

Informally speaking, the subdivision of the edge (u, v) is formed by putting a new vertex

w anywhere in its interior. A subdivision of a graph G1 is a graph resulting from the

subdivision of edges in G1.

4.1.2 Pathways

Biochemical pathway is a building block of metabolism which is a series of chemical

reactions catalyzed by enzymes that occur within a cell. It represents a flow of consecutive

enzymatic reactions that take specific metabolites (also called substrate) as an input to

yield specific products. In such pathways, a substrate is converted into a product by the

first enzyme in the pathway and the product of the first reaction then becomes the substrate

for the next reaction. The sequence of reactions continue until the final product is made.

When a biochemical pathway is functioning, the initial substrate is continually converted to

the final product through the series of steps in the pathway. See Figure 4.1 as an example.

Figure 4.1. A portion of pentose phosphate pathway.

There exist two types of graph models representing metabolic pathways.

One model is based on hypergraphs. Metabolic networks can be represented as directed

hypergraphs ([62]),where an edge, called a hyperedge, can connect more than two vertices.

The vertices in the hypergraph are the compounds and the hyperedges are the reactions

connecting the compounds. Since a reaction is treated as a single entity in a hypergraph,

24

it can be used to capture relationships between any number of metabolites involved in a

reaction [41]. The representation keeps the dependence between metabolites.

The other model is based on directed graphs in which vertices correspond to enzymes and

there is a directed edge from one enzyme to another if the product of the reaction catalyzed

by the first enzyme is a substrate of the reaction catalyzed by the second. See Figure 4.2

as an example. The directed graph reflect the flow of the metabolic chemical reactions, no

matter whether the chemical reactions are reversible or not.

Figure 4.2. Graph model of a portion of pentose phosphate pathway.

In this dissertation proposal, we represent the metabolic network/pathways as directed

graphs because enzyme is a type of protein and the representation easily expresses the

genomics information.

4.2 Graph-theratical approaches to mappings

Existing mapping tools on this problem are mostly based on isomorphic and homeomor-

phic embeddings (see [53, 14, 40, 13, 25, 59, 50, 27, 5, 60, 21, 23, 35, 11] and [15, 16, 44, 43,

34, 33, 49, 39, 37, 55, 61, 19, 58]), effectively solving a problem that is NP-complete [26]

even when searching a match for a tree in acyclic networks.

4.2.1 Exact graph matching

In exact graph matching, the goal is to determine if or not the labels and network

topology, or part of them, of two graphs are identical.

25

If the network topology or graph structure of two graphs are linear (e.g. they can be

represented as strings or feature vectors), the network alignment becomes similar to sequence

alignment. Or else, when the vertices and edges can not be ordered in general, the problem

becomes a class of graph isomorphism problem.

4.2.1.1 Graph isomorphism

Definition 7. Let G1 = (V 1, E1, L1V , L1E) and G2 = (V 2, E2, L2V , L2E) be graphs. A

graph isomorphism between G1 and G2 is a bijective function f : V 1→ V 2 satisfying

1) l1V (u) = l2V (u), ∀u ∈ V 1.

2) ∀(u, v) ∈ E1,∃(f(u), f(v)) ∈ E2 such that L1V (u) = L2V (f(u)) and L1V (v) = L2V (f(v)).

3) ∀(u, v) ∈ E2,∃(f−1(u), f−1(v)) ∈ E1 such that L1V (f−1(u)) = L2V (u) and L1V (f−1(v)) =

L2V (v).

Two graphs G1 and G2 are called isomorphic if there exists a graph isomorphism between

them. The isomorphism of G1 and G2 means their labels and their network topologies are

identical.

Closely related to graph isomorphism is the problem to detect if there exists a subgraph

in the larger graph which is equal to the smaller graph. The problem is known as the one of

finding subgraph isomorphism.

4.2.1.2 Subgraph isomorphism

Definition 8. Let G1 = (V 1, E1, L1V , L1E) and G2 = (V 2, E2, L2V , L2E) be graphs. An

injective function f : V 1→ V 2 is called a subgraph isomorphism from G1 to G2 if there

exists a subgraph G ⊆ G2 such that f is a graph isomorphism between G1 and G.

A subgraph isomorphism exists from G1 to G2 if a subgraph of the larger graph is

isomorphic to the smaller graph. The subgraph isomorphism is belonging to the class of

NP-complete problem.

Another problem is known as maximum common subgraph problem.

26

4.2.1.3 Maximum common subgraph

Definition 9. Let G1 = (V 1, E1, L1V , L1E) and G2 = (V 2, E2, L2V , L2E) be graphs. A

graph G = (V,E, LV , LE) is called a common subgraph of G1 and G2 if there exists subgraph

isomorphism from G to G1 and from G to G2. If there exists no other common subgraph of

G1 and G2 larger than G, the common subgraph G is called maximum common subgraph.

Generally, the maximum common subgraph is not uniquely defined. There may exist

multiple maximum common subgraph with a maximal number of vertices. The problem

can be reduced to find the maximum clique problem in an association graph of two graphs.

The association graph represents the set of vertex-to-vertex mappings that preserve the edge

topology structures among all these corresponding vertices in both graphs.

4.2.2 Error-tolerant or inexact graph matching

In some real-world applications with graph patterns, it is often allowed that graphs from

the same class differ according to the labels or/and the topology. The class of problems is

classified as error-tolerant/inexact graph matching.

In error-tolerant or inexact graph matching, the goal is to determine if or not the labels

and network topology, or part of them, of two graphs are similar. Graph correcting process

which turns the different properties in both graphs to be the same should always lead to the

exact graph matching.

When the noise in a class of graphs happens only in labels of graphs and not in the

topology, error-correcting graph/subgraph isomorphism is required as a problem formulation

to judge the similarity of graphs and to search similar graphs in a set of graphs.

If topologies are allowed to be different, homeomorphism is required as a problem formu-

lation to judge the similarity of graphs and to search similar graphs in a set of graphs.

In the general case, graph edit distance has wider applications. In this subsection, we

will describe homeomorphism and graph edit distance.

27

4.2.2.1 Homeomorphism

Definition 10. Let G1 = (V 1, E1, L1V , L1E) and G2 = (V 2, E2, L2V , L2E) be graphs. Two

graphs G1 and G2 are homeomorphism if some subdivision of G1 is isomorphic to some

subdivision of G2.

Two graphs G1 and G2 are homeomorphic if there is an isomorphism from some sub-

division of G1 to some subdivision of G2. Edge subdivision is an operation that does not

change homeomorphism type of a topological representation of a graph.

4.2.2.2 Graph edit distance

When the graph matching needs take topology error into account, graph edit distance

offers an intuitive way to integrate error tolerance into the graph matching process. The

key idea is to model topological changes by edit operations. The edit operations reflect

the changes of topology and its processing. A set of standard edit operations consists of

vertex insertion, vertex deletion, vertex substitution, edge insertion, edge deletion, and edge

substitution operation. The substitution of vertex or edge is equivalent to the relabeling of

the corresponding vertex or edge. The graph distance from a graph G1 to the other graph G2

is defined as the minimum cost taken over all sequences of edit operations that are necessary

for the correction of the distortions in the graph G2. The smaller the edit distance between

two graphs is, the more similar they are.

Definition 11. Let G1 = (V 1, E1, L1V , L1E) and G2 = (V 2, E2, L2V , L2E) be graphs. The

graph edit distance of G1 and G2 is defined by

d(G1, G2) = min(ε1,...,εk)∈℘(G1,G2)(sum
k
i=1c(εi))

where ℘(G1, G2) denotes the set of edit paths transforming G1 into G2, ε denotes the corre-

sponding edit operation, and c denotes the edit cost function

28

The edit distance is defined by the edit path with minimum accumulated edit operation

costs. By using the appropriate parameters on the distortion and penalty cost model, it

will be sufficient for similar graphs to turn one graph into the other. However for dissimilar

graphs, even the minimum cost edit path will contain some strong distortion.

4.3 A novel formulation of the optimal network alignment

The widespread evolutionary machinery of gene duplication results in vertex copying [48].

The results of network alignments can be enhanced when gene duplication and divergence

are taken into account. If two enzymes in the pattern species are evolutionarily related,

the corresponding enzymes can be mapped into a single enzyme. The mapping explores the

characteristics of graph homomorphism.

Additionally, there exist disassociated vertices or induced subnetworks which work as the

noise and distract the graph matching. We allows to delete the disassociated part in query

network and queried network.

Due to the above two reasons - the gene duplication and enzyme function sharing plus

the existence of disassociated vertices or induced subnetwork, we can not directly formulate

metabolic network alignments as one of the above problem formulations.

As a result, we integrate all characteristics of the above formulations (disregarding graph

edit distance) and propose a new formulation of the optimal metabolic network alignment.

First I will describe enzyme-to-enzyme similarity, vertex collapsing, path contraction, vertex

deletion, and finally optimal network alignment.

4.3.1 Enzyme-to-enzyme similarity

We provide two approaches to calculate vertex similarity score. One approach is to

employ the lowest common upper class distribution proposed by Tohsato et al and discussed

in [43]. The corresponding penalty score for gap is 2.0.

29

The other approach is proposed by Dr. Robert Harison. The approach is to make full

use of EC encoding and the tight reaction property classified by EC. The EC number is

expressed with a 4-level hierarchical scheme. The 4-digit EC number, d1.d2.d3.d4 represents

a sub-sub-subclass indication of biochemical reactions. The corresponding penalty score for

gap is 0.5.

Given two enzyme u = d1.d2.d3.d4 and v = d′1.d
′
2.d
′
3.d
′
4, a similarity cost score ∆ is a

nonnegative real number. It is defined by:

1. ∆(u, v) =∞ , if d1 6= d1’;

2. ∆(u, v) =∞ , if d1 = d1’ and d2 6= d2’;

3. ∆(u, v) = 10 , if d1 = d1’ and d2 = d2’ and d3 6= d3’;

4. ∆(u, v) = 1 , if d1 = d1’ and d2 = d2’ and d3 = d3’ and d4 6= d4’;

5. ∆(u, v) = 0 , if d1 = d1’ and d2 = d2’ and d3 = d3’ and d4 = d4’;

4.3.2 Vertex collapsing

Due to gene duplication and function sharing, we propose to additionally relax one-

to-one correspondence between vertices – instead we allow different pattern vertices to be

mapped to a single text vertex. The relaxation is called vertex collapsing. Such relaxation

may sometimes cause confusion – a path can be mapped to a cycle. For instance, if two

enzymes with similar functions belong to the same path in the pattern and a cycle with

similar enzymes belongs to the text, then the path can be mapped into a cycle (see Figure

4.3). However, if the text graph is acyclic this cannot happen. Even if there are cycles in the

text, still one can expect that functionally similar enzymes are very rare in the same path.

4.3.3 Path contraction

The obvious way to preserve the pathway topology is to use isomorphic embedding –

one-to-one correspondence between vertices and edges of the pattern and their images in the

30

C

D

B

A A’=f(A)=f(D)

B’=f(B)

C’=f(C)

PathEdge

Vertex-to-vertex Mapping

Path Cycle

Figure 4.3. Alignment of a path (A,B, . . . , C,D) in the pattern with a cycle
(A′, B′, . . . , C ′, D′ = A′) in the text.

text. The requirement on edges can be relaxed – an edge in the pattern can be mapped to

a path in the text ([44, 43]). The relaxation is called path contraction. [44, 43] only allow

the occurrences in the text.

Definition 12. Let P = x0x1...xk is a non-branching path in the graph G = (V,E, LV , LE),

path contraction is to replace the path P with an edge (x0, xk).

Furthermore the path contraction can happen in both the pattern and the text. The

corresponding mapping is called a homeomorphism.

4.3.4 Vertex deletion

For keeping the order of vertices such that for any vertex v all children cannot commu-

nicate with each other except through v, we assume that all deleted vertices follow the same

order. If the order of vertices u and v is u < v, the deletion order can not be v < u. So

it’s child branch which has more than 1 vertics and is an induced subgraph has been visited

before it.

