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GENERIC CONTINUOUS FUNCTIONS AND OTHER STRANGE FUNCTIONS

IN CLASSICAL REAL ANALYSIS

by

Douglas A. Woolley

Under the direction of Mihaly Bakonyi

ABSTRACT

In this paper we examine continuous functions which on the surface seem to defy well-known

mathematical principles. Before describing these functions, we introduce the Baire Cate-

gory theorem and the Cantor set, which are critical in describing some of the functions and

counterexamples. We then describe generic continuous functions, which are nowhere differ-

entiable and monotone on no interval, and we include an example of such a function. We

then construct a more conceptually challenging function, one which is everywhere differen-

tiable but monotone on no interval. We also examine the Cantor function, a nonconstant

continuous function with a zero derivative almost everywhere. The final section deals with

products of derivatives.
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1 Introduction

Most continuous functions used in applications have several additional properties, such as

differentiability at most points of the domain, or being monotone on certain intervals. It

turns out, however, that the generic continuous function (a notion defined in Section 2) is

not differentiable at any point, nor is it monotone on any subinterval of the domain. This

is rather unexpected, and shows that the generic continuous function is quite different from

the ones used in most applications. In this thesis we investigate this and other strange

behaviors of continuous real-valued functions. We construct an everywhere differentiable,

nowhere monotone function. Also presented is the Cantor function (or “Devil’s Staircase”),

which is continuous, has derivative zero almost everywhere, but is not constant. Finally, we

deal with functions which are derivatives of other functions. We first present an example of

two such functions the product of which is not a derivative. A proof is then presented that

the product of a derivative and an absolutely continuous function is always a derivative.

The material in this thesis is organized as follows: Section 2 describes the Cantor set,

which is of great importance in Real Analysis and plays a key role in constructing several

counterexamples. Section 3 is a presentation of Baire’s Theorem, which is critical to Section

4, which shows that the generic continuous function is nowhere differentiable and is monotone

on no subinterval. An example of such a function is then constructed. Section 5 describes

a function which is everywhere differentiable but monotone on no subinterval. In Section 6

we present the Cantor function, while Section 7 deals with products of derivatives.
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2 The Cantor Set

In the study of Real Analysis, it is critical to understand the unusual properties of the Cantor

set. Many examples and still more counterexamples make use of this set. Its construction

appears in numerous texts; see for example [1], [6] and [8].

Consider the closed interval [0,1]. Remove the open middle third (1
3
, 2

3
). Then remove the

open middle thirds from the two remaining segments. At this point the segments [1, 1
9
],

[2
9
, 1

3
], [2

3
, 7

9
], and [8

9
, 1] remain. Continue removing the open middle thirds of the remaining

segments. After infinitely many steps what remains is a subset of the real numbers known

as the Cantor set C . Since the Cantor set results from removing only open intervals, the

complement of the Cantor set is open, therefore the Cantor set is closed. The measure of

the complement is the sum of the measures of the removed intervals,

1

3
+

2

9
+

4

27
+

8

81
+ · · · =

1

3

∞∑

n=0

2n

3n
=

1

3

(
1

1 − 2
3

)
=

1

3
· 3 = 1.

Therefore, the Cantor set has measure zero. Despite this, the Cantor set is uncountable.

To prove this, we consider the ternary representations of the numbers in the unit interval.

Since, in base three, 1
3

is equal to 0.1, and 2
3

is equal to 0.2, it is evident that, in removing

the middle third of the unit interval, we actually removed all of the real numbers whose

ternary decimal representation have a 1 in the first decimal place, except for 0.1 itself.

