
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

5-3-2007

Distributed Algorithms for Improving Wireless
Sensor Network Lifetime with Adjustable Sensing
Range
Aung Aung

Follow this and additional works at: http://scholarworks.gsu.edu/cs_theses

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Computer Science Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Recommended Citation
Aung, Aung, "Distributed Algorithms for Improving Wireless Sensor Network Lifetime with Adjustable Sensing Range." Thesis,
Georgia State University, 2007.
http://scholarworks.gsu.edu/cs_theses/42

http://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

DISTRIBUTED ALGORITHMS FOR IMPROVING WIRELESS SENSOR NETWORK

LIFETIME WITH ADJUSTABLE SENSING RANGE

by

AUNG AUNG

Under the Direction of Sushil K. Prasad

ABSTRACT

Wireless sensor networks are made up of a large number of sensors deployed randomly in an ad-

hoc manner in the area/target to be monitored. Due to their weight and size limitations, the

energy conservation is the most critical issue. Energy saving in a wireless sensor network can be

achieved by scheduling a subset of sensor nodes to activate and allowing others to go into low

power sleep mode, or adjusting the transmission or sensing range of wireless sensor nodes.

In this thesis, we focus on improving the lifetime of wireless sensor networks using both

smart scheduling and adjusting sensing ranges. Firstly, we conduct a survey on existing works in

literature and then we define the sensor network lifetime problem with range assignment. We

then propose two completely localized and distributed scheduling algorithms with adjustable

sensing range. These algorithms are the enhancement of distributed algorithms for fixed sensing

range proposed in the literature. The simulation results show that there is almost 20 percent

improvement of network lifetime when compare with the previous approaches.

INDEX WORDS: Wireless sensor networks, maximize lifetime, target coverage, adjustable

sensing range.

DISTRIBUTED ALGORITHMS FOR IMPROVING WIRELESS SENSOR NETWORK

LIFETIME WITH ADJUSTABLE SENSING RANGE

by

AUNG AUNG

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2007

Copyright by

Aung Aung

2007

DISTRIBUTED ALGORITHMS FOR IMPROVING WIRELESS SENSOR NETWORK

LIFETIME WITH ADJUSTABLE SENSING RANGE

by

Aung Aung

 Major Professor: Sushil K. Prasad

 Committee: Yingshu Li

 Raheem A. Beyah

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2007

iv

DEDICATION

To my beloved MOTHER.

v

ACKNOWLEDGEMENTS

First, I would like to express my gratitude to my advisor, Dr. Sushil K. Prasad, for his support

and invaluable guidance throughout my study. I am also very grateful to the other members of

my thesis committee, Dr. Yingshu Li and Dr. Raheem A. Beyah, for their advice and their

valuable time spent in reviewing the material.

I would also like to extend my thanks to various faculty members of the Department of

Computer Science, Georgia State University, for their support and assistance during my graduate

studies.

I also would like to extend my appreciation to my friend, Akshaye Dhawan for having

helped me in writing this thesis report and to everyone who offered me academic advice and

moral throughout my graduate studies.

Finally, I would like to express my gratitude to my family, especially my mother and my

wife, for their continuous encouragement and confidence in me in conducting this research

project. Without their support, this research project would not have been possible.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. v

LIST OF TABLES... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS... x

1. INTRODUCTION .. 1

2. WIRELESS SENSOR NETWORKS: BACKGROUND & RELATED WORK....................... 7

2.1 Background... 7

2.2 Issues and Challenges ... 8

2.3 Related Work .. 9

3. NETWORK MODEL AND PROBLEM DEFINITION .. 12

3.1 Sensor Network Model ... 12

3.2 Problem Statement .. 13

4. ENHANCED DISTRIBUTED ALGORITHMS .. 14

4.1 Load Balancing Protocol for Sensing (LBP) .. 14

4.2 Deterministic Energy Efficient Protocol for Sensing (DEEPS) ... 16

4.3 Load Balancing Protocol for Adjustable Range Sensing (ALBP)...................................... 18

4.4 DEEPS Protocol for Adjustable Range Sensing (ADEEPS) .. 22

vii

5. SIMULATION OF THE ALGORITHMS.. 25

5.1 Simulation Setup... 25

5.2 Explanation of Simulation .. 26

5.3 Explanation of New Algorithms ... 27

6. SIMULATION RESULTS ... 29

7. CONCLUSIONS & FUTURE WORK... 36

BIBLIOGRAPHY... 37

APPENDIX - A... 41

APPENDIX - B... 51

APPENDIX - C... 63

viii

LIST OF TABLES

Table 1.1 Sequence of different set covers……………………………………………. 5

Table 6.1 The lifetime of sensor networks with 25 targets……………………………. 30

Table 6.2. The lifetime of sensor networks with 25 targets and 30m sensing

range………………………………………………………………………....

31

Table 6.3. The lifetime of sensors network with 50 targets and 60m maximum sensing

range ……………………………………………………………………......

32

Table 6.4. The lifetime of sensor networks with 50 targets and 30m sensing range…... 33

Table 6.5. The lifetime of sensor networks with 25 targets and quadratic energy

model………………………………………………………………………...

34

ix

LIST OF FIGURES

Figure 1.1 Network with four sensors and three targets, and targets covered [3]……….... 3

Figure 1.2 Five set covers with different sensing ranges [3]…………………………........ 4

Figure 4.1 WSN with sink and hill targets [6]…………………………………….............. 16

Figure 4.2 State diagram of adjustable range sensor………………………………............ 19

Figure 4.3 An example with the optimal schedule equal to 2000 time units long [6]…...... 21

Figure 6.1 Variation in network lifetime with the number of sensors with 25 targets and

linear energy model and 60m maximum sensing range.…………….............…

30

Figure. 6.2. Variation in network lifetime with the number of sensors with 25 targets,

linear energy model and 30m maximum sensing range.……………………….

31

Figure 6.3 Variation in network lifetime with the number sensors with 50 targets, linear

energy model and 60m maximum sensing range……………...…….................

32

Figure 6.4 Variation in network lifetime with the number sensors, with 50 targets, linear

energy model and 30m maximum sensing range……………………................

33

Figure 6.5 Variation in network lifetime with the number sensors, with 25 targets,

quadratic energy model and 60m maximum sensing range……………………

34

Figure 6.6 Average numbers of messages send during each shift……………………........

35

x

LIST OF ABBREVIATIONS

WSNs Wireless Sensor Networks

LBP Load Balancing Protocol for Sensing

DEEPS Deterministic Energy-Efficient Protocol for Sensing

SNLP Sensor Network Lifetime Problem

ALBP Load Balancing Protocol for Adjustable range Sensing

ADEEPS Deterministic Energy-Efficient Protocol for Adjustable range Sensing

1

1. INTRODUCTION

Wireless sensor networks (WSNs) are a rapidly emerging technology which will have a strong

impact on research and will become an integral part of our lives in the near future. The huge

application space of WSNs covers national security, surveillance, military, health care,

environment monitoring and many more [1]. Due to their wide-range of potential applications,

WSNs have attracted considerable research interest in recent years.

 A wireless sensor network is composed of a large number of low-power, low-cost sensor

nodes which are deployed close to an area of interest and are connected by a wireless interface.

Sensor nodes are tiny devices equipped with sensing hardware, transceivers, processing and

storage resources and batteries. In general, the sensors nodes are deployed randomly and not

required to be engineered or predetermined. This allows fast random deployment in inaccessible

terrains or disaster relief operations. However, this random deployment requires that sensor

network protocols and algorithms must possess self organizing capabilities.

 After the deployment, these nodes are generally stationary and self-organized into

networks. They gather information about the monitoring region and send this information to

gateway node(s) where end users can retrieve the data [1]. In this way, the sensor network

provides the information and a better understanding of the monitored region. The unique power

of WSNs lies in the ability to deploy a large number of tiny sensor nodes which can assemble

and configure themselves as a network. The network could be easily extended by simply adding

more sensor nodes with no rework or complex reconfiguration.

2

 In contrast to traditional wireless networks, the sensor nodes in WSNs do not necessarily

need to communicate directly with the nearest high power control center, but mostly with their

neighboring sensor nodes and each individual sensor node becomes part of an overall

infrastructure. In addition, the network can automatically adapt to compensate for node failures.

 When compared with traditional ad-hoc networks, WSNs have some limitations such as

limitation in power, computational capacities and memory. Sensor nodes carry limited power

supply which are generally irreplaceable and may be deployed with non-rechargeable batteries.

Since the sensor nodes will die one after another during the operation of the network, all the

network requirements must be met with minimum power consumption due to battery limitations,

and in most applications, it is impossible to replenish power resources.

 In WSNs, a decrease in the number of available sensor nodes can deeply degrade the

network performance or may even kill the network, as either some area is not covered or some

data is not transferred through the network. Moreover, it is impossible to replace thousands of

nodes in hostile or remote regions, and thus the sensor nodes needs to be utilized in an efficient

manner. Another factor to be considered here is the slow improvement in battery capacities over

the years [2]. Thus energy saving has become a critical issue in WSNs, and the most energy

saving must to come from energy aware protocols.

 The main tasks of a sensor node in a sensor network are to collect data (monitoring),

perform data aggregation, and then transmit data. Among these tasks transmitting data requires

much more energy than processing data [4] and the most recent efforts on optimizing the

wireless sensor network lifetime have been focused on routing protocol (i.e., transmitting data to

the base and data request from the base to the sensor node).

3

Generally, there are two approaches to the problem of saving energy in wireless sensor

networks. The first one is scheduling the sensor nodes to active mode and that enables the other

sensor nodes to go into low power sleep mode. The second approach is to adjust the transmission

or the sensing range of the wireless sensor nodes [3]. The same example in [3] is also used here

for justification. There are four sensor s1, s2, s3, s4 and three targets t1, t2, t3 as shown in Fig 1.1.