As a consequence, we allow pattern vertex deletion in the following constraints (also see

fig. 4.4 as an example):

(1) for degree only one vertex, delete the vertex and adjacent edge;

31

(2) for degree two vertex, delete the vertex and adjacent two edges and then add an extra

edge connecting the endpoints of two edges;

(3) Following the order of visiting pattern vertex, (1) and (2) could repetitively happen so

that a submodule may be allowed to delete (called as a strong deletion);

(4) for vertex b with degree larger than 2, only when its child branches have been deleted

so that a degree-2 vertex is left, (2) constraint can be considered or else the vertex will

not be allowed to delete (called as a bypass deletion).

(2)

a

b

c

u

v

(1)

a

b

c

u

v

(3) = (2) + (1)

a

b

c

u

v

w

Figure 4.4. Examples of pattern vertex deletion. Solid lines represent pattern edges; dashed
lines represent text paths; dashed arrows connect pattern vertices with their images in the
text graph. (1) Bypass deletion of a patten vertex of degree 2. (2) Branch strong deletion
of three pattern vertices; (3) =(2)+(1) Composition of strong and bypass deletions: after
strong deletions a pattern vertex becomes eligible to bypass deletion.

4.3.5 An optimal network alignment

4.3.5.1 Basics

Given two sets A and B, a binary relation R from A to B is a subset of Cartesian

product A × B = {(a, b)|a ∈ A, b ∈ B}. If R ⊆ A × B and (a, b) ∈ R, we say that

a is related to b by R. The domain of R, Dom(R), consists of elements in A that are

related to elements in B. Namely, Dom(R) = {a ∈ A|∃b, (a, b) ∈ R}. The range of R,

Ran(R), consists of elements in B that are second elements of pairs in R. Also we have

Ran(R) = {b ∈ B|∃a, (a, b) ∈ R} ⊆ B.

32

A binary relation R from A to B is a function denoted as f(a) = b if |{b ∈ B|(a, b) ∈

R}| = 1.

A partial function f from A to B, f : A → B, is a function from a subset of A to B,

satisfying ∀a ∈ A, |{b ∈ B|(a, b) ∈ R}| ≤ 1.

A partial function f from A to B is a 1-to-1 partial function if f(a
′
) 6= f(a) for two

distinct elements a and a
′

and |{f(a
′
)}| = 1 & |{f(a)}| = 1.

4.3.5.2 Definitions and notations

Let graph G =< VG, EG >, and graph H =< VH , EH >, let us give the following

definitions.

A function f : VG → VH is homomorphism h from G to H if ∀(u, v) ∈ EG, u, v ∈ Dom(f),

(f(u), f(v)) ∈ EH .

A homomorphism h from G to H is called 1-to-1 homomorphism if h is an 1-to-1 function.

A partial homomorphism h
′

from G to H is a homomorphism from a subset of G to H.

The partial homomorphism is one to one such that if hv′(v) = hv′(u), then v = u.

1-to-1 homomorphism is called embedding. 1-to-1 partial homomorphism is called partial

embedding.

For any graph G, its transitive closure is G∗ =< V,EG∗ >, in which any e = (u, v) ∈ EG∗ is

a path from u to v in G.

An embedding from G to the transitive closure of H is called a homeomorphic mapping

hf : G→ H.

A bypass branch in graph from u to v is a specific u-v path such that any vertex except u

and v has degree 2. The intermediate vertices between u and v are called bypass vertices.

The set is denoted as B.

Bypass deletion d : G→ H is a partial embedding from G to H which satisfies VG−Dom(d) ∈

B and ∀u, v ∈ Dom(d), if there exist a path from u to v, there is an edge (d(u), d(v)) in H.

33

Partial homeomorphic embedding consists of the composition d◦hf of bypass deletion d and

homeomorphism mapping hf .

Our specifical homo-home morphism HH : G → H is the composition of several

relations as follows

(1) h
′
: G→ G′, partial homomorphism from G to G′;

(2) d : G′ → G”, bypass deletion from G′ → G”;

(3) hf : G”→ H, homeomorphism mapping from G”→ H;

So

HH : G
h
′

−→ G′
d−→ G”

hf−→ H

4.3.5.3 Problem Formulation

The cost of homo-home morphism HH : G→ H is

cost(f) =
∑

v∈VG & HH(v)6=∅

∆(v, f(v)) +
∑

v∈VG′ & d(v)=∅

(Ω(v)) + λ
∑

e∈EG” & |hf(e)|>1

(|hf(e)| − 1)

Given a graph P and a graph H, to find minimum cost of homo-homeo morphism HH :

G→ H.

34

CHAPTER 5

NETWORK ALIGNMENTS FROM A POLYTREE TO AN
ARBITRARY GRAPH

A metabolic pathway is a series of chemical reactions catalyzed by enzymes that occur

within a cell. Metabolic pathways are represented by directed networks in which vertices

correspond to enzymes and there is a directed edge from one enzyme to another if the product

of the reaction catalyzed by the first enzyme is a substrate of the reaction catalyzed by the

second.

Mapping metabolic pathways should capture the similarities of enzymes represented by

proteins as well as topological properties that cannot be always reduced to sequential re-

actions represented by paths. Below we first describe our approach to measure enzyme

similarity.

Our implementation provides two alternative enzyme similarity scores. One approach is

to employ the lowest common upper class distribution proposed in [52] and discussed in [43],

which similarity score of two enzymes E1 and E2 is equal to log−h2 where h is the number

of enzymes belonging to the lowest common enzyme class of E1 and E2. The corresponding

penalty score for gap is 2.0.

The other approach is a novel enzyme-to-enzyme dissimilarity score scheme ∆ based on

4-level EC encoding d1:d2:d3:d4, where d4 is the number of enzymes in d3-class which is

subclass of d2-class which is subclass of d1-class. The numeric values are usually positive

integers and equal 0 (or -) only if the corresponding subclass is unknown. If d1’s or d2’s

of two enzymes are different and non-zero, then ∆ = ∞, otherwise, if d3’s are different

and non-zero, then ∆ = 10, otherwise if d4’s are different and non-zero, then ∆ = 1, and,

35

otherwise, ∆ = 0 (see [19]). Notice that if two enzymes are different in the corresponding

position but one of them is 0, then we do not increase ∆. This is because we do not penalize

the lack of information.

The topology of most metabolic pathways is a simple path, but frequently pathways may

branch or have several incoming arcs – all such topologies are instances of a polytree, i.e., a

directed graph which becomes an undirected tree when edge directions are disregarded. The

query pathways are usually simple and can be represented as a polytree but in some cases

they can have a cycle or alternative ways to reach the same vertex. We will suggest to follow

the standard practice of breaking such cycle or paths by removing edges in chapter 6.

5.1 Definitions and notations

We distinguish two kinds of vertex deletions: bypass deletion and strong deletion. A

strong deletion of a vertex v is removing of arbitrary vertex v together with all its incoming

and outgoing edges which is formally represented as mapping into d. A bypass deletion of a

vertex v with a single incoming and a single outgoing edge is replacing of a u-v-w-path with

a single (u,w)-edge formally represented as mapping v into b.

Let graphs P = (VP , EP) and T = (VT , ET) represent a pattern and text metabolic

networks, respectively. Let f : P → T map every vertex in VP to VT ∪ {b,d}. A pair

of pattern vertices u, v ∈ VP is called contracted if u and v are mapped into two different

text vertices and either (u, v) ∈ EP or there exists a u-v-path in P whose all intermediate

vertices are bypass deleted. Let Ef
P be the set of all vertex pairs in P contracted by f (note

that EP ⊆ Ef
P). The mapping f is called a network alignment if for each contracted pair

(u, v) ∈ Ef
P there exists a f(u)-f(v)-path in the text T . The number insertions, i.e., the

minimum number of intermediate vertices in such a path is denoted σ(f(u), f(v)).

The alignment should be penalized (i) for mismatches between aligned enzymes, (ii)

for strong deletions, (iii) for bypass deletions, and (iv) for insertions. Thus we obtain the

following cost function.

36

cost(f) =
∑
u∈VP

∆(u, f(u)) + λ
∑

(u,v)∈Ef
P

σ(f(u), f(v)),

where ∆(u, f(u)) is the penalty of mismatch between enzymes corresponding to pattern

vertex u and text vertex f(u), ∆(u,d) and ∆(u,b) are penalties for strong and bypass

deletions, respectively, and λ is the penalty for a single enzyme insertion.

Given two metabolic networks P and T , the problem is to find the optimal (minimum-

cost) network alignment from P to T .

5.2 Network alignments from a polytree to an arbitrary graph

A polytree is a directed graph, whose underlying undirected graph is a tree. Aligning

between a polytree as the pattern and an arbitrary graph as the text is an extension of the

tree edit distance problem (see [17]). The solution is a combinatorial algorithm based on

the classic technique of dynamic programming. Under the consideration of gene duplication

and function sharing, our algorithm holds the assumption that a childs contribution to their

parents mapping are independent to another childs contribution. As a result, for any vertex

ui as a child of u in the pattern, there exists three possibilities to make the contribution to

its parent’s alignment, e.g.u→ v (v in the text):

• ui is mapping to vj (vj is a descendent of v)

• ui is strongly deleted (denoted by strongD(ui))

• internal vertices denoted as bypass(u,ui,ut) running between u and ut and across ui are

bypassed after their descendants are strongly deleted (denoted by weakD(u, ui, ut))

Given a cost function ∆(u, v) defined on a pair of vertices u ∈ VP and v ∈ VT , we build

two dynamic tables A and B, in both of which each row and column of this table corresponds

to a vertex of P and T , respectively. While the columns are in no particular order, the rows

are sorted according to the opposite of the DFS traversal of P . As a result, for any vertex u

all children cannot communicate with each other except through u (Namely, each edge ei in

37

P is the unique edge connecting ui with the previous vertices in the order). Each element

A[u, v] corresponds to the best cost of a alignment from the subgraph of P induced by the

vertices previous to u into T which maps u into v. Each element B[ui, v] corresponds to the

best contribution of ui to a alignment from the u to v. Every table is filled from the bottom

to the top. Initially,

A(u, v) =

 min {δ(u, v), strongD(u)} when vertex u is leaf

∞ otherwise

and B(u, v) =∞. Then both tables are filled iteratively in a butterfly way by

B[ui, v] = min


minvj∈child(v)(A(ui, vj) + λh(v, vj))

strongD(ui)

minui,k∈des(ui)(weakD(u, ui, ui,k) + λh(v, vj) + A(ui,k, vj))

and

A(u, v) = ∆(u, v) +
∑

ui∈child(u)

B(ui, v)

where h(v, vj) is the number of hops from v to vj, λ is the penalty per an insertion, child(v)

is the set of all direct successor of v, and des(ui) is the set of all successor of ui. Penalty for

strong deletion and weak deletion can be computed in a preprocess by

strongD(u) = ∆(u, d) +
∑

ui∗∈des(u)

∆(ui∗, d)

and

weakD(u, ui, ut) =
∑

uk∈bypass(u,ui,ut)

(
∑
uk,j

strongD(uk,j) + ∆(uk, b))

In the preprocess, we have used two queue structures to compute weakD table under the

DFS traversal of the pattern and obtain the transitive closure of the text.

Our dynamic programming algorithm (see [17] for details) aligns polytrees with arbitrary

networks in time O(|VP |2|ET | log |VT |).

38

5.3 Preprocessing

In the preprocessing, we first describe text graph preprocessing; then we present pattern

graph ordering; finally we describe how to calculate the penalties of pattern vertex strong

deletions and of pattern vertex weak deletions.

5.3.1 Transitive closure of the text graph

In order to compute the cost of vertex insertion, it is necessary to know the number

of hops for any shortest path in the text graph T . Essentially, the transitive closure of a

directed graph contains an edge for every path in the graph.

Definition 13. The transitive closure of a directed graph G = (V,E) is a directed graph

Tc(G) = (V,Ec) where E ⊆ Ec and for every pair of vertices u, v ∈ V , if there is a path from

u to v in G, then there is an edge (u, v) ∈ Ec.

Although finding single-source shortest paths in general graphs is slow, in our case it

is sufficient to run breadth-first-search with runtime O(|ET | + |VT |). Assuming that T is

connected, i.e., |ET | ≥ |VT |, we conclude that the total runtime of finding all shortest paths

is O(|VT ||ET |). In the resulting transitive closure T ′ = (VT , E
′
T) of the graph T , each edge

e ∈ E ′T is supplied with the number of hops h(e) in the shortest path connecting its ends.

