTER 1

INTRODUCTION – PRELIMINARIES

Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (GC) rank as the two most com-

monly reported sexually transmitted diseases (STDs) in the United States [1]. In 2002, more

than 834,500 cases of CT were reported to the Centers for Disease Control and Prevention

(CDC) out of an estimated 3 million cases [2] . The number of GC infections reported

for the same year was over 351,800. Untreated CT and GC infections may result in pelvic

inflammatory disease (PID), ectopic pregnancy and infertility, with the healthcare cost of

untreated CT and GC infections and their attributable PID estimated at over $2 billion

annually [3, 4].

The CDC through its Division of Sexually Transmitted Disease(DSTD), and in coolab-

orative efforts with health-care providers has been continually working to evolve effective

ways to manange and control CT and GC infections. At the Health Services Research and

Evaluation Branch(HSREB) of DSTD, there is ongoing research to find effective ways to

deploy the limited resources at the disposal of family planning and DSTD clinics to combat

the spread of CT and GC. The preventive Health Amendments of 1992 provided $8.3 million

in fiscal year 1994 for the prevention of infertility associated primarily with CT. As of De-

cember 2000, all 50 states in the US and District of Columbia had enacted laws requiring the

reporting of CT infections. CT-related activities authorized by legislation include detection,

treatment, follow-up, and referral services for at-risk and their sex-partners. In 1994, the

direct anuual cost resulting form CT cases and its attributable PID was estimated to be $

2 billion by one study. Moreover, up to 70% of CT infections and 50% of GC infections are

asymptomatic [5, 6, 7, 8].
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1.1 Background of the Problem

Although annual screnning for CT and GC is recommended for sexually active adolescents

and young women, many publicly funded clinic programs may not have sufficient budgets

to screen all eligible women with the most effective tests and to offer all eligible women

a more expensive, single-dose treatment that optimizes compliance. As a result, the best

strategy to detect and treat the most infections is through universal screening of at-risk

populations. However, most public health programs or clinics may not have the resources

to screen all patients with the most effective test and treatment. Thus, to effectively use

limited resources, CT and GC control programs usually provide selective screening based

on some defined guidelines. The CDC recommends that all sexually active women below

the age of 25 year be screened at least once annually for CT [9]. Unlike in the case of

CT, there is no established recommendation to screen for GC, see U.S. Preventive Services

Task Force(USPSTF) recommendations: there is a recommendation for at risk women. The

highly non-uniform demographical distribution of the infection may be among the reasons

why no such recommendation exists. In the absence of established GC screening recommen-

dations for the general population, control programs have used several approaches, including

universal screening, selective screening, routine dual treatment, and reflex testing, in which

CT positive patients are tested for GC.

Recent studies have reported that up to 45% of family planning and STD clinic female

patients that are infected with GC are also infected with CT [10]. Such high coinfection rates

may seem to justify the CDC’s longstanding recommendation that presumptive treatment

for CT be given to women who test positive for GC in populations where the coinfection of

rate is > 20% [11].

To best use their limited resources, many clinics have conducted studies to design ef-
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fective screening criteria for their CT/GC control programs. However, for CT/GC control

programs, identifying which subpopulations to screen for chlamydial and/or gonorrheal infec-

tions is just one part of a complicated problem. The availability of several testing technologies

with varying performances and costs present a challenge for program managers when making

decisions about selecting test assays. Newer diagnostic tests that are less intrusive and more

sensitive offer increased opportunities for screening, but at a greater cost. One question that

many clinic managers face is, whether it is better to use a more sensitive and expensive test

to screen fewer patients, or rather use a relatively cheaper and less sensitive test to screen

a greater number of patients. To further complicate the situation, test manufacturers mar-

ket combination tests or bundled tests at prices that are more lucrative than the price of a

single-pathogen test. This situation encourages the testing for GC even when its prevalence

in the population is extremely low.

Many studies have examined the cost-effectiveness of screening for CT and/or GC, as

well as the comparative cost-effectiveness of using different testing technologies. However,

because the parameters that influence the screening outcomes are many and may vary con-

siderably, a resource allocation model can be used improve the outcomes for each particular

setting [12].

Because CT infection is a strong predictor of GC infection and the control programs

and resources for the two infections are often integrated, we expanded Tao et al’s resource

allocation model to include gonorrhoeae. Our objective was to develop a model that found

the combination of screening coverage, testing technology and treatment that would maxi-

mize the number of CT and/or GC infections cured under a fixed program budget. We also

wanted to analyze the threshold prevalence at which screening for CT or GC is cost effective.

This thesis presents a binary linear programming model that determines the optimal
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combination of screening and test selection, and treatment for controlling CT and GC in-

fections in asymptomatic women for a fixed budget program. The next chapter discusses

binary programming methods used in decision making problem formulations. In Chapter 3,

the models to solve the problem are developed based upon related work done by Tao et al,

and Chapter 4 discusses the results obtained from the model implementation.



CHAPTER 2

LINEAR PROGRAMMING

The flow of resources in a production process or any quantitative process involves complex

inter-relationships among numerous activities. Although differences may exist between the

processes involved, as well as between the goals to be achieved, in many cases there are major

similarities in the operations of seemingly very different systems. In order to analyze such

systems, the working parts (such as capital, raw materials, labor, etc.) of the system have

to be first identified, and the goal or objective to be achieved (for example minimization of

cost or maximization of profit) has to be set. A mathematical model may then be found for

the system. A computational scheme is then developed to determine the best schedule of

action among several alternatives to achieve the objective. The designing of such schemes

is called mathematical modeling. If a system to be analyzed can be represented by (or

approximated to) a model consisting of linear inequalities and its objective also expressible

as a minimization or maximization of a linear expression, the analysis of the system is called

linear programming.

Linear programming (LP), as a mathematical and operations research technique, is

widely used in making quantitative decisions in the management and administration of mil-

itary, governmental, commercial and industrial systems. Linear programming has been used

in several large-scale problems, often resulting in important interventions and huge cost-

savings.
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2.1 The Linear Programming Model

Generally, a linear programming application involves the problem of finding a combination

of different types of activities that efficiently exploits some limited available resources. The

solution to a linear programming problem reduces to finding an optimal value (which may be

a minimum or a maximum, depending on the problem) of a linear function of several variables

(called the objective function) subject to a set of constraints. Let xj(for j = 1, 2, ..., n) be

level of activity j and cjbe the increase in the objective function Z = f(x) that would result

from a unit increase in level of activityj. Let bibe the amount of resource i (for i = 1, 2, ...,m)

available for allocation to all activities, and aij be the amount of resource i consumed by

each unit of activity j. A linear programming model may then be formulated as

Maximize

Z = c1x1 + c2x2 + ... + cnxn,

Subject to

a11xl + a12x2 + ... + alnxn < b1

a2lx1 + a22x2 + ... + a2nxn < b2

...

amlx1 + am2x2 + ... + amnxn < bm

and

x1 > 0, x2 > 0, . . . , xn > 0

The levels of activities xi, are called the decision variables. The restrictions on the

decisions variables, expressed as inequalities in the ’Subject to’ part of the formulation are



7

called constraints. The last set of inequalities, xj ≥ 0 are called nonnegativity constraints.