Each sensor has two sensing range r1 and r2 where r1 < r2. Fig 1.1 also provides coverage

relations between sensors and targets which are: (s1,r1) = {t3}, (s1,r2) = {t1,t3}, (s2,r1) = {t2},

(s2,r2) = {t1,t2}, (s3,r1) = {t2}, (s3,r2) = {t2,t3}, (s4,r1) = {t1,t3}, (s4,r2) = {t1,t2,t3}, respectively. And

the initial energy at each sensor E = 2, and e1 = 0.5 (energy requires for one unit time with

sensing range r1) and e2 =1 (energy requires for one unit time with sensing range r2).

Figure 1.1 Sensor Network with four sensors and three targets, and targets covered [3]

4

In this sensor network, a sensor can be part of more than one cover set and five different

cover sets can be obtained using the combinations of r1 and r2: C1 = {(s1, r1), (s2, r2)}, C2 = {(s1,

r2), (s3, r1)}, C3 = {(s2, r1), (s3, r2) }, C4 = {(s4, r2)}, C5 = {(s1, r1), (s2, r1), (s3, r1)}. These cover

sets are also illustrated in Fig 1.2.

Figure 1.2 Five set covers with different sensing ranges [3].

With these five different set covers, the maximum lifetime of 6 can be obtained using the

sequence as shown in the following table.

5

Table 1.1 Sequence of different set covers.

If the sensor nodes do not have the adjustable sensing range, sensors can be organized

into two distinct set covers, such as C1 = {(s1, r2), (s2, r2)} and C4 = {(s4, r2)}. Then the maximum

life without the adjustable sensing range is 4 by using each set cover twice. Thus this example

shows a 50% lifetime increase when using adjustable sensing range.

In this study, we will mostly concentrate on minimizing energy for sensing by using both

smart scheduling and adjusting sensing ranges. The goal of this thesis is to maximize the lifetime

of power constrained wireless sensor networks which are deployed to monitor a set of targets

with known location. To maximize the lifetime, we use the property that sensors have adjustable

sensing ranges, and set up the active sensors in WSNs with minimum sensing range while

covering all targets.

The contributions of this thesis are two new distributed algorithms, Load Balancing

Protocol for Adjustable Range Sensing (ALBP) and Deterministic Energy-Efficient Protocol for

Adjustable Range Sensing (ADEEPS) are extended and implemented, and the performance of

two algorithms are analyzed through simulations. The simulation results show that there is

almost 20 percent improvement of network lifetime when compare with the previous approaches

in [5], [6].

6

The organization of this thesis is as follow:

Chapter 1, “Introduction”, is an overview of what wireless sensor network is and its

characteristics. It also describes the constraints in WSNs and the lifetime problems of WSNs. In

addition, it provides the main goal and outline of this thesis.

Chapter 2, “Wireless Sensor Networks: Background & Related Work”, provides the

literature survey of background and related works in the WSNs lifetime and coverage problems.

Chapter 3, “Network Model and Problem Definition”, describes the problem that will be

solved in this thesis, and its constraints, limitations and assumptions are all addressed in this

chapter.

Chapter 4, “Enhanced Distributed Algorithms”, introduces distributed LBP & DEEPS

algorithms and also briefly explains ALBP and ADEEPS algorithms.

Chapter 5, “Implementation of the Algorithms”, briefly explains how the algorithms are

implemented.

Chapter 6, “Simulation Results”, presents experimental setups, results and explanation.

Tables and figures are provided based on the parameters used in the experiment.

Chapter 7, “Conclusions & Future Work”, summarizes the findings and contributions of

this study and outlines possible directions for future research.

In addition, the algorithms designed are presented as C++ code and the sample targets

and sensors files are all included in the appendices.

7

 2. WIRELESS SENSOR NETWORKS: BACKGROUND & RELATED WORK

2.1 Background

Since the first wireless digital network, ALOHANET which was introduced in 1970, wireless

networks have gained immense popularity and been growing rapidly [8]. The existing wireless

network can be classified into two categories: infrastructure and ad-hoc network. The

infrastructure network architecture contains a wired backbone which is connected to a special

switching node or a base station. Communication between wireless hosts must go through the

base station. On the other hand an ad-hoc wirelesses network is a self-organizing system with

wireless hosts that do not depend on any fixed network infrastructure.

 The wireless sensor networks are new families of wireless networks which comprise of

many sensor nodes. After deployment, these nodes are generally stationary and self-organized

into a network. They perform sensing tasks and send the information to a control center or base

station, where the end-user can retrieve the data.

Although wireless sensor networks are similar to wireless data network in some aspect,

their functions also need to perform in a different manner as they are performing different tasks.

The dynamic and self organizing nature of wireless sensor networks require new generation of

protocols which are designed to handle the immense amount of data generated by sensors and to

do so with very little power.

8

2.2 Issues and Challenges

Wireless sensor network design is influenced by many factors, which include fault

tolerance, scalability, production costs, operating environment, network topology, hardware

constraints, transmission media, and power consumption [1]. These factors are important because

they serve as a guideline to design a protocol or an algorithm for wireless sensor networks.

 The architecture of sensor hardware consists of the usual components like processor,

memory, wireless interface, power supply, as well as the sensing devices [9]. However the

computational and energy resources are limited due to size and weight restriction. Wireless

sensor networks are formed dynamically and contain very large number of sensors nodes. They

will be deployed spontaneously to form efficient ad-hoc networks using sensors with limited

computational, storage and short-range wireless communication capabilities.

Sensor devices may be deployed in very harsh environments, and subject to destruction

and dynamically changing conditions. The configuration of the network will frequently change

due to constant changes in accessibility of sensors, power availability and task requirements. The

network protocols must be survivable in spite of device failures and frequent real-time changes.

Among these factors, limited power supply is the most critical issue due to the battery

size and weight limitation. Thus the efficient use of available energy resources directly impacts

the lifetime and performance of wireless sensor networks and it is very important that the

algorithms/protocols used in wireless sensor networks must optimize the sensor energy

utilization [10].

9

 A sensor node can be in four states of communication: transmit, receive, idle, or

sleep and two states in monitoring: idle and active [6]. The sensor network lifetime can be

improved by allowing some sensors to sleep while other sensors are covering the area/target of

interest. Other power saving techniques include power controlling by adjusting the

sensing/transmitting range of sensor, using the energy efficient routing and data gathering

techniques, reducing the amount of data transmitted and avoiding useless activity [10].

2.3 Related Work

In this section, we will highlight the previous works on improving the lifetime of wireless

sensor networks by using various scheduling algorithms and adjusting sensing range of sensors.

 Various centralized and distributed scheduling algorithms have been proposed in

literature [16], [17], [18], [19], [20]. The coverage problem is introduced in [7] and it can be

classified into three groups: area coverage (where the objective is to cover an area), target

coverage (where the objective is to cover a set of targets) and breach coverage (where the

objective is to find out the maximal support/breach path that traverses a sensors field) [3]. The

goal of the coverage problem is to maximize the network life time while covering the sets of

targets/area.

 In [21], the authors introduce the area coverage with adjustable sensing range sensors. M.

Cardei et al. introduce target coverage problem in [3] where disjoint sensor sets are modeled as

disjoint set covers so that every cover set completely monitors all the target points. These sensor

sets can be scheduled to activate successively so that at any time, one sensor set is in active state

and other sensors are in sleep state. These alternations increase the lifetime of the network and

10

consequently, decrease the density of active nodes thus reducing the contention at the MAC layer

[10]. It has also been proven in [13] that the disjoint set coverage problem is NP-complete and

has a lower approximation bound of 2 for any polynomial time approximation.

 In [5], [14], [10], the disjoint set cover problem is further extended by not requiring the

sensor sets to be disjoint (i.e., a sensor can be active in more than one sensor set) thereby,

allowing the sets to operate for different time intervals. It is also shown in [10] that non-disjoint

sensor covers can provide better lifetime when compared to disjoint set covers.

 In [12], the authors introduce algorithms where each sensor can produce a number of

schedules which are exchanged with the neighboring sensors and the most suitable scheduled is

then selected. These algorithms are analyzed through simulations. In [5], good centralized

approximation algorithms as well as distributed algorithms are given, and a similar centralized

approximation algorithm is also proposed in [10].

The algorithm proposed in [6] is the extension and refinement of distributed algorithm in

[5]. All the algorithms in [5], [6], [10], [12], and [22] are studied for fixed sensing range sensor

networks. With reference to [21], [26], sensors with adjustable sensing rages are commercially

available. Cardei et al. introduce the problem of maximizing the network lifetime for adjustable

sensing range sensor networks [3]. They also propose efficient heuristics (both centralized and

distributed) using integer programming formulation and greedy approaches.

11

A. Dhawan et al. propose maximization of sensor network lifetime with adjustable

sensing range algorithm in [15]. It is an extension of the centralized algorithm in [5] with

adjustable sensing range sensor networks. Their approach differs significantly from [3] in that

they focus on maximizing the lifetime whereas [3] focuses on maximizing the number of cover

sets. They also formulate their sensor networks with non-uniform batteries at the sensors and

allow the sensors to vary sensing range smoothly.

 They model the sensor network lifetime problem with range assignment as a linear

program problem and solve the problem using Garg-Könemann algorithm [24] with

approximation ratio (1+ε). This is similar to the method used in [5], [14] for solving the fixed

range maximum lifetime problem. The changes made in this algorithm are that it assigns ranges

to every sensor and factors in the increase in energy consumption due to the increase in distance

while choosing the sensor covers.

With an adjustable sensing range sensor network, this algorithm can generate more set

covers by varying the range of the sensor nodes. The sensing range can be increased to cover

more targets at the cost of increasing energy consumption. This algorithm provides the best

sensing range a sensor can pick to cover open targets with the consideration of increased energy

consumption with distance. They also show that the lifetime problem with adjustable range

assignment can be approximated within a factor of (1+ε) (1+ ln m) for any ε > 0 with k = O(m)

elements to cover, where m being the number of targets.

In this thesis, we extend the distributed algorithms in [5], [6] with adjustable sensing

range sensor networks.

12

3. NETWORK MODEL AND PROBLEM DEFINITION

In this chapter, we will explain about the network model, problem definition and assumptions.

Firstly, the network model and assumptions are discussed and followed subsequently by the

problem definition.