5.3.2 Pattern Graph Ordering

We will further need a certain fixed order of vertices in VP as follows. Let P ′ = (VP , E
′
P)

be the undirected tree obtained from P by disregarding edge directions. Let us choose an

arbitrary vertex r ∈ VP as a root and run depth-first search (DFS) in P ′ from r. Let {r =

v1, . . . , v|VP |} be the order of the DFS traversal of VP and let e′i = (vi, v) ∈ E ′P (corresponding

to directed edge ei ∈ EP) be the unique edge connecting vi to the set {v1, . . . , vi−1}. The

vertex v ∈ {v1, . . . , vi−1} is called a parent of vi and vi is called a child of v.

39

5.3.3 Calculation of the penalties for pattern vertex deletions

First we will describe the definition of pattern vertex deletions, and then we will present

our approach to calculate the penalties of the deletions.

5.3.4 Pattern vertex deletions

We distinguish two kinds of vertex deletions: (i) bypass deletion corresponding to the

replacement of a few consecutively acting enzymes with a single multifunctional enzyme or

enzyme using an alternative catalysis and (ii) strong deletion symbolizing the matching of

a proper connected subgraph of the pattern network. Thus, a bypass deletion of a vertex v

with a single incoming and a single outgoing edge is the replacing of a u-v-w-path with a

single (u,w)-edge formally represented as mapping v into b. A strong deletion of a vertex v

is removing of arbitrary vertex v together with all its incoming and outgoing edges which is

formally represented as mapping into d (see 4.4).

The specified bypass deletion of a vertex of degree 2 supports homeomorphism, i.e., it

allows the replacement of a path with a single edge. If the pattern is a directed graph, then

a vertex v can be bypassed only if it belongs to a directed path a→ v → b, and consequently

the incoming and outgoing edges are replaced by a single edge a→ b. Both types of deletion

can be applied recursively and together with each other.

The specified strong deletion corresponds to the operation of deleting subgraph of the

pattern and obtaining a vertex-induced subgraph. A vertex-induced subgraph P ′, sometimes

simply called an ”induced subgraph”, is a subset of the vertices of a graph P together with

any edges whose endpoints are both in this subset. Namely, if a reachable path in the graph

G run across any two vertices in P ′, the path should be reserved in P ′.

The combination of the two types of pattern vertex deletions is defined as weak deletion.

We have defined two queues and a couple of recursive processes to calculate the pattern

vertex deletion penalties.

40

5.4 Dynamic programming approach

In this section we first describe a novel fast algorithm for finding optimal network align-

ment of the tree patterns with no deletions, then of the tree patterns with deletions, and

finally, of arbitrary patterns with limited vertex feedback set.

5.4.1 Tree patterns with no deletions

We orient the undirected graph of the pattern so it is a rooted tree with a root r and

each node u has a set of children. If the pattern is undirected, σ̄ is the same as σ, otherwise

if v is a child of u in our rooted tree

σ̄(f(u), f(v)) =

 σ(f(u), f(v)) if (u, v) ∈ EP

σ(f(v), f(u)) if (v, u) ∈ EP

We can define cost of f restricted to the subtree rooted at u, so cost(f, r) = cost(r). If u is

a leaf, cost(f, u) = ∆(u, f(u)). Otherwise

cost(f, u) = ∆(u, f(u)) + λ
∑

child v of u

cost(f, v) + σ̄(f(u), f(v))

Now we define the following two recursive functions A,B : VP×VT → R. In the algorithm,

we fill two dynamic programming tables with their values.

A(u, x) is defined as the least value of cost(f, u) such that f(u) = x. Note that the

optimum solution cost is minv∈VT
A(r, v).

B(v, x) is defined as the least value of A(v, y) + σ̄(x, y), i.e., the contribution that child v

can give to the cost of its parent u if f(u) = x. Having an additional table for B accelerates

the computation of A, because it is faster to compute B(v, x) for each x together than

separately.

41

If u is a leaf or B(v, ∗) is computed and tabulated for every child v of u, we apply the

formula

A(u, x) = ∆(u, x) +
∑

child v of u

B(v, x)

Computing A(u, x) takes time proportional to the number of children of u therefore the total

time spend computing the values of A is

O(|VT |(
∑
u∈VP

deg(u))) = O(|VT ||EP |) = O(|VP ||VT |)

Computation of B(v, x) is more involved. Implementation proposed in [19] requires

computation of the transitive closure T ′ = (VT , E
′
T) of the text graph T . Computing

B(v, x) = min
(x,y)∈E′T

(A(v, y) + σ̄(x, y))

takes O(|VP ||E ′T |) runtime which can be as large as O(|VP ||VT |2).

We propose instead the following adaptation of Dijkstra algorithm. Given the values

A(v, y) for every y ∈ VT , it finds the values of B(v, x) for all x ∈ VT using a priority queue

Q. The pseudo-code below assumes, without loss of generality, that the edge connecting v

with its parent u is directed (u, v). An item (w, k) in Q is a node w with priority key k.

for each x ∈ VT

insert (x,A(v, x)− λ) into Q

B(v, x)←∞

while Q is not empty

delete from Q item (y, k) with the minimum key k

for every (x, y) ∈ ET

if B(v, x) > k + λ

B(v, x)← k + λ

if y > k + λ

42

decrease key of x in Q to k + λ

If we implement the priority queue Q with the Fibonacci heaps, the runtime for computing

B(v, x) for all x ∈ VT is O(ET + VT log VT). Finally, the optimal cost(f) = minv A(r, v) can

be computed in time O(|VP |(|ET |+ |VT | log |VT |)).

A more practical priority queue based on a binary heap results in slightly higher total

runtime of O(|VP ||ET | log |VT |).

5.4.2 Tree patterns with deletions

Handling the case with deletions does not increase the asymptotic running time, but it

requires several additional considerations. To reduce the number of cases, we will assume

that bypass deletion is applied only to so-called path nodes, pattern nodes that have degree

2 in the case of undirected pattern, or in- and outdegree 1 in the case of directed pattern

(this considerably simplifies the enforcement of the last consistency rule).

For u ∈ VP , let D(u) be the sum of ∆(v,d) over all descendants v of u (the cost of

strongly deleting the subtree of u). Note that the optimum f has some u ∈ f−1(VT) such

that f−1(VT) is contained in the subtree of u; under that assumption the optimum cost

equals A(u, f(u)) +D(r)−D(u), so get the optimum cost by finding the minimum value of

A(u, x) +D(r)−D(u).

Moreover, when we consider the minimum contribution of a child, the value B(v, x), we

have to consider two new possibilities. One is that the entire subtree of the child is strongly

deleted, so D(v) is a possible value; this can be handled by initializing B(v, x) with D(v)

rather than ∞. The second is that the child v bypass deleted, which means that it is a path

node, and in the tree of P it has a single child w. In that case the contribution is “created”

in the subtree of w and its cost is increased by ∆(v,b). To handle that, we introduce another

function/array C(v, x), which for non-path nodes equal A(v, x), and for a path node v with

a single child w equals min(A(v, x), C(v, x) + ∆(v,b)), and we use C(v, x)−λ) as the initial

priority key of x (rather than A(v, x)− λ).

43

5.5 Computational complexity analysis

As we mentioned earlier, the runtime for constructing the transitive closure T ′ = (VT , E
′
T)

is O(|VT ||ET |). the preprocess helps handle pattern vertex deletion, which does not increase

the runtime in asymptotic mode.

The runtime to fill a cell DT [i, j] is proportional to

tij = degP (vi)degT ′(uj)

where degP (vi) and degT ′(uj) are degrees of vi and uj in graphs P and T ′, respectively.

Indeed, the number of children of vi is degP (vi) − 1 and for each child vil of vi there are

at most degT ′(uj) feasible positions in T ′ since f(vi) and f(vil) should be adjacent. The

runtime to fill the entire table DT is proportional to

|VT |∑
j=1

|VP |∑
i=1

tij =

|VT |∑
j=1

degT ′(uj)

|VP |∑
i=1

degP (vi) = 2|E ′T ||EP |

Thus the total runtime is O(|VT ||ET |+ |E ′T ||VP |). Even though T is sparse, |E ′T | may be as

large as O(|VT |2), i.e., the runtime is O(|VT |(|ET |+ |VT ||VP |)).

5.6 Experimental data

The genome-scale metabolic network data in our studies were drawn from BioCyc [2, 32,

38], the collection of 260 Pathway/Genome Databases, each of which describes metabolic

pathways and enzymes of a single organism. We have chosen metabolic networks of E. coli,

the yeast S. cerevisiae, the eubacterium B. subtilis and the archeabacterium T. thermophilus

so that they cover major lineages Archaea, Eukaryotes, and Eubacteria. The bacterium E.

coli with 113 pathways is the most extensively studied prokaryotic organism. T. thermophilus

with 208 pathways belongs to Archaea. B. subtilis with 226 pathways is one of the best

understood Eubacteria in terms of molecular biology and cell biology. S. cerevisiae with 151

pathways is the most thoroughly researched eukaryotic microorganism.

44

5.7 Computation of statistical significance

Although the cost of an alignment reflects the similarity of pathways, it alone cannot

assure us that such cost is not obtained by chance. Only statistically significant cost values

can be taken in account. Statistical significance is measured by p-value, i.e., the probability

of the null hypothesis that the cost value is obtained by pure chance. Following a standard

randomization procedure, we randomly permute pairs of edges (u, v) and (u′, v′) if no other

edges exist between these 4 vertices u, u′, v, v′ in the text graph by reconnecting them as

(u, v′) and (u′, v). This allows us to keep the incoming and outgoing degree of each vertex

intact. We find the minimum cost network alignment of the pattern graph with the full

randomization of the text graph and check if its cost is at least as big as the minimum

cost before the randomization of the text graph. We say that the alignment is statistically

significant with p < 0.01 if we found at most 9 better costs in 1000 randomization of the

text graph.

5.8 Experiment results

For each pair of four species (B. subtilis, E. coli, T. thermophilus and S. cerevisiae),

using our algorithm we find the best alignment of each pathway of one species with each

pathway of the other and check if this alignment is statistically significant, i.e., if p < 0.01.

We have run our experiments on a Pentium 4 processor, 2.99 GHz clock with 1.00 GB RAM.

The total runtime was 1.5h for the input/output of pathways and computing the optimal

pattern-to-text mapping and its p-value for every pair of pathways (there are in total 516052

pattern-text pathway pairs).

5.8.1 Number of significant alignments.

The results of our experiments are reported in Table 5.1. The first column contains the

name of the species from whose metabolic network the pattern pathways have been chosen.

Note that if a pathway is not a polytree or degenerate (i.e., has less than 3 nodes), then it is

45

Table 5.1. Number of significant pair-wise alignments between metabolic pathways of T. ther-
mophilus, B. subtilis, E. coli and S. cerevisiae.

pattern network text network (number of pathways)
(tree pathways) # of mappings T. thermophilus B. subtilis E. coli S. cerevisiae
T. thermophilus 38 21 18 18

(208) for pattern pathways 28 14 12 13
for text pathways 35 20 18 17

B. subtilis 162 217 121 58
(226) for pattern pathways 80 143 85 39

for text pathways 106 153 92 40
E. coli 9 5 38 3
(113) for pattern pathways 2 3 3 2

for text pathways 9 5 14 5
S. cerevisiae 24 12 12 14

(151) for pattern pathways 9 7 6 13
for text pathways 21 12 12 14

Table 5.2. The list of all 20 pathways in B. subtilis that have statistically significant align-
ment images simultaneously in all 3 other species E. coli, T. thermophilus and S. cerevisiae.
The lower part contains 4 more different pathways with statistically significant images in all
4 species.

