Administration of the Behavioral Pediatrics Feeding Assessment Scale (BPFAS) to Parents of High-Risk Infants: How to Best Identify Those at Risk for Feeding Difficulties

Monica Evans

Georgia State University
ACCEPTANCE

This thesis, ADMINISTRATION OF THE BEHAVIORAL PEDIATRICS FEEDING ASSESSMENT SCALE (BPFAS) TO PARENTS OF HIGH-RISK INFANTS: HOW TO BEST IDENTIFY THOSE AT RISK FOR FEEDING DIFFICULTIES, by Monica V. Evans was prepared under the direction of the Master’s Thesis Advisory Committee. It is accepted by the committee members in partial fulfillment of the requirements for the degree Master of Science in the Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University. The Master’s Thesis Advisory Committee, as representatives of the faculty, certify that this thesis has met all standards of excellence and scholarship as determined by the faculty.

Anita M. Nucci, Ph.D, MPH RD, LD
Committee Chair

Sheena L. Carter, Ph.D
Committee Member

Sarah T. Henes, Ph.D, RD, LDN
Committee Member

Date
AUTHOR’S STATEMENT

In presenting this thesis as a partial fulfillment of the requirements for the advanced degree from Georgia State University, I agree that the library of Georgia State University shall make it available for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to quote, to copy from, or to publish this thesis may be granted by the professor under whose direction it was written, by the Byrdine F. Lewis School of Nursing and Health Professions director of graduate studies and research, or by me. Such quoting, copying, or publishing must be solely for scholarly purposes and will not involve potential financial gain. It is understood that any copying from or publication of this thesis which involves potential financial gain will not be allowed without my written permission.

Signature of Author
NOTICE TO BORROWERS

All theses deposited in the Georgia State University library must be used in accordance with the stipulations prescribed by the author in the preceding statement. The author of this thesis is:

Monica V. Evans
3890 Carlton Drive
Atlanta, GA 30341

The director of this thesis is:

Anita M. Nucci, PhD, MPH, RD, LD
Assistant Professor and Division Head
Byrdine F. Lewis School of Nursing and Health Professionals
Georgia State University
Atlanta, Georgia 30302
VITA

Monica V. Evans

ADDRESS: 3890 Carlton Drive
 Atlanta, GA 30341

EDUCATION: M.S. 2012 Georgia State University
 Health Sciences
 B.A. 2006 University of North Carolina at Chapel Hill
 Psychology

PROFESSIONAL EXPERIENCE:
• Fitness Instructor 2011-present
 Adrenaline Fitness, Atlanta, GA
• Esthetician 2007-2011
 Natural Body Spa & Shoppe, Atlanta, GA

PROFESSIONAL SOCIETIES AND ORGANIZATIONS:
• Student Representative, Georgia Dietetic Foundation 2011-present
• Sports, Cardiovascular, and Wellness Nutrition Practice Group 2011-present
• Academy of Nutrition and Dietetics 2010-present
• Georgia Academy of Nutrition and Dietetics 2010-present

PRESENTATIONS AND PUBLICATIONS:
• Poster Presentation “Administration of the Behavioral Pediatrics Feeding Assessment
 Scale (BPFAS) to Parents of High-risk Infants: How to Best Identify Those at Risk
 for Feeding Difficulties”, Georgia Academy of Nutrition and Dietetics 2012
ABSTRACT

ADMINISTRATION OF THE BEHAVIORAL PEDIATRICS FEEDING ASSESSMENT SCALE (BPFAS) TO PARENTS OF HIGH-RISK INFANTS: HOW TO BEST IDENTIFY THOSE AT RISK FOR FEEDING DIFFICULTIES

by

Monica V. Evans

Purpose: The purpose of this study was to determine the efficacy of the Behavioral Pediatrics Feeding Assessment Scale (BPFAS) in identifying children at risk for feeding difficulties when given to parents in an interview format versus without assistance.

Methods: Parents/guardians of clinic patients who gave consent were randomized to receive the BPFAS either by interview or without assistance. Demographic and anthropometric data as well as nutrition referral status were documented during the clinic visit. Mean BPFAS scores were compared by survey administration method and nutrition referral status using the t-test. The analysis was also conducted by age (<1.5 years, >1.5 year) and weight status (<25th percentile, 25-75th percentile, >75th percentile) subgroups. The association between survey administration method as well as nutrition referral status and referral score category (≤84 or >84) was determined using the Chi-square test. The relationship between nutrition referral status and the response to each BPFAS question was also examined using the Chi-Square test.

Results: Thirty subjects from Emory Developmental Progress Clinic (Emory DPC) participated in the study (mean age 71 weeks ± 26.9, mean gestational age 29 weeks ± 4.4, 56.7% African American, 36.7% Caucasian, 3.3% Asian, 3.3% Other). No difference in mean BPFAS score or referral score category by survey administration method was found in the total cohort. However, a higher BPFAS score was observed for
children >1.5 years of age who were referred for nutrition intervention vs. not referred (82.4 vs. 58.6, respectively; p=0.035). There was also a significant association between the number of patients referred for nutrition intervention vs. not referred and referral score (11 vs. 19, respectively; p=0.041). No difference in the ability of the BPFAS to determine nutritional risk was observed by weight status. There was also no association between responses to individual BPFAS survey questions and nutrition referral status.

