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LIFETIME WITH ADJUSTABLE SENSING RANGE  

by 
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Under the Direction of Sushil K. Prasad 

ABSTRACT 

Wireless sensor networks are made up of a large number of sensors deployed randomly in an ad-

hoc manner in the area/target to be monitored. Due to their weight and size limitations, the 

energy conservation is the most critical issue. Energy saving in a wireless sensor network can be 

achieved by scheduling a subset of sensor nodes to activate and allowing others to go into low 

power sleep mode, or adjusting the transmission or sensing range of wireless sensor nodes.  

In this thesis, we focus on improving the lifetime of wireless sensor networks using both 

smart scheduling and adjusting sensing ranges. Firstly, we conduct a survey on existing works in 

literature and then we define the sensor network lifetime problem with range assignment. We 

then propose two completely localized and distributed scheduling algorithms with adjustable 

sensing range. These algorithms are the enhancement of distributed algorithms for fixed sensing 

range proposed in the literature. The simulation results show that there is almost 20 percent 

improvement of network lifetime when compare with the previous approaches. 

 

INDEX WORDS: Wireless sensor networks, maximize lifetime, target coverage, adjustable 

sensing range.  
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1. INTRODUCTION 

 

Wireless sensor networks (WSNs) are a rapidly emerging technology which will have a strong 

impact on research and will become an integral part of our lives in the near future. The huge 

application space of WSNs covers national security, surveillance, military, health care, 

environment monitoring and many more [1]. Due to their wide-range of potential applications, 

WSNs have attracted considerable research interest in recent years. 

 A wireless sensor network is composed of a large number of low-power, low-cost sensor 

nodes which are deployed close to an area of interest and are connected by a wireless interface. 

Sensor nodes are tiny devices equipped with sensing hardware, transceivers, processing and 

storage resources and batteries. In general, the sensors nodes are deployed randomly and not 

required to be engineered or predetermined. This allows fast random deployment in inaccessible 

terrains or disaster relief operations. However, this random deployment requires that sensor 

network protocols and algorithms must possess self organizing capabilities.  

 After the deployment, these nodes are generally stationary and self-organized into 

networks. They gather information about the monitoring region and send this information to 

gateway node(s) where end users can retrieve the data [1]. In this way, the sensor network 

provides the information and a better understanding of the monitored region. The unique power 

of WSNs lies in the ability to deploy a large number of tiny sensor nodes which can assemble 

and configure themselves as a network. The network could be easily extended by simply adding 

more sensor nodes with no rework or complex reconfiguration. 
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 In contrast to traditional wireless networks, the sensor nodes in WSNs do not necessarily 

need to communicate directly with the nearest high power control center, but mostly with their 

neighboring sensor nodes and each individual sensor node becomes part of an overall 

infrastructure. In addition, the network can automatically adapt to compensate for node failures.  

 When compared with traditional ad-hoc networks, WSNs have some limitations such as 

limitation in power, computational capacities and memory. Sensor nodes carry limited power 

supply which are generally irreplaceable and may be deployed with non-rechargeable batteries. 

Since the sensor nodes will die one after another during the operation of the network, all the 

network requirements must be met with minimum power consumption due to battery limitations, 

and in most applications, it is impossible to replenish power resources.  

 In WSNs, a decrease in the number of available sensor nodes can deeply degrade the 

network performance or may even kill the network, as either some area is not covered or some 

data is not transferred through the network. Moreover, it is impossible to replace thousands of 

nodes in hostile or remote regions, and thus the sensor nodes needs to be utilized in an efficient 

manner. Another factor to be considered here is the slow improvement in battery capacities over 

the years [2]. Thus energy saving has become a critical issue in WSNs, and the most energy 

saving must to come from energy aware protocols. 

 The main tasks of a sensor node in a sensor network are to collect data (monitoring), 

perform data aggregation, and then transmit data. Among these tasks transmitting data requires 

much more energy than processing data [4] and the most recent efforts on optimizing the 

wireless sensor network lifetime have been focused on routing protocol (i.e., transmitting data to 

the base and data request from the base to the sensor node).  
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Generally, there are two approaches to the problem of saving energy in wireless sensor 

networks. The first one is scheduling the sensor nodes to active mode and that enables the other 

sensor nodes to go into low power sleep mode. The second approach is to adjust the transmission 

or the sensing range of the wireless sensor nodes [3]. The same example in [3] is also used here 

for justification. There are four sensor s1, s2, s3, s4 and three targets t1, t2, t3 as shown in Fig 1.1. 

Each sensor has two sensing range r1 and r2 where r1 < r2. Fig 1.1 also provides coverage 

relations between sensors and targets which are:  (s1,r1) = {t3}, (s1,r2) = {t1,t3}, (s2,r1) = {t2}, 

(s2,r2) = {t1,t2}, (s3,r1) = {t2}, (s3,r2) = {t2,t3},  (s4,r1) = {t1,t3}, (s4,r2) = {t1,t2,t3}, respectively. And 

the initial energy at each sensor E = 2, and e1 = 0.5 (energy requires for one unit time with 

sensing range r1) and e2 =1 (energy requires for one unit time with sensing range r2).   

Figure 1.1 Sensor Network with four sensors and three targets, and targets covered [3] 
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In this sensor network, a sensor can be part of more than one cover set and five different 

cover sets can be obtained using the combinations of r1 and r2: C1 = {(s1, r1), (s2, r2)}, C2 = {(s1, 

r2), (s3, r1)}, C3 = {(s2, r1), (s3, r2) }, C4 = {(s4, r2)}, C5 = {(s1, r1), (s2, r1), (s3, r1)}. These cover 

sets are also illustrated in Fig 1.2. 

Figure 1.2 Five set covers with different sensing ranges [3]. 

With these five different set covers, the maximum lifetime of 6 can be obtained using the 

sequence as shown in the following table.  
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Table 1.1 Sequence of different set covers. 

If the sensor nodes do not have the adjustable sensing range, sensors can be organized 

into two distinct set covers, such as C1 = {(s1, r2), (s2, r2)} and C4 = {(s4, r2)}. Then the maximum 

life without the adjustable sensing range is 4 by using each set cover twice. Thus this example 

shows a 50% lifetime increase when using adjustable sensing range. 

In this study, we will mostly concentrate on minimizing energy for sensing by using both 

smart scheduling and adjusting sensing ranges. The goal of this thesis is to maximize the lifetime 

of power constrained wireless sensor networks which are deployed to monitor a set of targets 

with known location. To maximize the lifetime, we use the property that sensors have adjustable 

sensing ranges, and set up the active sensors in WSNs with minimum sensing range while 

covering all targets.  

The contributions of this thesis are two new distributed algorithms, Load Balancing 

Protocol for Adjustable Range Sensing (ALBP) and Deterministic Energy-Efficient Protocol for 

Adjustable Range Sensing (ADEEPS) are extended and implemented, and the performance of 

two algorithms are analyzed through simulations. The simulation results show that there is 

almost 20 percent improvement of network lifetime when compare with the previous approaches 

in [5], [6]. 
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The organization of this thesis is as follow:  

Chapter 1, “Introduction”, is an overview of what wireless sensor network is and its 

characteristics. It also describes the constraints in WSNs and the lifetime problems of WSNs. In 

addition, it provides the main goal and outline of this thesis. 

Chapter 2, “Wireless Sensor Networks: Background & Related Work”, provides the 

literature survey of background and related works in the WSNs lifetime and coverage problems.  

Chapter 3, “Network Model and Problem Definition”, describes the problem that will be 

solved in this thesis, and its constraints, limitations and assumptions are all addressed in this 

chapter. 

Chapter 4, “Enhanced Distributed Algorithms”, introduces distributed LBP & DEEPS 

algorithms and also briefly explains ALBP and ADEEPS algorithms. 

Chapter 5, “Implementation of the Algorithms”, briefly explains how the algorithms are 

implemented. 

Chapter 6, “Simulation Results”, presents experimental setups, results and explanation. 

Tables and figures are provided based on the parameters used in the experiment. 

Chapter 7, “Conclusions & Future Work”, summarizes the findings and contributions of 

this study and outlines possible directions for future research. 

In addition, the algorithms designed are presented as C++ code and the sample targets 

and sensors files are all included in the appendices. 
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 2. WIRELESS SENSOR NETWORKS: BACKGROUND & RELATED WORK 

 

2.1 Background 

 
Since the first wireless digital network, ALOHANET which was introduced in 1970, wireless 

networks have gained immense popularity and been growing rapidly [8]. The existing wireless 

network can be classified into two categories: infrastructure and ad-hoc network. The 

infrastructure network architecture contains a wired backbone which is connected to a special 

switching node or a base station. Communication between wireless hosts must go through the 

base station. On the other hand an ad-hoc wirelesses network is a self-organizing system with 

wireless hosts that do not depend on any fixed network infrastructure. 

 The wireless sensor networks are new families of wireless networks which comprise of 

many sensor nodes. After deployment, these nodes are generally stationary and self-organized 

into a network. They perform sensing tasks and send the information to a control center or base 

station, where the end-user can retrieve the data.  

Although wireless sensor networks are similar to wireless data network in some aspect, 

their functions also need to perform in a different manner as they are performing different tasks. 