3.1 Sensor Network Model

Our network model is similar to the models described in [3], [5], [6], and [15]. We

assume that sensors are deployed over the monitored region R, and each sensor s has its own

monitor target i1 where s1 can collect the trustful data from target i1 without the help of any other

sensor. We also assume that each sensor knows its own coordinates as well as the IDs and

coordinates of all the covered targets. We further extend the assumption that each sensor can also

vary the sensing range smoothly.

 In our network model, a sensor is either in the communication mode or monitoring mode.

During communication a sensor can either be in the sleeping, listening, receiving, or sending

state and during monitoring, it can either be in the idle or active state as in [6]. If the sensor is in

sleeping mode, it cannot hear any packets but it can be woke up by using wakeup mechanism as

in [23]. We also assume that the number of deployed sensors largely exceed the number of

targets required to monitor so that some sensors can turn themselves into sleep mode and save

energy.

13

 For the correctness of monitoring protocols, we use the following requirement in the

network model: for any target Tt ∈ there is at least one sensor Ss∈ which cannot become idle

unless there is an active sensor covering t. We also assume that each sensor can broadcast just

before the battery exhaustion so that neighboring sleep node can wakeup to replace the exhausted

sensor.

3.2 Problem Statement

 Sensor Network Lifetime Problem with range assignment: Given a monitored region R, a

set of sensors s1, s2, s3, ……, sm and a set of targets i1, i2, i3, ..…., in and energy supply bi for each

sensor, find a monitoring schedule (C1, t1), (C2, t2), ………, (Ck, tk) and a range assignment for

each sensor in a set Ci such that

a. t1 + t2 + ……. + tk is maximized,

b. each set cover monitors all target i1, i2, i3, ……., in, and

c. each sensor si does not appear in the set C1… Ck for a time more than bi where bi

is the initial energy of sensor of si.

In this definition, the requirement of “t1 + t2 + ……. + tk is maximized” is equivalent to

maximizing network lifetime. The energy consumed by an active sensor depends on the sensing

range of that sensor and if a sensor participates in more than one set, then the total energy spent

is not more than b.

14

4. ENHANCED DISTRIBUTED ALGORITHMS

In this chapter, first, the two distributed algorithms LBP and DEEPS for SNLP are discussed.

After that the two enhanced distributed algorithms namely, ALBP & ADEEPS, are proposed.

4.1 Load Balancing Protocol for Sensing (LBP)

 This section briefly discusses the distributed load balancing protocol (LBP) with fixed

sensing range. The main idea of LBP is that the maximum number of sensors are kept alive as

long as possible by means of load balancing (i.e., if a certain sensor is overused compared to its

neighbors, then it is allowed to sleep) [5]. In this algorithm, sensors can freely exchange active or

idle states. And it is also assumed that there is no equal battery level at each sensor (if there is an

equal battery level, either sensor’s or target’s id will be used for making a decision.). Each sensor

node can be in three states:

- Active: the sensor is active and monitors the targets

- Idle: idle and sleep modes, the sensor stops wasting any energy

- Alert: the sensor monitors targets but will change its state to either active or idle state

soon.

15

Each alert sensor knows all its neighbor sensors’ state, i.e., any state transition is immediately

broadcast with current energy supply. When a sensor is in vulnerable state, it should change its

state into:

- Active state: if a target is solely covered by itself,

- Idle state: if each target covered by a sensor s is also covered either by an active

sensor or a vulnerable sensor with a larger battery supply.

For a certain period, all nodes are altered (i.e., turn into vulnerable state) using wake-up

calls, and each sensor has to decide whether to change their state to either active or idle. This

process is called global reshuffle. During global reshuffle, each sensor sends two broadcasts: the

first broadcast includes its cover targets and energy level and the second broadcast informs

whether it will be active or idle.

 If an active sensor nearly exhausts its energy, then it broadcasts about that to its

neighbors. A minimal subset of neighbors in idle state will change their states into active and

effectively replace the exhausted sensor. The correctness of LBP is also proved and each global

reshuffle needs two broadcasts to the neighbors and the resultant set of all active sensors form a

minimal sensor cover. “The main drawback of LBP is that it balances the load of sensors instead

of balancing the energy of sensors covering the same target. [6]”

16

4.2 Deterministic Energy Efficient Protocol for Sensing (DEEPS)

 This section describes the Deterministic Energy-Efficient Protocol for Sensing (DEEPS)

by Dumitru et al. The main intuition behind DEEPS is that they try to minimize the energy

consumption rate for low energy targets while allowing higher energy consumption for sensors

with higher total supply [6].

 They define each target as either “sink” or “hill”. A sink is a target t which is the poorest

for at least one sensor covering t, and the abandoned target is a hill which is not the poorest for

any covering sensors. Each sink should be covered by a sensor with the richest batteries to keep

the intuition behind LBP (keep more sensors alive). Thus DEEPS’ off-rule switches off the

poorer sensors covering the sinks until a single sensor switches on. This may lose the correctness

of monitoring protocol requirement in which some targets may not be covered. It is shown in Fig

(4.1).

Figure 4.1 WSN with sink and hill targets [6].

17

 For the correctness of monitoring protocol, at least one sensor is placed in-charge of each

target and the sensor in-charge of t should not switch off until it discovers that t is covered by

another switched-on sensor. Selection of the sensor which should be in-charge is determined by

using the following two rules [6]: “(i) if the target t is a sink, among the sensors covering t,

sensor s with the richest batteries is placed in-charge of t. and (ii) If target t is a hill, then the

sensor s covering t whose poorest target is the richest over all sensors covering t, is placed in-

charge of t. If there are several such sensors, then the richest among them is placed in-charge of

t.”

Consider the example in Fig 4.1, the sensors with 3 batteries are placed in-charge of sinks

(i.e., three lower targets). Using the tie-breaking rule, the leftmost target is the richest among 3

lower targets. According to rule (ii), the leftmost sensor with 2 batteries will become in-charge of

the topmost hill and turn on while the other 2 battery sensors will turn off.

Like LBP, sensors in DEEPS have the same states (active, idle, vulnerable) and it is

necessary that all the sensors know the battery levels of all the targets of their respective

neighbors, in order to calculate who is in-charge. This can be done by either sending two

broadcasts or increasing the communication range. When a sensor is in vulnerable/alert state, it

should change its state into:

- Active state: if a target is solely covered by itself (same as LBP),

- Idle state: whenever a sensor s is not in-charge of any target except those already

covered by active sensors, s switches itself to idle.

The correctness of DEEPS is also proved in [6].

18

4.3 Load Balancing Protocol for Adjustable Range Sensing (ALBP)

Distributed Load Balancing Protocol for SNLP has been previously considered in [5].

This section describes the Load Balancing Protocol for Adjustable Range Sensing (ALBP). The

objective of the monitoring protocol is to maximize the time that sensors can monitor all targets.

When there is a target which cannot be covered by any sensors, the network fails. Because it is

useless to have any sensors alive after the network fails, an intuition behind ALBP is to keep as

many sensors alive as possible by means of load balancing and try to let them die

simultaneously.

There are three main questions which should be answered by the distributed monitoring

protocol for adjustable range sensors:

(1) What rules should be used to decide for each sensor node to become either idle or

active?

(2) If a sensor decides to become active, what should be its sensing range?

(3) When should nodes make such decisions?

To answer these questions, we first describe the state of sensors and transition rules. At

any moment, each sensor is in one of three states

- active: the sensor monitors targets

- idle: the sensor listens to other sensors, but does not monitor targets

- deciding: the sensor monitors targets, but will change its state to either active or idle

state soon

19

Fig. 4.2 State diagram of adjustable range sensor.

We first assume that each sensor s can communicate with its neighboring sensors within

two times of maximum sensing range. In order to find sensor cover schedule, each sensor

initially broadcasts its battery level and covered targets to all neighbors, and then stays in the

deciding state with its maximum sensing range. Each sensor will change its state by the

following transition rules:

When a sensor is in the deciding state with range r, then it should change its state into

- Active state with sensing range r if there is a target at range r which is not covered by

any other active or deciding sensors.

- Deciding State, but decreases its sensing range to the next furthest target if all

covered targets at range r are covered by either active sensors or deciding sensors

with a larger monitoring time.

- Idle state if when a sensor decreases its range to zero.

After all sensors decide their states to active or idle, each sensor will stay in that state for

a certain period of time called, shuffle time, or until there is an active sensor which exhausts its

energy supply and is going to die. All sensors are alerted using the wake-up call causing all

sensors to change their state back to the deciding state with their maximum sensing range again.

Finally, when there is a target which cannot be covered by any sensors, the network fails.

Idle Active
Range r1

Active
Range r2

Active
Range rk

Active
Range rk-1

Deciding
Range r1

Deciding
Range r2

Deciding
Range rk-1

Deciding
Range rk

Start

20

As in [5], [6], we can also show that ALBP satisfies the following properties:

Theorem 1: ALBP is a correct protocol. Each global reshuffle of ALBP needs 2 broadcasts (to

the neighbors) from each sensors and the resultant set of all active sensors form a minimal sensor

cover:

Proof: In ALBP, a sensor can change its states to IDLE only when its sensing range reaches to

zero, i.e., any of its targets are covered by other active sensors. In other words, for any target t,

there is a sensor with the largest battery to cover t.

Theorem 2: The time complexity of ALBP is O(∆2) and the message complexity is O(n∆) where

∆ is the number of neighbors.

Proof: Let us investigate the time complexity for the worst case. For each shuffle time, each

sensor receives a message, which contains targets and battery supply information, from one or

more neighbors. However, a sensor node has no more than ∆ neighbors. So a sensor can receive

at most ∆ messages, which also implies scanning over those in O(∆) time. Moreover, in the worst

case scenario, it may have to wait on all its neighbors to decide. Thus, the waiting time can

accumulate as O(∆ + ∆ + ∆ + ……. + ∆) time for other neighbors to decide. Thus the time

complexity is O(∆2).

Since each sensor has at most ∆ neighbors and throughout the shuffling time, a sensor

broadcasts at most two messages to its neighbors (first broadcast consists of its targets and

battery, and the second broadcast is its status (on/off)), so each sensor sends at most O(∆)

messages in the decision phase. This means that the message complexity is O(n∆), where n is the

number of sensors.

