
David W. Stinson

Georgia State University, dstinson@gsu.edu

Follow this and additional works at: http://scholarworks.gsu.edu/mse_facpub

Part of the Curriculum and Instruction Commons, and the Junior High, Intermediate, Middle School Education and Teaching Commons

Recommended Citation

EDITORIAL

David W. Stinson
Georgia State University

As a critical\(^1\) mathematics educator, it is difficult not to be pessimistic about the Every Student Succeeds Act of 2015 (ESSA), signed into law by President Barak Obama on December 10th. The ESSA, similar to its predecessors, has an admirably worded purpose statement: “To provide all children significant opportunity to receive a fair, equitable, and high-quality education, and to close educational achievement gaps” (ESSA, 2015, Sec. 1001). But after more than a decade of suffering through federal legislation that left far too many children behind and yielded far too many losers in the race to the top, I have become increasingly doubtful that any organization, including the federal government, has “the will” (Hilliard, 1991, p. 31)\(^2\) to facilitate “the kind of violent reform necessary to change the conditions of African American, Latin@, Indigenous, and poor students [i.e., the collective Black\(^3\)] in mathematics education” (Martin, 2015, p. 22). Nevertheless, it is being

\(^1\) By critical, I mean in the critical theoretical sense. Bronner (2011), in providing a definition of sorts of critical theory, writes:

Critical theory refuses to identify freedom with any institutional arrangement or fixed system of thought. It questions the hidden assumptions and purposes of competing theories and existing forms of practice. …

Critical theory insists that thought must respond to the new problems and the new possibilities for liberation that arise from changing historical circumstances. Interdisciplinary and uniquely experimental in character, deeply skeptical of tradition and all absolute claims, critical theory…[is] concerned not merely with how things [are] but how they might be and should be. (pp. 1–2)

\(^2\) In his article titled “Do We Have the Will to Educate All Children?” Hilliard (1991) writes:

If our destination is excellence on a massive scale, not only must we change from the slow lane into the fast lane; we literally must change highways. Perhaps we need to abandon the highways altogether to take flight, because the highest goals that we can imagine are well within reach for those who have the will to excellence. (p. 36, emphasis in original)

\(^3\) Martin (2015), attributing the term to Eduardo Bonilla-Silva, named this group of currently and historically underserved students the collective Black.
critical that makes me optimistic as well, albeit a “non-stupid optimism” (McWilliam, 2005, p. 1). It is this forever oscillating between pessimism and optimism that drives me and many other critical educators to do the work that we do.

For the past 8 years, exemplars of this crucially needed work—completed by a particular group of (largely) critical mathematics educators—are found within the online pages of the *Journal of Urban Mathematics Education (JUME)*. The readers, editors, reviewers, and authors of *JUME* (a collective group that numbers more than 1,000 strong) have brought to life over 1,700 pages of scholarly editorials, commentaries, response commentaries, public stories, research articles, and book reviews. This group of educators includes those who have spent decades working to provide all children significant opportunity to receive a fair, equitable, and high-quality education (many with a specific focus on the collective Black), as well as those who are just beginning their careers as critical mathematics classroom teachers, teacher educators, and/or education researchers.

The purpose behind the creation of *JUME* was and continues to be to create a movement of change in mathematics education (Matthews, 2008). Over the past 8 years, *JUME* has offered different statements—that is, different knowledges (cf. Foucault, 1969/1972)—about “urban” mathematics education and, in turn, different statements about urban children and urban schools (Stinson, 2010). To date, web views of *JUME* content have exceeded 140,000 views, and Google Scholar citations have exceeded 400, with Google and Google Scholar web searches returning over 2,300 and 340 hits, respectively.

Four years ago, based on the power, in the Foucauldian sense (see, e.g., Foucault, 1980), of the academic edited handbook to produce and reproduce knowledge in both social science research, in general (e.g., Denzin & Lincoln, 1994, 2000, 2005, 2011), and mathematics education research, in particular (e.g., Grouws, 1992; Lester, 2007), I suggested that *JUME* be envisioned “as a both–and rather than an either–or research and pedagogical resource” (Stinson, 2011, p. 3). That is, *JUME* can function as both a peer-reviewed journal and an academic edited handbook on urban mathematics education. I then proceeded to provide the Table of Contents, if you will, of the first edition of the *Handbook of Research on Urban Mathematics Teaching and Learning*.