We can, however, choose to represent 1
3

as 0.02. No other number in the interval can be

represented in ternary decimal representation without a 1 in the first decimal place. Similarly,

when removing the intervals (1
9
, 2

9
) and (7

9
, 8

9
), we remove all remaining real numbers whose
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ternary representations have a 1 in the second decimal place, again with the exceptions of the

leftmost endpoints, 1
9

and 7
9
. As with 1

3
, these can be represented in ternary either with or

without using a 1; 1
9

as 0.01 or 0.002, and 7
9

as 0.21 or 0.202. Continuing, each nth step of the

process removes all real numbers in the interval that cannot be expressed in ternary notation

without a 1 in the nth decimal place. Therefore, the Cantor set consists of all real numbers

in the interval [0, 1] that have a ternary decimal representation consisting of only 0’s and

2’s. There exists a surjective function from the Cantor set to the interval [0, 1]. It is defined

by mapping each ternary number in the Cantor set to the binary number which results from

replacing each 2 in the ternary number with a 1. Since the Cantor set consists of all ternary

numbers consisting of only 2’s and 0’s after the decimal point, the range of this function then

consists of all binary numbers in the interval. While this function is clearly surjective, it is

not one-to-one; the two endpoints of each removed interval map to the same binary number.

Since it is a surjective function, card C ≥ card [0, 1]. Since C ⊆ [0, 1], card C ≤ card [0, 1].

Hence, card C = card [0, 1], and therefore C is uncountable. It is easily shown that the

Cantor set is nowhere dense. Since C is generated by removing only open sets from the unit

interval, its complement is the union of open sets and is therefore an open set. Hence, C is

closed and so C = C. Since C is a zero set, it contains no interval and therefore no interior

points. Therefore the interior of C is empty, so C is nowhere dense.
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3 Baire’s Theorem

Baire’s Theorem is a fundamental result in the study of Real Analysis. Its proof appears

in most textbooks on the subject. Since it is critical to Section 4, its proof is included as

presented in [5] and [6].

Definition Let M be a metric space. A countable intersection G =
∞⋂

n=1

Gn of open dense

subsets of M is called a thick subset of M . The complement of a thick set is thin (or meager).

The empty set is always thin and the full space M is always thick in itself. A single open

dense subset is thick and a single nowhere dense subset is thin. The Cantor set is thin in

[0,1], and R is thin in R2.

Theorem 3.1. (Baire’s Theorem) Every thick subset of a complete metric space M is

dense in M . A nonempty, complete metric space is not thin; if M is the countable union of

closed sets, then at least one has a nonempty interior.

Proof. Let M be a complete metric space, M 6= ∅. Let G =
∞⋂

n=1

Gn be a thick subset of M ,

with each Gn open and dense in M . To prove that G is dense in M , it suffices to show that

G∩A 6= ∅ for each nonempty open set A of M . Suppose there exists an open, nonempty set

A such that G ∩A = ∅. Therefore, A ⊂ Gc Thus,

Gc ∩A = A,

(
∞⋂

n=1

Gn)c ∩ A = A,

∞⋃

n=1

(Gc
n ∩ A) = A,

4



and therefore A is thin. Since no nonempty open subset of a complete metric space can be

thin, A must be empty, a contradiction. Therefore, G is dense in M .

To prove that a complete metric space M is not thin, assume the converse. Suppose that

M =
∞⋃

n=1

Kn, and each Kn has an empty interior. Then, each Gn = Kc
n is open and dense,

therefore,

G =

∞⋂

n=1

Gn = (

∞⋃

n=1

Kn)c = ∅,

contradicting the density of G.
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4 Generic Continuous Functions

In this section we will prove a quite surprising result, namely that the generic function in

C0([a, b],R) is nowhere differentiable and monotone on no interval. Its presentation is based

on [6]. We later construct an example of such a function (based on results in [3], [6], and

[7]).

Definition. If all points in a thick subset of M have some property, then that property is

said to be a generic property of M . This is the same as saying that most points of M possess

that property.

For example, the generic point of [0,1] is not in the Cantor set, and the generic point of R2

does not lie on the x-axis. The set Q is thin in R; it is a countable union of points, and each

point is a closed, nowhere dense set. Hence, the generic real number is irrational.

Definition. We denote by C0 = C0([a, b],R) the set of all continuous, real-valued functions

defined on the closed interval [a, b]. For f ∈ C0([a, b],R), let ‖f‖ = max{|f(x)| : x ∈ [a, b]}.