 We will now show an example that ALBP can have an unbounded inefficiency as in LBP

with the same example as in [6]. The network in Fig 4.3 consists of 3 targets, 2 sensors with

21

1000 battery each and two groups of 1000 sensors with 1-battery each. For this network, the

optimal scheduling will be using the 1000 top right sensors and the bottom left 1000 group and

next schedule will be the rest of sensors. Thus the total lifetime will be 2000.

 However, ALBP suffers the same inefficiency as LBP. ALBP will use the two 1000

battery sensors until they are almost gone and the top target could not be the sensor cover after

both the 1000-battery sensors die and the lifetime will be only 1000. It is easy to see that the

factor 2 lost can be generalized as factor k loss [6].

Figure 4.3 An example with the optimal schedule equal to 2000 time units long [6].

22

4.4 DEEPS Protocol for Adjustable Range Sensing (ADEEPS)

This section describes the Deterministic Energy-Efficient Protocol for Adjustable Range

Sensing (ADEEPS).

 At any moment, each sensor is in one of three states

- active: the sensor monitors targets

- idle: the sensor listens to other sensors, but does not monitor targets

- deciding: the sensor monitors targets, but will change its state to either active or idle

state soon.

Before we define the transition rules, we have to decide which targets will be sinks and

which will be hills, and also place at least one sensor in-charge of each target t. Here we use the

maximum possible lifetime of the target, instead of total battery used in DEEPS for deciding sink

and hill target. The lifetime of a sensor and the maximum lifetime of a target can be defined as

follow: Let the lifetime of a sensor with battery b, with a given sensing range r ≤ maximum

sensing range, and using energy mode e, be denoted by Lt (b, r, e). Then, the maximum lifetime

of a target would be Lt (b1, r1, e) + Lt (b2, r2, e) + Lt (b3, r3, e) + …, assuming it can be covered

by neighborhood sensors with batteries bi at a distance ri for i = 1, 2, …

Let sink be a target t which is poorest in maximum lifetime for at least one sensor

covering t. The abandoned target is a hill, i.e., a target which is not the poorest in maximum

lifetime for any of its covering sensors. The following two rules determine which sensor should

be in-charge of target t:

1. If the target is a sink, then the sensors s covering t with the highest lifetime Lt (b,

r, e) for which t is the poorest is placed in-charge of t

23

2. If target t is a hill then the overall sensors covering t the sensor s whose poorest

target has the largest lifetime is placed in-charge of t. If there are several such

sensors, then the richest among them is placed in-charge of t.

The sensor’s id is used to break the tie. We first assume that each sensor s can

communicate with its neighboring sensors within four times of the maximum sensing range

(same assumption as in [6]). In order to find the sensor cover schedule, each sensor initially

broadcasts its corresponding lifetime and covered targets to all neighbors of neighbors, and then

stays in the deciding state with its maximum sensing range. Each sensor will change its state by

the following transition rules: When a sensor is in the deciding state with range r, then it should

change its state into

- Active state with sensing range r, if there is a farthest target at range r less than or

equal to r which is not covered by any other active or deciding sensors.

- Idle state, whenever a sensor s is not in-charge of any target except those already

covered by on-sensors, s switches itself to idle state.

After all sensors decide their state to active or idle, each sensor will stay in that state for a

certain period of time (shuffle time) or until there is an active sensor which exhausts its energy

supply and is going to die. All sensors are alerted using wake-up call causing all sensors to

change their state back to deciding state with their maximum sensing range again. Finally, when

there is a target which can not be covered by any sensors, the network fails.

Theorem 3: ADEEPS is a correct protocol. Each global reshuffle of DEEPS needs 2 broadcasts

from each sensor and the resultant set of all active sensors form a minimal sensor cover.

24

Proof: The correctness of ADEEPS can be proved from the fact that each target has a sensor

which is in-charge of that target and the transition rule to active state assures that the resultant

sensor cover is minimal in which each sensor s has a target covered only by s.

Theorem 4: The time complexity of ADEEPS is O(∆2) and the message complexity is O(n∆2)

where ∆ is the number of neighbors.

Proof: Let us investigate the time complexity for the worst case. For each shuffle time, each

sensor receives a message, which contains target and battery supply information, from one or

more neighbors and sensor node has no more than ∆ neighbors. In ADEEPS, each sensor

broadcast to its information to neighbors of neighbors. Thus, a sensor can receive at most ∆2

messages. It needs O(∆2) time to run the ADEEPS algorithms as all the decisions regarding

sink/hill targets, in-charge sensors, and active/idle can be taken locally (i.e., without waiting on

neighboring sensors). Thus the time complexity is O(∆2).

Since each sensor has at most ∆ neighbors and throughout the shuffling time, a sensor

broadcasts at most two message to its neighbors of neighbors (first broadcast is its set of targets

and its battery information, and second broadcast is its status (on/off)), so each sensor sends at

most O(∆2) messages in the decision phase. This means that the message complexity is O(n∆2),

where n is the number of sensors.

 ADEEPS does not suffer the inefficiency of LBP and ALBP. With reference to Fig4.3,

the ADEEPS protocol will allow both 1000 sensors to be active simultaneously in the first shift.

After that, the top target becomes the sinks and will be monitored only by one of the 1000-

battery sensors.

25

5. SIMULATION OF THE ALGORITHMS

In this chapter we describe how the new algorithms are molded and how the simulation is carried

out. We test the performance of the algorithm by simulating it over a wide range of simulation

parameters. We start off this chapter by describing how the simulation is setup, implemented and

operated. In the next chapter we present some results and analyze the results. Finally, we present

the conclusions drawn from our simulation study.

5.1 Simulation Setup

 To evaluate the performance of new algorithms and to make comparison with algorithms

in [5], [6], [15], the new algorithms are implemented by using C++ in Windows XP operating

system.

 The simulator is designed to model a wide range of physical sensor network sizes with

varying node densities. The location of the sensor nodes can be randomly deployed and the

targets can also be placed randomly while creating the sensor and target inputs. For the

simulation purpose, we created a static network of sensors scattered in a 100m x 100m area. The

adjustable parameters are:

• N, the number of sensor nodes. We vary this from 40 to 200.

• M the number of targets. We vary this to 25 and 50.

• And the sensing range r which can vary smoothly from 5m to 30m/60m.

26

• The energy model can be either linear or quadratic energy as defined in [3]. The linear

model defines the energy ep needed to cover a target at distance rp as ep = c1rp, where c1 is

constant. The quadratic model is defined as ep = c2rp
2, where c2 is a constant.

In order to make comparison, we used the same simulations parameters used in [15].

5.2 Explanation of Simulation

 We implement the two basic algorithms LBP and DEEPS and they are further extended

by using adjustable range sensing instead of fixed range sensing. The target and sensor files are

generated using the parameters from section 5.1 and input into the program. We can vary the

sensing range, and energy model from the command line and the lifetime of network is output as

the result. For each algorithm, the following steps are required for the simulation:

1. Generate the target and sensor files which contain the information of the target id,

target position, sensor id, sensor maximum battery, and sensor position.

2. Simulation is started from the command line wherein the target and sensor file,

the maximum sensing range, and the energy model are provided as input.

3. Using these data and parameters, the simulation is started

4. The simulation runs until a target cannot be covered by sensors.

5. The simulations stops, and the lifetime of the network is printed out as the result.

27

5.3 Explanation of New Algorithms

 We modify the distributed algorithms proposed in [5], [6] using the adjustable range

sensors. In [5], [6], the authors proposed efficient distributed algorithms for improving network

lifetime for fixed sensing range network.

 The basic step in LBP and DEEPS is that each node has to decide whether they can go to

sleep or become active and cover the targets. Each sensor knows its neighboring sensors and

covered targets. After exchanging their battery power and covered targets, using the rules in

chapter 4, each sensor decides whether they go to sleep or become active covering the target. In

both algorithms, the decision is made only on the energy level, and does not consider the

distance.

In the new algorithms ALBP and ADEEPS, both the energy level and distance are

considered in the sensors’ decisions. The following shows the steps in our simulation:

1. Targets and sensors are read into the memory.

2. Sensor nodes are in a deciding state and decide whether they can go to sleep or

become active and cover the target.

3. Each sensor knows its neighboring sensors and covered targets.

4. For each sensor

a. In ALBP, checks with each neighbor sensors starting from the farthest

target whether that target can be covered by the neighbor sensor with

larger battery level. If the neighbors target can cover the farthest target

with larger battery level, then the sensor removes that target from the

covered target list and reduces the sensing range to the next target. This

28

sensor will go to sleep if the range reaches zero. This process stops after

all sensors make a decision.

b. In ADEEPS, each sensor decides which targets they are in-charge of by

using the maximum lifetime of all the targets of its neighbors. After

making this decision, each sensor decides to become active with range r (r

≤ maximum sensing range) or decides to sleep. This process stops after all

sensors make a decision.

5. After all sensors decide their state to be active or idle, each sensor will stay in that

state for a certain period of time (shuffle time) or until there is an active sensor

which exhausts its energy supply and is going to die. All sensors are alerted using

wake-up call causing all sensors to change their state back to the deciding state

with their maximum sensing range and repeat the process from step 4.

6. This simulation is repeated until a target cannot be covered.

7. Then, the process terminates and the lifetime of the network is printed out.

29

6. SIMULATION RESULTS

In this section, we evaluate the performance of centralized and distributed algorithms and

analyze the data generated from the simulations. We have simulated the four algorithms: LBP,

ALBP, DEEPS and ADEEPS.

 For the simulation environments, a static wireless network of sensors and targets which

are scattered randomly in 100m x 100m area is considered. We assume that the communication

range of each sensor is two times the sensing range. Simulations are carried out by varying the

number of sensors and the lifetime is measured. We also vary the maximum sensing range,

energy models, and numbers of targets with various combinations. The corresponding data and

graphs are presented in the following sections.