The dynamic and self organizing nature of wireless sensor networks require new generation of 

protocols which are designed to handle the immense amount of data generated by sensors and to 

do so with very little power. 
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2.2 Issues and Challenges 

 

Wireless sensor network design is influenced by many factors, which include fault 

tolerance, scalability, production costs, operating environment, network topology, hardware 

constraints, transmission media, and power consumption [1]. These factors are important because 

they serve as a guideline to design a protocol or an algorithm for wireless sensor networks.  

 The architecture of sensor hardware consists of the usual components like processor, 

memory, wireless interface, power supply, as well as the sensing devices [9]. However the 

computational and energy resources are limited due to size and weight restriction. Wireless 

sensor networks are formed dynamically and contain very large number of sensors nodes. They 

will be deployed spontaneously to form efficient ad-hoc networks using sensors with limited 

computational, storage and short-range wireless communication capabilities.  

Sensor devices may be deployed in very harsh environments, and subject to destruction 

and dynamically changing conditions. The configuration of the network will frequently change 

due to constant changes in accessibility of sensors, power availability and task requirements. The 

network protocols must be survivable in spite of device failures and frequent real-time changes.  

Among these factors, limited power supply is the most critical issue due to the battery 

size and weight limitation. Thus the efficient use of available energy resources directly impacts 

the lifetime and performance of wireless sensor networks and it is very important that the 

algorithms/protocols used in wireless sensor networks must optimize the sensor energy 

utilization [10].  
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 A sensor node can be in four states of communication: transmit, receive, idle, or 

sleep and two states in monitoring: idle and active [6]. The sensor network lifetime can be 

improved by allowing some sensors to sleep while other sensors are covering the area/target of 

interest. Other power saving techniques include power controlling by adjusting the 

sensing/transmitting range of sensor, using the energy efficient routing and data gathering 

techniques, reducing the amount of data transmitted and avoiding useless activity [10]. 

 

2.3 Related Work 

 

In this section, we will highlight the previous works on improving the lifetime of wireless 

sensor networks by using various scheduling algorithms and adjusting sensing range of sensors.  

 Various centralized and distributed scheduling algorithms have been proposed in 

literature [16], [17], [18], [19], [20]. The coverage problem is introduced in [7] and it can be 

classified into three groups: area coverage (where the objective is to cover an area), target 

coverage (where the objective is to cover a set of targets) and breach coverage (where the 

objective is to find out the maximal support/breach path that traverses a sensors field) [3]. The 

goal of the coverage problem is to maximize the network life time while covering the sets of 

targets/area. 

 In [21], the authors introduce the area coverage with adjustable sensing range sensors. M. 

Cardei et al. introduce target coverage problem in [3] where disjoint sensor sets are modeled as 

disjoint set covers so that every cover set completely monitors all the target points. These sensor 

sets can be scheduled to activate successively so that at any time, one sensor set is in active state 

and other sensors are in sleep state. These alternations increase the lifetime of the network and 



10 

consequently, decrease the density of active nodes thus reducing the contention at the MAC layer 

[10]. It has also been proven in [13] that the disjoint set coverage problem is NP-complete and 

has a lower approximation bound of 2 for any polynomial time approximation.  

 In [5], [14], [10], the disjoint set cover problem is further extended by not requiring the 

sensor sets to be disjoint (i.e., a sensor can be active in more than one sensor set) thereby, 

allowing the sets to operate for different time intervals. It is also shown in [10] that non-disjoint 

sensor covers can provide better lifetime when compared to disjoint set covers.  

 In [12], the authors introduce algorithms where each sensor can produce a number of 

schedules which are exchanged with the neighboring sensors and the most suitable scheduled is 

then selected. These algorithms are analyzed through simulations. In [5], good centralized 

approximation algorithms as well as distributed algorithms are given, and a similar centralized 

approximation algorithm is also proposed in [10].  

The algorithm proposed in [6] is the extension and refinement of distributed algorithm in 

[5]. All the algorithms in [5], [6], [10], [12], and [22] are studied for fixed sensing range sensor 

networks. With reference to [21], [26], sensors with adjustable sensing rages are commercially 

available. Cardei et al. introduce the problem of maximizing the network lifetime for adjustable 

sensing range sensor networks [3]. They also propose efficient heuristics (both centralized and 

distributed) using integer programming formulation and greedy approaches.  
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A. Dhawan et al. propose maximization of sensor network lifetime with adjustable 

sensing range algorithm in [15]. It is an extension of the centralized algorithm in [5] with 

adjustable sensing range sensor networks. Their approach differs significantly from [3] in that 

they focus on maximizing the lifetime whereas [3] focuses on maximizing the number of cover 

sets. They also formulate their sensor networks with non-uniform batteries at the sensors and 

allow the sensors to vary sensing range smoothly.   

 They model the sensor network lifetime problem with range assignment as a linear 

program problem and solve the problem using Garg-Könemann algorithm [24] with 

approximation ratio (1+ε). This is similar to the method used in [5], [14] for solving the fixed 

range maximum lifetime problem. The changes made in this algorithm are that it assigns ranges 

to every sensor and factors in the increase in energy consumption due to the increase in distance 

while choosing the sensor covers.  

With an adjustable sensing range sensor network, this algorithm can generate more set 

covers by varying the range of the sensor nodes. The sensing range can be increased to cover 

more targets at the cost of increasing energy consumption. This algorithm provides the best 

sensing range a sensor can pick to cover open targets with the consideration of increased energy 

consumption with distance. They also show that the lifetime problem with adjustable range 

assignment can be approximated within a factor of (1+ε) (1+ ln m) for any ε > 0 with k = O(m) 

elements to cover, where m being the number of targets.  

In this thesis, we extend the distributed algorithms in [5], [6] with adjustable sensing 

range sensor networks. 
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3. NETWORK MODEL AND PROBLEM DEFINITION 
 

In this chapter, we will explain about the network model, problem definition and assumptions. 

Firstly, the network model and assumptions are discussed and followed subsequently by the 

problem definition. 

 

3.1 Sensor Network Model 

 

Our network model is similar to the models described in [3], [5], [6], and [15]. We 

assume that sensors are deployed over the monitored region R, and each sensor s has its own 

monitor target i1 where s1 can collect the trustful data from target i1 without the help of any other 

sensor. We also assume that each sensor knows its own coordinates as well as the IDs and 

coordinates of all the covered targets. We further extend the assumption that each sensor can also 

vary the sensing range smoothly.  

 In our network model, a sensor is either in the communication mode or monitoring mode. 

During communication a sensor can either be in the sleeping, listening, receiving, or sending 

state and during monitoring, it can either be in the idle or active state as in [6]. If the sensor is in 

sleeping mode, it cannot hear any packets but it can be woke up by using wakeup mechanism as 

in [23]. We also assume that the number of deployed sensors largely exceed the number of 

targets required to monitor so that some sensors can turn themselves into sleep mode and save 

energy.  
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 For the correctness of monitoring protocols, we use the following requirement in the 

network model: for any target Tt ∈  there is at least one sensor Ss∈  which cannot become idle 

unless there is an active sensor covering t.  We also assume that each sensor can broadcast just 

before the battery exhaustion so that neighboring sleep node can wakeup to replace the exhausted 

sensor.  

 

3.2 Problem Statement 

 

 Sensor Network Lifetime Problem with range assignment: Given a monitored region R, a 

set of sensors s1, s2, s3, ……, sm and a set of targets i1, i2, i3, ..…., in and energy supply bi for each 

sensor, find a monitoring schedule (C1, t1), (C2, t2), ………, (Ck, tk) and a range assignment for 

each sensor in a set Ci such that 

a. t1 + t2 + ……. + tk  is maximized, 

b. each set cover monitors all target i1, i2, i3, ……., in, and 

c. each sensor si does not appear in the set C1… Ck for a time more than bi where bi 

is the initial energy of sensor of si. 

In this definition, the requirement of “t1 + t2 + ……. + tk is maximized” is equivalent to 

maximizing network lifetime. The energy consumed by an active sensor depends on the sensing 

range of that sensor and if a sensor participates in more than one set, then the total energy spent 

is not more than b. 
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4. ENHANCED DISTRIBUTED ALGORITHMS 

 

In this chapter, first, the two distributed algorithms LBP and DEEPS for SNLP are discussed. 

After that the two enhanced distributed algorithms namely, ALBP & ADEEPS, are proposed. 

 

4.1 Load Balancing Protocol for Sensing (LBP) 

 
 This section briefly discusses the distributed load balancing protocol (LBP) with fixed 

sensing range. The main idea of LBP is that the maximum number of sensors are kept alive as 

long as possible by means of load balancing (i.e., if a certain sensor is overused compared to its 

neighbors, then it is allowed to sleep) [5]. In this algorithm, sensors can freely exchange active or 

idle states. And it is also assumed that there is no equal battery level at each sensor (if there is an 

equal battery level, either sensor’s or target’s id will be used for making a decision.). Each sensor 

node can be in three states:  

- Active: the sensor is active and monitors the targets  

- Idle: idle and sleep modes, the sensor stops wasting any energy 

-  Alert: the sensor monitors targets but will change its state to either active or idle state 

soon. 
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Each alert sensor knows all its neighbor sensors’ state, i.e., any state transition is immediately 

broadcast with current energy supply. When a sensor is in vulnerable state, it should change its 

state into: 

- Active state: if a target is solely covered by itself,  

- Idle state: if each target covered by a sensor s is also covered either by an active 

sensor or a vulnerable sensor with a larger battery supply. 