Pathway name
alanine biosynthesis I
biotin biosynthesis I
coenzyme A biosynthesis
fatty acid beta
fatty acid elongation saturated
formaldehyde oxidation V (tetrahydrofolate pathway)
glyceraldehyde 3 phosphate degradation
histidine biosynthesis I
homoserine biosynthesis
lysine biosynthesis I
ornithine biosynthesis
phenylalanine biosynthesis I
phenylalanine biosynthesis II
polyisoprenoid biosynthesis
proline biosynthesis I
quinate degradation
serine biosynthesis
superpathway of gluconate degradation
tyrosine biosynthesis I
UDP galactose biosynthesis

alanine biosynthesis
biotin biosynthesis
fatty acid oxidation pathway
fructoselysine and psicoselysine degradation

46

Table 5.3. The list of 14 pathways conserved across B. subtilis, E. coli, and T. thermophilus ;
2 more pathways conserved across B. subtilis, E. coli, and S. cerevisiae; 2 more pathways
conserved across B. subtilis, T. thermophilus, and S. cerevisiae.

Pathway name
triple: B. subtilis, E. coli, and T. thermophilus
4 aminobutyrate degradation I
de novo biosynthesis of pyrimidine deoxyribonucleotides
de novo biosynthesis of pyrimidine ribonucleotides
enterobacterial common antigen biosynthesis
phospholipid biosynthesis I
PRPP biosynthesis II
salvage pathways of pyrimidine deoxyribonucleotides
ubiquinone biosynthesis
flavin biosynthesis
glycogen biosynthesis I (from ADP D Glucose)
L idonate degradation
lipoate biosynthesis and incorporation I
menaquinone biosynthesis
NAD biosynthesis I (from aspartate)

triple: B. subtilis, E. coli, and S. cerevisiae
oxidative branch of the pentose phosphate pathway
S adenosylmethionine biosynthesis

triple: B. subtilis, T. thermophilus, and S. cerevisiae
tyrosine biosynthesis I
fatty acid elongation unsaturated I

omitted. We did not omit any pathway from the text species since our algorithm supports

any network as a text. For every species-to-species mapping, we compute the number of

mapped pairs with p < 0.01, the number of the pattern pathways that have at least one

statistically significant homomorphic image and the number of the text pathways that have

at least one statistically significant homomorphic pre-image.

For example, for homomorphism from T. thermophilus to B. subtilis, there are in total

21 statistically significant mapped pairs, 14 non-degenerate tree T. thermophilus pathways

have statistically significant homomorphic images in B. subtilis and 20 out of 226 B. subtilis

pathways have statistically significant homomorphic pre-images.

47

5.8.2 Identifying Conserved Pathways.

We have identified the pathways that are conserved across all 4 species under consid-

eration. Table 5.2 contains a list of all 20 pathways in B. subtilis that have statistically

significant optimal alignment images simultaneously in all species. The lower part of Ta-

ble 5.2 contains 4 more pathways with different names in E. coli, T. thermophilus and S.

cerevisiae, which have simultaneous statistically significant images in all species.

Besides 24 pathways conserved across all 4 species we have also found 18 pathways only

common for triples of these species. Table 5.3 gives the pathway names for each possible

triple of species (the triple E. coli, T. thermophilus and S. cerevisiae does not have extra

conserved pathways).

2.6.1.1

2.6.1.1

1.2.4.- 2.3.1.-

2.3.1.61

6.2.1.5

6.2.1.5

1.3.99.1

1.3.99.1

4.2.1.2

4.2.1.2

1.

1.1.1.82

1.1.1.82

1.2.4.2

Figure 5.1. Mapping between glutamate degradation VII pathways of from B. subtilis to
T. thermophilus (p < 0.01). The node with upper part and lower part represents a vertex-to-
vertex mapping. The upper part represents the query enzyme and the lower part represents
the text enzyme. The shaded node reflects enzyme homology.

5.8.3 Resolving Ambiguity.

Currently multiple pathways contain unresolved enzymes. Completely unresolved en-

zymes have EC notation 0.0.0.0/-.-.-.- and partially unresolved enzymes have less ”-”’s, e.g.,

EC notation 1.2.4.-. We can use our mapping tool to suggest possible resolution of these

ambiguities as follows.

Let us consider two examples of network alignment – the mapping of glutamate degra-

dation VII pathway in B. subtilis to glutamate degradation VII pathway in T. thermophilus

(shown in Figure 5.1), and the mapping of interconversion of arginine, ornithine and proline

48

3.5.3.6

3.5.3.6

1.5.1.2

1.5.1.2

1.5.1.

2.1.3.3

2.1.3.3

2.6.1.13

2.6.1.13

0.0.0.0

0.0.0.0

5.1.1.4

5.1.1.4

0.0.0.0

0.0.0.0

0.0.0.0

0.0.0.0

1.4.1.12

1.4.1.12

6.1.1.12

6.1.1.12

5.4.3.5

5.4.3.-

Figure 5.2. Mapping of interconversion of arginine, ornithine and proline pathway from T.
thermophilus to B. subtilis (p < 0.01). The node with upper part and lower part represents
a vertex-to-vertex mapping. The upper part represents the query enzyme and the lower part
represents the text enzyme. The shaded node reflects enzyme homology.

pathway in T. thermophilus to interconversion of arginine, ornithine and proline pathway in

B. subtilis (shown in Figure 5.2). When some enzymes in pathway are labeled with the end

of ”.-”, it denotes their exact reactions are not explicit. The mapping results indicate that a

potential similar enzyme with similar functions of the unclear enzyme can be found in some

other species.

5.8.4 Identifying pathway holes

Pathway holes happen when a genome appears to lack the enzymes needed to catalyze

reactions in a pathway [28]. We can use our mapping tool to identify potential pathway

holes as shown in the following example (see Figure 5.3).

There is a statistically significant mapping from formaldehyde oxidation V (tetrahydro-

folate pathway) in B. subtilis to formyITHF biosynthesis in E. coli. The correspondence

between enzymes shows a gap – enzyme 3.5.1.10 is missing. We found that the enzyme

3.5.1.10 exists in B. subtilis according to Enzyme and Swiss-prot databases.

49

6.3.4.3

6.3.2.12 1.5.1.3 2.1.2.1

1.5.1.20

2.1.1.13

2.1.1.45 0.0.0.0

6.3.2.17

3.5.1.10

1.5.1.5 3.5.4.9

1.5.1.5 3.5.4.9 6.3.4.3

Pattern : Formaldehyde oxidation V pathway in B. subtilis

Text : Formy1THF biosynthesis pathway in E. coli

Figure 5.3. Mapping of formaldehyde oxidation V pathway in B. subtilis to formy1THF
biosynthesis pathway in E. coli (p < 0.01). The node with upper part and lower part
represents a vertex-to-vertex mapping. The upper part represents the query enzyme and the
lower part represents the text enzyme. The node with dashed box represents a gap.

5.8.5 Phylogenetic Validation.

One can measure similarity between species based on the number of conserved pathways.

The largest amount of conserved pathways is found between B. subtilis and T. thermophilus

– two species-to-species mappings have in total 183 statistically significant pairs of pathways.

The next closest two species are E. coli and B. subtilis which have 126 statistically significant

pairs of pathways. This agrees with fact that B. subtilis, T. thermophilus, and E. coli are

prokaryote and S. cerevisiae is a eucaryote.

5.9 Conclusions

The proposed alignment approach allows to map different enzymes of the pattern pathway

into a single enzyme of a text network. We have also defined a novel scoring scheme for

computing similarity between enzymes based on their EC notation.

We have formulated the graph-theoretical problem corresponding to finding optimal net-

work alignment from the pattern network to a text network. We give an efficient dynamic-

programming method for exactly solving this problem when the pattern is polytree an the

text is an arbitrary network.

50

We have applied our mapping tool pairwise mapping of all pathways for four organisms

(E. coli, S. cerevisiae, B. subtilis and T. thermophilus species) representing main different

lineages and found a reasonably large set of statistically significant pathway similarities.

We report 24 pathways that are conserved across all 4 species as well 18 more pathways

that are conserved across at least three of these species. We show that our mapping tool

can be used for identification of potential pathway holes as well resolving enzyme notation

ambiguities in existing pathway descriptions.

51

CHAPTER 6

NETWORK ALIGNMENTS FOR GENERAL PATTERNS

We further extend our approach to cyclic patterns. First considering that every connected

subgraph has a spanning tree, an intuitive idea is to enumerate all possible subgraph which

covers all vertices, to run our previous algorithm on their spanning trees, and finally to

recover the connection of edges in pattern which disappear in the spanning trees and search

for global optimal alignment. If no deletions in pattern are taken into account, an easier

approach is to find minimum feedback vertex set (FVS) which removal cuts cycles out,

iteratively to ”fix” the vertices in FVS to text vertices, and finally to obtain the global

optimal alignment. Further if pattern vertex deletions happen only on vertices belonging to

non feedback vertex set, the previous algorithm can be directly employed. If pattern vertex

deletions are allowed on FVS vertices, the possibility of possible subgraphs generated by

bypass deletions is exponential and a series of data reductions of the general pattern are

required. The idea of data reduction is to quickly presolve those parts of the input data that

are relatively easy to cope with, shrinking it to those parts that form the really hard core

of the problem [30]. In our case, the presolved parts are the subgraphs without deletions

of vertices in FVS. The other subgraphs can be handled by the reduction of a series of the

cases same as the one of the presolved parts. The resulted algorithm is a fixed-parameter

combinatorial algorithm which increases the runtime by the factor of V
|FV S|2
T .

Besides, for improving the performance and at the same time guaranteeing to find optimal

solutions, we design and construct a tree decomposition structure of the pattern and proposed

a first algorithm which align the treelike-property structure with the text and increases run

52

time by the factor of V
c|TD|
T (c is constant and |TD| is the treewidth of the pattern (Especially

the treewidth of metabolic network is 2).).

In this chapter, I first present algorithms based on feedback vertex set and then present

tree decomposition and its application in network alignment.

6.1 Handling cycles in patterns by feedback vertex set

6.1.1 Handling cycles in patterns without pattern vertex deletions

The dynamic programming algorithm for multi-source patterns heavily relies on the ex-

istence of sorting of P such that for any vertex v all children cannot communicate with each

other except through v. In order to have the same property for patterns with cycles, we

”fix” the images of the vertices from F (P) in the text T , called feedback vertex set or cycle

cut vertex set, i.e., we assume that for each v ∈ F (P) we know its image f(v) ∈ VT .

Searching for the minimum cost homomorphism f : P → T among only mappings that

preserve mapping pairs (v, f(v)), v ∈ F (P), can be done efficiently. Indeed, let K be a

connected component of P \ F (P) and let K ′ be the connected component of K ∪ F (P)

containing K. The vertices of K ′ are sorted in such a DFS order that feedback vertices are

leaves. We then run our algorithm from the previous section with the assumption that the

text images of feedback vertices are fixed.

In order to find the overall optimal homo-homeo morphism we should repeat the above

procedure with all possible fixed mappings of the feedback vertices. The total number of

such mappings is O(V
|F (P)|
T) and can be very large if |F (P)| is large.

We further improve the runtime of our algorithm by reduction to the minimum weighted

feedback set problem. The text T usually contains very few vertices corresponding to en-

zymes that have EC annotation similar to EC annotation of v. Let t(v) be the number

of possible text images of a given pattern vertex v. Then the total number of all possible

feedback set mappings is O(
∏

v∈F (P) t(v)) rather than O(V
|F (P)|
T). In order to minimize that

amount we can minimize its logarithm
∑

v∈F (P) log t(v)). Finally, we need to find the mini-

53

mum weight feedback set of the pattern P where the weight of each vertex v is log t(v). This

problem is NP-complete and we have implemented the 2-approximation algorithm [6].

6.1.2 Calculation of the penalties for pattern vertex deletions

w

v

z

x

u

y

(1)

b

a

e

c

df

g

(3)(2)

s tK connectivity

Figure 6.1. Examples for the discussion about pattern vertex deletion. (1) An example
which specifies pattern vertex deletions so that induced subgraph can be generated; (2)
An example to show induced subgraph reserves the k connectivity of two vertices in origi-
nal graph. (3) An example which demonstrates general pattern vertex deletion leads to a
combination problem.

The specified strong deletion corresponds to the operation of deleting subgraphs of the

pattern and obtaining a vertex-induced subgraph. A vertex-induced subgraph P ′, sometimes

simply called an ”induced subgraph”, is a subset of the vertices of a graph P together with

any edges whose endpoints are both in this subset. Namely, if a reachable path in the graph G

runs across any two vertices in P ′, the path should be reserved in P ′. Let us take cases in Fig.