Theorem 4.1. The generic function f ∈ C0([a, b],R) is nowhere differentiable on [a, b], and

is not monotone on any subinterval of [a, b].

Definition. If φ : [a, b] → R is continuous and its graph consists of finitely many line

segments in R2, then φ is called a piecewise linear function.

Before proving Theorem 4.1, it is necessary to prove two lemmas.

Lemma 4.2. The set PL of piecewise linear functions is dense in C0.

Proof. Let f ∈ C0 and ε > 0 be given. Since [a, b] is compact, f is uniformly continuous.

6



Therefore, there exists a δ > 0 such that |t − s| < δ implies |f(t) − f(s)| < ε. Choose

n > (b − a)/δ and partition [a, b] into n equal subintervals Ii = [xi−1, xi], each interval of

measure < δ. Let φ : [a, b] → R be the piecewise linear function consisting of the segments

joining the points (xi−1, f(xi−1)) and (xi, f(xi)) on the graph of f . For t ∈ Ii, φ(t) is between

f(xi−1) and f(xi). Both f(xi−1) and f(xi) differ from f(t) by less than ε. Therefore, for all

t ∈ [a, b],

|f(t)− φ(t)| < ε.

Therefore, every continuous function is the limit of a sequence of piecewise linear functions,

and so PL is dense in C0.

Definition A continuous periodic function whose graph consists of line segments of equal

length and slopes ±α for some real number α is called a sawtooth function.

Lemma 4.3. If φ ∈ PL and ε > 0 are given, then there exists a sawtooth function σ such

that ‖ σ ‖≤ ε, σ has period ≤ ε, and

min{|slopeσ|} > max{|slopeφ|} + 1/ε.

Proof. Define σ0 as follows:

σ0(x) = |x| if |x| ≤ 1 (1)

σ0(x+ 2p) = σ0(x) if x ∈ R and p ∈ Z. (2)

7



Let θ = max{|slopeφ|} and choose c large. The compressed sawtooth function σ(x) = εσ0(cx)

has ‖σ‖ = ε, period T = 1/c, and slope m = ±εc. When c is sufficiently large, T ≤ ε, and

|m| > θ + 1/ε.

Proof of Theorem 4.1.

For n ∈ N, define:

Rn = {f ∈ C0 : ∀x ∈ [a, b− 1

n
] ∃h > 0 such that |∆f

h
| > n},

Ln = {f ∈ C0 : ∀x ∈ [a+
1

n
, b] ∃h < 0 such that |∆f

h
| > n},

and

Gn = {f ∈ C0 : f restricted to any interval of length
1

n
is non-monotone},

where ∆f = f(x+ h) − f(x). We prove that each of these sets is open and dense in C0.

To show that these sets are dense in C0, it suffices to prove that the closure of each set

contains PL, since by Lemma 4.2 the closure of PL is C0. Let φ ∈ PL and ε > 0 be given.

By Lemma 4.3, there is a sawtooth function σ such that ‖σ‖ ≤ ε, σ has period T < 1/n,

and

min{|slopeσ|} > max{|slopeφ|} + n.

The slopes of the piecewise linear function f = φ + σ are dominated by those of σ, and

therefore alternate in sign with period < 1/2n. At any x ∈ [a, b− 1
n
], there is a slope either

8



> n or < −n, therefore f ∈ Rn. Similarly, for x ∈ [a+ 1
n
, b], there is also a slope either > n

or < −n, therefore f ∈ Ln. Also, any interval of measure 1/n contains in its interior either

a maximum or a minimum of σ, and therefore contains a strictly increasing subinterval as

well as a strictly decreasing subinterval. Therefore, f ∈ Gn. Since f is arbitrarily close to φ,

and φ is arbitrarily close to g ∈ C0, it follows that f is arbitrarily close to g, and therefore

Rn, Ln, and Gn are dense in C0. Next, we show that these are open sets. Let f ∈ Rn be

given. For each x ∈ [a, b− 1
n
], there exists an h = h(x) > 0 such that

f(x+ h) − f(x)

h
> n.