Conclusions: There was no difference in the BPFAS total score obtained when administered in an interview format versus self-completed by the family. There was also no difference in the effectiveness of the BPFAS in identifying children with feeding difficulties based on method of administration (interview versus no interview). Evaluation of other feeding assessment surveys or the in-house development of a screening tool may be better alternatives for the Emory DPC.
ADMINISTRATION OF THE BEHAVIORAL PEDIATRICS FEEDING ASSESSMENT SCALE (BPFAS) TO PARENTS OF HIGH-RISK INFANTS: HOW TO BEST IDENTIFY THOSE AT RISK FOR FEEDING DIFFICULTIES

by

Monica V. Evans

A Thesis

Presented in Partial Fulfillment of Requirements for the Degree of

Master of Science in Health Sciences

Byrdine F. Lewis School of Nursing and Health Professions

Division of Nutrition

Georgia State University

Atlanta, GA
2012
ACKNOWLEDGEMENTS

I would like to thank the clinicians at the Emory Developmental Progress Clinic for their assistance, patience, and willingness to allow me to conduct research during their very busy clinic. I am especially grateful to Dr. Sheena Carter for her assistance in obtaining and organizing all needed materials for the BPFAS and acting as a liaison for Emory School of Medicine. Thank you also to Maureen LaRossa for her assistance in arranging access to the computerized scoring system for the survey at the clinic.

This thesis could not have been completed without the advisement of Dr. Anita Nucci. Her wisdom of all aspects of research was an invaluable resource to me in completing this project.
TABLE OF CONTENTS

List of Tables iv
Abbreviations v

Chapter
I. INTRODUCTION 1
II. REVIEW OF THE LITERATURE 3
III. MANUSCRIPT IN STYLE OF JOURNAL 12
 Author’s Page 13
 Abstract 14
 Introduction 16
 Methods 18
 Results & Discussion 21
 Conclusion 24
 Tables 26
 References 31

Appendices
Appendix A Behavioral Pediatrics Feeding Assessment Survey (BPFAS) 35
Appendix B Demographics and Anthropometrics Form 36
Appendix C BPFAS Scoring Form 37
Appendix D BPFAS Score Sheet Example 38
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Characteristics of Emory DPC Patients</td>
<td>26</td>
</tr>
<tr>
<td>2. Mean BPFAS Scores by Survey Administration Method for the Cohort and by Age and Weight Status</td>
<td>28</td>
</tr>
<tr>
<td>3. Mean BPFAS Scores by Referral Status for the Cohort and by Age and Weight Status</td>
<td>29</td>
</tr>
<tr>
<td>4. Associations between Survey Administration Method and Referral Status with Referral Score for the Total Cohort</td>
<td>30</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPFAS</td>
<td>Behavioral Pediatrics Feeding Assessment Survey</td>
</tr>
<tr>
<td>NICU</td>
<td>Neonatal Intensive Care Unit</td>
</tr>
<tr>
<td>Emory DPC</td>
<td>Emory Developmental Progress Clinic</td>
</tr>
<tr>
<td>NEC</td>
<td>Necrotizing Enterocolitis</td>
</tr>
<tr>
<td>BDP</td>
<td>Bronchopulmonary Dysplasia</td>
</tr>
<tr>
<td>EFS</td>
<td>Early Feeding Skills</td>
</tr>
<tr>
<td>NOMAS</td>
<td>Neonatal Oral-Motor Assessment Scale</td>
</tr>
<tr>
<td>HIPAA</td>
<td>Health Insurance Portability and Accountability Act</td>
</tr>
</tbody>
</table>
CHAPTER 1

ADMINISTRATION OF THE BEHAVIORAL PEDIATRICS FEEDING ASSESSMENT SCALE (BPFAS) TO PARENTS OF HIGH-RISK INFANTS: HOW TO BEST IDENTIFY THOSE AT RISK FOR FEEDING DIFFICULTIES

Introduction

According to the American Academy of Pediatrics, high-risk neonates can be classified into 4 categories: 1) preterm infants; 2) infants with special health care needs or dependence on technology; 3) infants at risk due to family issues; and 4) infants with anticipated early death (1). High-risk neonates often require hospitalization in the neonatal intensive care unit (NICU), and once discharged from the hospital, careful planning by hospital staff is needed to ensure that infants are adequately followed (1). One such follow-up resource available for assessing developmental progress of high-risk infants is a multidisciplinary developmental progress care team. Multidisciplinary developmental progress care teams, such as the Emory Developmental Progress Clinic (Emory DPC) in Atlanta, Georgia, typically consist of developmental neonatologists/pediatricians, development psychologists, nurses, physical therapists, and social workers. A team of clinicians working together can better serve high-risk infants as they develop physically and neurologically by identifying deviances in developmental progress and then assisting in organizing required intervention programs (1,2).

In 2008, the rate of preterm birth in the United States was 12.3%, and the rate of low birthweight was 8.2% of all live births (3). In recent years, there has been a decrease in infant deaths from prematurity and preterm birth due to scientific advances in
obstetrics and neonatology (3). Infants born before 34 weeks gestation have more
gastrointestinal and oral sensory issues; therefore, research on identifying feeding
difficulties in preterm and low-birthweight infants is needed (4). If feeding problems can
be identified early in life, consequent physiological and emotional complications may be prevented (5).

The staff at the Emory DPC began using the Behavioral Pediatrics Feeding
Assessment Scale (BPFAS) (4) with the intention to improve the identification of preterm
and/or at-risk children with feeding problems in the first year of life. During the first
several weeks of using the instrument (July 12, 2010 – August 31, 2010), they discovered
that greater than 50% of the surveys were unscorable because they were not completed
accurately and/or completely. The purpose of this study is to determine the usefulness of
administering the Behavioral Pediatrics Feeding Assessment Scale (BPFAS) in
identifying children at risk for feeding difficulties when given to parents in an interview
format by a graduate nutrition student versus without assistance.