Here, I offer an expanded version of that Table of Contents, including the research and scholarship published in *JUME* over the past 4 years (see Appendix A).}

4 McWilliam (2005) argues that teachers who maintain their passion for teaching even after seeing endless rounds of ideas and policies come through do not indulge in mindless optimism but rather a non-stupid optimism.

5 See also two *JUME* special issues: the Benjamin Banneker Association and National Science Foundation (BBA-NSF) special issue (Bullock, Alexander, & Gholson, 2012) and the Privilege and Oppression in the Mathematics Preparation of Teacher Educators (PrOMPTE) special issue (Stinson & Spencer, 2013), as well as the editorials, public stories, and book reviews published in nearly every issue.
I also suggest here an expanded use for JUME beyond its use as a research and/or pedagogical resource. I suggest that JUME be used as an easily accessible resource guide to assist those mathematics education leaders and policy makers who will be busy in the coming months and years translating ESSA into policies and practices intended to ensure that every “urban student” succeeds in mathematics. This time around, however, I hope that members of the larger mathematics education community will neither allow politics to take the place of scientific inquiry (Boaler, 2008) nor erase “race” from a national conversation on mathematics teaching and learning (Martin, 2008), among other policy missteps and omissions of the past.6 As the single largest and most up-to-date collection of theoretical and empirical social science on urban mathematics teaching and learning, I hope those members of the mathematics education community who will be charged (both directly and indirectly) to translate ESSA will turn to JUME often as they consider Bullock’s (2015) most recent direct and timely question:

—“Do all lives matter in mathematics education?”

References

For instance, although it is stated that the views expressed in Foundations for Success: The Final Report of the National Mathematics Advisory Panel [NMAP, 2008] “do not necessarily represent the positions and policies of the [U.S.] Department of Education” (p. ii), both the panel and the resulting report were commissioned under the No Child Left Behind Act of 2001. The panel was charged “with the responsibilities of relying upon the ‘best available scientific evidence’ and recommending ways ‘… to foster greater knowledge of and improved performance in mathematics among American students’” (p. xiii). For critiques of the Final Report, see Kelly (2008) and Sriraman (2008).

APPENDIX A

NOTE: Scroll over titles and click, all "chapters" are hyperlinked.

Handbook of Research on Urban Mathematics Teaching and Learning
(Expanded edition)

Table of Contents

Part I: Issues

1. Putting the “Urban” in Mathematics Education Scholarship
 William F. Tate – Washington University in St. Louis

 Eric (Rico) Gutstein – University of Illinois at Chicago

3. Mathematics as Gatekeeper: Power and Privilege in the Production of Knowledge
 Danny Bernard Martin, Maisie L. Gholson – University of Illinois at Chicago
 Jacqueline Leonard – University of Colorado Denver
 3.1 “Both And”—Equity and Mathematics: A Response to Martin, Gholson, and Leonard
 Jere Confrey – North Carolina State University
 3.1 Engaging Students in Meaningful Mathematics Learning: Different Perspectives, Complementary Goals
 Michael T. Battista – The Ohio State University

4. Changing Students’ Lives Through the De-tracking of Urban Mathematics Classrooms
 Jo Boaler – Stanford University

5. Positive Possibilities of Rethinking (Urban) Mathematics Education Within a Postmodern Frame
 Margaret Walshaw – Massey University

6. Neoliberal Urbanism, Race, and Equity in Mathematics Education
 Pauline Lipman – University of Illinois at Chicago

7. Erbody Talkin bout Social Justice Aint Goin There
 Jacqueline Leonard – University of Wyoming

8. Why (Urban) Mathematics Teachers Need Political Knowledge
 Rochelle Gutiérrez – University of Illinois at Urbana-Champaign
9. Place Matters: Mathematics Education Reform in Urban Schools
 Celia Rousseau Anderson – University of Memphis

10. Why Should Mathematics Educators Learn from and about Latina/o Students’ In-School and Out-of-School Experiences?
 Marta Civil – The University of Arizona

11. The Collective Black and Principles to Actions
 Danny Bernard Martin – University of Illinois at Chicago

11.1 Call for Mathematics Education Colleagues and Stakeholders to Collaboratively Engage with NCTM: In Response to Martin’s Commentary
 Diane J. Briars – NCTM President
 Matt Larson – NCTM President-Elect
 Marilyn E. Strutchens – NCTM Board of Directors
 David Barnes – NCTM Associate Executive Director, Research, Learning and Development