Since f is continuous, there exists a neighborhood Tx of x, Tx ⊂ [a, b], and a constant ν > 0,

such that for the same h,

f(t+ h) − f(t)

h
> n+ ν

for all t ∈ Tx. Since [a, b − 1
n
] is compact, finitely many such neighborhoods cover it. Let

Tx1, ..., Txm be a finite set of neighborhoods which covers [a, b− 1
n
]. Then f is continuous,

therefore for all t ∈ T xi,

f(t+ hi) − f(t)

hi
≥ n + νi,

where hi = h(xi) and νi = ν(xi). These m inequalities for points t in the m sets Txi remain

valid if f is replaced by a continuous function g with ‖f − g‖ sufficiently small. Therefore,

g(t+ hi) − g(t)

hi
> n,

9



which implies that g ∈ Rn, and hence f is in the interior of Rn. Therefore, Rn is open in

C0. A similar proof shows that Ln is also open in C0. To show that Gn is open, let (fk)

be a sequence of functions in Gc
n and fk converges uniformly to f . Since fk /∈ Gn, each fk

is monotone on some interval Ik = [sk, tk] of measure 1/n. There are subsequences of these

endpoints which converge to limits s and t. Since the intervals are all of measure 1
n
, the

interval [s, t] is also of measure 1
n
. By uniform convergence, f is monotone on I. Therefore,

Gc
n is closed, and so Gn is open. Since Rn, Ln, and Gn are open and dense in C0, the set

∞⋂

n=1

Rn ∩ Ln ∩Gn

is a thick set. Let f be a function belonging to this set. For each x ∈ [a, b], there is a

sequence hn 6= 0, such that

f(x+ hn) − f(x)

hn
> n.

The numerator of this quotient is at most 2‖f‖, so hn → 0 as n → ∞. Therefore, f is

not differentiable at x. Also, f is non-monotone on every interval of measure 1/n. Any

interval, no matter how small, contains an interval of measure 1
n

when n is sufficiently large.

Therefore, f is not monotone on any interval.

Example. ([3],[6], and [7]) We will now construct a continuous function that is nowhere

differentiable and monotone on no interval.

Define σ0 : R → R as in (1) and (2). Let σk(x) = (3
4
)kσ0(4

kx), for all k ∈ Z. Clearly, each

σk is continuous on R, has period Tk = 2
4k , amplitude Ak = (3

4
)k, and derivative σ′

k = ±3k.

Define f : R → R as follows:

10



f(x) =
∞∑

k=0

σ0(x) (3)

Since the amplitudes form a converging series, {σk} converges uniformly according to the

Weierstrass M-test, and therefore f is continuous on R since uniform convergence preserves

continuity. To show that f fails to have a finite derivative at any point, fix an arbitrary

x ∈ R. Let δn = 1/2 · 4n. Clearly, δn → 0 as n→ ∞.

∆f

∆x
=
f(x± δn) − f(x)

δn
=

∞∑

k=0

σk(x± δn) − σk(x)

δn
. (4)

Whenever k > n,

σk(x± δn) − σk(x) = (
3

4
)k[σ0(4

k(x± δn)) − σ0(4
kx)]

= (
3

4
)k[σ0(4

kx± 4k−n

2
) − σ0(4

kx)],

which equals zero because σ0 has period T = 2. Therefore, (4) becomes

∆f

∆x
=

n−1∑

k=0

σk(x± δk) − σk(x)

δk
+
σn(x± δk) − σn(x)

δn
.