We hypothesize that there will be a significant difference in the BPFAS total
score obtained when administered in an interview format versus self-completed by the
family. Additionally, we hypothesize that the interview method of administration of the
BPFAS will be significantly more effective in identifying children with feeding issues
than the method of administering the BPFAS without assistance. Lastly, we hypothesize
that infants or children of Emory DPC subjects who are referred for a nutrition
intervention are significantly more likely to have scored > 84 on the BPFAS.
CHAPTER II

Literature Review

Feeding Difficulties in Preterm and Low Birth Weight Infants

According to the March of Dimes, 1 in 8 babies born in Georgia in 2008 were preterm (less than 37 weeks gestation) and 1 in 10 babies were born with low birthweight (less than 2500 grams) (3). Premature birth is not a direct cause of long-term feeding disorders (6), but with decreasing gestational age comes an increase in morbidities and illnesses, such as necrotizing enterocolitis (NEC), neurological abnormalities, and bronchopulmonary dysplasia (BDP) (3). These complications subsequently cause an increased risk of feeding difficulties in preterm infants. (5).

NEC is seen more often in premature neonates than in term neonates, and one of its early gastrointestinal symptoms is feeding intolerance (7). Neurological abnormalities such as intraventricular hemorrhages and periventricular leukomalacia can effect long-term development and overall feeding success of an infant (6). Bronchopulmonary Dysplasia (BPD), a chronic lung disease, occurs in preterm infants with underdeveloped lungs and an insufficient amount of lung surfactant (6). Infants with BPD often require oxygen and mechanical ventilation (8). Consequently, research shows that infants with BPD require more frequent rest breaks during feeding due to their inability to rhythmically breathe. They also have longer swallows without breathing during feeding than children without the disorder (9). Indeed, a study by Burklow et al. (2002) found that preterm infants were more likely than full term infants to have difficulties with their
first solid feeding, and this relationship was predicted more by those who required ventilation than prematurity factors by themselves (10).

With regard to feeding difficulties and low birthweight, in a study conducted by Rommel et al. (2003), children with feeding issues were found to be at a significantly lower birthweight for their gestational age (11). Moreover, medical feeding problems were significantly correlated to birthweight but not to gestational age (11), suggesting that perhaps infants at a significantly lower birthweight for their gestational age are experiencing feeding difficulties as a result of intrauterine growth retardation (11).

Identification of preterm infants with poor oral-motor function at the time of hospital discharge is an important factor in determining if an infant will require additional feeding services (5). Early oral feeding skills require an infant to coordinate a number of oral-motor skills in order to consume an adequate number of calories to grow (12). Furthermore, infants must remain engaged in the task of feeding, coordinate their breaths with swallows to prevent apnea and aspiration of fluids, and also control the depth of breath and how frequently they breathe while eating (12). Unfortunately, research has found that infants who are identified as normal feeders upon discharge from the NICU can begin showing feeding difficulties at 6 months to 1 year later (13).

Parent Perceptions and Actions

Understandably, many parents of children who are born prematurely and experience other health complications are particularly concerned when their child experiences feeding difficulties (6). According to a questionnaire administered by Cerro et al. (2002), parents of preterm children were more likely to describe their child as being
a poor feeder as an infant and also to perceive their toddler’s growth, health and weight as less favorable when compared to parents of a full-term child (14). Unfortunately, excessive concern and altered perception of feeding can lead to the adoption of maladaptive feeding practices, including coaxing, attending to non-eating feeding behaviors, and force-feeding. (6). Forcada-Guex et al. (2006) found that for preterm infants in a dyad of a controlling mother and a compulsive-compliant infant, as defined by the Care Index (Crittenden, 1988), significantly more mother-perceived behavioral problems were indicated and more feeding problems were present than in full-term control infants (15). These infants also had significantly more feeding problems than infants in a sensitive mother and cooperative-responsive infant dyad (15). While mothers’ main goal of feeding may be intake, feeding is a co-regulated process that is more successful when flexible and guided by cues from the infant (16).

Silberstein et al. (2009) followed low-risk premature infants and their mothers during the first year of life to determine if the relationship between infant and mother could be a factor in the development of feeding difficulties (17). The researchers categorized infants as either “difficult feeders” or “nondifficult feeders” based on a standardized mother-reported feeding difficulty score as well as a standardized observed feeding difficulty score (17). They found that mothers of infants in the “difficult feeders” group tended to spend more time looking away from the baby and towards the bottle than did mothers of infants in the “nondifficult feeders” group (17). They also found that mothers were more intrusive, and the infants were less involved and more withdrawn in the “difficult feeders” group (17). The researchers concluded that 5 factors were independently predictive of feeding problems at the end of year 1 (17). They were: 1) less
affectionate touch by the mother during nonfeeding “play” interactions; 2) less adaptation by the mother during feeding interactions; 3) lower psychomotor skills of the infant at 4 months; 4) more intrusive behavior by the mother; and 5) less infant involvement during feeding at year 1 (17). These findings suggest that mothers of premature infants should be educated on the importance of touch and gaze while feeding, and the risks associated with intrusive behaviors prior to hospital discharge as a way to prevent feeding problems (17).

Feeding Assessment Tools

A review by Howe et al. (2008) examined the psychometric characteristics of neonatal feeding assessment tools. The researchers concentrated on tools that could be conducted in a clinical center without additional equipment, included a list of infant feeding behaviors, and were tested on human beings (18). From these criteria, they found seven neonatal feeding assessment tools, among them being the Early Feeding Skills (EFS) by Thoyre, Shaker, and Pridham (2005) and the Neonatal Oral-Motor Assessment Scale (NOMAS) by Braun & Palmer (1986).

The EFS is a 36-item checklist that examines oral feeding readiness, oral feeding skill, and oral feeding recovery (12,18). The authors believe that early feeding skills may differ from feeding to feeding or even within a single feeding, and therefore these skills should be expressed within a range (12). The assessment is observational, and can be used from initiation of oral feeding until maturation of oral feeding (12). Oral feeding skills are scored based on a whole feeding and describe the degree of ability and/or inability of the infant to perform a particular skill throughout the observation (12). Caregivers are able to follow skill development, design interventions, and evaluate the
interventions based on the checklist (12). The EFS is used for bottle-feeding behaviors only and has been found to have acceptable inter- and intra-rater reliability and acceptable content validity (18).