Other Forms of LP Formulation

The general LP model we have discussed may be written compactly as

maximize{Z = cx|Ax ≤ b, x ≥ 0},

where A is a matrix, b and x are column vectors, and c is a row vector. However, there are

many other problems for which their LP formulations are different from the general model

described. Other possible forms of LP problem formulations are obtained by making the

following modifications:

(1) Minimizing rather than maximizing the objective function:

minimize Z =
n∑

j=1

cjxj

(2)Functional constraints with ≥ inequality:

ai1x1 + ai2x2 + ... + ainxn ≥ bi for some values of i.

(3) Functional constraints in equation form:

ai1x1 + ai2x2 + ... + ainxn = bi for some values of i.

(4) Making some of the decision variables unrestricted:

xj unrestricted in sign for some values of j.

Any LP problem that mixes some of the above forms can be reduced to the standard form

we described earlier by some algebraic manipulations. For example, a minimization problem

may be transformed into a maximization problem by multiplying the objective function by -1.
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Solving LP Problems

According to Encyclopedia Britannica, applications of the method of linear program-

ming were first seriously attempted in the late 1930’s by Leonid Kantorovich and Wassily

Leontiefin the areas of manufacturing schedules. However, little recognition was given to

their work at that time. It was after the World War Π, during which linear programming

was used extensively to deal with the problem of transportation scheduling and allocation

of resources under many constraints that the subject gained acceptability. Then, in 1947

George Dantzig developed the simplex method, which greatly simplified the solution of linear

programming problems, giving further impetus to the subject.

Since the 1950s, linear programming has experienced a remarkable growth and is used

in many applications, which would have been thought to be too complex and enormous to

deal with. It is in this same period that the computer industry has made extraordinary

developments. The link between the developments made in operations research (and for

that matter, linear programming) and the advances made in the computer industry cannot

be over emphasized. The development of high-speed microprocessors and data-processing

techniques has brought the breakthrough that operations research needed. It must be noted,

however, that the computational resources needed to solve a linear programming problem

can be very high and so many problems may still be computationally infeasible.

Two families of solution techniques are widely used in many of today’s linear program-

ming software. Both techniques visit a progressively improving series of trial solutions, until

a solution is reached that satisfies the conditions for an optimum. The simplex method

approach, developed in 1947 by George Dantzig, visits ”basic” solutions computed by fixing

enough of the variables at their bounds to reduce the constraints Ax = b to a square system,

which can be solved for unique values of the remaining variables. Basic solutions represent
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extreme boundary points of the feasible region defined by Ax = b, x > 0, and the simplex

method can be viewed as moving from one such point to another along the edges of the

boundary. Barrier or interior-point methods, by contrast, visit points within the interior of

the feasible region. The focus of this thesis is to formulate binary programming models for

the problem introduced in chapter one, and therefore the details of these solution methods

will not be discussed.

There are several computer packages available today that incorporate different variants

of the simplex method and interior-point algorithms to solve linear programming problems.

These computer packages may be put into two groups: solvers and modeling languages.

Solvers are essentially computer implementations of one or more of the available linear pro-

gramming algorithms. Several vendors market multi-purpose solvers that can be applied

to a wide array of linear programming and other optimization problems. Also, specialized

solvers may also be developed for particular problems, and may not even be applicable to

other similar problems. Some of the most popular solvers available today include CPLEX,

FortMP, LDSfDO (Linear INteractive Discrete Optimizer), LPSolve, Solver DLL, and XA,

Xpress [16].

Large-scale linear programming models can contain hundreds of constraints, and these

constraints are often expressed with indexes and summation notation. Before a solver can

be called to solve the problem, these many constraints must be read individually. Modeling

languages provide the convenient environment for formulating linear programming models

in an easy and efficient way, allowing the use of several arithmetic operators, vectors and

summations. They offer several features for model management, data import and export,

report generation, and translation of the user-entered model into algorithmic code usable

by an available solver. Modeling languages require at 1east one solver, and many vendors

offer compatibility with several solvers. Examples of modeling languages include, AIMMS,
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AMPL, GAMS, MPL, and LINGO [16].

2.2 Assumptions of Linear Programming

Representing real-world problems by mathematical models often require the imposition of

several assumptions since mathematical models often describe ideal, unattainable situations.

Therefore, to apply a linear programming formulation to a problem, the fundamental as-

sumptions of proportionality, additivity, divisibility, and certainty have to been met. These

assumptions are at the core of the linear programming formulation itself, and must be sat-

isfied together with other assumptions that may be made for a particular problem.

Proportionality is an assumption that the contribution of each activity to the objective

function Z is proportional to the level of the activity xj. Also, the contribution of each

activity in the functional constraint equation is proportional to the level of activity the xj.

As a result of this proportionality assumption, the objective function and the functional

constraints are all first-degree equations in the variable Xj.

The additivity assumption requires that every function in the linear programming model

is the sum of individual contributions of the respective activities. Therefore, cross-product

terms (involving the product of two or more variables) are excluded by the additivity as-

sumption. The additivity, together with the proportionality assumption, ensures that all

functions in the model are linear combinations of the decision variables.

The divisibility assumption allows the decision variables to be continuous. They can

take on integer values as well as fractional values. This assumption, as will be discussed

later, may be deliberately violated in certain situations.

Lastly, the certainty assumption allows us to assume that all the parameters of model,
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namely, the coefficients of the objective function, the coefficients of the functional constraints,

and the amount of available resources, are known constants. In real-world problems, however,

model parameters are not always precisely known and maybe subject to other uncontrollable

factors.

Due in part to the certainty assumption, it is a well-acknowledged fact that the exact

solution obtained from one implementation of an optimization model is not conclusive. After

an optimal solution is found, sensitivity analysis is conducted to identify the parameters that

influence the optimal solution. By performing sensitivity analysis, we are able to determine

ranges for parameters for which the optimal solution stays the same.

2.3 Integer Programming

The divisibility assumption allows solutions to the LP problem to take non-integer values.

In practice, however, there are many problems for which the solution makes sense only if the

decision variables have integer values. Typical examples involve locating production facilities

at different sites, and assigning individuals to operate equipment. If a 1inear programming

problem is further constrained for some or all of its decision variables to be integer values, the

resulting formulation is called integer linear programming, (commonly referred to as integer

programming). When some, but not all of the decision variables are restricted to integers,

the problem is called mixed integer programming(MIP).In the case where all the decision

variables are restricted to integers, the formulation is called a pure integer programming.