For a certain period, all nodes are altered (i.e., turn into vulnerable state) using wake-up 

calls, and each sensor has to decide whether to change their state to either active or idle. This 

process is called global reshuffle. During global reshuffle, each sensor sends two broadcasts: the 

first broadcast includes its cover targets and energy level and the second broadcast informs 

whether it will be active or idle.  

 If an active sensor nearly exhausts its energy, then it broadcasts about that to its 

neighbors. A minimal subset of neighbors in idle state will change their states into active and 

effectively replace the exhausted sensor. The correctness of LBP is also proved and each global 

reshuffle needs two broadcasts to the neighbors and the resultant set of all active sensors form a 

minimal sensor cover.  “The main drawback of LBP is that it balances the load of sensors instead 

of balancing the energy of sensors covering the same target. [6]” 
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4.2 Deterministic Energy Efficient Protocol for Sensing (DEEPS)  

 

 This section describes the Deterministic Energy-Efficient Protocol for Sensing (DEEPS) 

by Dumitru et al. The main intuition behind DEEPS is that they try to minimize the energy 

consumption rate for low energy targets while allowing higher energy consumption for sensors 

with higher total supply [6]. 

 They define each target as either “sink” or “hill”. A sink is a target t which is the poorest 

for at least one sensor covering t, and the abandoned target is a hill which is not the poorest for 

any covering sensors. Each sink should be covered by a sensor with the richest batteries to keep 

the intuition behind LBP (keep more sensors alive). Thus DEEPS’ off-rule switches off the 

poorer sensors covering the sinks until a single sensor switches on. This may lose the correctness 

of monitoring protocol requirement in which some targets may not be covered. It is shown in Fig 

(4.1). 

 
Figure 4.1 WSN with sink and hill targets [6]. 
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 For the correctness of monitoring protocol, at least one sensor is placed in-charge of each 

target and the sensor in-charge of t should not switch off until it discovers that t is covered by 

another switched-on sensor. Selection of the sensor which should be in-charge is determined by 

using the following two rules [6]: “(i) if the target t is a sink, among the sensors covering t, 

sensor s with the richest batteries is placed in-charge of t. and (ii) If target t is a hill, then the 

sensor s covering t whose poorest target is the richest over all sensors covering t, is placed in-

charge of t. If there are several such sensors, then the richest among them is placed in-charge of 

t.” 

Consider the example in Fig 4.1, the sensors with 3 batteries are placed in-charge of sinks 

(i.e., three lower targets). Using the tie-breaking rule, the leftmost target is the richest among 3 

lower targets. According to rule (ii), the leftmost sensor with 2 batteries will become in-charge of 

the topmost hill and turn on while the other 2 battery sensors will turn off.  

Like LBP, sensors in DEEPS have the same states (active, idle, vulnerable) and it is 

necessary that all the sensors know the battery levels of all the targets of their respective 

neighbors, in order to calculate who is in-charge. This can be done by either sending two 

broadcasts or increasing the communication range. When a sensor is in vulnerable/alert state, it 

should change its state into: 

- Active state: if a target is solely covered by itself (same as LBP), 

- Idle state: whenever a sensor s is not in-charge of any target except those already 

covered by active sensors, s switches itself to idle.  

The correctness of DEEPS is also proved in [6]. 
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4.3 Load Balancing Protocol for Adjustable Range Sensing (ALBP) 

 

Distributed Load Balancing Protocol for SNLP has been previously considered in [5]. 

This section describes the Load Balancing Protocol for Adjustable Range Sensing (ALBP). The 

objective of the monitoring protocol is to maximize the time that sensors can monitor all targets.  

When there is a target which cannot be covered by any sensors, the network fails. Because it is 

useless to have any sensors alive after the network fails, an intuition behind ALBP is to keep as 

many sensors alive as possible by means of load balancing and try to let them die 

simultaneously. 

There are three main questions which should be answered by the distributed monitoring 

protocol for adjustable range sensors: 

(1) What rules should be used to decide for each sensor node to become either idle or 

active?  

(2) If a sensor decides to become active, what should be its sensing range?  

(3) When should nodes make such decisions? 

To answer these questions, we first describe the state of sensors and transition rules. At 

any moment, each sensor is in one of three states 

- active: the sensor monitors targets 

- idle: the sensor listens to other sensors, but does not monitor targets 

- deciding: the sensor monitors targets, but will change its state to either active or idle 

state soon 
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Fig. 4.2 State diagram of adjustable range sensor. 

We first assume that each sensor s can communicate with its neighboring sensors within 

two times of maximum sensing range. In order to find sensor cover schedule, each sensor 

initially broadcasts its battery level and covered targets to all neighbors, and then stays in the 

deciding state with its maximum sensing range. Each sensor will change its state by the 

following transition rules:   

When a sensor is in the deciding state with range r, then it should change its state into 

- Active state with sensing range r if there is a target at range r which is not covered by 

any other active or deciding sensors. 

- Deciding State, but decreases its sensing range to the next furthest target if all 

covered targets at range r are covered by either active sensors or deciding sensors 

with a larger monitoring time. 

- Idle state if when a sensor decreases its range to zero. 

After all sensors decide their states to active or idle, each sensor will stay in that state for 

a certain period of time called, shuffle time, or until there is an active sensor which exhausts its 

energy supply and is going to die. All sensors are alerted using the wake-up call causing all 

sensors to change their state back to the deciding state with their maximum sensing range again. 

Finally, when there is a target which cannot be covered by any sensors, the network fails. 
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As in [5], [6], we can also show that ALBP satisfies the following properties:  

Theorem 1: ALBP is a correct protocol. Each global reshuffle of ALBP needs 2 broadcasts (to 

the neighbors) from each sensors and the resultant set of all active sensors form a minimal sensor 

cover: 

Proof: In ALBP, a sensor can change its states to IDLE only when its sensing range reaches to 

zero, i.e., any of its targets are covered by other active sensors. In other words, for any target t, 

there is a sensor with the largest battery to cover t.  

Theorem 2: The time complexity of ALBP is O(∆2) and the message complexity is O(n∆) where 

∆  is the number of neighbors. 

Proof: Let us investigate the time complexity for the worst case. For each shuffle time, each 

sensor receives a message, which contains targets and battery supply information, from one or 

more neighbors. However, a sensor node has no more than ∆ neighbors. So a sensor can receive 

at most ∆ messages, which also implies scanning over those in O(∆) time. Moreover, in the worst 

case scenario, it may have to wait on all its neighbors to decide. Thus, the waiting time can 

accumulate as O(∆ + ∆ + ∆ + ……. + ∆ ) time for other neighbors to decide. Thus the time 

complexity is O(∆2). 

Since each sensor has at most ∆ neighbors and throughout the shuffling time, a sensor 

broadcasts at most two messages to its neighbors (first broadcast consists of its targets and 

battery, and the second broadcast is its status (on/off)), so each sensor sends at most O(∆) 

messages in the decision phase. This means that the message complexity is O(n∆), where n is the 

number of sensors.  

 We will now show an example that ALBP can have an unbounded inefficiency as in LBP 

with the same example as in [6]. The network in Fig 4.3 consists of 3 targets, 2 sensors with 
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1000 battery each and two groups of 1000 sensors with 1-battery each. For this network, the 

optimal scheduling will be using the 1000 top right sensors and the bottom left 1000 group and 

next schedule will be the rest of sensors. Thus the total lifetime will be 2000. 

 However, ALBP suffers the same inefficiency as LBP. ALBP will use the two 1000 

battery sensors until they are almost gone and the top target could not be the sensor cover after 

both the 1000-battery sensors die and the lifetime will be only 1000. It is easy to see that the 

factor 2 lost can be generalized as factor k loss [6]. 

 

 

Figure 4.3 An example with the optimal schedule equal to 2000 time units long [6]. 
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4.4 DEEPS Protocol for Adjustable Range Sensing (ADEEPS) 

 

This section describes the Deterministic Energy-Efficient Protocol for Adjustable Range 

Sensing (ADEEPS).  

 At any moment, each sensor is in one of three states 

- active: the sensor monitors targets 

- idle: the sensor listens to other sensors, but does not monitor targets 

- deciding: the sensor monitors targets, but will change its state to either active or idle 

state soon. 

Before we define the transition rules, we have to decide which targets will be sinks and 

which will be hills, and also place at least one sensor in-charge of each target t. Here we use the 

maximum possible lifetime of the target, instead of total battery used in DEEPS for deciding sink 

and hill target. The lifetime of a sensor and the maximum lifetime of a target can be defined as 

follow: Let the lifetime of a sensor with battery b, with a given sensing range r ≤ maximum 

sensing range, and using energy mode e, be denoted by Lt (b, r, e). Then, the maximum lifetime 

of a target would be Lt (b1, r1, e) + Lt (b2, r2, e) + Lt (b3, r3, e) + …, assuming it can be covered 

by neighborhood sensors with batteries bi at a distance ri for i = 1, 2, …  

Let sink be a target t which is poorest in maximum lifetime for at least one sensor 

covering t. The abandoned target is a hill, i.e., a target which is not the poorest in maximum 

lifetime for any of its covering sensors. The following two rules determine which sensor should 

be in-charge of target t: 

1. If the target is a sink, then the sensors s covering t with the highest lifetime Lt (b, 

r, e) for which t is the poorest is placed in-charge of t  



23 

2. If target t is a hill then the overall sensors covering t the sensor s whose poorest 

target has the largest lifetime is placed in-charge of t. If there are several such 

sensors, then the richest among them is placed in-charge of t.  