The slope of the last term of this sum is ±3n, while the maximum absolute value of the sum

of the slopes of the first n terms is 1 + 3 + 32 + · · · + 3n−1 = 3n−1
3−1

< 3n

2
. Since 3n → ∞ as

n→ ∞, f fails to have a finite derivative at any point. Also, since the slope of each sum is

dominated by the nth term, the intervals of monotonicity of each sum partial sum
n∑

k=0

σk(x)

will be the intervals of monotonicity of σn. Each σn has period Tn = 2/4n, and therefore

11



is monotone on intervals of measure 1
4n , which go to zero as n → ∞. Therefore f is not

monotone on any interval.
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5 An Everywhere Differentiable, Nowhere Monotone

Function

The purpose of this section is to present an example of an everywhere differentiable, nowhere

monotone function. Examples of such functions were given by Köpcke in 1889 and Pereno

in 1897. The much simpler construction presented here was developed by Katznelson and

Stromberg [4]. For its presentation we begin with a series of lemmas.

Lemma 5.1. Let r, s ∈ R. Then:

(i) If r > s > 0, then

r − s

r2 − s2
<

2

r

and

(ii) If r > 1 and s > 1, then

r + s− 2

r2 + ss − 2
<

2

s
.

Proof. Assertion (i) is obvious. Proof of assertion (ii).

If r > 1 and s > 1, then

5 < (r − s)2 + (r − 1)(s − 1) + r2 + 3s+ r

5 < (r2 − 2rs + s2) + (rs − r − s+ 1) + r2 + 3s + r

5 < 2r2 + s2 − rs + 2s+ 1

rs+ s2 − 2s < 2r2 + 2s2 − 4

13



s(r + s− 2) < 2(r2 + s2 − 2)

r + s− 2

r2 + s2 − 2
<

2

s
.

Lemma 5.2. Let φ(x) = (1 + |x|)− 1
2 for x ∈ R. Then

1

b− a

∫ b

a

φ(x) dx < 4min{φ(a), φ(b)}

whenever a and b are distinct real numbers.

Proof. Without loss of generality, assume that a < b. If 0 ≤ a, then Lemma 5.1 verifies that

1

b− a

∫ b

a

φ(x) dx =
2(
√

1 + b−
√

1 + a)

(1 + b) − (1 + a)

<
4√

1 + b
= 4min{φ(a), φ(b)}.

Since φ is an even function, the case that b ≤ 0 is also verified by the above proof. The case

that a < 0 < b follows from the second part of Lemma 5.1:

1

b− a

∫ b

a

φ(x) dx =
2(
√

1 + b−
√

1 − a− 2)

(1 + b) − (1 − a) − 2

< 4min{φ(a), φ(b)}

.

Lemma 5.3. If φ is as in Lemma 5.2, and ψ is any function of the form

ψ(x) =
n∑

j=1

cjφ(λj(x− αj)),

14



where c1, ..., cn and λ1, ..., λn are positive real numbers, and α1, ..., αn are any real numbers,

then

1

b− a

∫ b

a

ψ(x) dx < 4min{ψ(a), ψ(b)},

whenever a and b are distinct real numbers.

Proof. The result follows from Lemma 5.2 and the fact that

1

b− a

∫ b

a

φ(λ(x− α)) dx =
1

λ(b− α) − λ(a− α)

∫ λ(b−α)

λ(a−α)

φ(t) dt.

Lemma 5.4. Let (ψn)
∞
n=1 be any sequence of functions as in Lemma 5.3. For x ∈ R and

each n define

Ψn(x) =

∫ x

0

ψn(t) dt.

Suppose that
∞∑

n=1

ψn(a) = s < ∞ for some a ∈ R. Then the series F (x) =
∞∑

n=1

Ψn(x)

converges uniformly on every bounded subset of R, the function F is differentiable at a, and

F ′(a) = s. In particular, if
∞∑

n=1

ψn(t) = f(t) < ∞ for all t ∈ R, then F is differentiable

everywhere on R and F ′ = f .

Proof. Let b satisfy b ≥ |a|. Then, using Lemma 5.3, −b ≤ x ≤ b implies

|Ψn(x)| ≤
∣∣∣∣
∫ a

0

ψn(t)dt

∣∣∣∣+
∣∣∣∣
∫ x

a

ψn(t)dt

∣∣∣∣

≤ 4|a|ψn(a) + 4|x− a|ψn(a) ≤ 12bψn(a).