Linear and integer programming have proved valuable for modeling many and diverse

types of problems in planning, routing, scheduling, assignment and design. Industries that

make use of linear programming and its extensions include transportation, energy, telecom-

munications, and manufacturing of many kinds.
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2.4 Binary Integer Programming

When decision variables of an integer programming problem are restricted to just two integer

values, 0 or 1, the problem becomes a binary integer programming problem. The use of

binary integers allows many special formulation techniques to manipulate both the decision

variables and the constraint equations. Integer programming problems such as the fixed-

charge network flow problem and the famous traveling salesman problem are often expressed

in terms of binary variables. The fixed-charge network problem modifies the minimum-cost

network flow paradigm by adding a term to the cost, where the binary variable is set to 1 if

an arc carries a nonzero flow; it is set to zero otherwise.

Many times other variables besides the decision variables are introduced in the model to

help formulate the objective function or the constraint equations. Such variables, which are

not part of the original problem, are called auxiliary variables. We consider some problem

formulation possibilities with binary variables and auxiliary variables next.

Either-Or Decision Variables

Problems that involve ”yes-or-no decisions” or ”on-or-off” variables can be modeled by

allowing the variables to assume a binary value, 0 or 1. Thus the jth variable would be

represented by Xj defined as

xj =


1, if decision j is yes,

0, if decsion j is no.

Constraint Selection



13

Sometimes a model will include a set of m possible constraints for which any k of them

must hold. The model then chooses the combination of k constraints that optimizes the

objective function.

We denote the m possible constraints by the following functions:

f1(x1, x2, ...., xn) ≤ b1

f2(x1, x2, ...., xn) ≤ b2

...

fm(x1, x2, ..., xn) ≤ bm

A set of m auxiliary binary variables y1, y2, ..., ym are introduced into the constraints to

obtain this formulation:

f1(x1, x2, ...., xn) ≤ b1 + My1

f2(x1, x2, ...., xn) ≤ b2 + My2

...

fm(x1, x2, ..., xn) ≤ bm + Mym

m∑
i−1

yi = m− k,

and yi is a binary variable, for i = 1, 2, ...,m,

where the auxiliary variable yt is defined as:

yi =


1, if constraint i holds,

0, if decision i does not hold.
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and M is an extremely large (within the context of the problem) positive number. If

yi, = 0, then Myi = 0, which reduces the augmented constraint to its original form. But,

when yi = 1, then Myt makes the right-hand-side of the constraint inequality extremely large

(unbounded within the context of the problem). Therefore, the corresponding constraint is

effectively eliminated from the model.

Either-Or Constraints

A specific application to the constraint selection technique described above involves two

constraints from which only one must hold. This requirement can be stated as

either

f1(x1, x2, ...., xn) ≤ b1

or

f2(x1, x2, ...., xn) ≤ b2.

The model formulation that achieves the desired effect is

f1(x1, x2, ...., xn) ≤ b1 + My1

f2(x1, x2, ...., xn) ≤ b2 + My2

and y is a binary varible.



CHAPTER 3

MODELS

3.1 Description of the model

We propse a model to use binary variables in a mixed-integer model to find optimal strategies.

The object is to maximize the number of infected patients cured from the clinic perspective

under a fixed program budget.

Based on CT and GC infection and coinfection rates, we analyzed the following five

scenarios that differed by the pathogens tested for, and/or whether or not presumptive

treatment is done: (1) screen for CT and treat those who test positive; (2) screen for GC

and treat those who test positive; (3) screen for both CT and GC and treat those who test

positive; (4) Screen for CT and treat those with positive CT results for both CT and GC;(5)

Screen for GC and treat those with positive GC results for both GC and CT. For each of

the five screening and treatment combinations, the model analyzed screening coverage for

twelve population-groups divided by 3 age groups: (1) less than 20 years; (2) 20-24 years;

and (3) more than 24 years; 4 race groups: (1) White; (2) Black; (3) Hispanic; (4)Other. six

tests, and two treatments for each infection. The tests differed in performance on sensitivity

and specificity or whether they were capable of detecting a single pathogen or both.

Currently, CDC mainly uses two pathogen-specific tests each for CT and GC and two

combination tests for both CT and GC at the same time. For CT-specific tests, the com-

monly used nucleic acid hybridization test (Pace 2; Gen-Probe, San Diego, CA) and a

nucleic acid amplification test (strand displacement amplification [SDA]; BDProbeTec, BD

Biosciences, Sparks, MD) were modeled. For GC-specific tests, we modeled culture and a
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nucleic acid amplification test (polymerase chain reaction [PCR]; Roche Diagnostic Systems,

Branchburg, NJ). The two combination tests we modeled were the nucleic acid hybridization

test, PACE 2C manufactured by Gen-Probe, and a bundled nucleic acid amplification test

BDProbeTec CT/GC test by Becton Dickinson. We modeled two commonly-used CDC-

recommended treatments for CT infection, (azithromycin and doxycycline). For GC infec-

tion, we modeled ceftriaxone and cefpodoxime. The use of cefpdoxime to treat for GC is

not yet recommended by CDC. But with reported increasing resistance to fluoroquinolones

and the discontinued production of cefixime (the only CDC-recommended oral treatment

besides fluoroquinolones). some health departments have suggested the use cefpodoxime as

an alternative oral treatment [17].

Without lose of generality, we address some extensions to the tests and treatments. We

assumed that there were r screenings for CT, s screenings for GC, t combination tests for

both CT and GC; and there are u treatments for CT, v treatments for GC. Those extentions

would make this model more flexible and practical.

A number of simplifying assumptions were made in the model. First, we assumed that

all women who visited the family planning clinic and were infected with CT and/or GC had

no symptoms of infection. This simplify assumption was based on data from Philadelphia’s

publicty funded family planning program showing that <10% of women have symptoms of

CT infection. Second, we assume all women who tested positive for CT infection and/or

GC would be treated. Third, we considered strategies that could allow the screening and

treatment of some or all population groups. Fourth, we assumed that either all or none of

the women in each age-group will be screened. Fifth, we assumed that the return rate for

treatment for women who tested positive for CT and/or GC is uniform for all age groups.

Sixth, we assumed that the same test and treatment were offered to each visiting population

group. Seventh, we assumed that no patient received more than one test or treatment for
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CT and/or GC.

3.2 Data used in the model

We used data from published literature and from expert opinion from public health re-

searchers where data was unavailable or insufficient(table 1). Group-specific infection rates

of CT and GC were based on data from Philadelphia family planning clinics from 1996-1997,

and from the CDC 2002 Sexually Transmitted Disease Surveillance Report [18]. Group-

specific coinfection rates were based on a recent CDC study that examined GC infection

rates and coinfection rates with CT [19]. Test costs included the cost of the test kits,

reagents and labor time for collection and processing. We did not include the cost for a

pelvic examination because such an examination is often conducted for reasons other than

CT or GC screening. The cost of a pelvic examination was thus not considered as a direct

screening-specific cost.