The sensor’s id is used to break the tie. We first assume that each sensor s can 

communicate with its neighboring sensors within four times of the maximum sensing range 

(same assumption as in [6]). In order to find the sensor cover schedule, each sensor initially 

broadcasts its corresponding lifetime and covered targets to all neighbors of neighbors, and then 

stays in the deciding state with its maximum sensing range. Each sensor will change its state by 

the following transition rules: When a sensor is in the deciding state with range r, then it should 

change its state into 

- Active state with sensing range r, if there is a farthest target at range r less than or 

equal to r which is not covered by any other active or deciding sensors. 

- Idle state, whenever a sensor s is not in-charge of any target except those already 

covered by on-sensors, s switches itself to idle state.  

After all sensors decide their state to active or idle, each sensor will stay in that state for a 

certain period of time (shuffle time) or until there is an active sensor which exhausts its energy 

supply and is going to die. All sensors are alerted using wake-up call causing all sensors to 

change their state back to deciding state with their maximum sensing range again. Finally, when 

there is a target which can not be covered by any sensors, the network fails. 

Theorem 3: ADEEPS is a correct protocol. Each global reshuffle of DEEPS needs 2 broadcasts 

from each sensor and the resultant set of all active sensors form a minimal sensor cover. 
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Proof: The correctness of ADEEPS can be proved from the fact that each target has a sensor 

which is in-charge of that target and the transition rule to active state assures that the resultant 

sensor cover is minimal in which each sensor s has a target covered only by s.  

Theorem 4: The time complexity of ADEEPS is O(∆2) and the message complexity is O(n∆2) 

where ∆ is the number of neighbors. 

Proof: Let us investigate the time complexity for the worst case. For each shuffle time, each 

sensor receives a message, which contains target and battery supply information, from one or 

more neighbors and sensor node has no more than ∆ neighbors. In ADEEPS, each sensor 

broadcast to its information to neighbors of neighbors. Thus, a sensor can receive at most ∆2 

messages. It needs O(∆2) time to run the ADEEPS algorithms as all the decisions regarding 

sink/hill targets, in-charge sensors, and active/idle can be taken locally (i.e., without waiting on 

neighboring sensors). Thus the time complexity is O(∆2). 

Since each sensor has at most ∆ neighbors and throughout the shuffling time, a sensor 

broadcasts at most two message to its neighbors of neighbors (first broadcast is its set of targets 

and its battery information, and second broadcast is its status (on/off)), so each sensor sends at 

most O(∆2) messages in the decision phase. This means that the message complexity is O(n∆2), 

where n is the number of sensors.  

  ADEEPS does not suffer the inefficiency of LBP and ALBP. With reference to Fig4.3, 

the ADEEPS protocol will allow both 1000 sensors to be active simultaneously in the first shift. 

After that, the top target becomes the sinks and will be monitored only by one of the 1000-

battery sensors. 
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5. SIMULATION OF THE ALGORITHMS 
 

In this chapter we describe how the new algorithms are molded and how the simulation is carried 

out. We test the performance of the algorithm by simulating it over a wide range of simulation 

parameters. We start off this chapter by describing how the simulation is setup, implemented and 

operated. In the next chapter we present some results and analyze the results. Finally, we present 

the conclusions drawn from our simulation study. 

 

5.1 Simulation Setup 

 

 To evaluate the performance of new algorithms and to make comparison with algorithms 

in [5], [6], [15], the new algorithms are implemented by using C++ in Windows XP operating 

system.  

 The simulator is designed to model a wide range of physical sensor network sizes with 

varying node densities. The location of the sensor nodes can be randomly deployed and the 

targets can also be placed randomly while creating the sensor and target inputs. For the 

simulation purpose, we created a static network of sensors scattered in a 100m x 100m area. The 

adjustable parameters are: 

• N, the number of sensor nodes. We vary this from 40 to 200. 

• M the number of targets. We vary this to 25 and 50. 

• And the sensing range r which can vary smoothly from 5m to 30m/60m. 
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• The energy model can be either linear or quadratic energy as defined in [3]. The linear 

model defines the energy ep needed to cover a target at distance rp as ep = c1rp, where c1 is 

constant. The quadratic model is defined as ep = c2rp
2, where c2 is a constant. 

In order to make comparison, we used the same simulations parameters used in [15]. 

 

5.2 Explanation of Simulation 

 

 We implement the two basic algorithms LBP and DEEPS and they are further extended 

by using adjustable range sensing instead of fixed range sensing. The target and sensor files are 

generated using the parameters from section 5.1 and input into the program. We can vary the 

sensing range, and energy model from the command line and the lifetime of network is output as 

the result. For each algorithm, the following steps are required for the simulation: 

1. Generate the target and sensor files which contain the information of the target id, 

target position, sensor id, sensor maximum battery, and sensor position. 

2. Simulation is started from the command line wherein the target and sensor file, 

the maximum sensing range, and the energy model are provided as input. 

3. Using these data and parameters, the simulation is started  

4. The simulation runs until a target cannot be covered by sensors. 

5. The simulations stops, and the lifetime of the network is printed out as the result. 
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5.3 Explanation of New Algorithms 

 

 We modify the distributed algorithms proposed in [5], [6] using the adjustable range 

sensors. In [5], [6], the authors proposed efficient distributed algorithms for improving network 

lifetime for fixed sensing range network.  

 The basic step in LBP and DEEPS is that each node has to decide whether they can go to 

sleep or become active and cover the targets. Each sensor knows its neighboring sensors and 

covered targets. After exchanging their battery power and covered targets, using the rules in 

chapter 4, each sensor decides whether they go to sleep or become active covering the target. In 

both algorithms, the decision is made only on the energy level, and does not consider the 

distance.  

In the new algorithms ALBP and ADEEPS, both the energy level and distance are 

considered in the sensors’ decisions. The following shows the steps in our simulation: 

1. Targets and sensors are read into the memory. 

2. Sensor nodes are in a deciding state and decide whether they can go to sleep or 

become active and cover the target. 

3. Each sensor knows its neighboring sensors and covered targets. 

4. For each sensor 

a.  In ALBP, checks with each neighbor sensors starting from the farthest 

target whether that target can be covered by the neighbor sensor with 

larger battery level. If the neighbors target can cover the farthest target 

with larger battery level, then the sensor removes that target from the 

covered target list and reduces the sensing range to the next target. This 
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sensor will go to sleep if the range reaches zero. This process stops after 

all sensors make a decision. 

b. In ADEEPS, each sensor decides which targets they are in-charge of by 

using the maximum lifetime of all the targets of its neighbors. After 

making this decision, each sensor decides to become active with range r (r 

≤ maximum sensing range) or decides to sleep. This process stops after all 

sensors make a decision. 

5. After all sensors decide their state to be active or idle, each sensor will stay in that 

state for a certain period of time (shuffle time) or until there is an active sensor 

which exhausts its energy supply and is going to die. All sensors are alerted using 

wake-up call causing all sensors to change their state back to the deciding state 

with their maximum sensing range and repeat the process from step 4. 

6. This simulation is repeated until a target cannot be covered. 

7. Then, the process terminates and the lifetime of the network is printed out. 
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6. SIMULATION RESULTS 
 

In this section, we evaluate the performance of centralized and distributed algorithms and 

analyze the data generated from the simulations. We have simulated the four algorithms: LBP, 

ALBP, DEEPS and ADEEPS.  

 For the simulation environments, a static wireless network of sensors and targets which 

are scattered randomly in 100m x 100m area is considered. We assume that the communication 

range of each sensor is two times the sensing range. Simulations are carried out by varying the 

number of sensors and the lifetime is measured. We also vary the maximum sensing range, 

energy models, and numbers of targets with various combinations. The corresponding data and 

graphs are presented in the following sections.  

In the first simulation, we compare the network lifetime computed by LBP, ALBP, 

DEEPS and ADEEPS by varying the number of sensors. In order to make a comparison with the 

distributed algorithm, AR-SC [3], we use the same parameters as theirs. The simulation is 

conducted with 25 randomly deployed targets, 40 to 200 sensors with an increment of 20. Each 

sensor has a maximum sensing range of 60m with linear energy model. The corresponding 

results are shown in table 6.1.  The results from the simulations show that the lifetime increases 

with the increase in the number of sensor density because when more sensors are deployed, each 

target could be covered by more sensors.  
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Table 6.1 The lifetime of sensor networks with 25 targets. 