6.1 as examples. These examples can be used to represent classes of connectivity patterns

which are generated by recursively deleting degree-1 vertices. As shown in Fig. 6.1.1,

under the specified definition of strong deletion, the bridge u → v between two connected

subcomponents can not be deleted if either or both of the subcomponents are not deleted;

vertices in the connected subcomponent such as v → w → z → v except the articulation

point v can be either totally deleted or totally reserved. As shown in Fig. 6.1.2, once two

vertices s and t stay in the induced subgraph, the kth connectivity between them in original

graph should be kept.

54

The specified bypass deletion of a vertex of degree 2 supports homeomorphism, i.e., it

allows the replacement of a path with a single edge. If the pattern is a directed graph, then

a vertex v can be bypassed only if it belongs to a directed path a→ v → b, and consequently

the incoming and outgoing edges are replaced by a single edge a→ b. Both types of deletions

can be applied recursively and together with each other.

The two types of pattern vertex deletions and their combination avoid the occurrence of

arbitrary pattern vertex deletions which may leads to combination problems and exponential

runtime solutions in a graph with multiple cycles (see Fig. 6.1.3 as an example).

6.1.3 An combinatorial algorithm for general network alignments

Denote FV S as feedback vertex set. Denote deg(v) as the degree of vertex v. Denote

inEdges(v) and outEdges(v) as the set of incoming and outgoing edges of vertex v, respec-

tively. If v is a degree-2 vertex, denote inEdge(v) and outEdge(v) as the incoming and

outgoing edges of vertex v. As in chapter 5, a bypass deletion of a vertex v corresponds to

mapping v into b. A strong deletion of a vertex v corresponds to mapping v into d.

Let us call HH the algorithm of optimal network alignment from a polytree to an ar-

bitrary graph (see chapter 5). Let us call HH ′ the following algorithm for general network

alignments (see its problem formulation in [18, 17]).

(1) (2) (3) (4)

Figure 6.2. Cycle patterns for case 1, 2, 3, and 4 respectively.

Input: graph P =< VP , EP > and T =< VT , ET > respectively as pattern and text.

Case 1: P is a unicyclic graph (when directions are disregarded):

55

Let C be vertices in the cycle

Subcase 1.1: Only strong deletion happens on the vertex in FV S

for each v ∈ C

P ′ ← P \ {v} \ (descendants(v) \ C)

align P ′ with T by HH

A1.1 ← minimum cost alignment

Subcase 1.2: Bypass deletion happens on the vertex in FV S

if ∃v ∈ C & deg(v) == 2

for each v ∈ VP

align C ∪ {e = (inEdge(v), outEdge(v))} \ {v} with T by applying case 1.2

A1.2 ← minimum cost alignment

Subcase 1.3: No deletion on FV S vertex

if ∃v ∈ C & deg(v) > 2

for each u ∈ VT

”fix” v → u

do alignment by HH

A1.3 ← minimum cost alignment

A1 ← minA1.1, A1.2, A1.3

case 2: P is not a uni-cycle graph & |FV S| = 1 & v ∈ FV S

Subcase 2.1: v → d

for each disjoint component P ′ of P \ {v}

align P ′ with T by HH

A2.1 ← minimum cost alignment

56

Subcase 2.2: v → b

for each pair of e1 ∈ inEdges(v) and e2 ∈ outEdges(v)

P ′ ← keep the branch of e1 and e2, delete the other branches, and bypass delete v

align P ′ with T by applying case 1

A2.2 ← minimum cost alignment

Subcase 2.3: No deletion on v

for each u ∈ VT

”fix” v to u

do alignment by HH

A2.3 ← minimum cost alignment

A2 ← minA2.1, A2.2, A2.3

case 3: |FV S| = f & P is bi-connected

for each permutation l = (vf1 , vf2 , ..., vfi
) of vertices in FV S

for each vfj
∈ l, j is from 1 to i

Subcase 3.1: vfj
→ d

for each disjoint component P ′ of P \ {vfj
}

align P ′ with T by applying HH ′

A3.1 ← minimum cost alignment

Subcase 3.2: vfj
→ b

for each pair of e1 ∈ inEdges(v) and e2 ∈ outEdges(v)

P ′ ← keep the branch of e1 and e2, delete the other branches, and bypass delete vfj

align P ′ with T by applying HH ′

A3.2 ← minimum cost alignment

57

Subcase 3.3: no deletion on vfj

for each u ∈ VT

”fix” vfj
→ u

do alignment by applying HH ′

A3.3 ← minimum cost alignment

A3l
← minA3.1, A3.2, A3.3

A3 ← minA3l

case 4: |FV S| = f & P is not bi-connected

find the set of articulation points S

for each permutation l = (vs1 , vs2 , ..., vsi
) of vertices in S

for each vsj
∈ l, j is from 1 to i

do same thing as case 3.1, 3.2, and 3.3 and save results to A4.1, A4.2, A4.3

A4l
← minA4.1, A4.2, A4.3

A4 ← minA4l

Computational complexity analysis.

In chapter 5, the runtime for HH algorithm is O(|VP | × (|ET |+ |VT |log|VT |) + |EP ||VT |).

For case 1 in HH ′, obviously it will be increased by the factor O(V 2
P). For case 2, the

number of pairs of incoming edges and outgoing edges is E2
P . So the runtime for the case is

increased by the factor O(V 2
P × E2

P).

For case 3.2, every feedback vertex set vertex v has |inEdges(v) × outEdges(v)| pos-

sibilities to be bypass deleted. We specify the mapping as v → bi, i ∈ [1, |inEdges(v) ×

outEdges(v)|]. However, every vertex may be mapped to a vertex in text T , d, or bi.

For every iteration, the feedback vertex size is reduced by at least 1. We use FV Si to

represent the feedback vertex set in iteration i and vfi,j
to represent the vertex in FV Si . So

58

the total runtime in the case is increased by the factor

O(Πi(VT + 1 +maxj(inDegree(vfi,j
)× outDegree(vfi,j

)))|FV Si|

= O((VT + 1 +max(inDegree(vP)× outDegree(vP)))|FV S|
2

)

For case 3 or case 4, the upbound runtime increase factor is

O((VT + 1 +max(inDegree(vP)× outDegree(vP)))|FV S|
2

)

As a consequence, the total runtime of the algorithm is

O((VT+1+max(inDegree(vp)× outDegree(vP)))|FV S|
2×|VP |×(|ET |+|VT |log|VT |)+|EP ||VT |))

6.1.4 A reduction algorithm for general network alignments

Let G =< V,E > be a directed graph. A neighbor of u ∈ V is a vertex v ∈ V which is

adjacent to u by an edge in E. Its degree d(u) is the number of edges adjacent to u in G.

A vertex in G of degree 1 is called a leaf. A vertex of degree 2 is called a bypass vertex. A

cycle is a closed alternating sequence of adjacent vertices and edges that contain no repeated

edges. A simple cycle is a cycle that contains no repeated vertices. Two cycles in G are

independent if their vertex sets are disjoint; they are weakly independent if their edges sets

are disjoint. A graph is called a self-loop if it contains only a vertex and an edge adjacent

to itself.

A feedback vertex set of G is a subset of vertices F ⊆ V such that each cycle in G pass

through at least one vertex in F . The removal of the vertices in F and all their edges makes

G cycle-free. A minimum feedback vertex set of a graph G is a feedback vertex set Fmin of

the minimum size.

A feedback arc set of G is a subset of edges FE ⊆ E such that each cycle in G contains

at least one edge in FE. The removal of the edges in F makes G cycle-free. A minimum

feedback arc set of a graph G is a feedback arc set FEmin
of the minimum size.

59

The cyclomatic number r(G) of a graph G is the size of the minimum feedback arc set.

Let F -cycle be a graph with exactly F cycles such that any pair of them are pairwise vertex-

disjoint (See Fig. 6.3 as an example). Furthermore we denote by δG(v) the decrease in the

cyclomatic number of the graph on removing vertex v.

Handling With Cycles – Cycle Patternsg y y

F-Cycle

Figure 6.3. An F -cycle sample.

First we define a procedure to reduce G to G′.

Algorithm 6.1.4.1

Input: graph G;

Output: reduction G′ of G

H ← G

while v is a leaf in H do

delete v and its adjacent edges from H

while v is a bypass vertex in H without a self-loop do

add an edge to connect the two neighbors of v

remove v and its edges

G′ ← H.

Lemma 1. The reduction doesnot reduce the number of minimum feedback vertex set.

Namely, let G be a graph and G′ be its reduction by the above procedure. Then, every

feedback vertex set of G′ is also a vertex feedback set of G.

60

Proof. Let Hi be the values of H in the beginning of ith iteration. Let Hi+1 be the values

of H in the end of ith iteration. Clearly the replacement of a bypass vertex and its edges

with an edge connected the vertex’s neighbors keeps cycles.

Now we list a greedy algorithm which achieves an approximation guarantee of factor 2

for the feedback vertex set problem.

Algorithm 6.1.4.2

Input: graph G;

Output: a feedback vertex set V;

H ← G, i← 0

while u ∈ VH do

w′(u)← 1

while H is cyclic do

c← minu∈VH
{w
′(u)

δH(u)
}

Gi ← H

while u ∈ VH do

ti(u)← c× δGi
(u), w′(u)← w′(u)− ti(u)

H ← the subgraph of Gi induced by vertices u with w′(u) > 0

i← i+ 1

k ← i, Gk ← H

Fk ← ∅

for i ∈ [k . . . 1] do

Fi−1 ← Fi ∪ (Vi−1 − Vi)

F ← F0.

Lemma 2. Algorithm 6.1.4.2 achieves an approximation guarantee of factor 2 for the

feedback vertex set problem.

61

Proof. see vazirani’s textbook.

A faster reduction algorithm.

The feedback vertex set (FVS) of a graph G is a set of vertices whose deletion makes

graph acyclic. Let f(G) denote the size of the minimum FVS of G. Denote deg(v) as

the degree of a vertex v. Denote inEdges(v) and outEdges(v) as the set of incoming and

outgoing edges of v, respectively. If v is a degree-2 vertex, denote inEdge(v) and outEdge(v)

as the incoming and outgoing edges of v. As in [17], a bypass deletion of v corresponds to

mapping v into b. A strong deletion of v corresponds to mapping v into d.

Cases:

Case 1. No strong deletions and no bypass deletions are allowed. In polytrees we

run DP algo A0. For graphs with cycles, choose an arbitrary FVS F ⊆ VP and map each its

vertex into each vertex of T , then obtain the optimal mapping of each resulted connected

component using polytree DP algo A0. The runtime is O(VT
F rt(A)) [19].

Case 2. No strong deletions are allowed. In polytrees we run DP algorithm Ab. For

graphs with cycles, the same algorithm as in Case 1, but we should make sure that no vertex

in F is bypass deleted. So we choose FVS with each vertex having in- or outdegree at least 2

and the runtime is O(VT
F rt(Ab)). Such FVS always exists unless P is a loop, i.e., a directed

cycle in which all vertices have in- and outdegree equal to 1. In this case, at least one vertex

will not be bypass deleted and for each vertex v in this cycle C we map v into each vertex

of T , run polytree DP algorithm Ab, and choose the best mapping. The total runtime is

C × rt(Ab). Thus the runtime is O((VT
F + VP)rt(Ab)).

Case 3. Both strong deletions and bypass deletions are allowed. In polytrees we run

DP algorithm Abd. For graphs with cycles, the same algorithm as in Case 2 works if no vertex

in FVS is allowed to be bypass deleted. The case of a single loop C as a pattern is handled

the same way with the runtime C×rt(Abd) and the runtime would be O((VT
F +VP)rt(Abd)).

62

Unfortunately, even though a vertex v cannot be originally bypass deleted since it has in-

or out-degrees higher than 1, the strong deletion of some of its neighbors can make v eligible

for bypass deletion.

If at least one vertex v ∈ F is not bypass deleted, then this vertex should either be

mapped into T or strong deleted and the rest of the pattern graph has FVS reduced by 1.