All costs published in previous literature were adjusted to 2003 US dollars using the

medical component of the Consumer Price Index.
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Table 3.1: Variables used in the optimal resource alloca-

tion model

Variable CT GC Reference

baseline(range) baseline(range)

Prevalence of infection

white

Among women aged <20 y 0.013-0.025 0.006-0.008

Among women aged 20-24 y 0.013-0.025 0.006-0.008

Among women aged >24 y 0.013-0.025 0.006-0.008

black

Among women aged <20 y 0.1-0.125 0.012-0.081

Among women aged 20-24 y 0.1-0.125 0.012-0.081

Among women aged >24 y 0.1-0.125 0.012-0.081

hispanic

Among women aged <20 y 0.023-0.030 0.004-0.020

Among women aged 20-24 y 0.023-0.030 0.004-0.020

Among women aged >24 y 0.023-0.030 0.004-0.030

others

Among women aged <20 y 0.023-0.030 0.004-0.020

Among women aged 20-24 y 0.023-0.030 0.004-0.020

Among women aged >24 y 0.023-0.030 0.004-0.030

Sensitivity of tests

Pace 2 CT 0.780 N/A∗

BDProbeTecCT 0.928 N/A∗
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Culture N/A∗ 0.850

PCR N/A∗ 0.900

Pace 2C Combo 0.78 0.810

BDProbeTec CT/GC 0.928 0.966

Specificity of CT tests

Pace 2 CT 0.993 N/A∗

BDProbeTecCT 0.981 N/A∗

Culture N/A∗ 0.995

PCR N/A∗ 0.990

Pace 2C Combo 0.993 0.993

BDProbeTec CT/GC 0.993 0.995

Cost of tests Pace 2 CT 8.03 N/A∗

BDProbeTecCT 9.42 N/A∗

Culture N/A∗ 4.20

PCR N/A∗ 9.26

Pace 2C Combo 4.31 + 8.03 4.31+7.51

BDProbeTec CT/GC 7.82 7.82

Effectiveness of treatment

Doxycycline 0.900 N/A∗

Azithomycin 0.965 N/A∗

Ceftriaxone N/A∗ 0.977

Ciprofloxacin N/A∗ 0.972

Cefpodoxime N/A∗ 0.965

Cost of treatment

Doxycycline 4.00 N/A∗
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Azithomycin 9.50 N/A∗

Ceftriaxone N/A∗ 15.37

Ciprofloxacin N/A∗ 5.27

Cefpodoxime N/A∗ 7.32

Probabilites

PID from untreated infection 0.21 0.21

Patient’s return for treatment 0.81 0.81

Cost per case of PID 1434(1434-4131)

Cost of treatment 14.00
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3.3 The mathematical model

To find an optimal strategy that maximizes the number of infected patients cured, we need to

determinize which population group to screen, which testing technologies to use, and which

treatments to use. We used a mixed-integer program to determin the optimal strategy. In

the mixed-integer program, three sets of indexed binary variables were created: (1) xi is a

binary variable for population group, xi = 1 if group i is selected and 0 otherwise. (2) yj

is a binary variable for screening, yj = 1 if screening method j is selected and 0 otherwise;

(3) xkl for presumptive treatment. The first index i corresponds to population-group(i=1,2,

. . .,12); the index j corresponds to screen methods (i=1,2, . . .,6); the index k corresponds to

treatment for CT(k=1,2); The index l corresponds to treatment for GC(l=1,2), the notations

and variables defined as below:

Notation:

• let Sct1 denotes the screening assay 1 for CT, Sct2 denotes the screening assay 2 for

CT

• let Sgc1 denotes the screening assay 1 for GC, Sgc2 denotes the screening assay 2 for

GC

• let Scombo1 denotes the screening assay 1 for both CT and GC, Scombo2 denotes the

screening assay 2 for both CT and GC

The fifth index m corresponds to treatment, also there exists three conditions:

• let Tct1 denotes treatment 1 for CT, let Tct2 denotes treatment 2 for CT

• let Tgc1 denotes treatment 1 for GC, let Tgc2 denotes treatment 2 for GC
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Variables:

1. There are 12 population groups and set xi = 1 if group i is selected and 0 otherwise.

2. There are 6 screening methods: Sct1 (1), Sct2 (2), Sgc1 (3), Sgc2(4), Scomb1 (5),

Scomb2 (6).

Let yj = 1 is screening j is selected and 0 otherwise.

3. There are 8 treatment methods: Tct1 (1,0), Tct2 (2,0), Tgc1 (0,1), Tgc2 (0,2), Tctk +

Tgcl = (k, l). for k = 1, 2 and l = 1, 2.

Let xkl = 1 if treatment (k, l) is selected and 0 otherwise.

Target Functions: the number of unit of diseases that would be cured

For j = 1, 2, means to use the screen assay 1 for CT or screen assay 2 for CT to screen

all the population groups let

Curedijkl = Prev(i, 1) · senj · Eff(k)

+ Prev(i, 1) · senj · CoPrev(1, 2) · Sign(l) · Eff(l)

+ (1− prev(i, 1)) · (1− Spej) · CoNonPrev(1, 2) · sign(l) · Eff(l)

Where CoNonPrev(1, 2) = prev(1,2)−Prev(i,1)·CoPrev(1,2)
1−Prev(i,1)

.

Because

Popi · Prev(i, 2) = Popi · Prev(i, 1) · Copre(1, 2)

+ Popi · (1− Prev(i, 1)) · CoNonPrev(1, 2)

then one can get

CoNonPrev(1, 2) =
prev(1, 2)− Prev(i, 1) · CoPrev(1, 2)

1− Prev(i, 1)
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For j = 3, 4, means to use the screen assay 1 for GC or screen assay 2 for GC to screen

the population groups we define Curedijkl similarly. For j = 3, 4, let

Curedijkl = Prev(i, 2) · senj · Eff(l)

+ Prev(i, 1) · senj · CoPrev(2, 1) · Sign(k) · Eff(k)

+ (1− prev(i, 2)) · (1− Spej) · CoNonPrev(2, 1) · sign(k) · Eff(k)

where

CoNonPrev(2, 1) =
prev(2, 1)− Prev(i, 2) · CoPrev(2, 1)

1− Prev(i, 2)

For j = 5, 6, means to use the combination screen assay1 or combination screen assay2

to screen both CT and GC, let

Curedijkl = Prev(i, 1) · Sen(j, 1) · Eff(k) +

+ Prev(i, 2) · Sen(j, 2) · Eff(l)

Let

TCured =
∑
ijkl

Popi ·ReProb(i, j) · Curedijkl · xi · yj · zk,l

Cost Functions:

For j = 1, 2, let
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Costijkl = Popi(BaseCostj + V isitingCost)

+ Popi(Prev(i, 1) · Senj + (1− Prev(i, 1))(1− Spej))

· (DrugCost(k))ReProb(i, 1) +

+ Popi(Proev(i, 1)Senj + (1− Prev(i, 1))(1− Spej)) ·

sign(l) ·DrugCost(l) ·ReProb(i, 1)

For j = 3, 4, we define Costijkl similarly.