Sensors 40 60 80 100 120 140 160 180 200

AR-SC [3] 20.0 25.0 31.0 44.0 49.0 53.0 62.0 68.0 75.0

LBP [5] 12.2 19.4 29.6 33.3 40.2 45.4 50.9 56.6 61.1

ALBP 15.0 20.4 28.6 35.3 45.7 56.8 56.7 62.2 68.3

DEEPS [6] 19.6 28.5 40.3 54.3 66.2 76.3 84.6 94.6 101.3

ADEEPS 24.6 35.6 49.6 68.4 83.4 92.7 105.9 118.6 124.7
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Figure 6.1 Variation in network lifetime with the number of sensors with 25 targets and 

linear energy model and 60m maximum sensing range. 
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In the second simulation, we vary the maximum sensing range to 30m. We use the same 

number of targets, sensors, and linear energy model. The results are consistent with the previous 

results because the network lifetime increases with the increase in the number of sensors. When 

compared to the result from Table 6.1/Fig6.1, adjusting the sensing ranges have an impact on 

network lifetime because when we decrease the sensing range, the network lifetime also 

decreases. 

Table 6.2. The lifetime of sensor networks with 25 targets and 30m sensing range 

Sensors 40 60 80 100 120 140 160 180 200

LBP [5] 5.48 10.51 11.22 12.51 15.12 16.75 16.75 18.37 23.97

ALBP 7.38 12.45 13.37 13.93 17.48 19.11 19.11 23.26 29.65

DEEPS [6] 7.22 14.13 16.22 18.01 22.69 26.03 26.03 27.66 33.43

ADEEPS 8.96 17.23 20.02 21.28 27.12 30.67 33.13 35.35 41.12
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Figure 6.2. Variation in network lifetime with the number of sensors with 25 targets, linear 

energy model and 30m maximum sensing range. 
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In the third and the fourth simulation (Fig 6.3/6.4), we study the network lifetime while 

increasing the number of targets to 50 and vary the maximum sensing range to 30m and 60m. 

The numbers of sensors are varied from 40 to 200 with an increment of 20 and the energy model 

is linear. The results of simulations are consistent and showed that the network lifetime increases 

with the number of sensors. When compared with the results in experiments 1 and 2, the network 

lifetime decreases as more targets are monitored.  

Table 6.3. The lifetime of sensor networks with 50 targets and 60m maximum sensing range 

No. of Sensors 40 60 80 100 120 140 160 180 200

AR-SC [3] - 18.6 24.3 30.2 39.6 48.3 54.2 60.1 65.78

LBP [5] 10.5 17.3 24.9 28.3 35.3 37.9 44.6 48.9 54.2

ALBP 11.7 18.1 26.2 30.3 38.0 40.8 47.5 51.9 58.1

DEEPS [6] 15.8 22.7 26.8 35.3 49.0 61.1 70.4 79.1 87.1

ADEEPS 18.0 28.2 33.7 38.9 56.8 75.9 90.1 98.6 108.3
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Figure 6.3 Variation in network lifetime with the number of sensors with 50 targets, linear 

energy model and 60m maximum sensing range 
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Table 6.4. The lifetime of sensor networks with 50 targets and 30m sensing range 

No. of Sensors 40 60 80 100 120 140 160 180 200

LBP [5] 4.80 8.65 8.90 10.12 12.74 14.13 14.14 16.73 18.76

ALBP 5.38 9.42 9.77 11.84 14.31 15.39 15.39 18.03 19.99

DEEPS [6] 6.95 11.32 12.11 14.86 18.76 21.22 22.56 24.95 27.66

ADEEPS 8.17 13.45 14.91 17.55 23.20 26.40 28.20 30.10 32.89
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Figure 6.4 Variation in network lifetime with the number of sensors, with 50 targets, linear 

energy model and 30m maximum sensing range 
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In the fifth simulation (Table 6.5/Fig 6.5), we conduct with the quadratic energy model. 

We use the same number of sensors (40 to 200 with increment of 20), the maximum sensing 

range is 30m and the energy model is quadratic. For both energy models, the result indicates that 

the network lifetime increases with the number of sensors. Another interesting fact is that the 

network lifetime is significantly improved with ALBP and ADEEPS in the quadratic model. This 

phenomenon is quite logical since in the fixed sensing model, each sensor consumes more 

energy than the adjustable sensing range model. 

Table 6.5. The lifetime of sensor networks with 25 targets and quadratic energy model 

No. of Sensors 40 60 80 100 120 140 160 180 200

LBP [5] 1.90 3.85 4.25 4.75 5.78 6.41 6.41 7.35 8.14

ALBP 3.56 5.91 6.11 6.60 8.47 9.09 10.10 13.06 17.80

DEEPS [6] 3.80 7.70 8.49 9.51 11.57 12.83 12.83 14.69 16.28

ADEEPS 7.18 12.2 16.05 17.97 21.86 23.98 24.56 27.77 30.2
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Figure 6.5 Variation in network lifetime with the number of sensors, with 25 targets, 

quadratic energy model and 30m maximum sensing range. 
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Fig 6.6. Average numbers of messages sent during each shift 

In Figure 6.6, we provide the average numbers of messages sent during each shift. It can 

be seen that more messages are sent when the number of deployed sensors increases and the 

average messages sent in DEEPS and ADEEPS are much higher than LBP and ALBP. This is 

because in DEEPS and ADEEPS the communication range is four times higher than the sensing 

range and each sensor has more neighbors and needs to send more messages (in effect 

communicating with 2-hop neighbors).  

The above tables and figures show the variation in network lifetime while varying the 

number of sensors, number of targets, maximum sensing ranges, and different energy models. 

From the results, the overall improvement in network lifetime of ALBP over LBP is around 10 

percent and ADEEPS over DEEPS is about 20 percent for linear energy model. For quadratic 

energy model, the improvements are much more. 
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7. CONCLUSIONS & FUTURE WORK 
 

In this paper, we provide a problem formulation for the lifetime maximization problem in 

a sensor network with adjustable sensing ranges. We then extended the two distributed 

algorithms proposed in [5], [6] with adjustable sensing ranges. We also provide the analysis to 

show the correctness and efficiency of ALBP and ADEEPS and demonstrate it using the 

simulation results. The simulation results verify that with the adjustable sensing range, the 

network lifetime can be improved. The simulations results can be summarized as follows: 

• For the given number of targets and sensing ranges, the network lifetime increases with 

the number of sensors. When the number of targets is increased, the network lifetime 

decreases as more targets are monitored. 

• Network lifetime increases with an increase in the sensing range.  

• With adjustable sensing range, the network lifetime increases, and the increase is more 

dramatic with quadratic energy models. 

The future work will include simulating these algorithms with the combination of 

communication protocols, and improving the performance of the distributed algorithms by 

reducing its overheads as well as better integration of adjustable sensing range into the 

algorithms. 
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APPENDIX - A 
 

C++ code for ALBP  

#include <iostream> 
#include <vector> 
#include <string> 
#include <math.h> 
#include <fstream> 
 
using namespace std;  
 
class target{ 
 protected: 
  int id; 
  float x; 
  float y; 
 public: 
  target(){}; 
  target(int i, float xpos, float ypos){ 
   id=i; x=xpos; y=ypos;}; 
  double distance(double x1, double y1); 
  float getx(){ return x;}; 
  float gety(){ return y;}; 
  int getid(){ return id;}; 
 
}; 
double target::distance(double x1, double y1){ 
 return sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y)); 
} 
class sensor { 
 protected: 
  int id; 
  float status; 
  float x,y; 
  float battery; 
  double maxRange; 
  double range; 
  bool linearPower; 
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 public: 
  vector <target> coveredTarget; 
  vector <sensor*> neighbor; 
 
  // constructor 
  sensor (int ID,float xpos, float ypos,float maxb, double maxr, bool linear);  
 
   
  // function to find distance 
  double distance(double x1, double y1); 
 
  // function to find target 
  void getTarget( vector<target> t); 
 
  // function to find neighbor sensor 
  void getNeighbor(vector<sensor> &s); 
   
  // find time with specific range 
  double getTime(){ 
   if (linearPower) 
    return (battery/range); 
   else 
    return (battery/(range*range));}; 
 
  // decrease range 
  void decreaseRange(); 
 
  //active with range k 
  void goactive(vector<target> t){status = range;getTarget(t);}; 
 
  // go sleep 
  void gosleep() {status =0; range = 0;}; 
 
  // get status 
  float getstatus(){return status;}; 
 
  // set new battery 
  void setBattery(double time){  
   if (linearPower) 
    battery -= range*time; 
   else  
    battery -= range*range*time;}; 
   
  // wakeup 
  void wakeup(){status = -1; range =maxRange;}; 
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  // is sensor dead 
  bool isDead(){ if (battery == 0) return true; else return false;};  
 
  // can sensor cover a target with maximum range 
  bool canCoveredTarget(target &t); 
 
  // is sensor cover a target 
  bool covers(target &t); 
 
  // get sensor id 
  int getId(){return id;}; 
 
  // get Battery level; 
  int getBatteryLevel(){ return battery;}; 
 