 Gareth Bond, Egan J. Chernoff – University of Saskatchewan, Canada

13. From Implicit to Explicit: Articulating Equitable Learning Trajectories Based Instruction
 Marrielle Myers – Kennesaw State University
 Paola Sztajn – North Carolina State University
 P. Holt Wilson – University of North Carolina at Greensboro
 Cyndi Edgington – North Carolina State University

Part II: Theoretical Perspectives

14. A Metropolitan Perspective on Mathematics Education: Lessons Learned from a “Rural” School District
 Celia Rousseau Anderson, Angiline Powell – University of Memphis

15. Mathematical Counterstory and African American Male Students: Urban Mathematics Education From a Critical Race Theory Perspective
 Clarence L. Terry, Sr. – Occidental College

16. Caring, Race, Culture, and Power: A Research Synthesis Toward Supporting Mathematics Teachers in Caring With Awareness
 Tonya Gau Bartell – University of Delaware

17. Ethnomodeling as a Research Theoretical Framework on Ethnomathematics and Mathematical Modeling
 Milton Rosa, Daniel Clark Orey – Universidade Federal de Ouro Preto, Brazil
Part III: Teachers and Teaching

18. Comparing Teachers’ Conceptions of Mathematics Education and Student Diversity at Highly Effective and Typical Elementary Schools
 Richard S. Kitchen – University of New Mexico
 Francine Cabral Roy – University of Rhode Island
 Okhee Lee, Walter G. Secada – University of Miami

19. Preservice Teachers’ Changing Conceptions About Teaching Mathematics in Urban Elementary Classrooms
 Mindy Kalchman – DePaul University

20. Evolution of (Urban) Mathematics Teachers’ Identity
 Mary Q. Foote – Queens College, CUNY
 Beverly S. Smith, Laura M. Gillert – The City College of New York, CUNY

21. When Am I Going to Learn to be a Mathematics Teacher? A Case Study of a Novice New York City Teaching Fellow
 Michael Meagher – Brooklyn College, CUNY
 Andrew Brantlinger – University of Maryland, College Park

22. Success Made Probable: Creating Equitable Mathematical Experiences Through Project-Based Learning
 Dionne L. Cross – Indiana University Bloomington
 Rick A. Hudson – University of Southern Indiana
 Olufunke Adefope – Georgia Southern University
 Mi Yeon Lee, Lauren Rapacki, Arnulfo Perez – Indiana University Bloomington

23. Regarding the Mathematics Education of English Learners: Clustering the Conceptions of Preservice Teachers
 Laura McLeman – University of Michigan Flint
 Anthony Fernandes – University of North Carolina Charlotte
 Michelle McNulty – University of Michigan Flint

24. K–8 Teachers’ Concerns about Teaching Latino/a Students
 Cynthia Oropesa Anhalt – The University of Arizona
 María Elena Rodríguez Pérez – Universidad de Guadalajara

25. Affinity through Mathematical Activity: Cultivating Democratic Learning Communities
 Tesha Sengupta-Irving – University of California, Irvine

26. Delegating Mathematical Authority as a Means to Strive Toward Equity
 Teresa K. Dunleavy – Vanderbilt University

27. “I Just Wouldn’t Want to Get as Deep Into It”: Preservice Teachers’ Beliefs about the Role of Controversial Topics in Mathematics Education
 Ksenija Simic-Muller – Pacific Lutheran University
 Anthony Fernandes – University of North Carolina at Charlotte
 Mathew D. Felton-Koestler – Ohio University
Part IV: Teacher Education

 Lidia Gonzalez – York College, CUNY

29. Math Links: Building Learning Communities in Urban Settings
 Jacqueline Leonard – Temple University
 Brian R. Evans – Pace University

30. Learning to Teach Mathematics in Urban High Schools: Untangling the Threads of Interwoven Narratives
 Haiwen Chu – Graduate Center of City University of New York
 Laurie H. Rubel – Brooklyn College, CUNY

 Megan E. Staples, Mary P. Truxaw – University of Connecticut

32. Collaborative Evaluative Inquiry: A Model for Improving Mathematics Instruction in Urban Elementary Schools
 Iman C. Chahine – Georgia State University
 Lesa M. Covington Clarkson – University of Minnesota