Costijkl = Popi(BaseCostj + V isitingCost)

+ Popi(Prev(i, 2) · Senj + (1− Prev(i, 2))(1− Spej))

· DrugCost(l)ReProb(i, 2) +

+ Popi(Proev(i, 2)Senj + (1− Prev(i, 2))(1− Spej)) ·

sign(k) ·DrugCost(k) ·ReProb(i, 2)

For j = 6, let

Costijkl = Popi(BaseCost + V isitingCost)

+ Popi(Prev(i, 1)Sen(j, 1) + (1− Prev(i, 1))(1− Spe(j, 1)))

·DrugCost(k) ·ReProb(i, 1)

+ Popi(Prev(i, 2)Sen(j, 2) + (1− Prev(i, 2))(1− Spe(j, 2)))

·DrugCost(l) ·ReProb(i, 2)

For j = 5, this is a special case, because this screen has additional cost, which used to

identify what infection(s) the patients have been infected. We need to introduce some new
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notation here

• let BaseSen(1, 0) denote the base sensitivity for CT

• let BaseSen(0, 1) denote the base sensitivity for GC

• let BaseSen(1, 1) denote the base sensitivity for testing the people who has both CT

and GC

For j = 5, the cost is:

Costijkl = Popi · {Prev(i, 1) · (1− Coprev(1, 2)) ·BaseSen(1, 0)

+ Prev(i, 1) · Coprev(1.2) ·BaseSen(1, 1)

+ Prev(i, 2) · (1− Coprev(2, 1)) ·BaseSen(0, 1)

+ [(1− Prev(i, 1))− (1− prev(i, 1)) · CoNoprev(1, 2)] · (1−BaseSpe)}

· (AddCost(1) + AddCost(2))

+ Popi(Prev(i, 1)Sen(j, 1) + (1− Prev(i, 1))(1− Spe(j, 1)))

·DrugCost(k) ·ReProb(i, 1)

+ Popi(Prev(i, 2)Sen(j, 2) + (1− Prev(i, 2))(1− Spe(j, 2)))

·DrugCost(l) ·ReProb(i, 2)

Therefore the problem is

max TCured =
∑

i,j,k,l Curedijklxiyjzl,m.

subject to

∑
ijkl

Costijk2xiyjzl,m ≤ Budget.
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6∑
j=1

yj ≤ 1,

∑
k,l

zkl = 1.

As we can see, this model could be caterogrize into the 0− 1 Knapsack problem(KP

problem) for fixed j, k and l. The definition of 0-1 KP problem is: given a set of n items

and a knapsack , with

pj = profit of item j

,

wj = weight of item j

,

c = capacity of item j

,

select a subset of the items so as to

maximize z=
∑n

j=1 pjxj

subject to:
∑n

j=1 xj ≤ c

xj= 0 or 1, j ∈ N = 1, . . . , n;

where
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xj =


1, if item j is selected,

0, otherwise.

In the fifties, Bellman’s dynamic programming theory produced the first algorithm to

exactly solve the 0-1 KP problem. In the sixties, the dynamic programming approach to

the KP and other KP-type problems was deeply investigated by Gilmore and Gomory. In

1967, Kolesar experimented with the branck-and-bound algorithm for the problem. In the

seventies, the branch-and-bound algorithm was further developed, proving to be the only

method capable of solving problems with a high number of variables.

In order to solve our practical problem, we developed a two-step algorithm, combining

exhaustive and dynamic programming algorithms.

3.4 The Algorithm

In the seven assumptions provided previously, there is a very strong one that simplifies our

model a lot. We assume that all population groups should take the same test and same

treatment(s). It means for all population groups which are selected to attend the test and

treatment(s), the test and treatment(s) should be all the same to every group.

For Screening and treatments, there are r test assays for CT, s for GC, t assays for

combination tests. For treatments, there are u assays for treatments of CT, v assays for

treatments for GC. Hence, there are uv combinations to choose one from the treatments of CT

and one from the treatments of GC. The total combinations of CT screening and treatments

is: r(u + uv). For the same reason, the combination of GC screening and treatments is

: s(v + uv). If the population groups use combination tests for both CT and GC, the

combination numbers are tuv. so the total combinations is :
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r(u + uv) + s(v + uv) + tuv

= ru + sv + uv(r + s + t)

Obviously, the complexity of the exhaustive algorithm in this case is in term of r,s,u,t.

Considering the population group, there are 12 groups in our model. If each group

chooses to go for test or not to go, then, this is a knapsack problem. The number of the

population group’s choices is 212. If there are more population groups, the combinations

would increase exponentially. And the Knapsack problem is a NP-Complete, there is no

known polynomial-time alogrithm for this type of question. Therefore, we need to use

dynamic programming or a branch and bound algorithm to deal with it with the hope of

reducing the complexity. Here we decide to put dynamic programming into use because the

number variables in our model is not that high.

Therefore, the model could be split up into two parts, accordingly, We bring up a

two-period algorithm to process it.

1). At the first period, we exhaust all the combinations of test and the treatments.

The total combinations is ru + sv + uv(r + s + t). The polynomial-time problem makes the

exhaustive algorithm reasonable.

2). At the second period, we use dynamic programming algorithm to find out which

group(s) should be enforced test and treatment(s). The Knapsack problem is a NP-complete

problem. The complexity is non-polynomial.

The knapsack problem can be solved in pseudo-polynomial time using dynamic program-

ming. The following depicts a dynamic programming solution for the unbounded knapsack

problem.
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Let the costs be c1, . . . cn and the corresponding values v1, . . . vn. We wish to maximize

total value subject to the constraint that total cost is less than C. Then for each i ≤ C,

define A(i) to be the maximum value that can be attained with total cost less than or equal

to i, clearly, A(C) is the solution of the problem.

Define the A(i) recursively as follows:

• A(0) = 0

• A(i) = max{vj + A(i− cj) for all cj ≤ i}

Here the maximum of the empty set is taken to be zero. Tabulating the results from A(0)

up through A(C) gives the solution. Since the calculation of each A(i) involves examining

n items (all of which have been previously computed), and there are C values of A(i) to

calculate, the running time of the dynamic programming solution is thus O(nC).

In this paper, we performed a two period model of resources allocation model on a

web-based application. The front-end webpage is written by Java Sever Page(JSP), which in

charge of inputing data and output result. The back-end algorithm is written in Java. The

user will get the data from the webpage and feedback an optimization allocation method.

This does not contradict the fact that the knapsack problem is NP-complete, since C,

unlike n, is not polynomial in the length of the input to the problem. The length of the

input to the problem is proportional to the number of bits in C, not to C itself.

A similar dynamic programming solution for the 0-1 knapsack problem also runs in

pseudo-polynomial time[20]. As above, let the costs be c1, . . . , cn and the corresponding

values v1, . . . , vn. We wish to maximize total value subject to the constraint that total cost

is less than C. Define a recursive function, A(i, j) to be the maximum value that can be
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attained with cost less than or equal to j using items up to i.