}; 
 
bool sensor::canCoveredTarget(target &t){ 
 if (t.distance(x,y) <= maxRange) 
  return true; 
 else 
  return false; 
} 
 
 
bool sensor::covers(target &t){ 
 if (t.distance(x,y) <= range) 
  return true; 
 else 
  return false; 
} 
 
 
void sensor::decreaseRange(){ 
 coveredTarget.erase(coveredTarget.begin()); 
 if (coveredTarget.empty()){ 
  range = 0; 
  gosleep(); 
 } 
 else 
  range = coveredTarget[0].distance(x,y); 
} 
 
double sensor::distance(double x1, double y1){ 
 return sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y)); 
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} 
 
sensor::sensor(int ID, float xpos, float ypos, float maxb, double maxr, bool linear){ 
 id = ID; x = xpos; y = ypos; battery = maxb; maxRange = maxr;linearPower = linear; 
} 
 
void sensor::getTarget(vector<target> t){ 
 double distance; 
 bool alreadyadd; 
 vector<target>::iterator itr; 
 
 coveredTarget.clear(); 
 
 for(int i=0;i < t.size(); i++){ 
  distance = t[i].distance(x,y); 
  if (distance <= range){ 
   alreadyadd = false; 
   for (itr = coveredTarget.begin(); itr < coveredTarget.end(); itr++){ 
    if (itr->distance(x,y) < distance){ 
     coveredTarget.insert(itr,t[i]); 
     alreadyadd = true;    
     break; 
    } 
   } 
   if (!alreadyadd) 
    coveredTarget.push_back(t[i]); 
    
  } 
 } 
  
 if (!coveredTarget.empty()) 
  range = coveredTarget[0].distance(x,y); 
 else 
  range = 0; 
 
} 
 
void sensor::getNeighbor(vector<sensor> &s){ 
 double distance; 
 neighbor.clear(); 
 
 for(int i=0;i < s.size(); i++){ 
  // find distance 
  distance = s[i].distance(x,y); 
   
  // add to vector neighbor if a sensor is in 2*maxRange 
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  if ((distance <= 2*maxRange) && (distance != 0)){ 
   neighbor.push_back(&s[i]); 
    
  } 
 } 
} 
 
void getInformation (vector<target> &t, vector<sensor> &s); 
bool isAllDecided (vector<sensor> s); 
void deleteSensor (vector<sensor> &s); 
bool allTargetcovered (vector<target> t, vector<sensor> s); 
 
int main() 
{ 
 vector<target> t; 
 vector<sensor> s; 
 target T; 
 double batteryTime, nbatteryTime ; 
 int targetid; 
 bool coveredbyother = false; 
 bool decreaseRange = false; 
 double shuffleTime = 1; 
 int  shift = 1; // schuffle index 
 double shiftTime; // time for one shift 
 double monitorTime = 0; // total monitor time 
 
 // get target and sensor information 
 getInformation(t, s); 
  
 while(allTargetcovered(t,s)){ 
  
  // for each sensor, find target and neighbor sensor 
  for(int i=0;i < s.size(); i++){ 
   s[i].wakeup(); 
   // get target 
   s[i].getTarget(t); 
   // find neighbor sensor 
   s[i].getNeighbor(s); 
  } 
   
  // start by assume that next shift time = shuffle time 
  shiftTime = shuffleTime; 
 
  // shuffle process 
  while (!isAllDecided(s)){ 
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// for every sensor 
 for(int i=0;i < s.size(); i++){ 
     if (s[i].getstatus() < 0){ 
  decreaseRange = false; 
  if (!s[i].coveredTarget.empty()){ 
   batteryTime = s[i].getTime(); 
   // check the first target: the one with maximum length 
   targetid = s[i].coveredTarget[0].getid(); 
    coveredbyother = false; 
    // check with all neighbors 
    for (int j=0; j< s[i].neighbor.size(); j++){ 
    // every covered target of neightbor j 
    for (int k=0; k< s[i].neighbor[j]->coveredTarget.size(); k++){ 
    // the target can be covered by neighbor j 
    if (targetid == s[i].neighbor[j]->coveredTarget[k].getid()){ 
         coveredbyother = true; 
        nbatteryTime = s[i].neighbor[j]->getTime(); 

     i f (batteryTime < nbatteryTime || (nbatteryTime == 
batteryTime && s[i].getId()<s[i].neighbor[j]->getId()) 

     || s[i].neighbor[j]->getstatus()>0){ 
          s[i].decreaseRange(); 
          decreaseRange = true; 
         break; 
     } 
    } 
   } 
   if (decreaseRange){ 
      break; 
    } 
  }  
   if (!coveredbyother){ 
  s[i].goactive(t); 
  if (shiftTime > batteryTime){ 
   shiftTime = batteryTime; 
     } 
    
  // notify with all neighbors 
  for (int j=0; j< s[i].neighbor.size(); j++){ 
  // every covered target of neightbor j 
  while(!s[i].neighbor[j]->coveredTarget.empty()){ 
   T = s[i].neighbor[j]->coveredTarget[0]; 
   if (s[i].covers(T)){        
      s[i].neighbor[j]->decreaseRange(); 
      
   } else 
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                             // not covered 
       break; 
   } 
       } 
      } 
     } else{ 
      s[i].gosleep(); 
     } 
    } 
   } 
  } 
 
   
 // end of each shift  
 monitorTime += shiftTime; 
 for (int i=0; i< s.size(); i++) 
  s[i].setBattery(shiftTime); 
  
            // print each shift detail 

cout << "Shift #" << shift << ", shift time =" << shiftTime << " hr.  Life time = " < < 
monitorTime << " hr." << endl ; 

  for (int i=0; i< s.size(); i++){ 
   cout << " - " << s[i].getId() << ": Battery :"<< s[i].getBatteryLevel(); 
   cout << "\tStatus = "; 
   if (s[i].getstatus() == 0) 
    cout << "Sleep"<< endl; 
   else 
    cout << "Active"<< " with range = " << s[i].getstatus() << endl; 
  } 
  shift++; 
     
  // delete dead sensor from vector sensor 
  deleteSensor(s); 
 
  cout << endl << endl << endl;   
 } 
 
 cout << "Sensor life : " << monitorTime << endl<< endl; 
 return 0; 
 
} 
 
void getInformation (vector<target> &t, vector<sensor> &s){ 
 
 float xpos, ypos, maxb, maxr; 
 string filename; 
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 int tid, sid, choice, numSensor,numTarget; 
 bool linearPower; 
  
 // read target information 
 cout << "Enter target file:"; 
 getline(cin,filename); 
 ifstream targetfile (filename.c_str()); 
 
 if (targetfile.is_open()){ 
  targetfile >> numTarget; 
  cout << "numTarget :" << numTarget << endl; 
  for(int i =1; i<=numTarget; i++){ 
   targetfile >> tid; 
   targetfile >> xpos; 
   targetfile >> ypos; 
   // add new target to vector 
   t.push_back(target(tid,xpos,ypos)); 
  } 
  targetfile.close(); 
 }else { 
  cout << "can not open file " << filename << endl; 
 } 
 
 // read sensor information 
 cout << "Enter sensor file :"; 
 getline(cin,filename); 
 ifstream sensorfile (filename.c_str()); 
  
 cout << "Maximum Range :"; 
 cin >> maxr; 
  
 // power function 
 cout << "Power function, 1. Linear 2.Quadratic :"; 
 cin >> choice; 
 if (choice == 1) 
  linearPower = true; 
 else 
  linearPower = false; 
  
 if (sensorfile.is_open()){ 
  sensorfile >> numSensor; 
  cout << "numSensor :" << numSensor << endl; 
  for(int i=1;i<=numSensor; i++){ 
   sensorfile >> sid; 
   sensorfile >> maxb; 
   sensorfile >> xpos; 
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   sensorfile >> ypos; 
   // add the new sensor to vector 
   s.push_back(sensor( sid, xpos, ypos, maxb, maxr, linearPower)); 
  } 
  sensorfile.close(); 
 }else { 
  cout << "can not open file " << filename << endl; 
 } 
} 
 
bool isAllDecided (vector<sensor> s){ 
 for (int i=0; i< s.size(); i++){ 
  if (s[i].getstatus() < 0) 
   return false; 
 } 
 return true; 
 
} 
 
void deleteSensor (vector<sensor> &s){ 
 int numDead = 0; 
 vector<sensor>::iterator itr; 
  
 // find number of dead sensor 
 for (itr = s.begin(); itr!= s.end(); itr++){ 
  if (itr->isDead()){ 
   numDead++; 
  } 
 } 
  
 // delete sensor 
 for (int i=1; i<= numDead; i++){ 
  for (itr = s.begin(); itr!= s.end(); itr++){ 
   if (itr->isDead()){ 
    cout << "sensor: " << itr->getId() << " dead " << endl; 
    s.erase(itr); 
    break; 
   } 
  } 
 } 
} 
 
bool allTargetcovered (vector<target> t, vector<sensor> s){ 
 bool tcovered; 
 
 for (int i=0; i<t.size(); i++){ 
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  bool tcovered = false; 
  for (int j=0; j<s.size(); j++){ 
   if (s[j].canCoveredTarget(t[i])){ 
    tcovered = true; 
    break; 
   } 
  } 
  if (!tcovered){ 
   cout << "target : " << t[i].getid() << "is not covered"<< endl; 
   return false; 
  } 
 } 
  
 return true; 
}
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APPENDIX - B 
 