Now consider the case when all vertices in F are bypass deleted. The number of ways how

a vertex v can be bypass deleted is equal to indeg(v)outdeg(v). Each such bypass deletion

requires strong deletion of indeg(v) + outdeg(v) − 2 neighbors. Let f be the number of all

possible combinations of bypass deletions of all FVS vertices, i.e.,

S =
∏
v∈F

indeg(v)outdeg(v) < VP
2F

The cyclomatic number of a graph G is the minimum number r of edges whose removal

makes G cycle-free. Let F -cycle be a graph with exactly F cycles such that any pair of them

are pairwise vertex-disjoint.

Lemma 1. A graph G is an F -cycle if and only if the size of minimum feedback vertex

set and cyclomatic numbers are equal F , f(G) = r(G) = F . If G is not an F -cycle, then a

greedy algorithm outputs a FVS of size at most F − 1.

Proof. Let G be an F -cycle. Since all cycles are vertex disjoint they are also edge disjoint

and it necessary and sufficient to delete F vertices or edges to destroy all F cycles.

Now let f(G) = r(G) = F . There exists an edge set X = {e1, . . . , eF}, such that G−X

is acyclic. On the contrary, assume that G has a vertex v belonging to two different cycles,

then X should contain two different edges ei and ej that break them. These two edges can

be replaced in X with edges e′i and e′j incident to v. Then f(G) ≤ F −1, since we can choose

a FVS consisting of v and one endpoint from each edge in X − ei − ej.

63

If G is not an F -cycle, then there should be a vertex that belong to at least two cycles.

A greedy algorithm will find such vertex and remove from G. Therefore, it will output a

FVS of size at most F − 1. �

We can handle F -cycle with the following algorithm Bbd. We find the leaf cycle L (the

one which is connected to at most one other cycle) and its stem (v, u) (v ∈ L and (v, u) is on

the unique path connecting L with the rest of the F -cycle). We recursively map v. There

are 4 cases:

1. If v is mapped into T or strong deleted then we need also to map the remaining

(F − 1)-cycle graph.

2. If v is bypass deleted and u is not strongly deleted, then there are indeg(v) such

possibilities each supplemented with mapping of the remaining (F − 1)-cycle graph.

3. If v is bypass deleted and u is strongly deleted and one of the vertices adjacent to v in

L is deleted.

4. If v is bypass deleted and u is strongly deleted and vertices adjacent to v in L are not

deleted.

Let RF be the runtime for finding optimal mapping of F -cycle. Then

RF ≤ (VT + 1)RF−1 + indeg(v)RF−1 + indeg(v)outdeg(v)R0 + LR0,

where R0 = rt(Abd). Thus, the runtime of the algorithm Bbd is rt(Bbd) = O((2VT)F rt(Abd)).

Lemma 2. Let P ′ be the graph after strong deletion of
∑

v∈F (indeg(v) + outdeg(v) − 2)

vertices and bypass deletion of F FVS vertices. Then either we can find with a greedy

algorithm FVS of P ′ of size at most F − 1 or P ′ is an F -cycle graph.

Proof. Since all F vertices are bypass deleted in P ′, removal of the corresponding F edges

makes P ′ acyclic. Therefore, r(P ′) ≤ F . If P ′ is not a F -cycle, then by Lemma 1 the greedy

algorithm will find a FVS of size at most F − 1. �

64

Thus we obtain the following recursion for the runtime RT (P, F, T) for the optimal

mapping of the pattern P with P vertices and VFS of size F into the text T with T vertices:

RT (P, F, T) ≤ F · T ·RT (P, F − 1, T) + S ·RT (P, F − 1, T)

≤ (FVT + S) ·RT (P, F − 1, T)

≤ (FVT + V 2F
P) ·RT (P, F − 1, T)

At any point, if we obtain an F -cycle graph.

This recursion implies that

RT (P, F, T) ≤ ((FVT + V 2F
P)F + rt(Bbd))rt(Abd)

and we have proved the following

Theorem. The optimal network alignment problem can be solved in time O(((FVT +

V 2F
P)F + rt(Bbd))rt(Abd)). When the FVS size is bounded this problem becomes tractable.

6.2 A polynomial-time algorithm for series-parallel patterns

6.2.1 Introduction

Metabolism is a vital cellular process whose understanding is critical to human disease

studies and drug discovery. The accumulation of high-throughput genomic, proteomic and

metabolical data allows for increasingly accurate modeling and reconstruction of metabolic

networks. Comparison among the reconstructed networks can catch model inconsistencies

and infer missing elements. With the growth of identified metabolic networks, computational

tools are necessary for the comparison. Network alignment is convenient for comparing

and exploring metabolic networks – it can be used for predicting unknown or alternative

pathways and pathway holes as well as resolving ambiguities and finding inconsistencies in

existing pathway descriptions.

65

A metabolic pathway/network can be represented as a directed graph in which vertices

are enzymes. Each of its edges connects enzymes catalyzing consecutive reactions. Pinter et.

al. [43] formulated the network alignment as a labeled subtree homeomorphism problem –

given a vertex labeled pattern tree P (representing an unknown pathway) and text graph T

(representing a known pathway), find the minimum cost transformation of P into subtrees

of T by edge subdividing with degree-two vertices. Pinter et. al. [44] gave an efficient

algorithm for the case when T is a tree. Sze [61] allowed to delete pattern nodes and gave

an efficient algorithm for path matching and an exponential algorithm for arbitrary pattern

and text graphs.

Cheng et. al. [17] proposed an optimal alignment between a polytree pattern and text

graphs allowing enzyme deletion and insertion as well as matching similar enzymes. Their

algorithm is efficient for arbitrary text graphs and pattern graphs with a restricted cyclic

structure. But for the pattern with feedback vertex set of size k, the runtime is exponen-

tially bounded by k2. Due to mimicking evolutionary machinery of gene duplication ([48]),

similarly to [61] their algorithm allows to map different pattern enzymes into the same text

enzyme.

Dost et. al. [22] formulated the problem as optimal homomorphism problem. Authors

employed color coding technique to mapping query tree to arbitrary graph by two steps. The

first step is to randomly do coloration of pattern Q which has 2k possibilities (k is the size of

the color set). The second step is to compare the randomly generated colored graph with N .

For any general query including multiple cycles, authors designed a tree decomposition based

algorithm which did not be implemented. The algorithm has the runtime O(2k × |VT |w+1),

in which w is the treewidth of the query graph.

Furthermore, Bruckner et. al. [12] proposed an approach of network querying that does

not rely on knowledge of the query topology. The problem is formulated to search a colored

graph for connected subgraphs whose vertices have distinct given colors. Authors provided

fixed-parameter algorithms that are based on the color-coding paradigm and dynamic pro-

66

gramming (DP). In addition, authors provided an integer programming (ILP) formulation

of the problem. The methods extended the work of QNet and can handle edge weights,

insertions of network vertices (that do not match any query protein), and deletions of query

nodes. The algorithm runs in O(3k×|ET |) time for handling the alignment without insertions

and deletions of vertices.

However, the color-coding technique [4] can find an optimal alignment with the proba-

bility of k!
kk = e−k, which cannot guarantee to obtain such an optimal result at all times. As

a result of the homomorphism based formulation, insertion of query nodes is not necessary,

which are needed for the alignment to search for conserved patterns.

Here, for finding the best matching pair consisting of a subgraph in a given pattern and a

subgraph in a given text (both are represented by an arbitrary network) when both insertions

and deletions are allowed on any path, we employed the technique of tree decomposition and

proposed a fixed-parameter algorithm which is exponentially bounded by the treewidth of

the pattern. We have applied our algorithm to do experiments in the cases of self-alignment,

deletions, and insertions. We also provided the MetNetAligner web service tool which relies

on the algorithm for metabolic network alignments.

6.2.2 The network alignment problem

Network alignment is a graph-comparison problem where vertices in graph are compared

and graph topology is also compared. Its goal is to determine if or not the labels and network

topology, or part of them, of two graphs are similar. It allows the mismatches of vertices of

two graphs and deletions or insertions of vertices in graphs.

We distinguish two kinds of vertex deletions: (i) bypass deletion corresponding to the

replacement of a few consecutively acting enzymes with a single multifunctional enzyme or

enzyme using an alternative catalysis and (ii) strong deletion symbolizing the matching of

a proper connected subgraph of the pattern network. Thus, a bypass deletion of a vertex v

with a single incoming and a single outgoing edge is the replacing of a u-v-w-path with a

67

single (u,w)-edge formally represented as mapping v into b. A strong deletion of a vertex v

is removing of arbitrary vertex v together with all its incoming and outgoing edges which is

formally represented as mapping of v into d.

Let graphs P = (VP , EP) and T = (VT , ET) represent a pattern and text metabolic

network, respectively. Let f : P → T map every vertex in VP to VT ∪ {b,d}. A pair

of pattern vertices u, v ∈ VP is called contracted if u and v are mapped into two different

text vertices and either (u, v) ∈ VP or there exists a u-v-path in P whose all intermediate

vertices are bypass deleted. Let Ef
P be the set of all vertex pairs in P contracted by f (note

that EP ⊆ Ef
P). The mapping f is called a network alignment if for each contracted pair

(u, v) ∈ Ef
P there exists a f(u)-f(v)-path in the text T . The number of insertions, i.e., the

minimum number of intermediate vertices in such path is denoted σ(f(u), f(v)).

The alignment should be penalized (i) for mismatches between aligned enzymes, (ii)

for strong deletions, (iii) for bypass deletions, and (iv) for insertions. Thus we obtain the

following cost function.

cost(f) =
∑
u∈VP

∆(u, f(u)) + λ
∑

(u,v)∈Ef
P

σ(f(u), f(v)),

where ∆(u, f(u)) is the penalty of the mismatch between enzymes corresponding to pattern

vertex u and text vertex f(u), ∆(u,d) and ∆(u,b) are penalties for strong and bypass

deletions, respectively, and λ is the penalty for a single enzyme insertion.

We proposed an enzyme-to-enzyme dissimilarity score ∆ based on 4-level EC encoding

d1:d2:d3:d4, where d4 is the number of enzyme in d3-class which is subclass of d2-class

which is subclass of d1-class. The numeric values are usually positive integers. They are

represented as 0 or - only if the corresponding subclass is unknown. If d1’s or d2’s of two

enzymes are different and non-zero, then ∆ = ∞, otherwise, if d3’s are different and non-

zero, then ∆ = 10, otherwise if d4’s are different and non-zero, then ∆ = 1, and, otherwise,

∆ = 0 (see [19]). Notice that if two enzymes are different in the corresponding position but

68

one of them is 0, then we do not increase ∆. This is because we do not penalize the lack of

information.

Given two metabolic networks P and T , the problem is to find the optimal (minimum-

cost) network alignment from P to T .

6.2.3 Methods

6.2.3.1 The decomposition tree of pattern

Numerous graph problems can be solved efficiently for trees because of the following

property: each non-leaf node of a tree splits it into multiple connected components, so we

can (a) divide the tree into those components, (b) make all possible assumptions about

the separating node, (c) conquer the components, i.e. solve the subproblems specified by

the component and the assumption about the separating node, (d) combine the matching

subproblems (i.e. having consistent assumptions) into total solutions.

Consider a local decomposition algorithm for the solution with a tree-like structure, i.e. to

find the set of the neighborhoods of different variables so that one variable can belong to two

neighborhoods only and the graph of intersections of these neighborhoods is a tree. It is clear

that such a structure is a tree-decomposition and can be obtained with the aid of known tree

decomposition algorithms. These tree decomposition alogorithms aim to merging variables

such that the meta-graph is a tree of meta-nodes. The tools can help detect trees and obtain

the treewidth, a measure of the tree-likeness of the graph. The notions of treewidth and tree

decomposition were introduced by Robertson and Seymour in their seminal paper [51] on

graph minors [46].

A tree decomposition of graph (V,E) is a tree (I, F,X) where each tree node i ∈ I has

a set Xi ⊂ V |Xi ∈ X, so that

for each v ∈ V the set {i ∈ I : v ∈ Xi} is connected in (I, F,X), and

for each e ∈ E there exists i ∈ I such that e ∈ Xi.