• A(0, j) = 0

• A(i, 0) = 0

• A(i, j) = A(i− 1, j)if ci > j

• A(i, j) = max(A(i− 1, j), vi + A(i− 1, j − ci) if ci ≤ j)

The solution can then be found by calculating A(n, C). To do this efficiently we can use

a table to store previous computations. This solution will therefore run in O(nC) time and

O(nC) space, though with some slight modifications we can reduce the space complexity to

O(C).



CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Results

Table 4.1: Optimal Strategy

total budget population test treatment total

budget per patient group cured person

19,000 19.0 2 CULTURE Doxy+Cip 72

19,100 19.1 2 CULTURE Azi+Cip 73

19,680 19.68 2 CULTURE Azi+Cef 74

20,140 20.14 2 CULTURE Azi+Cef 74

20,150 21.25 2 APTIMACT/GC Doxy+Cip 105

20,180 20.18 6 APTIMACT/GC Azi+Cef 155

40,050 20.02 2,9 APTIMACT/GC Doxy+Cip 164

40,500 20.25 2,6 APTIMACT/GC Doxy+Cip 254

43,500 21.75 2,6 APTIMACT/GC Azi+Cef 265

205,000 20.05 1,2,3,4 APTIMACT/GC Azi+Cef

5,6,7,8 539

10,11

300,000 25,00 1-12 APTIMACT/GC Azi+Cef 579

we applied our model to a hypothetical cohort of 1000 asymptomatic women evenly dis-

tributed among the population groups considered. The strategies that maximized the num-
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ber of cures at different total budgets and per-patient budgets are presented in Table 2. In

the Table 2 above, the index number 1-12 of the population groups stands for the group with

different age and races, as the Table3 shows:

From the the Table 2 we can know, for example, under the total budget of $19,000,

only population group 2 would choose to take part in the test and treatment. Then the per-

patient budget is $19.00. Use Culture for the test assay, Doxy and Cip for the treatments.

The number of cured people would be 72. Population group 2 stands for the group of black

people with the age less than 20 years old. The infection rate of CT and GC ranges from 0.1-

0.125 and 0.012 - 0.081 respectively, which are much higher than other groups. Therefore,

when the budget is not enough, this group should get priority to be tested and treated. In

addition, this group’s infection rate of CT is much higher than the rate of GC, the optimal

strategy is to choose test assays for CT rather than GC or the combined test because of the

limited budget.

All of the optimal strategies listed in Table 2 could be classifed into two groups. When

the total budget is limited, the best strategy is to choose the less expensive Culture as the

test assay. When the budget is enough, we should use the expensive combined test-APTIMA

CT/GC as the test assay.

Frome Table 2, one could see the overall trend is that if the total budget increases the

total number of cured persons also increases. But when you considering the per patient

budget, the situation becomes a little bit more complicated. With the increasing of the toal

budget, the per patient budget goes up and downs. For example, when the total budget

ranges from $125,000 to $165,000, the per patient budget drops from $20.8 to $18.30, but

the total cured persons increases tremendously from 427 to 488.

From the Table 2, one could see the treatments would be Azi and Cef in most of the
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occasions. In fact, treatments would not play as an important role in the budget planning.

We can imagine that only a very small part of the whole population (sometimes the part is

less than 1%) is the positive patients which need to be treated. Therefore the population

to go for treatment would be very small. As a result, the money spent on treatment drugs

would be very small. The key factor that would influence the budget planning tremendously

is the test assay. All the population groups would go for screen, and everybody would be

screened with a certain assay. Most of the budget would be invested in the test. Hence the

decision of which test assay should be used is the critical factor.

From all the strategies listed in Table 2, we could not draw an conclusion about which

one is better, to use a more sensitive and expensive test to screen fewer patients, or rather

to use a relatively cheaper and less sensitive test to screen a greater number of patients. It

depends on the data of the budget, infection rate and all kinds of characteristcs of the test

assays and treatments. Based on our current data, we could say that to use less sensitive

test to screen a great number of patients should be better when the total budget is limited.

This mathematical model was formulated by a web-based application. The front-end

web page is written by Jave serve page. The back-end program is written by Java language.

They are connected by Javabean. The whole framework of this web-application is based on

Model-Controller-View(MVC) pattern, using MySQL as the database to store the data.

We deploy the whole application on the sun-blade-100 workstation. The website’s address:

http://131.96.241.29:8080/wx/project2.html. And the source code is attached in

the appendix.

Table 4.2: population group

white black hispanic others
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<20 years old 1 2 3 4

20− 24 years old 5 6 7 8

> 24 years old 9 10 11 12

4.2 Future Work

Although the models discussed in this thesis provide useful tools for clinicians in allocat-

ing resources for controlling C. trachomatis(CT) and Neisseria gonorrhoeae(GC) infections,

they have several limitations and hence there still exist several opportunities to advance this

study. Some of these limitations and opportunities for further work are discussed below.

Possible improvements

1. In our current web application, we make the categorization of the population group con-

figurable. One can randomly divide the population into different groups by age and race.

This makes the webpage very flexible and could meet the practical requirments of the user.

With the exception for the population group, other parameters such like infections, screen

assays, and treatments are all static. For example, one can not add or delete an infections

or several infections one the webpage. The assays for screening and drugs for treatments are

all constant. One could not add or delete them. Hence this web-based application is not

expandable and could not satisfy user’s practical requirments. The next step should be to

make all the parameters such like infections, screen assays, and treatments drugs dynamic

and configurable. Considering many branches of CDC would use this application for decision

making later, each user would have its own profile for population groups, infections, screens

and treatments. Besides making all of those parameters configurable, we should go further

to adopt a database to store all user’s profile data, which would be great convience for all

the users.
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2. We use the dynamic programming as the background algorithm. Compared with exhaus-

tive mothod, dynamic programming saves time by the sacrifice of space. When the size of the

problem becomes bigger, the memeory would be consumed very quickly or even the program

could break down soon. As an improvement, the Branch and Bound algorithm is a good

choice. For a given problem space an efficient division will divide the solution space into a

small set containing high value (or low cost) solutions to be examined more closely and a

larger set of their opposites (those to be ignored). If a partial solution cannot improve on the

best, it is abandoned. Therefore, the computer is not necessary to store all data of combina-

tions of population groups, screens and treatments. This saves space and time. Furthermore,

This method naturally lends itself for parallel and distributed implementations. We could

even implement the parallel computing and distributed computing. By parallel computing,

a computing process would be divided into several threads,each thread would compute a

subregions of the problem, hence a lot of time could be saved. By distributed computing,

we could deploy the application onto several servers and each the server would collabrate for

computation. The computing speed of the program would increase tremendously.
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APPENDIX

Code: Knapasack Algorithm

import javax.swing.UIManager;

/**

* @author Wei Xin.

*/

public class Knapsack2 {

static int v=0;

/**

* Calculates the optimal vector.

* @param w are the weights.

* @param p are the prices.

* @param n is the number of items.

* @param c is the capacity.

* @param m are the coefficients of the constraints.

* @param x is the resulting vector.