The NOMAS is used to examine oral-motor skills of neonates who exhibit reflexive sucking (19). The assessment is a visual observation method performed by a trained clinician (18,20), and consists of a 28-item checklist that divides a neonate’s oral-motor feeding patterns into normal, disorganized, or dysfunctional. According to Howe et al. (2008), the NOMAS has two advantages over the seven other neonatal feeding assessment tools, including the EFS. First, the NOMAS has been looked at by researchers more extensively, and has more consistency in psychometric properties (18). Also, the NOMAS is more flexible, in that it can be used with either breast or bottle-feeding and can also be used with preterm or full-term babies (18). However, the NOMAS should not be used to assess any other facet of feeding other than oral-motor skills (18).

The BPFAS, the assessment tool being used in the current study, is a 35 item scale developed by Crist and Napier-Phillips in 2001 (4) (Appendix A). In their initial study of this parent survey tool, Crist and Napier-Phillips used the BPFAS to compare feeding and mealtime behavior of healthy, normally-developing children with two different groups of children referred for feeding problems (4). Of the two groups with feeding problems, one had medical issues related to feeding while the other did not have feeding-related medical issues (4). The BPFAS was administered to parents of all three groups and the results were compared. The researchers found that for the groups referred
for feeding problems, the frequency and problem scores were more than 2 standard deviations above the means of the normally-developing group (4).

The clinicians at Emory DPC chose to use the BPFAS as a feeding assessment tool because it has been shown to accurately identify feeding issues in children with a range of medical conditions including cystic fibrosis and diabetes, as well as children with oral aversion and those requiring gastrostomy tube feedings (4). It also incorporates the caregiver’s feelings about their child’s feeding behaviors and is validated for use in a similar age group as those patients seen at Emory DPC (4).
REFERENCES

CHAPTER III

Manuscript in style of Journal
Administration of the Behavioral Pediatrics Feeding Assessment Scale (BPFAS) to Parents of High-risk Infants: How to Best Identify Those at Risk for Feeding Difficulties

Key Words: Feeding Difficulties, Feeding Problems, High-risk infants, Premature infants, BPFAS

Abstract Word Count- 367

Word Count – Text: 2399

Monica Victoria Evans, MS, RD, LD; 3890 Carlton Drive, Atlanta, GA 30341; Phone: (336) 817-2788; monica.olejarczyk@gmail.com

Sheena L. Carter, PhD; Assistant Professor Neonatology; Department of Pediatrics, Emory University School of Medicine; 2015 Uppergate Dr. NE, Atlanta, GA 30322; Phone: (404) 778-1451; scart01@emory.edu

Sarah T. Henes, PhD, RD, LDN; Assistant Professor; Byrdine F. Lewis School of Nursing and Health Professionals, Georgia State University; P.O. Box 3995, Atlanta, Georgia 30302-3995; Phone: (404) 413-1241; Fax: (404) 413-1228; shenes@gsu.edu

Anita M. Nucci, PhD, MPH, RD, LD; Assistant Professor and Division Head; Byrdine F. Lewis School of Nursing and Health Professionals, Georgia State University; P.O. Box 3995, Atlanta, Georgia 30302-3995; Phone: (404) 413-1234; Fax: (404) 413-1228; anucci@gsu.edu
The purpose of this study was to determine the efficacy of the Behavioral Pediatrics Feeding Assessment Scale (BPFAS) in identifying children at risk for feeding difficulties when given to parents in an interview format versus without assistance. Parents/guardians of clinic patients were randomized to receive the BPFAS either by interview or without assistance. Demographic and anthropometric data as well as nutrition referral status were documented during the clinic visit. The survey was scored using a computer-based program. Mean BPFAS scores were compared by survey administration method and nutrition referral status using the t-test. The analysis was also conducted by age (<1.5 years, >1.5 year) and weight status (<25th percentile, 25-75th percentile, >75th percentile) subgroups. The association between survey administration method as well as nutrition referral status and referral score category (<84 or >84) was determined using the Chi-square test. The relationship between nutrition referral status and the response to each BPFAS question was also examined using the Chi-Square test. Thirty subjects from Emory DPC participated in the study (mean age 71 weeks ± 26.9, mean gestational age 29 weeks ± 4.4, 56.7% African American, 36.7% Caucasian, 3.3% Asian, 3.3% Other). No difference in mean BPFAS score or referral score category by survey administration method was found in the total cohort. However, a higher BPFAS score was observed for children >1.5 years of age who were referred for nutrition intervention vs. not referred (95.33 vs. 62.5, respectively; p=0.004). There was also a significant association between the number of patients referred for nutrition intervention vs. not referred and referral
score (11 vs. 19, respectively; p=0.041). No difference in the ability of the BPFAS to
determine nutritional risk was observed by weight status. There was also no
association between responses to individual BPFAS survey questions and nutrition
referral status. In conclusion, there was no difference in the BPFAS total score
obtained when administered in an interview format versus self-completed by the
family. There was also no difference in the effectiveness of the BPFAS in identifying
children with feeding difficulties based on method of administration (interview versus
no interview). Evaluation of other feeding assessment surveys or the in-house
development of a screening tool may be better alternatives for the Emory DPC.
The Administration of the Behavioral Pediatrics Feeding Assessment Scale (BPFAS) to Parents of High-risk Infants: How to Best Identify Those at Risk for Feeding Difficulties

INTRODUCTION

According to the American Academy of Pediatrics, high-risk neonates can be classified into 4 categories: 1) preterm infants; 2) infants with special health care needs or dependence on technology; 3) infants at risk due to family issues; and 4) infants with anticipated early death (1). High-risk neonates often require hospitalization in the neonatal intensive care unit (NICU), and once discharged from the hospital, careful planning by hospital staff is needed to ensure that infants are adequately followed (1).