C++ code for ADEEPS 
 
#include <iostream> 
#include <vector> 
#include <string> 
#include <math.h> 
#include <fstream> 
using namespace std;  
 
class target{ 
 protected: 
  int id; 
  float x; 
  float y; 
  bool sink; //true if target is a sink for any covering sensor 
  float totalBat; 
 public: 
  target(){}; 
  target(int i, float xpos, float ypos){ 
   id=i; x=xpos; y=ypos;}; 
  double distance(double x1, double y1); 
  float getx(){ return x;}; 
  float gety(){ return y;}; 
  int getid(){ return id;}; 
  bool isSink(){ return sink;}; //returns true if the target is a sink, false otherwise 
        void setSink(bool val) { sink=val; }; 
        void setTotalBat(float inBat){ totalBat=inBat; }; 
        float getTotalBat () { return totalBat; };  
}; 
 
double target::distance(double x1, double y1){ 
 return sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y)); 
} 
 
class sensor { 
 protected: 
  int id; 
  float status; 
  float x,y; 
  float battery; 
  double maxRange; 
  double range; 
  bool linearPower;
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 public: 
  vector <target> coveredTarget; 
  vector <sensor*> neighbor; 
 
  // constructor 
  sensor (int ID,float xpos, float ypos,float maxb, double maxr, bool linear);  
 
   
  // function to find distance 
  double distance(double x1, double y1); 
 
  // function to find target 
  void getTarget( vector<target> t); 
 
  // function to find neighbor sensor 
  void getNeighbor(vector<sensor> &s); 
   
  // find time with specific range 
  double getTime(){ 
   if (linearPower) 
    return (battery/range); 
   else 
    return (battery/(range*range));}; 
 
  // decrease range 
  void decreaseRange(); 
 
  //active with range k 
  void goactive(vector<target> t){status = range;getTarget(t);}; 
 
  // go sleep 
  void gosleep() {status =0; range = 0;}; 
 
  // get status 
  float getstatus(){return status;}; 
 
  // set new battery 
  void setBattery(double time){  
   if (linearPower) 
    battery -= range*time; 
   else  
    battery -= range*range*time;}; 
   
  // wakeup 
  void wakeup(){status = -1; range =maxRange;}; 
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  // is sensor dead 
  bool isDead(){ if (battery == 0) return true; else return false;};  
 
  // can sensor cover a target with maximum range 
  bool canCoveredTarget(target &t); 
 
  // is sensor cover a target 
  bool covers(target &t); 
 
  // get sensor id 
  int getId(){return id;}; 
 
  // get Battery level; 
  int getBatteryLevel(){ return battery;}; 
   
  //Go active with maximum range 
  void goactiveMaxrange(vector<target> t){status = maxRange;getTarget(t);}; 
   
  // Removed a target from Sensor's covered target list 
  void removedCoveredtarget(); 
 
}; 
 
bool sensor::canCoveredTarget(target &t){ 
 if (t.distance(x,y) <= maxRange) 
  return true; 
 else 
  return false; 
} 
 
 
bool sensor::covers(target &t){ 
 if (t.distance(x,y) <= range) 
  return true; 
 else 
  return false; 
} 
 
 
void sensor::decreaseRange(){ 
 coveredTarget.erase(coveredTarget.begin()); 
 if (coveredTarget.empty()){ 
  range = 0; 
  gosleep(); 
 } 
 else 
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  range = coveredTarget[0].distance(x,y); 
} 
 
double sensor::distance(double x1, double y1){ 
 return sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y)); 
} 
 
sensor::sensor(int ID, float xpos, float ypos, float maxb, double maxr, bool linear){ 
 id = ID; x = xpos; y = ypos; battery = maxb; maxRange = maxr;linearPower = linear; 
} 
 
void sensor::getTarget(vector<target> t){ 
 double distance; 
 bool alreadyadd; 
 vector<target>::iterator itr; 
 
 coveredTarget.clear(); 
 
 for(int i=0;i < t.size(); i++){ 
  distance = t[i].distance(x,y); 
  if (distance <= range){ 
   alreadyadd = false; 
   for (itr = coveredTarget.begin(); itr < coveredTarget.end(); itr++){ 
    if (itr->distance(x,y) < distance){ 
     coveredTarget.insert(itr,t[i]); 
     alreadyadd = true;    
     break; 
    } 
   } 
   if (!alreadyadd) 
    coveredTarget.push_back(t[i]); 
    
  } 
 } 
  
 if (!coveredTarget.empty()) 
  range = coveredTarget[0].distance(x,y); 
 else 
  range = 0; 
 
} 
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void sensor::getNeighbor(vector<sensor> &s){ 
 double distance; 
 neighbor.clear(); 
 
 for(int i=0;i < s.size(); i++){ 
  // find distance 
  distance = s[i].distance(x,y); 
   
  // add to vector neighbor if a sensor is in 2*maxRange 
  if ((distance <= 4*maxRange) && (distance != 0)){ 
   neighbor.push_back(&s[i]); 
    
  } 
 } 
} 
 
void sensor::removedCoveredtarget(){ 
 if (coveredTarget.empty()){ 
  range = 0; 
  gosleep(); 
 } 
    else 
     
        coveredTarget.erase(coveredTarget.begin()); 
  
  
} 
 
void getInformation (vector<target> &t, vector<sensor> &s); 
bool isAllDecided (vector<sensor> s); 
void deleteSensor (vector<sensor> &s); 
bool allTargetcovered (vector<target> t, vector<sensor> s); 
void setTarget (vector<target> t, vector<sensor> s); 
 
int main() 
{ 
 vector<target> t; 
 vector<sensor> s; 
 target T; 
 double batteryTime, nbatteryTime ; 
 int targetid; 
 bool coveredbyother = false; 
 bool decreaseRange = false; 
 bool coverHill = false; 
    double shuffleTime = 1; 
 int shift = 1; // schuffle index 
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 double shiftTime; // time for one shift 
 double monitorTime = 0; // total monitor time 
 
 // get target and sensor information 
 getInformation(t, s); 
  
 while(allTargetcovered(t,s)){ 
        
         // calculate target total battery and set sinks 
        // this can be decide locally using the information form neighbors 
 
        setTarget(t,s); 
   
        // for each sensor, find target and neighbor sensor 
  for(int i=0;i < s.size(); i++){ 
   s[i].wakeup(); 
   // get target 
   s[i].getTarget(t); 
   // find neighbor sensor 
   s[i].getNeighbor(s); 
  } 
   
  // start by assume that next shift time = shuffle time 
  shiftTime = shuffleTime; 
 
  // shuffle process 
  while (!isAllDecided(s)){ 
     
            // for every sensor 
   for(int i=0;i < s.size(); i++){ 
    if (s[i].getstatus() < 0){ 
     decreaseRange = false; 
     if (!s[i].coveredTarget.empty()){                                                                    
      batteryTime = s[i].getTime(); 
       
                        //check whether sensor cover hills 
                        for (int m=0; m<s[i].coveredTarget.size(); m++) { 
                            if (!s[i].coveredTarget[m].isSink())  
                                coverHill = true; 
                            break; 
                                
                            } 
                                              
                        // check the first target: the one with maximum length 
  targetid = s[i].coveredTarget[0].getid(); 
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                        if (s[i].coveredTarget[0].isSink()) { 
                           coveredbyother = false; 
    // check with all neighbors 
      for (int j=0; j< s[i].neighbor.size(); j++){ 
  // every covered target of neightbor j 
  for (int k=0; k< s[i].neighbor[j]->coveredTarget.size(); k++){ 
  // the target can be covered by neighbor j 
   if (targetid == s[i].neighbor[j]->coveredTarget[k].getid()){ 
     coveredbyother = true; 
      nbatteryTime = s[i].neighbor[j]->getTime(); 

 if ((batteryTime < nbatteryTime || (nbatteryTime == batteryTime && 
s[i].getId()<s[i].neighbor[j]->getId()) || s[i].neighbor[j]->getstatus()>0) && 
(!coverHill)){ 

       s[i].decreaseRange(); 
    decreaseRange = true; 
    break; 
     } 
    } 
  } 
  if (decreaseRange){ 
      break; 
    } 
                    } 
              }  
                        else { 
                             coveredbyother = false; 
   // check with all neighbors 
                for (int j=0; j< s[i].neighbor.size(); j++){ 
   // every covered target of neightbor j 
   for (int k=0; k< s[i].neighbor[j]->coveredTarget.size(); k++){ 
   // the target can be covered by neighbor j 
   if (targetid == s[i].neighbor[j]->coveredTarget[k].getid()){ 
    coveredbyother = true; 
    nbatteryTime = s[i].neighbor[j]->getTime(); 

if (batteryTime < nbatteryTime || (nbatteryTime == batteryTime 
&& s[i].getId()<s[i].neighbor[j]->getId()) || s[i].neighbor[j]-
>getstatus()>0){   

            s[i].decreaseRange(); 
            decreaseRange = true; 
             break; 
       } 
                        } 
    } 
    if (decreaseRange){ 
        break; 
          } 
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                              } 
                           } 
                         
                         
                         
  if (!coveredbyother){ 
   s[i].goactive(t); 
   if (shiftTime > batteryTime){ 
   shiftTime = batteryTime; 
   } 
        