*/

public static void knapsack2(int[] w, int[] p, int n,

int c, int[][] m, boolean[] x)

{

int i,j,k;
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for(i=0;i<=n;i++)

{

m[i][0] = 0;

x[i] = false;

}

for(i=0;i<=c;i++){

m[0][i]=0;

}

for(i=1;i<=n;i++)

{

for(j=1;j<=c;j++)

{

m[i][j]=m[i-1][j];

if((j>=w[i-1])&&((m[i-1][j-w[i-1]]+p[i-1])>m[i-1][j]))

m[i][j]=m[i-1][j-w[i-1]]+p[i-1];

}

}

j=c;

for(i=n;i>0;i--)

{

if(m[i][j]>m[i-1][j])

{

x[i-1]=true; j=j-w[i-1];

}



40

}

v=m[n][c];

}

/**

* Get the result.

* @return the result.

*/

public int get_result()

{

return v;

}

/**

* Prints the result.

*/

public static void printinfo()

{

System.out.println(v);

}

/**

* This is the main procedure.

* @param args are the arguments.

*/

public static void main(String[] args)

{

int[] ww = {2,2,3,5,4};



41

int[] pp = {6,3,5,4,6};

boolean[] xx = new boolean[6];

int[][] mm = new int[11][11];

int i;

knapsack2(ww,pp,5,10,mm, xx);

printinfo();

for(i=0;i<5;i++)

System.out.println(xx[i]);

}

}

Code: calculate the coeffcients

package user7;

import java.text.*;

import java.util.*;

public class Coef{

int pop; //population

double upre; //upper prevalence

double sen; //sensitivity

double spe; //specificity

double bcost; //basecost

double acost; //additional cost
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double dcost; //drug cost

double vcost; //visit cost

double eff; //effectiveness

double rp; //return probability

double copre; //coprevelance

double budget; //budget

double scured;

double mcured;

double tcost;

double drcost;

double mcost;

public Coef(int popi, double uprei, double seni, double spei, double bcosti, double acosti,

double dcosti, double vcosti, double effi, double rpi, double coprei)

{

pop = popi;

upre = uprei;

sen = seni;

spe = spei;

bcost = bcosti;

acost = acosti;

dcost = dcosti;

vcost = vcosti;

eff = effi;
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rp = rpi;

copre = coprei;

}

public void set_Scured()

{

scured = pop*upre*sen*eff*rp; //calculate the CTcured & GCcured

}

public void set_Mcured()

{

mcured = pop*upre*sen*copre*eff*rp; //CTinGCcured and GCinCTcured

}

public void set_Tcost()

{

tcost = pop*(bcost+(upre*sen*acost)); //CTtestcost and GCtestcost

}

public void set_Drcost()

{

drcost = pop*(upre*sen+(1-upre)*(1-spe))*(dcost+vcost)*rp; //CTdrug cost and GCdrugcost

}

public void set_Mcost()

{

mcost = pop*dcost*rp*(upre*sen*copre+(1-upre)*(1-spe)); //CTinGCcost and GCinCTcost

}

public double get_Scured()

{
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return scured;

}

public double get_Mcured()

{

return mcured;

}

public double get_Tcost()

{

return tcost;

}

public double get_Drcost()

{

return drcost;

}

public double get_Mcost()

{

return mcost;

}

public void printInfo()

{

this.set_Scured();

this.set_Mcured();

this.set_Tcost();

this.set_Drcost();

this.set_Mcost();
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DecimalFormat df=new DecimalFormat("$#,###.##");

System.out.println("singlecured: \t" +df.format(scured));

System.out.println("mixedcured: \t" +df.format(mcured));

System.out.println("testcost: \t" +df.format(tcost));

System.out.println("drugcost: \t" +df.format(drcost));

System.out.println("mcost: \t" +df.format(mcost));

}

public static void main(String[] args)

{

Coef coef1 = new Coef(1000, 0.125, 0.78, 0.993, 4.31, 8.03, 9.5, 14, 0.965, 0.81, 0.45);

coef1.printInfo();

}

}

Code: Main Program(just part of them)

<%@ page import="user7.Coef" %>

<%@ page import="user6.Coefpage2" %>

<%@ page import="user8.Knapsack2" %>

<html>
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<title>the setup of self-defined class and object</title>

<style type="text/css">

<!--

.style3 {

font-size: 16px;

font-weight: bold;

color: #FF0000;

}

-->

</style>

<body>

<%

<%

Coefpage2 coef2 = new Coefpage2(vcost1, rp1, budget1);

coef2.setPop();

coef2.getPop();

%>

<%
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double CTcured[][][] = new double[12][2][2];

double GCinCTcured[][][] = new double[12][2][2];

double CTtestcost[][][] = new double[12][2][2];

double CTdrugcost[][][] = new double[12][2][2];

double GCinCTcost[][][] = new double[12][2][2];

double GCcured[][][] = new double[12][2][2];

double CTinGCcured[][][] = new double[12][2][2];

double GCtestcost[][][] = new double[12][2][2];

double GCdrugcost[][][] = new double[12][2][2];

double CTinGCcost[][][] = new double[12][2][2];

double ComboCTcured[][][] = new double[12][2][2];

double ComboGCinCTcured[][][] = new double[12][2][2];

double ComboCTtestcost[][][] = new double[12][2][2];

double ComboCTdrugcost[][][] = new double[12][2][2];

double ComboGCinCTcost[][][] = new double[12][2][2];

double ComboGCcured[][][] = new double[12][2][2];

double ComboCTinGCcured[][][] = new double[12][2][2];

double ComboGCtestcost[][][] = new double[12][2][2];

double ComboGCdrugcost[][][] = new double[12][2][2];

double ComboCTinGCcost[][][] = new double[12][2][2];

int[][] TotalCTcured = new int[12][12];



48

int[][] TotalCTcost = new int[12][12];

int[][] TotalGCcured = new int[12][12];

int[][] TotalGCcost = new int[12][12];

int[][] TotalCombocured = new int[12][8];

int[][] TotalCombocost = new int[12][8];

int[] Finalcured = new int[32];

int[] Finalcost = new int[32];

int j=0;

int MaxCured = 0;

int gs1, gs2;

int i, k, l, r, n;

n = r = 0;

gs1 = gs2 = 0;

for (i = 0; i < 12; i++)

{

j = 0;

for (k = 0; k < 2; k++)

for (l = 0; l < 2; l++) {

Coef coefct = new Coef(pop[i], cupre[i], ctsen[k], ctspe[k],

ctbcost[k], ctacost[k],
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ctdrcost[l], vcost1, cteff[l], rp1, copre[0]);

coefct.set_Scured();

coefct.set_Mcured();

coefct.set_Tcost();

coefct.set_Drcost();

coefct.set_Mcost();

CTcured[i][k][l] = coefct.get_Scured();

GCinCTcured[i][k][l] = coefct.get_Mcured();

CTtestcost[i][k][l] = coefct.get_Tcost();

CTdrugcost[i][k][l] = coefct.get_Drcost();

GCinCTcost[i][k][l] = coefct.get_Mcost();