In the first simulation, we compare the network lifetime computed by LBP, ALBP,

DEEPS and ADEEPS by varying the number of sensors. In order to make a comparison with the

distributed algorithm, AR-SC [3], we use the same parameters as theirs. The simulation is

conducted with 25 randomly deployed targets, 40 to 200 sensors with an increment of 20. Each

sensor has a maximum sensing range of 60m with linear energy model. The corresponding

results are shown in table 6.1. The results from the simulations show that the lifetime increases

with the increase in the number of sensor density because when more sensors are deployed, each

target could be covered by more sensors.

30

Table 6.1 The lifetime of sensor networks with 25 targets.

Sensors 40 60 80 100 120 140 160 180 200

AR-SC [3] 20.0 25.0 31.0 44.0 49.0 53.0 62.0 68.0 75.0

LBP [5] 12.2 19.4 29.6 33.3 40.2 45.4 50.9 56.6 61.1

ALBP 15.0 20.4 28.6 35.3 45.7 56.8 56.7 62.2 68.3

DEEPS [6] 19.6 28.5 40.3 54.3 66.2 76.3 84.6 94.6 101.3

ADEEPS 24.6 35.6 49.6 68.4 83.4 92.7 105.9 118.6 124.7

0

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180 200 220
Sensors

Li
fe
tim

e

AR-SC LBP ALBP DEEPS ADEEPS

Figure 6.1 Variation in network lifetime with the number of sensors with 25 targets and

linear energy model and 60m maximum sensing range.

31

In the second simulation, we vary the maximum sensing range to 30m. We use the same

number of targets, sensors, and linear energy model. The results are consistent with the previous

results because the network lifetime increases with the increase in the number of sensors. When

compared to the result from Table 6.1/Fig6.1, adjusting the sensing ranges have an impact on

network lifetime because when we decrease the sensing range, the network lifetime also

decreases.

Table 6.2. The lifetime of sensor networks with 25 targets and 30m sensing range

Sensors 40 60 80 100 120 140 160 180 200

LBP [5] 5.48 10.51 11.22 12.51 15.12 16.75 16.75 18.37 23.97

ALBP 7.38 12.45 13.37 13.93 17.48 19.11 19.11 23.26 29.65

DEEPS [6] 7.22 14.13 16.22 18.01 22.69 26.03 26.03 27.66 33.43

ADEEPS 8.96 17.23 20.02 21.28 27.12 30.67 33.13 35.35 41.12

0

5

10

15

20

25

30

35

40

45

40 60 80 100 120 140 160 180 200

Sensors

Li
fe
tim
e

LBP ALBP DEEPS ADEEPS

Figure 6.2. Variation in network lifetime with the number of sensors with 25 targets, linear

energy model and 30m maximum sensing range.

32

In the third and the fourth simulation (Fig 6.3/6.4), we study the network lifetime while

increasing the number of targets to 50 and vary the maximum sensing range to 30m and 60m.

The numbers of sensors are varied from 40 to 200 with an increment of 20 and the energy model

is linear. The results of simulations are consistent and showed that the network lifetime increases

with the number of sensors. When compared with the results in experiments 1 and 2, the network

lifetime decreases as more targets are monitored.

Table 6.3. The lifetime of sensor networks with 50 targets and 60m maximum sensing range

No. of Sensors 40 60 80 100 120 140 160 180 200

AR-SC [3] - 18.6 24.3 30.2 39.6 48.3 54.2 60.1 65.78

LBP [5] 10.5 17.3 24.9 28.3 35.3 37.9 44.6 48.9 54.2

ALBP 11.7 18.1 26.2 30.3 38.0 40.8 47.5 51.9 58.1

DEEPS [6] 15.8 22.7 26.8 35.3 49.0 61.1 70.4 79.1 87.1

ADEEPS 18.0 28.2 33.7 38.9 56.8 75.9 90.1 98.6 108.3

0

20

40

60

80

100

120

60 80 100 120 140 160 180 200

Sensor

Li
fe
tim

e

AR-SC LBP ALBP DEEPS ADEEPS

Figure 6.3 Variation in network lifetime with the number of sensors with 50 targets, linear

energy model and 60m maximum sensing range

33

Table 6.4. The lifetime of sensor networks with 50 targets and 30m sensing range

No. of Sensors 40 60 80 100 120 140 160 180 200

LBP [5] 4.80 8.65 8.90 10.12 12.74 14.13 14.14 16.73 18.76

ALBP 5.38 9.42 9.77 11.84 14.31 15.39 15.39 18.03 19.99

DEEPS [6] 6.95 11.32 12.11 14.86 18.76 21.22 22.56 24.95 27.66

ADEEPS 8.17 13.45 14.91 17.55 23.20 26.40 28.20 30.10 32.89

0

5

10

15

20

25

30

35

40 60 80 100 120 140 160 180 200
Sensors

Li
fe
tim

e

LBP ALBP DEEPS ADEEPS

Figure 6.4 Variation in network lifetime with the number of sensors, with 50 targets, linear

energy model and 30m maximum sensing range

34

In the fifth simulation (Table 6.5/Fig 6.5), we conduct with the quadratic energy model.

We use the same number of sensors (40 to 200 with increment of 20), the maximum sensing

range is 30m and the energy model is quadratic. For both energy models, the result indicates that

the network lifetime increases with the number of sensors. Another interesting fact is that the

network lifetime is significantly improved with ALBP and ADEEPS in the quadratic model. This

phenomenon is quite logical since in the fixed sensing model, each sensor consumes more

energy than the adjustable sensing range model.

Table 6.5. The lifetime of sensor networks with 25 targets and quadratic energy model

No. of Sensors 40 60 80 100 120 140 160 180 200

LBP [5] 1.90 3.85 4.25 4.75 5.78 6.41 6.41 7.35 8.14

ALBP 3.56 5.91 6.11 6.60 8.47 9.09 10.10 13.06 17.80

DEEPS [6] 3.80 7.70 8.49 9.51 11.57 12.83 12.83 14.69 16.28

ADEEPS 7.18 12.2 16.05 17.97 21.86 23.98 24.56 27.77 30.2

0

5

10

15

20

25

30

35

40 60 80 100 120 140 160 180 200
Sensor

Li
fe
tim

e

LBP ALBP DEEPS ADEEPS

Figure 6.5 Variation in network lifetime with the number of sensors, with 25 targets,

quadratic energy model and 30m maximum sensing range.

35

0

2000

4000

6000

8000

10000

12000

14000

40 60 80 100 120 140 160 180 200

Sensors

M
es
sa
ge
s/
Sh
ift

LBP ALBP DEEPS ADEEPS

Fig 6.6. Average numbers of messages sent during each shift

In Figure 6.6, we provide the average numbers of messages sent during each shift. It can

be seen that more messages are sent when the number of deployed sensors increases and the

average messages sent in DEEPS and ADEEPS are much higher than LBP and ALBP. This is

because in DEEPS and ADEEPS the communication range is four times higher than the sensing

range and each sensor has more neighbors and needs to send more messages (in effect

communicating with 2-hop neighbors).

The above tables and figures show the variation in network lifetime while varying the

number of sensors, number of targets, maximum sensing ranges, and different energy models.

From the results, the overall improvement in network lifetime of ALBP over LBP is around 10

percent and ADEEPS over DEEPS is about 20 percent for linear energy model. For quadratic

energy model, the improvements are much more.

36

7. CONCLUSIONS & FUTURE WORK

In this paper, we provide a problem formulation for the lifetime maximization problem in

a sensor network with adjustable sensing ranges. We then extended the two distributed

algorithms proposed in [5], [6] with adjustable sensing ranges. We also provide the analysis to

show the correctness and efficiency of ALBP and ADEEPS and demonstrate it using the

simulation results. The simulation results verify that with the adjustable sensing range, the

network lifetime can be improved. The simulations results can be summarized as follows:

• For the given number of targets and sensing ranges, the network lifetime increases with

the number of sensors. When the number of targets is increased, the network lifetime

decreases as more targets are monitored.

• Network lifetime increases with an increase in the sensing range.

• With adjustable sensing range, the network lifetime increases, and the increase is more

dramatic with quadratic energy models.

The future work will include simulating these algorithms with the combination of

communication protocols, and improving the performance of the distributed algorithms by

reducing its overheads as well as better integration of adjustable sensing range into the

algorithms.

37

BIBLIOGRAPHY

[1] Chee-Yee Chong and Srikanta P. Kumar, “Sensor Networks: Evolution, Opportunities and

Challenges”. Proceeding of the IEEE, vol. 91, no. 8, Aug. 2003.

[2] R. Hahn and H. Reichl, “Batteries and power supplies for wearable and ubiquitous

computing”, in Proc. 3rd Intl. Symposium on Wearable computers, 1999.

[3] M. Cardei, J. Wu, N. Lu, M.O. Pervaiz, “Maximum Network Lifetime with Adjustable

Range”, IEEE Intl. Conf. on Wireless and Mobile Computing, Networking and Communications

(WiMob'05), Aug. 2005.

[4] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors”, Communication ACM,

43(5):51-58, 2000.

[5] P. Berman, G. Calinescu, C. Shah and A. Zelikovsky, "Power Efficient Monitoring

Management in Sensor Networks," IEEE Wireless Communication and Networking Conference

(WCNC'04), pp. 2329-2334, Atlanta, March 2004.

[6] Brinza, D. and Zelikovsky, A, “DEEPS: Deterministic Energy-Efficient Protocol for Sensor

networks”, ACIS International Workshop on Self-Assembling Wireless Networks (SAWN'06),

Proc. of SNPD, pp. 261-266, 2006.

[7] M. Cardei, J. Wu, “Energy-Efficient Coverage Problems in Wireless Ad-Hoc Sensor

Networks”, Computer Communications Journal (Elsevier), Vol.29, No.4, pp. 413-420, Feb.

2006.

38

[8] Jim Kurose and Keith Ross, “Computer Networking: A Top Down Approach Featuring the

Internet”, 3rd edition. Addison-Wesley, July 2004.

[9] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, “A Survey on Sensor

Networks”, IEEE Communications Magazine, pp 102-114, Aug. 2002.

[10] M. Cardei, M.T. Thai, Y. Li, and W. Wu, “Energy-efficient target coverage in wireless

sensor networks”, In Proc. of IEEE Infocom, 2005.