One such follow-up resource available for assessing developmental progress of high-risk infants is a multidisciplinary developmental progress care team. Multidisciplinary developmental progress care teams, such as the Emory Developmental Progress Clinic (Emory DPC) in Atlanta, Georgia, typically consist of developmental neonatologists/pediatricians, development psychologists, nurses, physical therapists, and social workers. A team of clinicians working together can better serve high-risk infants as they develop physically and neurologically by identifying deviances in developmental progress and then assisting in organizing required intervention programs (1,2).

In 2008, the rate of preterm birth in the United States was 12.3%, and the rate of low birthweight was 8.2% of all live births (3). In recent years, there has been a decrease in infant deaths from prematurity and preterm birth due to scientific advances in obstetrics and neonatology (3). Infants born before 34 weeks gestation have more
gastrointestinal and oral sensory issues; therefore, research on identifying feeding
difficulties in preterm and low-birthweight infants is needed (4). If feeding problems can
be identified early in life, consequent physiological and emotional complications may be
prevented (5).

The staff at the Emory DPC began using the Behavioral Pediatrics Feeding
Assessment Scale (BPFAS) (4) with the intention to improve the identification of preterm
and/or at-risk children with feeding problems in the first year of life. During the first
several weeks of using the instrument (July 12, 2010 – August 31, 2010), they discovered
that greater than 50% of the surveys were unscorable because they were not completed
accurately and/or completely. The purpose of this study is to determine the usefulness of
administering the Behavioral Pediatrics Feeding Assessment Scale (BPFAS) in
identifying children at risk for feeding difficulties when given to parents in an interview
format by a graduate nutrition student versus without assistance.

We hypothesize that there will be a significant difference in the BPFAS total
score obtained when administered in an interview format versus self-completed by the
family. Additionally, we hypothesize that the interview method of administration of the
BPFAS will be significantly more effective in identifying children with feeding issues
than the method of administering the BPFAS without assistance. Lastly, we hypothesize
that infants or children of Emory DPC subjects who are referred for a nutrition
intervention are significantly more likely to have scored > 84 on the BPFAS.
METHODS

Study Design

The research design was a randomized trial. After giving consent, the parent/guardian of the clinic patient was assigned to complete the BPFAS either by interview from a graduate student or without assistance based on a randomization order as determined by the urn method. The graduate nutrition student completed a demographics and anthropometrics sheet (Appendix B) for each patient and also documented if the child was referred for nutrition intervention at their clinic visit.

Nutrition interventions included: sending the parent/guardian home with a nutrition-related handout, a referral to a speech therapist or other oral-motor specialist, or a diet modification. If a demographic and anthropometric sheet could not be completed during the clinic day, the missing pieces of information were collected at a later time.

The study was approved by the Institutional Review Boards of Georgia State University and Emory University. An informed consent and a HIPAA authorization form were signed by each subject prior to participating in the study. Each participant was given a copy of their signed consent and HIPAA form for their records. If the patient’s appointment concluded prior to the graduate student giving the subject a copy of the consent forms, the consent forms were mailed to them with the assistance of the nurse practitioner. The completed BFPAS report was stapled to a copy of both consent forms and kept in the medical chart.
Subjects

The population for this study was the parent/guardian of infants 9 months of age to age 3 corrected, who came for an appointment at the Emory DPC during the data collection period of February 2012 to May 2012. Parents/guardians under the age of 18 were excluded.

Data Collection

If the subject was randomized to be given the BPFAS by interview, the graduate student read the survey directions and questions exactly as they appeared on the survey. If the BPFAS was given without assistance, the survey directions were read exactly as they appeared of the survey and then the subject was left to complete the survey. Regardless of the method of administration, the graduate student verified that all questions on the assessment were answered to ensure that all assessments are scoreable. Weight (kilograms) was measured with a digital medical scale. Height (centimeters) was determined using a stadiometer. Infants and toddlers (newborn to 18 months) had their weight and length measured using a digital infant scale and recumbent length board.

The BPFAS

The first 25 items of the BPFAS address the child’s behavior and the last 10 items address the parent’s feelings about the child’s behavior or the parent’s strategies for coping with their child’s feeding problems (4). Each item consists of a descriptive behavioral phrase that the parent rates on a five-point Likert scale based on how often the behavior occurs (4). After rating the behavior, the parent is asked to indicate if that behavior is a problem for them by circling “yes” or “no.”(4)
The BPFAS was scored using a computer based scoring program created by the assessment developer. The scoring program totals the Likert scale responses for the child and parent sections, as well as generates four separate scores: child behavior frequency, parent behavior frequency, child behavior problems, and parent behavior problems (Appendix C). The frequency scores reflect how often a behavior occurs, and the problem score represents the number of problematic feeding behaviors. Higher scores for both frequency and problems are an indication of worse mealtime functioning (4, 21). Only the total survey score was evaluated in this study. A score sheet was printed out for each child (Appendix D) and was stapled to the demographics sheet. The BPFAS report, along with a copy of the signed consent forms, was kept in the patient’s medical chart.

Data Analyses

The demographic and anthropometric data were analyzed using frequency statistics. The mean calculated questionnaire scores were compared by survey administration method and nutrition referral status (referred for nutrition intervention or not referred) using the t-test. Similar analysis were performed after division into subgroups by age (9 months – 1.5 years and >1.5 years) and weight status as determined using gender specific WHO/CDC growth charts for infants Birth to 24 months and 2 to 20 years (weight/length <25th percentile, 25th to 75th percentile and >75th percentile) (22). The total frequency scores were divided into ≤ 84 and > 84 based on a cutoff established by Crist et al. for warranted nutrition intervention (total frequency scores >84) (4). This categorical variable was renamed “referral score.” The association between referral score by survey administration method and nutrition referral status was determined using the Chi-square test. The association between nutrition referral status and responses to each
BPFAS question was determined using the Chi-Square test. All data analyses were conducted using SPSS (version 18, SPSS, Inc; Chicago, IL). The p-value was set at <0.05.