15



Uniform convergence on [−b, b] follows from the WeierstrassM -test. To prove that F ′(a) = s,

let ε > 0 be given. Choose N such that

10 ·
∞∑

n=N+1

ψn(a) < ε.

Since each ψn is continuous at a, there exists some δ > 0 such that

1

h

∫ a+h

a

ψn(t) dt− ψn(a) <
ε

2N
,

whenever 0 < |h| < δ and 1 ≤ n ≤ N. Therefore, using Lemma 5.3, 0 < |h| < δ implies that

∣∣∣∣
F (a+ h) − F (a)

h
− s

∣∣∣∣ =

∣∣∣∣
∞∑

n=1

{
1

h

∫ a+h

a

ψn(t)dt− ψn(a)

}∣∣∣∣

≤
N∑

n=1

∣∣∣∣
1

h

∫ a+h

a

ψn(t)dt− ψn(a)

∣∣∣∣

+
∞∑

n=N+1

{
1

h

∫ a+h

a

ψn(t)dt+ ψn(a)

}

<
ε

2
+

∞∑

n=N+1

5ψn(a) < ε.

Lemma 5.5. Let I1, ..., In be disjoint open intervals, let αj be the midpoint of Ij, and let ε

and y1, ..., yn be positive real numbers. Then there exists a function ψ as in Lemma 5.3 such

that for each j,

(i) ψ(αj) > yj,

(ii) ψ(x) < yj + ε if x ∈ Ij,

(iii) ψ(x) < ε if x /∈ I1 ∪ · · · ∪ In.

16



Proof. Choose cj = yj + ε
2

and write φj(x) = cjφ(λj(x−αj)), where λj is chosen sufficiently

large that φj(x) <
ε
2

if x /∈ Ij. Take ψ = φ1 + · · · + φn. Since Ij ∩ Ik = ∅ when j 6= k, and

since φj takes its maximum value at αj, properties (i), (ii), and (iii) are satisfied.

Theorem 5.6. Let {αj}∞j=1, and {βj}∞j=1 be disjoint countable subsets of R. Then there exists

a real-valued, everywhere differentiable function F on R satisfying F ′(αj) = 1, F ′(βj) < 1

for all j, and 0 < F ′(x) ≤ 1 for all x.

Proof. We obtain F as in Lemma 5.4 by first constructing F ′ = f =
∞∑

n=1

ψn, with partial

sums fn =
n∑

k=1

ψk, in such a way that

An : fn(αj) > 1 − 1

n
(1 ≤ j ≤ n),

Bn : fn(x) < 1 − 1

n+ 1
x ∈ R

Cn : ψn(βj) <
1

2n · 2n
(1 ≤ j ≤ n).

Supposing that this were done we would have

F ′(αj) = lim
n→∞

fn(αj) = 1,

0 < F ′(x) = lim
n→∞

fn(x) ≤ 1,

and, choosing n > j,

F ′(βj) = fn−1(βj) +
∞∑

k=n

ψk(βj)

17



< 1 − 1

n
+

∞∑

k=n

1

2k · 2k
< 1 − 1

n
+

1

2n
· 1 = 1 − 1

2n
< 1,

and thus we would have the desired F . Proceeding inductively, choose an open interval I

with midpoint α1 such that β1 /∈ I. Then apply Lemma 5.5 with ε = y1 = 1
4

to obtain

f1 = ψ1 that satisfies A1, B1, and C1. Now suppose that n > 1 and fn−1 and ψn−1 have been

chosen which satisfy An−1, Bn−1, and Cn−1. Select disjoint open intervals I1, ..., In such that,

for each j ∈ {1, ..., n}, αj is the midpoint of Ij, Ij ∩ {β1, ..., βn} = ∅, and fn−1(x) < fn−1(αj),

where

δ =
1

n(n + 1)
− 1

2n · 2n
> 0.