[11] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-Aware Wireless

Microsensor Networks”, IEEE Signal Processing Magazine, 19 (2002), pp 40-50.

[12] T. Yan, T. He, and J. Stankovic, “Differentiated surveillance for sensor networks”, In

Proceedings of Sensys, 2003.

[13] M. Cardei and D.-Z. Du, “Improving Wireless Sensor Network Lifetime through Power

Aware Organization”, ACM Wireless Networks, vol. 11, No. 3, May 2005.

[14] P. Berman, G. Calinescu, C. Shah and A. Zelikovsky, "Efficient Energy Management in

Sensor Networks," In Ad Hoc and Sensor Networks, Wireless Networks and Mobile Computing,

Volume 2 , Y. Xiao and Y. Pan (Eds.), Nova Science Publishers. 2005.

[15] A. Dhawan, C. T. Vu, A. Zelikovsky, Y. Li, and S. K. Prasad, “Maximum Lifetime of

Sensor Networks with Adjustable Sensing Range”, 2nd ACIS International Workshop on Self-

assembling Wireless Networks, (SAWN 2006), Las Vegas, NV, June 19-20, 2006.

[16] J. Carle and D. Simplot, “Energy Efficient Area Monitoring by Sensor Networks”, IEEE

Computer, Vol 37, No 2 (2004) 40-46.

[17] D. Tian and N. D. Georganas, “A Coverage-Preserving Node Scheduling Scheme for Large

Wireless Sensor Networks”, Proc. of the 1st ACM Workshop on Wireless Sensor Networks and

Applications, 2002.

39

[18] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. D. Gill, “Integrated Coverage and

Connectivity Configuration in Wireless Sensor Networks”, First ACM Conference on Embedded

Networked Sensor Systems, 2003.

[19] J. Wu and S. Yang, “Coverage and Connectivity in Sensor Networks with Adjustable

Ranges”, International Workshop on Mobile and Wireless Networking (MWN), Aug. 2004.

[20] H. Zhang and J. C. Hou, “Maintaining Sensing Coverage and Connectivity in Large Sensor

Networks”, NSF International Workshop on Theoretical and Algorithmic Aspects of Sensor, Ad

Hoc Wireless and Peer-to-Peer Networks, Feb. 2004.

[21] J. Wu and S. Yang, “Coverage and Connectivity in Sensor Networks with Adjustable

Ranges”, International Workshop on Mobile and Wireless Networking (MWN), Aug. 2004.

[22] D. Brinza, G. Calinescu, S. Tongngam, and A. Zelikovsky, “Energy-Efficient Continuous

and Event-Driven Monitoring”, In Proc. 2nd IEEE International Conference on Mobile Ad-Hoc

and Sensor Systems, 2005.

[23] L. Gu and J. Stankovic, “Radio triggered wake-up capability for sensor networks”, In Real-

Time Applications Symposium, May 2004.

[24] N. Garg and J. Könemann, “Faster and simpler algorithms for multi commodity flows and

other fractional packing problems”, Proc. 39th Annual Symposium on the Foundations of

Computer Science, 1998, pp 300-309.

[25] R. Hahn and H. Reichl, “Batteries and power supplies for wearable and ubiquitous

computing”, in Proc. 3rd Intl. Symposium on Wearable computers, 1999

[26] J. Pottie and W. J. Kaiser, “Wireless integrated net-work sensors,” Communication ACM,

43(5):51- 58, 2000.

40

[27] Photo Electric Sensors,

http://www.schneider-electric.ca/www/en/products/sensors2000/html/abc.htm

41

APPENDIX - A

C++ code for ALBP

#include <iostream>
#include <vector>
#include <string>
#include <math.h>
#include <fstream>

using namespace std;

class target{
 protected:
 int id;
 float x;
 float y;
 public:
 target(){};
 target(int i, float xpos, float ypos){
 id=i; x=xpos; y=ypos;};
 double distance(double x1, double y1);
 float getx(){ return x;};
 float gety(){ return y;};
 int getid(){ return id;};

};
double target::distance(double x1, double y1){
 return sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y));
}
class sensor {
 protected:
 int id;
 float status;
 float x,y;
 float battery;
 double maxRange;
 double range;
 bool linearPower;

42

 public:
 vector <target> coveredTarget;
 vector <sensor*> neighbor;

 // constructor
 sensor (int ID,float xpos, float ypos,float maxb, double maxr, bool linear);

 // function to find distance
 double distance(double x1, double y1);

 // function to find target
 void getTarget(vector<target> t);

 // function to find neighbor sensor
 void getNeighbor(vector<sensor> &s);

 // find time with specific range
 double getTime(){
 if (linearPower)
 return (battery/range);
 else
 return (battery/(range*range));};

 // decrease range
 void decreaseRange();

 //active with range k
 void goactive(vector<target> t){status = range;getTarget(t);};

 // go sleep
 void gosleep() {status =0; range = 0;};

 // get status
 float getstatus(){return status;};

 // set new battery
 void setBattery(double time){
 if (linearPower)
 battery -= range*time;
 else
 battery -= range*range*time;};

 // wakeup
 void wakeup(){status = -1; range =maxRange;};

43

 // is sensor dead
 bool isDead(){ if (battery == 0) return true; else return false;};

 // can sensor cover a target with maximum range
 bool canCoveredTarget(target &t);

 // is sensor cover a target
 bool covers(target &t);

 // get sensor id
 int getId(){return id;};

 // get Battery level;
 int getBatteryLevel(){ return battery;};

};

bool sensor::canCoveredTarget(target &t){
 if (t.distance(x,y) <= maxRange)
 return true;
 else
 return false;
}

bool sensor::covers(target &t){
 if (t.distance(x,y) <= range)
 return true;
 else
 return false;
}

void sensor::decreaseRange(){
 coveredTarget.erase(coveredTarget.begin());
 if (coveredTarget.empty()){
 range = 0;
 gosleep();
 }
 else
 range = coveredTarget[0].distance(x,y);
}

double sensor::distance(double x1, double y1){
 return sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y));

44

}

sensor::sensor(int ID, float xpos, float ypos, float maxb, double maxr, bool linear){
 id = ID; x = xpos; y = ypos; battery = maxb; maxRange = maxr;linearPower = linear;
}

void sensor::getTarget(vector<target> t){
 double distance;
 bool alreadyadd;
 vector<target>::iterator itr;

 coveredTarget.clear();

 for(int i=0;i < t.size(); i++){
 distance = t[i].distance(x,y);
 if (distance <= range){
 alreadyadd = false;
 for (itr = coveredTarget.begin(); itr < coveredTarget.end(); itr++){
 if (itr->distance(x,y) < distance){
 coveredTarget.insert(itr,t[i]);
 alreadyadd = true;
 break;
 }
 }
 if (!alreadyadd)
 coveredTarget.push_back(t[i]);

 }
 }

 if (!coveredTarget.empty())
 range = coveredTarget[0].distance(x,y);
 else
 range = 0;

}

void sensor::getNeighbor(vector<sensor> &s){
 double distance;
 neighbor.clear();

 for(int i=0;i < s.size(); i++){
 // find distance
 distance = s[i].distance(x,y);

 // add to vector neighbor if a sensor is in 2*maxRange

45

 if ((distance <= 2*maxRange) && (distance != 0)){
 neighbor.push_back(&s[i]);

 }
 }
}

void getInformation (vector<target> &t, vector<sensor> &s);
bool isAllDecided (vector<sensor> s);
void deleteSensor (vector<sensor> &s);
bool allTargetcovered (vector<target> t, vector<sensor> s);

int main()
{
 vector<target> t;
 vector<sensor> s;
 target T;
 double batteryTime, nbatteryTime ;
 int targetid;
 bool coveredbyother = false;
 bool decreaseRange = false;
 double shuffleTime = 1;
 int shift = 1; // schuffle index
 double shiftTime; // time for one shift
 double monitorTime = 0; // total monitor time

 // get target and sensor information
 getInformation(t, s);

 while(allTargetcovered(t,s)){

 // for each sensor, find target and neighbor sensor
 for(int i=0;i < s.size(); i++){
 s[i].wakeup();
 // get target
 s[i].getTarget(t);
 // find neighbor sensor
 s[i].getNeighbor(s);
 }

 // start by assume that next shift time = shuffle time
 shiftTime = shuffleTime;

 // shuffle process
 while (!isAllDecided(s)){

46

// for every sensor
 for(int i=0;i < s.size(); i++){
 if (s[i].getstatus() < 0){
 decreaseRange = false;
 if (!s[i].coveredTarget.empty()){
 batteryTime = s[i].getTime();
 // check the first target: the one with maximum length
 targetid = s[i].coveredTarget[0].getid();
 coveredbyother = false;
 // check with all neighbors
 for (int j=0; j< s[i].neighbor.size(); j++){
 // every covered target of neightbor j
 for (int k=0; k< s[i].neighbor[j]->coveredTarget.size(); k++){
 // the target can be covered by neighbor j
 if (targetid == s[i].neighbor[j]->coveredTarget[k].getid()){
 coveredbyother = true;
 nbatteryTime = s[i].neighbor[j]->getTime();

 i f (batteryTime < nbatteryTime || (nbatteryTime ==
batteryTime && s[i].getId()<s[i].neighbor[j]->getId())

 || s[i].neighbor[j]->getstatus()>0){
 s[i].decreaseRange();
 decreaseRange = true;
 break;
 }
 }
 }
 if (decreaseRange){
 break;
 }
 }
 if (!coveredbyother){
 s[i].goactive(t);
 if (shiftTime > batteryTime){
 shiftTime = batteryTime;
 }

 // notify with all neighbors
 for (int j=0; j< s[i].neighbor.size(); j++){
 // every covered target of neightbor j
 while(!s[i].neighbor[j]->coveredTarget.empty()){
 T = s[i].neighbor[j]->coveredTarget[0];
 if (s[i].covers(T)){
 s[i].neighbor[j]->decreaseRange();