RESULTS AND DISCUSSION

A total of 30 parents/guardians of infants 9 months to 3 years corrected age participated in the study. Of those parents/guardians approached to participate in the study, only two declined to participate. Twenty-five subjects were mothers, three were fathers, and the remaining two were an aunt and a grandfather. The aunt and grandfather identified themselves are guardians. Fourteen parents/guardians were randomized to complete the BPFAS by interview, and 16 were randomized to complete the assessment without assistance. The demographic and anthropometric characteristics for all patients as well as the patients divided into two groups based on survey administration method are shown in Table 1. The majority of the total patient population was African American and subdivided somewhat evenly by age group and weight status. The patients in the interview group were significantly smaller than those in the no interview group (9.4 vs. 11.2 kg, \(p = 0.024 \)).

For BPFAS scores, a total frequency score of greater than 84 was determined by Crist (4) to be significantly greater than the mean, thereby warranting nutrition intervention. The total frequency score incorporates the parent frequency score and the child frequency score. The mean total frequency score for the cohort was 64.9 ± 16.7, with only three patients scoring greater than 84. Notably, these three patients were born at either 24 or 25 weeks gestation, and two of the three had a gastrostomy tube. Mean BPFAS scores by survey administration method for the cohort and by age and weight
status are shown in Table 2. The mean scores by survey administration method were 64.6 \pm 20.6 and 65.1 \pm 13.0 for the interview and self-completed groups, respectively, and were not significantly different.

Despite there being only three patients who scored greater than 84 on the assessment, eleven of 30 patients were referred for nutrition intervention by the Emory DPC staff. Five were given a diet modification, two were given outside referrals (GI and speech therapy), and four were given a nutrition-related handout. The eight patients who were did not score > 84 on the BPFAS but were referred for a nutrition intervention at their clinic visit had an mean BPFAS score of 57. Mean BPFAS scores by survey administration group and referral status are shown in Table 3. Patients age 1.5 years and older, who were referred for nutrition intervention, had significantly higher total frequency scores than those who were not referred for nutrition intervention (82.4 vs. 63.9, respectively; $p=0.035$). The tool was not shown to be effective in younger children and was not affected by the weight status of the child.

Table 4 shows the associations between survey administration method and referral status by referral score for the entire cohort. No association between survey administration method and referral score (\leq84 or >84) was observed. However, there was a significant association between referral for nutrition intervention and referral score ($p=0.041$). No association was found between responses to individual BPFAS survey questions and nutrition referral status.

Study Limitations

This study has several limitations. In addition to the small sample size, the BPFAS was not designed to be read aloud, thereby making it difficult to administer the
survey tool in an interview fashion. The assessment also took a long time to complete even though the survey questions were not comprehensive. When the assessment was administered as an interview, parents often questioned how they should answer questions about consuming fruits, vegetables, and meats if their child only consumed baby food. A particularly problematic question was #25: “Has required supplemental tube feeds to maintain proper nutritional status.” The question caused confusion because the child may have required a tube feed in the NICU but no longer does. With so many uncertainties arising during the interview format, it brings to question the number of uncertainties experienced by parents/guardians completing the survey without assistance.

In terms of the comprehensiveness of the BPFAS, diagnosed and undiagnosed aspiration problems, as well as thickened feeds are not addressed in the BPFAS. With regard to timing, the BPFAS took a substantial amount of time to complete, especially considering the frequent distractions from clinicians entering and exiting the exam room and a young child (the patient) requiring constant monitoring. The Emory DPC is a very busy clinic, with 3 to 4 appointments often occurring simultaneously. An extra ten minutes added to an already extensive appointment caused some parents to become anxious and eager to leave. Although parental reports of regularly-occurring feeding behaviors can be more beneficial than observing one feeding session in a controlled environment, when parents become anxious and/or frustrated, the potential for bias are possible (23). Also noteworthy is the fact that the BPFAS was developed for use on children who had already been referred for feeding problems, not as a screening tool.

Several other research studies have used the BPFAS as a study instrument; however, all of them concentrated on measuring parental perception of their child’s
feeding problems, not identifying children at risk for feeding problems. Owen et al. (2012) administered the BPFAS before and after a five session education intervention focusing on modification of mealtime strategies for parents of children referred for feeding problems. The goal of the intervention was to effectively educate parents so that their child would develop valuable functional feeding skills (24). The researchers found that after the education intervention, BPFAS scores for feeding difficulties and also frequency of parental problems significantly decreased. Jones and Bryant-Waugh (2012) had parents complete the parent section of the BPFAS at baseline and every week during a six week intervention program aiming to improve parental concerns and maladaptive feeding-related behaviors. They found a significant decrease in the severity and number of parent-reported problematic child behaviors related to feeding from baseline to post intervention (25). Patton et al. (2009) compared parent feeding strategies and parent-reported mealtime behaviors in type 1 diabetic children on conventional therapy versus an insulin pump. After analyzing BPFAS scores, the researchers found that parents of children with an insulin pump reported significantly less parent and child mealtime behavior problems than did parents whose children use conventional therapies (21).