Now, apply Lemma 5.5, with ε = 1
2n·2n and yj = 1− 1

n
− fn−1(αj), with 1 ≤ j ≤ n, to obtain

ψn. Cn is now satisfied. Also

fn(αj) = fn−1(αj) + ψn(αj) > fn−1(αj) + yj = 1 − 1

n
,

and so An obtains. To check Bn, we note that if x ∈ Ij, then

fn(x) = fn−1(x) + ψn(x)

< fn−1(αj) + δ + yj + ε

= 1 − 1

n
+

1

n(n + 1))
= 1 − 1

n+ 1
;

while if x /∈
n⋃

j=1

Ij, then

fn(x) = fn−1(x) + ψn(x) < 1 − 1

n
+ ε < 1 − 1

n − 1
.
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Corollary 5.7. There exists a real-valued, everywhere differentiable function H on R such

that H is monotone on no subinterval of R and H ′ is bounded.

Proof. Let {αj}∞j=1 and {βj}∞j=1 be disjoint dense subsets of R. Apply he preceding theorem

to obtain everywhere differentiable functions F and G on R such that

F ′(αj) = G′(βj) = 1, G′(αj) < 1, F ′(βj) < 1,

0 < F ′(x) ≤ 1, 0 < G′(x) ≤ 1,

for all j and x. Now write H = F −G. Then

H ′(αj) > 0, H ′(βj) < 0, and − 1 < H′(x) < 1,

for all j and x. Since {αj}∞j=1 and {βj}∞j=1 are both dense, H cannot be monotone on any

interval.
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6 The Cantor Fuction

Figure 6.1

The Cantor function ([1] and [6]),H : [0, 1] → [0, 1] is a continuous function whose derivative

is zero almost everywhere, but is not constant. It is sometimes referred to as the “Devil’s

Staircase” function, because it has infinitely many steps. It is constant on the closure of

each discarded interval of the Cantor set. It is defined as
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H(x) =





1
2

if x ∈ [1
3
, 2

3
]

1
4

if x ∈ [1
9
, 2

9
]

3
4

if x ∈ [7
9
, 8

9
]

1
8

if x ∈ [ 1
27
, 2

27
]

· · · · · ·

Because H is constant on each discarded interval of the Cantor set, it is clearly differen-

tiable on the complement of the Cantor set. Since the Cantor set has measure zero, H is

differentiable almost everywhere. To show that H is continuous, we once again use binary

and ternary representations. If x ∈ [0, 1] has ternary representation x = 0.x1x2x3..., then

y = H(x) has binary representation y = 0.y1y2y3..., where

yi =





0 if ∃ k < i such that xk = 1

1 if xi = 1 and @ k < i such that xk = 1

xi

2
if xi = 0 or xi = 2 and @ k < i such that xk = 1

H is obviously continuous on its constant intervals, so it remains to show that it is continuous

at each point in the Cantor set. Let x be an element of the Cantor set. Let ε = 3−n. Any

element z of the Cantor set in the ε neighborhood of x differs from x by a number whose

ternary expansion begins with at least n zeros. Therefore, f(z) differs from f(x) by at most

2−n. If a point belongs to the complement of the Cantor set, it lies on one of the constant

intervals, and therefore its y-value is the same as the y-value of the endpoints of the interval.
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Since one of the endpoints must also be in the same ε neighborhood, the y-value must differ

from f(x) by at most 2−n, and therefore H is continuous.
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7 Products of Derivatives

It is well known that every continuous, real-valued function is a derivative. It is obvious

that the sum or difference of any two derivatives is also a derivative. Later in this section

we will prove that the product of a derivative and an absolutely continuous function is a

derivative. However, the product of two derivatives is in general not a derivative. We now

present a counterexample, originating in [9] (see also [2]), to an even stronger situation, when

the product of a continuous function and a derivative fails to be a derivative. Let

f(x) =





x
1
2 sin 1

x
, x 6= 0

0, x = 0

,

g(x) =





x
1
2 sin 1

x
, x 6= 0

0, x = 0

,

and

h(x) =





x
3
2 cos 1

x
, x 6= 0

0, x = 0

.