33. K–2 Teachers’ Attempts to Connect Out-of-School Experiences to In-School Mathematics Learning
 Allison W. McCulloch, Patricia L. Marshal – North Carolina State University

34. “Estoy acostumbrada hablar Ingés”: Latin@ Pre-service Teachers’ Struggles to Use Spanish in a Bilingual Afterschool Mathematics Program
 Eugenia Vomvoridi-Ivanović – University of South Florida

35. Recruiting Secondary Mathematics Teachers: Characteristics That Add Up for African American Students
 Tamra C. Ragland – Hamilton County Educational Service Center
 Shelley Sheats Harkness – University of Cincinnati

Part V: Student Learning and Identity

36. Social Identities and Opportunities to Learn: Student Perspectives on Group Work in an Urban Mathematics Classroom
 Indigo Esmonde, Kanjana Brodie, Lesley Dookie, Miwa Takeuchi – University of Toronto

37. Exploring the Nexus of African American Students’ Identity and Mathematics Achievement
 Francis M. Nzuki – The Richard Stockton College of New Jersey
38. How Do We Learn? African American Elementary Students Learning Reform Mathematics in Urban Classrooms
 Lanette R. Waddell – Vanderbilt University

39. (In)equitable Schooling and Mathematics of Marginalized Students: Through the Voices of Urban Latinas/os
 Maura Varely Gutiérrez – Elsie Whitlow Stokes Community Freedom Public Charter School
 Craig Willey – Indiana University Purdue University-Indianapolis
 Lena L. Khisty – University of Illinois at Chicago

40. High-Achieving Black Students, Biculturalism, and Out-of-School STEM Learning Experiences: Exploring Some Unintended Consequences
 Ebony O. McGee – Vanderbilt University

41. Urban Latina/o Undergraduate Students’ Negotiations of Identities and Participation in an Emerging Scholars Calculus I Workshop
 Sarah Oppland-Cordell – Northeaster Illinois University

42. Latina/o Youth’s Perspectives on Race, Language, and Learning Mathematics
 Maria del Rosario Zavala – San Francisco State University

43. Latinas and Problem Solving: What They Say and What They Do
 Paula Guerra, Woong Lim – Kennesaw State University

44. Black Male Students and The Algebra Project: Mathematics Identity as Participation
 Melva R. Grant, Helen Crompton, Deana J. Ford – Old Dominion University

Part VI: Policy

45. Racism, Assessment, and Instructional Practices: Implications for Mathematics Teachers of African American Students
 Julius Davis – Morgan State University
 Danny Bernard Martin – University of Illinois at Chicago

 Pamela L. Paek – University of Texas at Austin

47. An Examination of Mathematics Achievement and Growth in a Midwestern Urban School District: Implications for Teachers and Administrators
 Robert M. Capraro, Jamaal Rashad Young, Chance W. Lewis, Zeyner Ebrar Yetkiner, Melanie N. Woods – Texas A&M University

 Eduardo Mosqueda – University of California, Santa Cruz
49. Success after Failure: Academic Effects and Psychological Implications of Early Universal Algebra Policies
Keith E. Howard – Chapman University
Martin Romero – Santa Ana College
Allison Scott – Level Playing Field Institute
Derrick Saddler – University of South Florida

Part VII: International Perspectives

50. Learning Mathematics in a Borderland Position: Students’ Foregrounds and Intentionality in a Brazilian Favela
Ole Skovsmose – Aalborg University
Pedro Paulo Scandiužzi – University São Paulo States
Paola Valero – Aalborg University
Helle Alrø – Aalborg University

51. Transforming Mathematical Discourse: A Daunting Task for South Africa’s Townships
Roland G. Pourdavood – Cleveland State University
Nicole Carignan – University of Quebec at Montreal
Lonnie C. King – Nelson Mandela Metropolitan University

52. Forging Mathematical Relationships in Inquiry-Based Classrooms With Pasifika Students
Roberta Hunter, Glenda Anthony – Massey University

53. Mathematics as (Multi)cultural Practice: Irish Lessons From the Polish Weekend School
Stephen O’Brien, Fiachra Long – University College Cork

54. Reflecting Heritage Cultures in Mathematics Learning: The Views of Teachers and Students
Robin Averill – Victoria University of Wellington

55. Financial Literacy with Families: Opportunity and Hope
Lorraine M. Baron – University of Hawai’i at Mānoa