CONCLUSIONS

There was no difference in the BPFAS total score obtained when administered in an interview format versus self-completed by the family. There was also no difference in the effectiveness of the BPFAS in identifying children with feeding difficulties based on method of administration (interview versus no interview). Evaluation of other feeding assessment surveys or the in-house development of a screening tool may be better alternatives for the Emory DPC. A validated in-house created feeding assessment would
allow for flexibility in the types of questions asked, the format in which they are asked, and in the amount of time it would take to complete the assessment. If the Emory DPC did decide to continue using the BPFAS as a screening tool, it is recommended that they consider decreasing the nutrition intervention cutoff score.
Table 1. Characteristics of Emory DPC Patients

<table>
<thead>
<tr>
<th></th>
<th>Total N=30</th>
<th>BPFAS</th>
<th>Significance (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Interview N=14</td>
<td>No Interview N=16</td>
</tr>
<tr>
<td>Age in Weeks*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mean ± SD)</td>
<td>71 ± 26.9</td>
<td>64 ± 28.9</td>
<td>77 ± 24.3</td>
</tr>
<tr>
<td>Age Group* [n, (%)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1.5 years</td>
<td>14 (46.7)</td>
<td>9 (64.3)</td>
<td>5 (31.3)</td>
</tr>
<tr>
<td>>1.5 years</td>
<td>16 (53.3)</td>
<td>5 (35.7)</td>
<td>11 (68.8)</td>
</tr>
<tr>
<td>Gestational Age in weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mean ± SD)</td>
<td>29 ± 4.4</td>
<td>28 ± 4.7</td>
<td>29 ± 4.2</td>
</tr>
<tr>
<td>Gender [n, (%)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>15 (50)</td>
<td>5 (35.7)</td>
<td>10 (62.5)</td>
</tr>
<tr>
<td>Female</td>
<td>15 (50)</td>
<td>9 (64.3)</td>
<td>6 (37.5)</td>
</tr>
<tr>
<td>Race [n, (%)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>11 (36.7)</td>
<td>4 (28.6)</td>
<td>7 (43.8)</td>
</tr>
<tr>
<td>African American</td>
<td>17 (56.7)</td>
<td>8 (57.1)</td>
<td>9 (56.3)</td>
</tr>
<tr>
<td>Asian</td>
<td>1 (3.3)</td>
<td>1 (7.1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (3.3)</td>
<td>1 (7.1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Weight in Kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mean ± SD)</td>
<td>10.4 ± 2.2</td>
<td>9.4 ± 1.7</td>
<td>11.2 ± 2.4</td>
</tr>
<tr>
<td>Weight Status</td>
<td>[n, (%)]</td>
<td>10 (33.3)</td>
<td>7 (50)</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td><25<sup>th</sup> %ile</td>
<td></td>
<td>12 (40)</td>
<td>6 (42.9)</td>
</tr>
<tr>
<td>25-75<sup>th</sup> %ile</td>
<td></td>
<td>8 (26.7)</td>
<td>1 (7.1)</td>
</tr>
<tr>
<td>>75<sup>th</sup> %ile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length in cm (mean ± SD)</td>
<td></td>
<td>78.8 ± 8.3</td>
<td>75.8 ± 6.8</td>
</tr>
<tr>
<td>Length Status [n, (%)]</td>
<td></td>
<td>12 (40)</td>
<td>8 (57.1)</td>
</tr>
<tr>
<td><25<sup>th</sup> %ile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-75<sup>th</sup> %ile</td>
<td></td>
<td>11 (36.7)</td>
<td>4 (28.6)</td>
</tr>
<tr>
<td>>75<sup>th</sup> %ile</td>
<td></td>
<td>7 (23.3)</td>
<td>2 (14.3)</td>
</tr>
</tbody>
</table>

*Corrected age
Table 2. Mean BPFAS Scores by Survey Administration Method for the Cohort and by Age and Weight Status

<table>
<thead>
<tr>
<th>Total BPFAS Score (mean + SD)</th>
<th>N</th>
<th>Survey Administration Method</th>
<th>Significance (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Interview N=14</td>
<td>No Interview N=16</td>
</tr>
<tr>
<td>Total Cohort</td>
<td>30</td>
<td>64.6 ± 20.6</td>
<td>65.1 ± 13.0</td>
</tr>
<tr>
<td>Age Category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1.5 years</td>
<td>14</td>
<td>59.4 ± 19.3</td>
<td>59.2 ± 4.1</td>
</tr>
<tr>
<td>>1.5 years</td>
<td>16</td>
<td>74 ± 21.7</td>
<td>67.7 ± 14.8</td>
</tr>
<tr>
<td>Weight Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><25th</td>
<td>10</td>
<td>74.7 ± 24.6</td>
<td>71 ± 32.1</td>
</tr>
<tr>
<td>25 -75th</td>
<td>12</td>
<td>54.8 ± 9.7</td>
<td>63.8 ± 6</td>
</tr>
<tr>
<td>>75th</td>
<td>8</td>
<td>53 ± 0</td>
<td>63.6 ± 5</td>
</tr>
</tbody>
</table>
Table 3. Mean BPFAS Scores by Referral Status for the Cohort and by Age and Weight Status

<table>
<thead>
<tr>
<th>Total BPFAS Score (mean + SD)</th>
<th>N</th>
<th>Referral Status</th>
<th>Significance (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes N=11</td>
<td>No N=19</td>
</tr>
<tr>
<td>Total Cohort</td>
<td>30</td>
<td>70.4 ± 24.8</td>
<td>61.7 ± 8.7</td>
</tr>
<tr>
<td>Age Category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤1.5 years</td>
<td>14</td>
<td>60.3 ± 21.3</td>
<td>58.6 ± 10.5</td>
</tr>
<tr>
<td>>1.5 years</td>
<td>16</td>
<td>82.4 ± 25.4</td>
<td>63.9 ± 6.8</td>
</tr>
<tr>
<td>Weight Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><25th</td>
<td>10</td>
<td>78.7 ± 31.3</td>
<td>66 ± 12.3</td>
</tr>
<tr>
<td>25-75th</td>
<td>12</td>
<td>60.3 ± 11.4</td>
<td>59 ± 8.9</td>
</tr>
<tr>
<td>>75th</td>
<td>8</td>
<td>60.5 ± 10.6</td>
<td>62.8 ± 5.1</td>
</tr>
</tbody>
</table>
Table 4. Associations between Survey Administration Method and Referral Status with Referral Score for the Total Cohort