69

The width of decomposition (I, F,X) is maxi∈I |Xi| − 1, and the tree width of (V,E) is

the minimum width of a tree decomposition of (V,E).

a b b j

g

a b

c d e j h j b
h j
b j

gc d e j

i

h b a h b i h b g
h bh bh b

h
h a c h a d b i e

h a b ih a

Graph P Tree decomposition of P

Figure 6.4. A sample graph P and its decomposition tree. The red two letters in the tree
node represent the true connection between separators.

With Dr. Piotr Berman’s help, we designed and implemented a hierarchical decom-

position of the underlying graph. The decomposition is constructed by first reducing the

graph by choosing a series of nested vertex separators of subgraphs into smaller and smaller

pieces, until all pieces contain only one vertex. The vertex separators are the set of vertices

which removal disconnects the resulted subgraph. Every path between the subgraphs passes

through some member of the separators. The vertex separator is also called as vertex cut.

The subgraphs are not intersecting with each other. The process of hierarchical decomposi-

tion constructs a tree, which covers all vertices in the underlying graph. In the tree, every

node represents a subgraph and its children represent the different connected components

after cutting the separators of the parent. We label the parent by the set of the separators

and an owner which is reachable to all vertices in the separator set. The owner belongs to

the separator set of every child. The number of child tree nodes is less than the size of the

separator set and every vertex in the set belongs to at most one child.

As a result of the decomposition algorithm, the edges of the tree define a “nice” collection

of separators: consider a tree edge e = {i, j}. (I, F − {e}) has connected components Ii, Ij.

70

We can define the following subsets of V : Vi =
⋃
`∈Ii X`, analogous Vj and Se = Xi ∩Xj. It

is easy to see that (a) V = Vi ∪ Vj, (b) there are no edges from Vi − S − e to Vj − Se, (c)

|Se| ≤ the width of (I, F,X).

The pseudo-code is listed below (An example and its tree is shown in Fig. 6.4):

Let v be a vertex in undirected graph G. Denote neighbors(v) to be the set of neighbors

of v. Denote deg(v) to be the number of the degree of v. Let Q = {v|deg(v) = 2} be a queue

used to collect degree-2 vertices.

clone graph G and save as G′ =< V ′, E ′ >

insert {v|v ∈ V ′°(v) = 2} into Q

initialize tree TD

while Q is not empty

while Q is not empty

delete from Q an item u

if u is an articulation point and neighbors(u) > 1

create a chain of tree node(s) ni|i ∈ [0..|neighbors(u)|] and insert into TD the chain

else

create tree node n with u&neighbors(u) and insert into TD the node

delete u from G′

if |V ′| > 3

insert {v|v ∈ V ′°(v) = 2} into Q

if |V ′| > 3

insert {v|v ∈ V ′°(v) = 1} into Q

normalize tree TD

6.2.3.2 Series-Parallel graph

The associated decomposition tree represent the tree-like property of its corresponding

graph. Its treewidth is the size of its largest separates minus one. A k-connected graph is

71

the graph in which no such a set of k−1 vertices exists whose removal disconnects the graph.

k-connected graph has the treewidth k. The treewidth indicates how close it is to being a

simple tree.

Many important but quite hard graph problems can be solved efficiently on graphs of

bounded treewidth [10, 54, 24, 8, 9, 57].

The evolution of metabolic networks is characterized by gain and loss of reactions (or

enzymes) connecting two or more metabolites [20, 45]. The process of the gain leads to the

occurrence of new alternative paths and new enzymes in existing paths, which corresponds

to the insertion of new nodes or edges. The process of the loss corresponds to their deletions.

The corresponding graphs are more probable to be series-parallel graphs which has bounded

treewidth 2 [54, 10, 24]. These graphs can be obtained from edges by edge duplication and

subdivision. The graph P in Fig. 6.4 is such a series-parallel graph.

If the graph has no K4 subdivision [1], we can claim that it is series-parallel. So by

repeatedly doing the following operations, we can check if null graph is left: (i) deletion of

a loop, (ii) deletion of a vertex of degree at most 1, (iii) deletion of a parallel edge, (iv)

suppression of a vertex of degree two. Besides, there exist a linear-time algorithm to test

whether an input graph is series-parallel [47].

Considering section 6.2.3.1, we can make the following observation. Suppose that node

u is an articulation point of a graph (V,E), so we can decompose that graph into (V0, E0)

and (V1, E1) where V0 ∩ V1 = {u}. Assume that we have tree decompositions (I0, F 0, X0)

and (I1, F 1, X1). Then we can combine these decompositions by adding an edge (i, j) such

that i ∈ I0, j ∈ I1 and u ∈ I0 ∩ I1. Thus a graph has tree width 2 iff every biconnected

component has tree width 2. In turn, a biconnected graph has tree width 2 if and only if

it is a series parallel graph. Also, one can convert series parallel decomposition into tree

decomposition of width 2.

For the bounded tree width graph and its tree decomposition, given tree node i and

its parent node j, we denote Set(i) as the set of all vertices which are in xi; we denote

72

Cut(i) as its separators, which is equal to Set(i) ∩ Set(j) (These separator(s) belong to

different subgraphs and its/their removal disconnect(s) the graph); we denote Own(i) as the

set of vertices only belonging to the subgraph represented by the tree node, which is equal

to Set(i) − Cut(i) or Set[i] − Set[j]. The separator is an articulation point if and only if

Cut(i) = 1.

For the tree decomposition of a series parallel graph, it has the following characteristics.

For every tree node i, |Set(i)| ≤ 3, |Own(i)| = 1, and |Cut(i)| ≤ 2. The separator is an

articulation point if and only if Cut(i) = 1 and Set(i) = 2. We assume Set[j] = {u, v, w},

Cut[j] = {u, v}, i is the parent of j, and k is the child of j (if mentioned). We can observe

that Cut[k] contains w, i.e. it is {u,w} or {v, w} or {w}.

6.2.3.3 Algorithms

We have to discuss undirected cycles in directed graphs, so perhaps we can formalize the

graph X as undirected, with direction function of edges, thus graph X has node set V (X),

edge set E(X) that consists of 2-element subsets of V (X) and for e ∈ E(x) we define dir(e),

the node of e where the edge is directed.

Thus for u ∈ V (X), in(u) = {v|{u, v} ∈ E and dir(u, v) = u} and out(u) = {v|{u, v} ∈

E and dir(u, v) = v}.

However, we also need the notion of directed paths: a sequence (u0, . . . , uk) such that

ui ∈ out(ui−1) for i = 1, . . . , k is a directed path from u0 to uk of length k; the least length

of a directed path from u to v is dist(u, v), if no such path exists, dist(u, v) =∞.

We propose a fixed-parameter algorithm which finds optimal alignment of bounded tree

width with arbitrary graph.For simplicity, we used series-parallel graph pattern which has

tree width 2 to describe our algorithm.

In this section, I first describe graph preprocessing for both pattern and text; then I

describe our dynamic programming.

73

- Preprocessing

Transitive closure of the text graph. In order to compute the cost of vertex insertion,

it is necessary to know the number of hops for any shortest path in the text graph T .

Essentially, the transitive closure of a directed graph contains an edge for every path in the

graph.

Although finding single-source shortest paths in general graphs is slow, in our case it

is sufficient to run breadth-first-search with runtime O(|ET | + |VT |). Assuming that T is

connected, i.e., |ET | ≥ |VT |, we conclude that the total runtime of finding all shortest paths

is O(|VT ||ET |). In the resulting transitive closure T ′ = (VT , E
′
T) of the graph T , each edge

e ∈ E ′T is supplied with the number of hops h(e) in the shortest path connecting its ends.

Pattern decomposition tree. First we build decomposition tree TD =< I, F,X > of

pattern P by the algorithm in section 6.2.3.1. Then we do the following normalization on

the tree: If Cut[k] ⊂ {u, v}, we would make k a child of i.

Every node i in the decomposition tree represents an induced subgraph subi. We call

its deletion as the downstream deletion and call the deletion of the remaining part(s) as the

upstream deletion. By the post order traversal of the tree, we compute every subgraph’s

downstream and upstream deletion penalties, respectively denoted as down(i) and up(i)

(i ∈ I).

Alignment setting. We compute mismatching score ∆(vP , vT) for every pair of vertices

vP and vT , one of which is from the pattern and the other of which is from the text.

We will further need a certain fixed order of nodes in TD as follows. Let TD =< I, F,X >

be the undirected decomposition tree obtained from P by disregarding edge directions. Let

us choose an arbitrary vertex r ∈ I as a root and run depth-first search (DFS) in TD

from r. Let {i1, . . . , r = i|I|} be the order of the DFS traversal of I, correspondingly let

{xi1 , . . . , rx = xi|I|} be the order of the visited subgraph, and every edge e ∈ EP exists in

xij |j ∈ [1..|I|] or one of subgraphs.

74

- Dynamic programming approach

t d T d d T T T
Graph P a b Dynamic table for aligning pattern P to text T

opt down up T,d d,T T,T

hac

gc d e j

i

had

hba
h

hba

bieb j

Tree decomposition of P

hbi

hbg

h j b

j

hbg

hjb
h a c h a d b i e

h b a h b i h b g

bj
h a c h a d b i e

Figure 6.5. A sample graph P , its decomposition tree and its dynamic table (ignoring
bypass deletions).

DP Table. Now we will describe our dynamic programming table DT [1, . . . , |I|][1, . . . , 3 +

2 ∗ |VT |+ |VT |2]. In the table, each row of this table corresponds to a tree node of TD. The

rows {i1, . . . , r = i|I|} of DT are sorted according to the DFS traversal of TD. Its entries

in a row i give the minimum cost alignment of the subtree rooted by i under the mapping

condition of the vertices in Cut[i] and also decide the image of Own[i] which make best

contribution to the alignment.

Specifically, the first column corresponds to the local optimal alignment of pattern sub-

graph to the text T , which is denoted by opt[i]; the second and third column correspond to

the downstream and upstream deletion respectively, denoted by down[i] and up[i] respec-

tively; the next VT columns correspond to the state that the first separator is mapped to

arbitrary vertex in T and the second separator is mapped to d; the following VT columns

correspond to the state that the first separator is mapped d and the second separator is

75

mapped to to arbitrary vertex in T ; the last VT
2 columns list the states that vertices in

Cut[i] are mapped to arbitrary vertices in T (An example is shown in Fig. 6.5).

Filling DP Table.

The table DT is filled up-bottom. Let us pick the subtree in TD and rooted by i ∈

[1..|I|] to find its local optimal mapping result. The tree node has Cut[i] = {u, v} and

Own[i] = {w}. Its child tree node j has the following possibilities: 1) Cut[j] = {w}; 2)

Cut[j] = {u,w} ; 3) Cut[j] = {u,w} and strictly there exists an edge in P with endpoints

u and w; 4) Cut[j] = {v, w} ; 5) Cut[j] = {v, w} and strictly there exists an edge in P with

endpoints v and w.

C[i, u, f(u), v, f(v)] is defined as the value of an optimal solution. When filling the row ri

except the first column, the mapping conditions of separators Cut[i] are fixed. We search all

mapping possibilities VT ∪ {b,d} of owners Own[i]. B[i, u, f(u), v, f(v), w, f(w)] is defined

as the value of the possible alignment with the fixed mapping of vertices in the tree node.

By combining the mapping state of Cut[i] with the one of Own[i], we can decide the best

alignment of the child tree nodes of i as well as which entries in previous rows can make

contribution to the optimal alignment. Among the alignment possibilities, we choose the

minimum cost one. It is the hierarchical decomposition of the underlying pattern graph that

characterizes the structure of the optimal solution. The recursive function is as follows:

C[i, u, f(u) = d/u′ ∈ VT , v, f(v) = d/v′ ∈ VT] = min


B[i, u, f(u), v, f(v), w,d]

B[i, u, f(u), v, f(v), w,b]

minw′∈VT
B[i, u, f(u), v, f(v), w, w′]

We know that distd,w(v′, w′) = 0, C[j, w, w′] = C[j, w, w′, v, d], and C[i, u,d, v,d] =

down[i].