  // notify with all neighbors 
  for (int j=0; j< s[i].neighbor.size(); j++){ 
  // every covered target of neightbor j 
  while(!s[i].neighbor[j]->coveredTarget.empty()){ 
  T = s[i].neighbor[j]->coveredTarget[0]; 
  if (s[i].covers(T)){ 
  s[i].neighbor[j]->decreaseRange(); 
       
  } else 
  // not covered 
  break; 
        } 
     } 
  } 
  } else{ 
   s[i].gosleep(); 
           } 
  } 
      } 
 } 
 
  
 // end of each shift  
 monitorTime += shiftTime; 
 for (int i=0; i< s.size(); i++) 
 s[i].setBattery(shiftTime); 
  
 // print each shift detail 

cout << "Shift #" << shift << ", shift time =" << shiftTime << " hr.  Life time = " <<    
monitorTime << " hr." << endl ; 

 for (int i=0; i< s.size(); i++){ 
   cout << " - " << s[i].getId() << ": Battery :"<< s[i].getBatteryLevel(); 
   cout << "\tStatus = "; 
   if (s[i].getstatus() == 0) 
    cout << "Sleep"<< endl; 
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   else 
    cout << "Active"<< " with range = " << s[i].getstatus() << endl; 
  } 
  shift++; 
     
  // delete dead sensor from vector sensor 
  deleteSensor(s); 
 
  cout << endl << endl << endl;   
 } 
 
 cout << "Sensor life : " << monitorTime << endl<< endl; 
 return 0; 
 
} 
 
void getInformation (vector<target> &t, vector<sensor> &s){ 
 
 float xpos, ypos, maxb, maxr; 
 string filename; 
 int tid, sid, choice, numSensor,numTarget; 
 bool linearPower; 
  
 // read target information 
 cout << "Enter target file:"; 
 getline(cin,filename); 
 ifstream targetfile (filename.c_str()); 
 
 if (targetfile.is_open()){ 
  targetfile >> numTarget; 
  cout << "numTarget :" << numTarget << endl; 
  for(int i =1; i<=numTarget; i++){ 
   targetfile >> tid; 
   targetfile >> xpos; 
   targetfile >> ypos; 
   // add new target to vector 
   t.push_back(target(tid,xpos,ypos)); 
  } 
  targetfile.close(); 
 }else { 
  cout << "can not open file " << filename << endl; 
 } 
 
 // read sensor information 
 cout << "Enter sensor file :"; 
 getline(cin,filename); 



60 

 ifstream sensorfile (filename.c_str()); 
  
 cout << "Maximum Range :"; 
 cin >> maxr; 
  
 // power function 
 cout << "Power function, 1. Linear 2.Quadratic :"; 
 cin >> choice; 
 if (choice == 1) 
  linearPower = true; 
 else 
  linearPower = false; 
  
 if (sensorfile.is_open()){ 
  sensorfile >> numSensor; 
  cout << "numSensor :" << numSensor << endl; 
  for(int i=1;i<=numSensor; i++){ 
   sensorfile >> sid; 
   sensorfile >> maxb; 
   sensorfile >> xpos; 
   sensorfile >> ypos; 
   // add the new sensor to vector 
   s.push_back(sensor( sid, xpos, ypos, maxb, maxr, linearPower)); 
  } 
  sensorfile.close(); 
 }else { 
  cout << "can not open file " << filename << endl; 
 } 
} 
 
bool isAllDecided (vector<sensor> s){ 
 for (int i=0; i< s.size(); i++){ 
  if (s[i].getstatus() < 0) 
   return false; 
 } 
 return true; 
 
} 
 
void deleteSensor (vector<sensor> &s){ 
 int numDead = 0; 
 vector<sensor>::iterator itr; 
  
 // find number of dead sensor 
 for (itr = s.begin(); itr!= s.end(); itr++){ 
  if (itr->isDead()){ 
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   numDead++; 
  } 
 } 
  
 // delete sensor 
 for (int i=1; i<= numDead; i++){ 
  for (itr = s.begin(); itr!= s.end(); itr++){ 
   if (itr->isDead()){ 
    cout << "sensor: " << itr->getId() << " dead " << endl; 
    s.erase(itr); 
    break; 
   } 
  } 
 } 
} 
 
bool allTargetcovered (vector<target> t, vector<sensor> s){ 
 bool tcovered; 
 
 for (int i=0; i<t.size(); i++){ 
  bool tcovered = false; 
  for (int j=0; j<s.size(); j++){ 
   if (s[j].canCoveredTarget(t[i])){ 
    tcovered = true; 
    break; 
   } 
  } 
  if (!tcovered){ 
   cout << "target : " << t[i].getid() << "is not covered"<< endl; 
   return false; 
  } 
 } 
  
 return true; 
} 
 
void setTarget (vector<target> t, vector<sensor> s){ 
     float inBat=0; 
     int id=0; 
     bool b=true; 
      
     //calculate the total LifeTime for each targets 
     for (int i=0; i<t.size(); i++) { 
         for ( int j=0; j<s.size(); j++) { 
                 if (s[j].canCoveredTarget(t[i])) { 
                 inBat += s[j].getTime(); 
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                 } 
         } 
     t[i].setTotalBat(inBat); 
     } 
      
     //set the targets whether sinks or not 
     for (int k=0; k<s.size(); k++) { 
         s[k].getTarget(t); 
        for (int l=0; l<s[k].coveredTarget.size(); l++) { 
            if ( s[l].coveredTarget[l].getTotalBat() < s[l].coveredTarget[l+1].getTotalBat()) 
                id = s[l].coveredTarget[l].getid(); 
             else id = s[l].coveredTarget[l+1].getid(); 
         } 
         t[id].setSink (b); 
     } 
 
}      
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APPENDIX - C 
 
 
1. Sample targets File: 50 targets 
 
The first line shows the total number of targets and each successive line includes the target’s id, 
target’s x-coordinate, and target’s y-coordinate of each targets. 
 
50  
0 579 42 
1 308 773 
2 470 746 
3 230 281 
4 376 2 
5 737 31 
6 127 705 
7 104 95 
8 164 12 
9 123 679 
10 678 275 
11 668 677 
12 754 580 
13 400 628 
14 545 159 
15 647 246 
16 258 554 
17 640 259 
18 281 389 
19 262 225 
20 456 449 
21 32 533 
22 621 268 
23 744 345 
24 716 176 
25 153 238 
26 687 638 
27 111 628 
28 683 356 
29 42 791 
30 709 710 
31 179 12 
32 53 204 
33 418 541 
34 713 409 
35 254 769 
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36 589 572 
37 551 432 
38 138 10 
39 17 341 
40 556 523 
41 306 133 
42 713 84 
43 798 527 
44 767 502 
45 240 20 
46 669 756 
47 780 377 
48 228 26 
49 771 571 
 

2. Sample sensors file: 100 sensors 

The first line shows the total number of sensors and each successive line includes the sensor’s id, 
sensor’s total battery, sensor’s x-coordinate, and then sensor’s y-coordinate. 
 
100    
0 590 527 201 
1 373 422 586 
2 528 473 449 
3 236 551 316 
4 373 478 421 
5 100 312 202 
6 229 219 550 
7 864 626 74 
8 619 542 239 
9 381 435 592 
10 714 457 128 
11 544 610 295 
12 261 80 727 
13 410 17 773 
14 193 418 421 
15 966 51 206 
16 481 550 145 
17 309 644 606 
18 680 653 107 
19 607 461 88 
20 628 741 608 
21 428 555 240 
22 314 794 245 
23 864 622 218 
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24 355 574 772 
25 980 761 467 
26 115 90 448 
27 515 408 220 
28 736 170 642 
29 228 610 570 
30 696 795 333 
31 603 253 347 
32 287 261 722 
33 104 743 82 
34 341 169 176 
35 967 137 322 
36 857 780 110 
37 487 643 794 
38 322 290 474 
39 173 432 133 
40 672 122 568 
41 151 342 130 
42 583 408 708 
43 647 537 31 
44 915 383 460 
45 567 593 199 
46 727 749 124 
47 778 139 237 
48 603 674 424 
49 101 226 366 
50 340 872 9 
51 619 999 999 
52 456 361 881 
53 102 924 155 
54 389 557 889 
55 621 813 1 
56 308 763 846 
57 988 313 315 
58 431 394 194 
59 414 885 186 
60 829 568 777 
61 689 643 952 
62 115 964 428 
63 630 672 337 
64 641 874 454 
65 228 636 539 
66 572 307 325 
67 257 499 373 
68 428 534 383 
69 56 878 795 
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70 747 471 418 
71 619 128 940 
72 66 223 180 
73 796 708 532 
74 940 152 512 
75 977 643 817 
76 945 767 818 
77 967 261 589 
78 217 724 160 
79 500 923 424 
80 493 962 733 
81 304 404 17 
82 314 170 392 
83 120 212 566 
84 704 364 776 
85 458 175 458 
86 374 844 808 
87 719 992 197 
88 853 213 598 
89 670 360 245 
90 231 909 384 
91 758 61 994 
92 22 349 163 
93 127 70 814 
94 634 718 487 
95 714 911 967 
96 430 453 527 
97 559 594 847 
98 881 672 942 
99 302 43 486 
100 989 113 364 
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