Since 0 ≤ |f(x)| ≤ x
1
2 , the pinching theorem shows that f is continuous at zero, and therefore

continuous on R. The same is true of h. Now, h′(x) = 3
2
x

1
2 cos 1

x
+ x−

1
2 sin 1

x
when x 6= 0.

Hence, h′(x) − g(x) is continuous and g(x) is therefore a derivative. To show that fg(x) is

not a derivative, it is necessary to first show that the function
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α(x) =





cos 2
x
, x 6= 0

0, x = 0

is a derivative.

Consider the function

γ(x) =





x2

2
sin 2

x
, x 6= 0

0, x = 0

for which we have

γ′(x) =





x sin 2
x
− cos 2

x
, x 6= 0

0, x = 0

.

Once again, the pinching theorem shows that the first term is continuous, and therefore α(x)

is also a derivative. Now,

fg(x) =





sin2( 1
x
), x 6= 0

0, x = 0

.

This can be rewritten, using the double angle identity, as

fg(x) =





1
2
(1 − cos 2

x
), x 6= 0

0, x = 0

.

Adding 2fg + cos 2
x

gives the function




1, x 6= 0

0, x = 0

.
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Clearly, this is not a derivative. Therefore, fg cannot be a derivative.

Definition A function F : [a, b] → R is called absolutely continuous if for every ε > 0 there

exists a δ > 0 such that, if n ∈ N, a ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ ... ≤ an ≤ bn ≤ b and

n∑
i=1

(bi − ai) < δ, then
n∑

i=1

|f(bi) − f(ai)| < ε. F ′ exists almost everywhere on [a, b] and is

Lebesgue integrable on [a, b]. For all x, y ∈ [a, b], with a ≤ x ≤ y ≤ b,

F (y)− F (x) =

∫ y

x

F ′(t) dt.

Theorem 7.1. ([2]) The product of a derivative and an absolutely continuous function is a

derivative.

Proof. Let F : [0, 1] → R be absolutely continuous,with f(x) = F ′(x) almost everywhere,

and let G : [0, 1] → R be differentiable with G′(x) = g(x), and G(a) = 1 for some a ∈ [0, 1].

To show that F · g(x) is the derivative of

F (x)G(x)−
∫ x

0

f(t)G(t) dt,

it suffices to show that

lim
x→a

1

x− a
(F (x)G(x)− F (a)G(a)−

∫ x

a

f(t)G(t) dt) − F (a)g(a)

exists and is equal to 0 at everywhere on [0,1]. This limit is equivalent to

lim
x→a

1

x− a
(F (x)G(x) − F (x)G(a)− F (a)g(a) + F (x)− F (a)G(a)−

∫ x

a

f(t)G(t) dt).

Since F is continuous, and G′(a) = g(a), this becomes
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lim
x→a

1

x− a
((F (x)− F (a))G(a)−

∫ x

a

f(t)G(t) dt).

Since F is absolutely continuous,

F (x)− F (a) =

∫ a

x

f(t) dt.

Therefore, the limit, provided it exists, is equal to

lim
x→a

1

x− a

∫ x

a

(f(t)G(t) − f(t)G(a)) dt.

Since G′(a) = g(a), it follows that G(t) − G(a) = (g(a) + ε(t))(t − a), where ε(t) → 0 as

t→ a. Hence,

∣∣∣∣
1

x− a

∫ x

a

(f(t)G(t) − f(t)G(a)) dt

∣∣∣∣ =

∣∣∣∣
1

x− a

∫ x

a

(f(t)(g(a) + ε(t))(t− a)) dt

∣∣∣∣

≤ |g(a)|+ |ε(x)|
|x− a|

∫ x

a

|f(t)(t− a)|dt

≤ (|g(a)|+ |ε(x)|)
∫ x

a

|f(t)| dt.

f(t) is Lebesgue integrable, and therefore |f(t)| is Lebesgue integrable as well, and so

∫ x

a

|f(t)| dt→ 0 as x→ a.

Therefore the original limit exists and equals zero.
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