 } else

47

 // not covered
 break;
 }
 }
 }
 } else{
 s[i].gosleep();
 }
 }
 }
 }

 // end of each shift
 monitorTime += shiftTime;
 for (int i=0; i< s.size(); i++)
 s[i].setBattery(shiftTime);

 // print each shift detail

cout << "Shift #" << shift << ", shift time =" << shiftTime << " hr. Life time = " < <
monitorTime << " hr." << endl ;

 for (int i=0; i< s.size(); i++){
 cout << " - " << s[i].getId() << ": Battery :"<< s[i].getBatteryLevel();
 cout << "\tStatus = ";
 if (s[i].getstatus() == 0)
 cout << "Sleep"<< endl;
 else
 cout << "Active"<< " with range = " << s[i].getstatus() << endl;
 }
 shift++;

 // delete dead sensor from vector sensor
 deleteSensor(s);

 cout << endl << endl << endl;
 }

 cout << "Sensor life : " << monitorTime << endl<< endl;
 return 0;

}

void getInformation (vector<target> &t, vector<sensor> &s){

 float xpos, ypos, maxb, maxr;
 string filename;

48

 int tid, sid, choice, numSensor,numTarget;
 bool linearPower;

 // read target information
 cout << "Enter target file:";
 getline(cin,filename);
 ifstream targetfile (filename.c_str());

 if (targetfile.is_open()){
 targetfile >> numTarget;
 cout << "numTarget :" << numTarget << endl;
 for(int i =1; i<=numTarget; i++){
 targetfile >> tid;
 targetfile >> xpos;
 targetfile >> ypos;
 // add new target to vector
 t.push_back(target(tid,xpos,ypos));
 }
 targetfile.close();
 }else {
 cout << "can not open file " << filename << endl;
 }

 // read sensor information
 cout << "Enter sensor file :";
 getline(cin,filename);
 ifstream sensorfile (filename.c_str());

 cout << "Maximum Range :";
 cin >> maxr;

 // power function
 cout << "Power function, 1. Linear 2.Quadratic :";
 cin >> choice;
 if (choice == 1)
 linearPower = true;
 else
 linearPower = false;

 if (sensorfile.is_open()){
 sensorfile >> numSensor;
 cout << "numSensor :" << numSensor << endl;
 for(int i=1;i<=numSensor; i++){
 sensorfile >> sid;
 sensorfile >> maxb;
 sensorfile >> xpos;

49

 sensorfile >> ypos;
 // add the new sensor to vector
 s.push_back(sensor(sid, xpos, ypos, maxb, maxr, linearPower));
 }
 sensorfile.close();
 }else {
 cout << "can not open file " << filename << endl;
 }
}

bool isAllDecided (vector<sensor> s){
 for (int i=0; i< s.size(); i++){
 if (s[i].getstatus() < 0)
 return false;
 }
 return true;

}

void deleteSensor (vector<sensor> &s){
 int numDead = 0;
 vector<sensor>::iterator itr;

 // find number of dead sensor
 for (itr = s.begin(); itr!= s.end(); itr++){
 if (itr->isDead()){
 numDead++;
 }
 }

 // delete sensor
 for (int i=1; i<= numDead; i++){
 for (itr = s.begin(); itr!= s.end(); itr++){
 if (itr->isDead()){
 cout << "sensor: " << itr->getId() << " dead " << endl;
 s.erase(itr);
 break;
 }
 }
 }
}

bool allTargetcovered (vector<target> t, vector<sensor> s){
 bool tcovered;

 for (int i=0; i<t.size(); i++){

50

 bool tcovered = false;
 for (int j=0; j<s.size(); j++){
 if (s[j].canCoveredTarget(t[i])){
 tcovered = true;
 break;
 }
 }
 if (!tcovered){
 cout << "target : " << t[i].getid() << "is not covered"<< endl;
 return false;
 }
 }

 return true;
}

51

APPENDIX - B

C++ code for ADEEPS

#include <iostream>
#include <vector>
#include <string>
#include <math.h>
#include <fstream>
using namespace std;

class target{
 protected:
 int id;
 float x;
 float y;
 bool sink; //true if target is a sink for any covering sensor
 float totalBat;
 public:
 target(){};
 target(int i, float xpos, float ypos){
 id=i; x=xpos; y=ypos;};
 double distance(double x1, double y1);
 float getx(){ return x;};
 float gety(){ return y;};
 int getid(){ return id;};
 bool isSink(){ return sink;}; //returns true if the target is a sink, false otherwise
 void setSink(bool val) { sink=val; };
 void setTotalBat(float inBat){ totalBat=inBat; };
 float getTotalBat () { return totalBat; };
};

double target::distance(double x1, double y1){
 return sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y));
}

class sensor {
 protected:
 int id;
 float status;
 float x,y;
 float battery;
 double maxRange;
 double range;
 bool linearPower;

52

 public:
 vector <target> coveredTarget;
 vector <sensor*> neighbor;

 // constructor
 sensor (int ID,float xpos, float ypos,float maxb, double maxr, bool linear);

 // function to find distance
 double distance(double x1, double y1);

 // function to find target
 void getTarget(vector<target> t);

 // function to find neighbor sensor
 void getNeighbor(vector<sensor> &s);

 // find time with specific range
 double getTime(){
 if (linearPower)
 return (battery/range);
 else
 return (battery/(range*range));};

 // decrease range
 void decreaseRange();

 //active with range k
 void goactive(vector<target> t){status = range;getTarget(t);};

 // go sleep
 void gosleep() {status =0; range = 0;};

 // get status
 float getstatus(){return status;};

 // set new battery
 void setBattery(double time){
 if (linearPower)
 battery -= range*time;
 else
 battery -= range*range*time;};

 // wakeup
 void wakeup(){status = -1; range =maxRange;};

53

 // is sensor dead
 bool isDead(){ if (battery == 0) return true; else return false;};

 // can sensor cover a target with maximum range
 bool canCoveredTarget(target &t);

 // is sensor cover a target
 bool covers(target &t);

 // get sensor id
 int getId(){return id;};

 // get Battery level;
 int getBatteryLevel(){ return battery;};

 //Go active with maximum range
 void goactiveMaxrange(vector<target> t){status = maxRange;getTarget(t);};

 // Removed a target from Sensor's covered target list
 void removedCoveredtarget();

};

bool sensor::canCoveredTarget(target &t){
 if (t.distance(x,y) <= maxRange)
 return true;
 else
 return false;
}

bool sensor::covers(target &t){
 if (t.distance(x,y) <= range)
 return true;
 else
 return false;
}

void sensor::decreaseRange(){
 coveredTarget.erase(coveredTarget.begin());
 if (coveredTarget.empty()){
 range = 0;
 gosleep();
 }
 else

54

 range = coveredTarget[0].distance(x,y);
}

double sensor::distance(double x1, double y1){
 return sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y));
}

sensor::sensor(int ID, float xpos, float ypos, float maxb, double maxr, bool linear){
 id = ID; x = xpos; y = ypos; battery = maxb; maxRange = maxr;linearPower = linear;
}

void sensor::getTarget(vector<target> t){
 double distance;
 bool alreadyadd;
 vector<target>::iterator itr;

 coveredTarget.clear();

 for(int i=0;i < t.size(); i++){
 distance = t[i].distance(x,y);
 if (distance <= range){
 alreadyadd = false;
 for (itr = coveredTarget.begin(); itr < coveredTarget.end(); itr++){
 if (itr->distance(x,y) < distance){
 coveredTarget.insert(itr,t[i]);
 alreadyadd = true;
 break;
 }
 }
 if (!alreadyadd)
 coveredTarget.push_back(t[i]);

 }
 }

 if (!coveredTarget.empty())
 range = coveredTarget[0].distance(x,y);
 else
 range = 0;

}

55

void sensor::getNeighbor(vector<sensor> &s){
 double distance;
 neighbor.clear();

 for(int i=0;i < s.size(); i++){
 // find distance
 distance = s[i].distance(x,y);

 // add to vector neighbor if a sensor is in 2*maxRange
 if ((distance <= 4*maxRange) && (distance != 0)){
 neighbor.push_back(&s[i]);

 }
 }
}

void sensor::removedCoveredtarget(){
 if (coveredTarget.empty()){
 range = 0;
 gosleep();
 }
 else

 coveredTarget.erase(coveredTarget.begin());

}

void getInformation (vector<target> &t, vector<sensor> &s);
bool isAllDecided (vector<sensor> s);
void deleteSensor (vector<sensor> &s);
bool allTargetcovered (vector<target> t, vector<sensor> s);
void setTarget (vector<target> t, vector<sensor> s);

int main()
{
 vector<target> t;
 vector<sensor> s;
 target T;
 double batteryTime, nbatteryTime ;
 int targetid;
 bool coveredbyother = false;
 bool decreaseRange = false;
 bool coverHill = false;
 double shuffleTime = 1;
 int shift = 1; // schuffle index

56

 double shiftTime; // time for one shift
 double monitorTime = 0; // total monitor time

 // get target and sensor information
 getInformation(t, s);

 while(allTargetcovered(t,s)){

 // calculate target total battery and set sinks
 // this can be decide locally using the information form neighbors

 setTarget(t,s);

 // for each sensor, find target and neighbor sensor
 for(int i=0;i < s.size(); i++){
 s[i].wakeup();
 // get target
 s[i].getTarget(t);
 // find neighbor sensor
 s[i].getNeighbor(s);
 }

 // start by assume that next shift time = shuffle time
 shiftTime = shuffleTime;

 // shuffle process
 while (!isAllDecided(s)){

 // for every sensor
 for(int i=0;i < s.size(); i++){
 if (s[i].getstatus() < 0){
 decreaseRange = false;
 if (!s[i].coveredTarget.empty()){
 batteryTime = s[i].getTime();

 //check whether sensor cover hills
 for (int m=0; m<s[i].coveredTarget.size(); m++) {
 if (!s[i].coveredTarget[m].isSink())
 coverHill = true;
 break;

 }

 // check the first target: the one with maximum length
 targetid = s[i].coveredTarget[0].getid();