<table>
<thead>
<tr>
<th>Survey Administration Method [n, (%)]</th>
<th>N</th>
<th>Referral Score Category</th>
<th>Significance (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Negative (≤84)</td>
<td>Positive (>84)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=27</td>
<td>N=3</td>
</tr>
<tr>
<td>Interview</td>
<td>14</td>
<td>12 (80)</td>
<td>2 (20)</td>
</tr>
<tr>
<td>No Interview</td>
<td>16</td>
<td>15 (94)</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Nutrition Referral [n, (%)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Referred</td>
<td>11</td>
<td>8 (73)</td>
<td>3 (27)</td>
</tr>
<tr>
<td>Not Referred</td>
<td>19</td>
<td>19 (100)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>
REFERENCES

Behavioral Pediatrics Feeding Assessment - Behavior Section

Directions: Below are a series of phrases that describe children’s eating behaviors and parent’s feelings about or strategies for dealing with these behaviors. Please: 1) circle the number describing how often the behavior currently occurs and 2) circle “yes” or “no” to indicate whether the behavior is currently a problem to you.

<table>
<thead>
<tr>
<th>MY CHILD</th>
<th>NEVER</th>
<th>SOMETIMES</th>
<th>ALWAYS</th>
<th>PROBLEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Eats fruits.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2. Has problems chewing food.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3. Enjoys eating.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4. Chokes or gags at mealtime.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5. Will try new foods.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6. Eats meat and/or fish.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7. Takes longer than 20 minutes to finish a meal.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8. Drinks milk.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9. Comes readily to mealtime.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10. Eats junky snack food but will not eat at mealtime.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>11. Vomits just before, at, or just after mealtime.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>12. Eats only ground, strained or soft food.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>13. Gets up from table during meal.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>14. Lets food sit in his/her mouth and does not swallow it.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>15. Whines or cries at feeding time.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>16. Eats vegetables.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>17. Tantrums at mealtimes.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>18. Eats starches (for example, potato noodles).</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>19. Has a poor appetite.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>20. Spits out food.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>21. Delays eating by talking.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>22. Would rather drink than eat.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>23. Refuses to eat meals but requests food immediately after the meal.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>24. Tries to negotiate what s/he will eat and what s/he will not eat.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>25. Has required supplemental tube feeds to maintain proper nutritional status.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARENT</th>
<th>NEVER</th>
<th>SOMETIMES</th>
<th>ALWAYS</th>
<th>PROBLEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. I get frustrated and/or anxious when feeding my child.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>27. I coax my child to get him/her to take a bite.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>28. I use threats to get my child to eat.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>29. I feel confident my child gets enough to eat.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>30. I feel confident in my ability to manage my child’s behavior at mealtime.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>31. If my child does not like what is being served, I make something else.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>32. When my child has refused to eat, I have put the food in his/her mouth by force if necessary.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>33. I disagree with other adults (for example, my spouse’s child’s grandparents) about how to feed my child.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>34. I feel that my child’s pattern hurts his/her general health.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>35. I get so angry with my child at mealtimes that it takes me a while to calm down after the meal.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

©William B. Crist, Ph.D. IWK Health Centre, Halifax, Nova Scotia. William.crist@iwk.nshealth.ca
Appendix B

Demographics Sheet

Participant Number: __________ Date: __________

Date of Birth (month/day/year): __________

Gestational age (weeks): __________

Gender (circle one): Male Female

Ethnicity (circle one): Caucasian African American Hispanic Asian Other: __________

Anthropometrics over the past year

<table>
<thead>
<tr>
<th>Date:</th>
<th>Date:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg):</td>
<td>Weight (kg):</td>
<td>Weight (kg):</td>
</tr>
<tr>
<td>Length (cm):</td>
<td>Length (cm):</td>
<td>Length (cm):</td>
</tr>
</tbody>
</table>

Anthropometrics TODAY

Weight (kg): __________

Length (cm): __________

Was the child referred for nutrition intervention(s)? Yes/No

BPFAS completed by (circle one): Mother Father Other: __________

Demographics sheet completed by: __________
Appendix C

BEHAVIOURAL PEDIATRICS FEEDING ASSESSMENT SCORING FORM

1) Add together frequency scores for all questions

Box 1

2) Add together frequency scores for questions 1, 3, 5, 6, 8, 9, 16, 18, 29, 30

Box 2

3) \[\text{Box 1} - \text{Box 2} = \text{Box 3} \]

4) \[60 - \text{Box 2} = \text{Box 4} \]

5) \[\text{Box 3} + \text{Box 4} = \text{Total Frequency Score} \]

6) Count number of “YES” problems circled on questionnaire

\[\frac{\text{Total Problem Score}}{\text{Total Frequency Score}} \]

If Total Frequency Score > 84 then it is significantly higher than normative mean

If Total Problem Score > 9 then it is significantly higher than normative mean
Appendix D

BPFAS SUMMARY

Date: 02/21/2012
ID#: monica2

TOTAL FREQUENCY SCORE: 102 * Significantly higher than normative mean
TOTAL PROBLEM: 2

TOTAL CHILD FREQUENCY SCORE: 71 * Significantly higher than normative mean
TOTAL PARENT FREQUENCY SCORE: 29 * Significantly higher than normative mean
TOTAL CHILD PROBLEM: 2
TOTAL PARENT PROBLEM: 0

ITEMS OF POSSIBLE CONCERN:

3) enjoys eating
7) takes longer than 20 minutes
12) eats only ground, strained or soft food
13) gets up from table
15) whines or cries at feeding time
16) eats from hands
27) I coax my child to get him/her to take a bite
28) I use threats to get my child to eat
30) I feel confident in my ability to manage my child's behaviour at mealtimes
31) If my child does not like what is being served, I make something else
32) When my child refuses to eat, I have put the food in his/her mouth by force