Coef coefgc = new Coef(pop[i], gupre[i], gcsen[k], gcspe[k],

gcbcost[k], gcacost[k],

gcdrcost[l], vcost1, gceff[l], rp1, copre[1]);

coefgc.set_Scured();

coefgc.set_Mcured();

coefgc.set_Tcost();

coefgc.set_Drcost();

coefgc.set_Mcost();

GCcured[i][k][l] = coefgc.get_Scured();

CTinGCcured[i][k][l] = coefgc.get_Mcured();

GCtestcost[i][k][l] = coefgc.get_Tcost();
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GCdrugcost[i][k][l] = coefgc.get_Drcost();

CTinGCcost[i][k][l] = coefgc.get_Mcost();

TotalCTcured[i][j] = (int) CTcured[i][k][l] +

(int) GCinCTcured[i][k][l];

TotalCTcost[i][j] = (int) CTtestcost[i][k][l] +

(int) CTdrugcost[i][k][l] + (int) GCinCTcost[i][k][l];

TotalGCcured[i][j] = (int) GCcured[i][k][l] +

(int) CTinGCcured[i][k][l];

TotalGCcost[i][j] = (int)GCtestcost[i][k][l] +

(int) GCdrugcost[i][k][l] + (int) CTinGCcost[i][k][l];

j++;

}

}

for (i = 0; i < 12; i++)

{ j=4;

for (k = 0; k < 2; k++)

for (l = 0; l < 2; l++)

for (r = 0; r < 2; r++) {

TotalCTcured[i][j] = (int) CTcured[i][k][l] +

(int) GCinCTcured[i][k][l]+(int) GCcured[i][k][r] +

(int) CTinGCcured[i][k][r];

TotalCTcost[i][j] = (int)CTtestcost[i][k][l]+
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(int) CTdrugcost[i][k][l]

+(int) GCinCTcost[i][k][l]+(int) GCdrugcost[i][k][r]

+(int) CTinGCcost[i][k][r];

TotalGCcured[i][j] = (int) GCcured[i][k][l] +

(int) CTinGCcured[i][k][l]+(int) CTcured[i][k][r] +

(int) GCinCTcured[i][k][r];

TotalGCcost[i][j] =TotalCTcost[i][j] = (int)GCtestcost[i][k][l]+

(int)GCdrugcost[i][k][l]

+(int) CTinGCcost[i][k][l]+(int)CTdrugcost[i][k][r]

+(int)GCinCTcost[i][k][r];

j++;

}

}

for (i = 0; i < 12; i++) //calculate the combo

{ j=0;

for (k = 0; k < 2; k++)

for (l = 0; l < 2; l++)

for (r = 0; r < 2; r++) {

Coef coefcomboct = new Coef(pop[i], cupre[i], combo_ctsen[k],

combo_ctspe[k], combo_ctbcost[k],

combo_ctacost[k],

ctdrcost[l], vcost1, cteff[l], rp1,
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copre[0]);

coefcomboct.set_Scured();

coefcomboct.set_Mcured();

coefcomboct.set_Tcost(); //the CT coeff in Combo

coefcomboct.set_Drcost();

coefcomboct.set_Mcost();

ComboCTcured[i][k][l] = coefcomboct.get_Scured();

ComboGCinCTcured[i][k][l] = coefcomboct.get_Mcured();

ComboCTtestcost[i][k][l] = coefcomboct.get_Tcost();

ComboCTdrugcost[i][k][l] = coefcomboct.get_Drcost();

ComboGCinCTcost[i][k][l] = coefcomboct.get_Mcost();

Coef coefcombogc = new Coef(pop[i], gupre[i], combo_gcsen[k],

combo_gcspe[k], combo_gcbcost[k],

combo_gcacost[k],

gcdrcost[l], vcost1, gceff[l], rp1,

copre[1]);

coefcombogc.set_Scured();

coefcombogc.set_Mcured();

coefcombogc.set_Tcost(); //the GC coeff in Combo

coefcombogc.set_Drcost();

coefcombogc.set_Mcost();

ComboGCcured[i][k][l] = coefcombogc.get_Scured();
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ComboCTinGCcured[i][k][l] = coefcombogc.get_Mcured();

ComboGCtestcost[i][k][l] = coefcombogc.get_Tcost();

ComboGCdrugcost[i][k][l] = coefcombogc.get_Drcost();

ComboCTinGCcost[i][k][l] = coefcombogc.get_Mcost();

TotalCombocured[i][j] = (int)ComboCTcured[i][k][l]

+(int)ComboGCinCTcured[i][k][l]

+(int)ComboGCcured[i][k][r]

+(int)ComboCTinGCcured[i][k][r];

TotalCombocost[i][j]= (int)ComboCTtestcost[i][k][l]

+ (int)ComboCTdrugcost[i][k][l] + (int)ComboGCinCTcost[i][k][l]

+ (int)ComboGCtestcost[i][k][l]+ (int)ComboGCdrugcost[i][k][r]

+ (int)ComboCTinGCcost[i][k][r];

j++;

}

}

%>

<%
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for(j=0;j<12;j++)

{

n = 0;

{

for (i = 0; i < 12; i++) {

Finalcured[n] = TotalCTcured[i][j];

Finalcost[n] = TotalCTcost[i][j];

n++;

}

int[][] mm = new int[13][ (int)budget1 + 1];

boolean[] x = new boolean[13];

Knapsack2 kp = new Knapsack2();

kp.knapsack2(Finalcost, Finalcured, 12, (int)budget1, mm, x);

gs1=kp.get_result();

//kp.printinfo();

if (MaxCured < gs1) {

MaxCured = gs1;

r=j;

gs2=1;

}

}
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}

for(j=0;j<12;j++)

{

n = 0;

{

for (i = 0; i < 12; i++) {

Finalcured[n] = TotalGCcured[i][j];

Finalcost[n] = TotalGCcost[i][j];

n++;

}

int[][] mm = new int[13][ (int)budget1 + 1];

boolean[] x = new boolean[13];

Knapsack2 kp = new Knapsack2();

kp.knapsack2(Finalcost, Finalcured, 12, (int)budget1, mm, x);

gs1=kp.get_result();

//kp.printinfo();

if (MaxCured < gs1) {

MaxCured = gs1;

r=j;

gs2=2;

}
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}

}

for(j=0;j<8;j++)

{

n = 0;

{

for (i = 0; i < 12; i++) {

Finalcured[n] = TotalCombocured[i][j];

Finalcost[n] = TotalCombocost[i][j];

n++;

}

int[][] mm = new int[13][ (int)budget1 + 1];

boolean[] x = new boolean[13];

Knapsack2 kp = new Knapsack2();

kp.knapsack2(Finalcost, Finalcured, 12, (int)budget1, mm, x);

gs1=kp.get_result();

//kp.printinfo();

if (MaxCured < gs1) {

MaxCured = gs1;

r=j;

gs2=3;

}
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}

}

%>

</body>

</html>
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