57

 if (s[i].coveredTarget[0].isSink()) {
 coveredbyother = false;
 // check with all neighbors
 for (int j=0; j< s[i].neighbor.size(); j++){
 // every covered target of neightbor j
 for (int k=0; k< s[i].neighbor[j]->coveredTarget.size(); k++){
 // the target can be covered by neighbor j
 if (targetid == s[i].neighbor[j]->coveredTarget[k].getid()){
 coveredbyother = true;
 nbatteryTime = s[i].neighbor[j]->getTime();

 if ((batteryTime < nbatteryTime || (nbatteryTime == batteryTime &&
s[i].getId()<s[i].neighbor[j]->getId()) || s[i].neighbor[j]->getstatus()>0) &&
(!coverHill)){

 s[i].decreaseRange();
 decreaseRange = true;
 break;
 }
 }
 }
 if (decreaseRange){
 break;
 }
 }
 }
 else {
 coveredbyother = false;
 // check with all neighbors
 for (int j=0; j< s[i].neighbor.size(); j++){
 // every covered target of neightbor j
 for (int k=0; k< s[i].neighbor[j]->coveredTarget.size(); k++){
 // the target can be covered by neighbor j
 if (targetid == s[i].neighbor[j]->coveredTarget[k].getid()){
 coveredbyother = true;
 nbatteryTime = s[i].neighbor[j]->getTime();

if (batteryTime < nbatteryTime || (nbatteryTime == batteryTime
&& s[i].getId()<s[i].neighbor[j]->getId()) || s[i].neighbor[j]-
>getstatus()>0){

 s[i].decreaseRange();
 decreaseRange = true;
 break;
 }
 }
 }
 if (decreaseRange){
 break;
 }

58

 }
 }

 if (!coveredbyother){
 s[i].goactive(t);
 if (shiftTime > batteryTime){
 shiftTime = batteryTime;
 }

 // notify with all neighbors
 for (int j=0; j< s[i].neighbor.size(); j++){
 // every covered target of neightbor j
 while(!s[i].neighbor[j]->coveredTarget.empty()){
 T = s[i].neighbor[j]->coveredTarget[0];
 if (s[i].covers(T)){
 s[i].neighbor[j]->decreaseRange();

 } else
 // not covered
 break;
 }
 }
 }
 } else{
 s[i].gosleep();
 }
 }
 }
 }

 // end of each shift
 monitorTime += shiftTime;
 for (int i=0; i< s.size(); i++)
 s[i].setBattery(shiftTime);

 // print each shift detail

cout << "Shift #" << shift << ", shift time =" << shiftTime << " hr. Life time = " <<
monitorTime << " hr." << endl ;

 for (int i=0; i< s.size(); i++){
 cout << " - " << s[i].getId() << ": Battery :"<< s[i].getBatteryLevel();
 cout << "\tStatus = ";
 if (s[i].getstatus() == 0)
 cout << "Sleep"<< endl;

59

 else
 cout << "Active"<< " with range = " << s[i].getstatus() << endl;
 }
 shift++;

 // delete dead sensor from vector sensor
 deleteSensor(s);

 cout << endl << endl << endl;
 }

 cout << "Sensor life : " << monitorTime << endl<< endl;
 return 0;

}

void getInformation (vector<target> &t, vector<sensor> &s){

 float xpos, ypos, maxb, maxr;
 string filename;
 int tid, sid, choice, numSensor,numTarget;
 bool linearPower;

 // read target information
 cout << "Enter target file:";
 getline(cin,filename);
 ifstream targetfile (filename.c_str());

 if (targetfile.is_open()){
 targetfile >> numTarget;
 cout << "numTarget :" << numTarget << endl;
 for(int i =1; i<=numTarget; i++){
 targetfile >> tid;
 targetfile >> xpos;
 targetfile >> ypos;
 // add new target to vector
 t.push_back(target(tid,xpos,ypos));
 }
 targetfile.close();
 }else {
 cout << "can not open file " << filename << endl;
 }

 // read sensor information
 cout << "Enter sensor file :";
 getline(cin,filename);

60

 ifstream sensorfile (filename.c_str());

 cout << "Maximum Range :";
 cin >> maxr;

 // power function
 cout << "Power function, 1. Linear 2.Quadratic :";
 cin >> choice;
 if (choice == 1)
 linearPower = true;
 else
 linearPower = false;

 if (sensorfile.is_open()){
 sensorfile >> numSensor;
 cout << "numSensor :" << numSensor << endl;
 for(int i=1;i<=numSensor; i++){
 sensorfile >> sid;
 sensorfile >> maxb;
 sensorfile >> xpos;
 sensorfile >> ypos;
 // add the new sensor to vector
 s.push_back(sensor(sid, xpos, ypos, maxb, maxr, linearPower));
 }
 sensorfile.close();
 }else {
 cout << "can not open file " << filename << endl;
 }
}

bool isAllDecided (vector<sensor> s){
 for (int i=0; i< s.size(); i++){
 if (s[i].getstatus() < 0)
 return false;
 }
 return true;

}

void deleteSensor (vector<sensor> &s){
 int numDead = 0;
 vector<sensor>::iterator itr;

 // find number of dead sensor
 for (itr = s.begin(); itr!= s.end(); itr++){
 if (itr->isDead()){

61

 numDead++;
 }
 }

 // delete sensor
 for (int i=1; i<= numDead; i++){
 for (itr = s.begin(); itr!= s.end(); itr++){
 if (itr->isDead()){
 cout << "sensor: " << itr->getId() << " dead " << endl;
 s.erase(itr);
 break;
 }
 }
 }
}

bool allTargetcovered (vector<target> t, vector<sensor> s){
 bool tcovered;

 for (int i=0; i<t.size(); i++){
 bool tcovered = false;
 for (int j=0; j<s.size(); j++){
 if (s[j].canCoveredTarget(t[i])){
 tcovered = true;
 break;
 }
 }
 if (!tcovered){
 cout << "target : " << t[i].getid() << "is not covered"<< endl;
 return false;
 }
 }

 return true;
}

void setTarget (vector<target> t, vector<sensor> s){
 float inBat=0;
 int id=0;
 bool b=true;

 //calculate the total LifeTime for each targets
 for (int i=0; i<t.size(); i++) {
 for (int j=0; j<s.size(); j++) {
 if (s[j].canCoveredTarget(t[i])) {
 inBat += s[j].getTime();

62

 }
 }
 t[i].setTotalBat(inBat);
 }

 //set the targets whether sinks or not
 for (int k=0; k<s.size(); k++) {
 s[k].getTarget(t);
 for (int l=0; l<s[k].coveredTarget.size(); l++) {
 if (s[l].coveredTarget[l].getTotalBat() < s[l].coveredTarget[l+1].getTotalBat())
 id = s[l].coveredTarget[l].getid();
 else id = s[l].coveredTarget[l+1].getid();
 }
 t[id].setSink (b);
 }

}

63

APPENDIX - C

1. Sample targets File: 50 targets

The first line shows the total number of targets and each successive line includes the target’s id,
target’s x-coordinate, and target’s y-coordinate of each targets.

50
0 579 42
1 308 773
2 470 746
3 230 281
4 376 2
5 737 31
6 127 705
7 104 95
8 164 12
9 123 679
10 678 275
11 668 677
12 754 580
13 400 628
14 545 159
15 647 246
16 258 554
17 640 259
18 281 389
19 262 225
20 456 449
21 32 533
22 621 268
23 744 345
24 716 176
25 153 238
26 687 638
27 111 628
28 683 356
29 42 791
30 709 710
31 179 12
32 53 204
33 418 541
34 713 409
35 254 769

64

36 589 572
37 551 432
38 138 10
39 17 341
40 556 523
41 306 133
42 713 84
43 798 527
44 767 502
45 240 20
46 669 756
47 780 377
48 228 26
49 771 571

2. Sample sensors file: 100 sensors

The first line shows the total number of sensors and each successive line includes the sensor’s id,
sensor’s total battery, sensor’s x-coordinate, and then sensor’s y-coordinate.

100
0 590 527 201
1 373 422 586
2 528 473 449
3 236 551 316
4 373 478 421
5 100 312 202
6 229 219 550
7 864 626 74
8 619 542 239
9 381 435 592
10 714 457 128
11 544 610 295
12 261 80 727
13 410 17 773
14 193 418 421
15 966 51 206
16 481 550 145
17 309 644 606
18 680 653 107
19 607 461 88
20 628 741 608
21 428 555 240
22 314 794 245
23 864 622 218

65

24 355 574 772
25 980 761 467
26 115 90 448
27 515 408 220
28 736 170 642
29 228 610 570
30 696 795 333
31 603 253 347
32 287 261 722
33 104 743 82
34 341 169 176
35 967 137 322
36 857 780 110
37 487 643 794
38 322 290 474
39 173 432 133
40 672 122 568
41 151 342 130
42 583 408 708
43 647 537 31
44 915 383 460
45 567 593 199
46 727 749 124
47 778 139 237
48 603 674 424
49 101 226 366
50 340 872 9
51 619 999 999
52 456 361 881
53 102 924 155
54 389 557 889
55 621 813 1
56 308 763 846
57 988 313 315
58 431 394 194
59 414 885 186
60 829 568 777
61 689 643 952
62 115 964 428
63 630 672 337
64 641 874 454
65 228 636 539
66 572 307 325
67 257 499 373
68 428 534 383
69 56 878 795

66

70 747 471 418
71 619 128 940
72 66 223 180
73 796 708 532
74 940 152 512
75 977 643 817
76 945 767 818
77 967 261 589
78 217 724 160
79 500 923 424
80 493 962 733
81 304 404 17
82 314 170 392
83 120 212 566
84 704 364 776
85 458 175 458
86 374 844 808
87 719 992 197
88 853 213 598
89 670 360 245
90 231 909 384
91 758 61 994
92 22 349 163
93 127 70 814
94 634 718 487
95 714 911 967
96 430 453 527
97 559 594 847
98 881 672 942
99 302 43 486
100 989 113 364

	Georgia State University
	ScholarWorks @ Georgia State University
	5-3-2007

	Distributed Algorithms for Improving Wireless Sensor Network Lifetime with Adjustable Sensing Range
	Aung Aung
	Recommended Citation