When one of separators is mapped to d, i.e. f(v) = d, we have

76

B[i, u, u′ ∈ VT , v, f(v) = d/v′ ∈ VT , w,d] = ∆(w,d)

+
∑

Cut[j]={w}

down[j]

+
∑

Cut[j]={u,w}

C[j, u, u′, w,d]

+
∑

Cut[j]={v,w}

C[j, v, f(v), w,d]

When no separators is mapped to d, we have

B[i, u, u′ ∈ VT , v, f(v) = d/v′ ∈ VT , w, w′ ∈ VT] = ∆(w,w′)

+distu,w(u′, w′) + distv,w(v′, w′)

+
∑

Cut[j]={w}

C[j, w, w′]

+
∑

Cut[j]={u,w}

C[j, u, u′, w, w′]

−
∑

Cut[j]={u,w}&∃e(u,w)&dist(u′,w′)=∞

C[j, u, u′, w, w′]

+
∑

Cut[j]={v,w}

C[j, v, f(v), w, w′]

−
∑

Cut[j]={v,w}&∃e(v,w)&dist(v′,w′)=∞

C[j, v, v′, w, w′]

The local optimal alignment score opt[i] is calculated as follows:

opt[i] = up[i] + min
f(u),f(v)

(∆(u, f(u)) + ∆(v, f(v)) + C[i, u, f(u), v, f(v)])

The global optimal mapping score is calculated by OPT = mini∈[1..|I|]opt[i].

Runtime Analysis.

As we mentioned earlier, the runtime for constructing the transitive closure T ′ = (VT , ET ′)

is O(|VT ||ET |). The runtime to construct the decomposition tree of pattern is O(V 2
P).

77

The runtime to fill a cell DT [i, j] is proportional to

tij = (|VT |+ 2)degP (vi)degT ′(uj)

where |VT | + 2 is the number of mapping possibilities of w such as w is mapped to d, b,

or some vertex in T . degP (vi) and degT ′(uj) are degrees of vi and uj in graphs P and T ′,

respectively. Indeed, the number of children of vi is degT (vi)− 1 and for each child vil of vi

there are at most degG′(uj) feasible positions in G′ since f(vi) and f(vil) should be adjacent.

The number of entries we need to fill is

O(|VP |(3 + tw ∗ |VT |+ |VT |tw))

where tw is equal to the tree width 2 of the specific series-parallel graph and the first item

is the size of tree nodes in the worst case.

The runtime to fill the entire table DT is proportional to

|VP |∑
j=1

3+tw∗|VT |+|VT |tw∑
i=1

tij =

|VP |∑
j=1

degT ′(uj)

3+tw∗|VT |+|VT |tw∑
i=1

degP (vi) = O(|ET ′ ||EP ||VT |tw)

Thus the total runtime is O(|VT ||ET |+ |ET ′||EP ||VT |tw). Even though T is sparse, |ET ′|

may be as large as O(|VT |2), i.e., the runtime is O(|VT ||ET |+ |EP ||VT |tw+2).

6.2.4 Results

We have conducted the following experiments to test our alignment algorithms. First

we pick up the pathway called de novo biosynthesis of pyrimidine deoxyribonucleotides from

the Bacillus subtilis species.

The first experiment is to do self alignment(See Fig. 6.6). In all these alignment result

figures, labels with a light gray background represent the pattern vertices and those with a

78

white background represent text vertices; the node with upper part and lower part represents

a vertex-to-vertex mapping. The upper part represents the query enzyme and the lower part

represents the text enzyme.

The second experiment is to test the text vertex deletions and the pattern vertex deletions

(see Fig. 6.7 and 6.8 respectively).

The third experiment is to test the resolution of the ambiguity of databases. We conduct

the alignment on the original graphs (See Fig. 6.9). We randomly change a vertex label with

the dashed label so that a label is fuzzed. By aligning the fuzzed graph with the well known

one, we find the potential candidate (see Fig. 6.10).

Pattern: Text: Mapping from pattern to text:

Figure 6.6. Mapping sample with self alignment.

Pattern: T t

Mapping from pattern to text:

Pattern: Text:

Figure 6.7. Mapping sample 1 with text vertex deletion.

79

Temp->a

T t

Mapping from pattern to text:

Temp a

Pattern: Text:Pattern:

Figure 6.8. Mapping sample 1 with pattern vertex deletion.

Pattern: T t

Mapping from pattern to text:

Pattern: Text:

Figure 6.9. Mapping sample 2 with text vertex deletion.

B1->temp

Pattern: T t

Mapping from pattern to text:

B1 temp

Pattern: Text:

Figure 6.10. Mapping sample 2 with ambiguous label.

80

CHAPTER 7

METNETALIGN: A WEB SERVICE TOOL

Metabolism is a vital cellular process whose understanding is critical to human disease

studies and drug discovery. The accumulation of high-throughput genomic, proteomic and

metabolical data allows for increasingly accurate modeling and reconstruction of metabolic

networks. Comparison among the reconstructed networks can catch model inconsistencies

and infer missing elements. With the growth of identified metabolic networks, computational

tools are necessary for the comparison. Network alignment is convenient for comparing

and exploring metabolic networks – it can be used for predicting unknown or alternative

pathways and pathway holes as well as resolving ambiguities and finding inconsistencies in

existing pathway descriptions.

A metabolic pathway/network can be represented as a directed graph which vertices are

enzymes. Each of its edges connects enzymes catalyzing consecutive reactions.

We have provided the MetNetAligner web service tool available at:

http://alla.cs.gsu.edu:8080/MinePW/pages/gmapping/GMMain.html .

MetNetAligner relies on the fast dynamic programming based algorithms for metabolic net-

work alignment. The algorithms find an optimal alignment between arbitrary pattern and

text graphs allowing enzyme deletion and insertion as well as matching similar enzymes.

They applied feedback vertex set and tree decomposition techniques respectively. The feed-

back vertex set techniques based algorithm is efficient for arbitrary text graphs and pattern

graphs with a restricted cyclic structure; the tree decomposition techniques based algorithm

is efficient for arbitrary text graphs and pattern graphs with a bounded treewidth. Note that

81

mimicking evolutionary machinery of gene duplication ([48]), similarly to [61] our algorithm

allows to map different pattern enzymes into the same text enzyme.

MetNetAligner provides simple and intuitive web-interfaces and several services such as

pathway retrieval, visualization and upload services. Below, we briefly describe our alignment

algorithm, present the web service tool, and give usage examples. The algorithm validation

and discussion are in supplementary materials.

First I will introduce the architecture, features, and implementation of our web service

design; then I will give the manual for the main features;

7.1 Architecture, features, and implementation

Graph comparison is the fundamental computational approach because 1) graph can

be used to represent the process of gene or protein interaction or biological network and

2)graph comparison can be used to transfer knowledge from a well-understood network to

an unknown one. By using the comparison tools, biologists can save time and energy in

the analysis and prediction. Network alignments are useful for comparing and exploring

biological pathways. It can be used for predicting unknown and partially known pathways

identifying conserved pathways, indicating potential pathway holes and alignment gaps in

existing pathways.

Pathway

Database

Graph

Visualization

Mapping Service

Additional Value Service

Query

Visualized Outputs

Browsers

Graph

Extraction

Graph

Layout

Figure 7.1. Soft architecture.

82

Network Comparison is extensively used for clustering, mining, and predicting kinds of

networks such as metabolic pathways, are essential for graph database search. A series of

algorithms have been studied; and kinds of softwares have been developed for the graph

comparison based on different research focus and views on specific applications.

A service-oriented graph search and mining tool has been required which will provide

great convenience for biologists and facilitate the speedup of their research such as identifying

and filling pathway holes. We show our preliminarily designed architecture as shown in figure

7.1. It will consist of 3 ties with four services such as query service, graph visualization

service, mapping service and additional value service, during which visualization view of the

mapping results with appropriate classification by the graph mining rules will be obtained.

We have employed Tomcat/Apache as our application server. Pathway database is the

container of plain files. After deploying the application server, we have worked on graph

layout, then mapping service and finally additional value service.

7.1.1 Data Source

The MetNetAligner web service is applicable to pathways from Bio-Cyc database ([2]).

The metabolic networks of five organisms (E. coli, S. cerevisiae, B. subtilis, Halobacterium

sp. NRC-1, and T. thermophilus) are readily available for aligning. The files with metabolic

pathways of other organisms can be obtained from Bio-Cyc and extracted using our sup-

porting tools.

7.1.2 Implementation and features

MetNetAligner employs Tomcat /Apache as the application server and uses MySQL as

the data storage server. Our tool is portable to several operating systems and compatible to

database servers. A web browser with Java SE 6 installed is required for graph visualization.

The work with MetNetAligner is divided into three phases: first, a set of parameters must

be specified that describes the alignment mode, parameters and scoring schemes. Second,

a user chooses organisms and pathways for pattern and text from the existing database.

83

Enzyme-enzyme model of pathway and alignment results will be graphically displayed (See

Fig. 7.3). The graph layout is based on a force-directed method ([7]). A user can customize

the visualization by dragging vertices with the mouse. Labels with a light gray background

represent the pattern vertices and those with a white background represent text vertices.

Third, for the batch modes, the best K alignment results are sorted by P-value or alignment

score. The options, parameters and modes are specified as follows.

Figure 7.2. A sample alignment. The upper part is the name of organisms and pathways
of pattern and text; the middle part is a sample pair for the alignment; the bottom part is
the alignment result.

Alignment options.

- Allow/forbid enzyme deletion and insertion;

- EC-notation based dissimilarity score from [19]. EC-common-upper-class based dissimilar-

ity score from [52].

- Models of random graph for P-value computation: edge reshuffling and vertex label reshuf-

fling;

Alignment parameters.

- Deletion penalties for pattern or text vertices;

84

- Single enzyme insertion penalty λ - Balance coefficiency λ. Let A denote the penalties for

calculating the influence of enzyme dissimilarity to alignment; let B denote the penalties for

calculating the influence of topology dissimilarity; correspondingly, λ represents the balance

coefficiency between A and B;

Supported batch modes for pathway alignments.

- Alignment of two pathways. The alignment result is visualized (see an example on Fig.

7.3). The visualization can be customized in a drag and drop manner and uploaded to the

web tool.

- Alignments from a single pattern pathway to all pathways in the text organism. The best

K alignments (K is user-specified) are displayed sorted according to P-value or alignment

score.

- Alignments from every pathway in the pattern organism to every pathway in the text or-

ganism. The output gives K most similar pairs of pathways from the two organisms.

The best K alignments (K is user-specified) are displayed sorted according to P-value or

alignment score.

7.2 Manual

In this section, we will describe the possible interactions with users. The interactions

are related with all input requirements such as how to input user’s pathway, how to input

pathway from BioCyc, and how to do network alignment in different modes.

The MetNetAligner has been tested on the FireFox 2.0.0.6 version, Internet Explorer 7,

and Safari 4 public beta in Windows XP.

85

7.2.1 How to input user’s pathway?

Use any text editor to edit and save your own pathway with the graph file format (see

the format here). The pathway file contains only a set of EC notations representing enzymes

and a set of pairs representing the relationship of enzymes.

After users define their own pathway, please upload the pathway by entering here.

7.2.2 How to input pathway from BioCyc?

First, request the license (here), download BioCyc data, unzip it;

Secondly, download our supporting tool (here), unzip the downloaded supporting tool,

read its readme.txt, run the pahway extraction tool to extract the BioCyc data;

Thirdly, edit users’ own pathway based on the resulted pathway;

Fourthly, after users define their own pathway, please upload the pathway by entering

here.

7.2.3 How to compare two pathways?

First, click on ”Configuration” button in the left frame of the main web page to set up

all parameters of pathway alignments. If users do not change any parameter, the pathway

alignment will be done based on the default settings. Once users change parameters and

confirm their change by clicking ”Next”, they can use their settings in all available sessions.

Secondly, click on ”Mapping” button in the left frame of the main web page to do

pathway alignments. Choose pattern and text organism (If users want to find the pathways

they uploaded, please choose ”UserDefined”; Click ”Next” button; Then choose pattern

and text pathway; Click ”Next” button and they will see the patter and text pathway; if

they are not satisfied with the layout of the pathways, click on ”Visualization” and they will

see a new window with the drag-and-drop visualization tool; they could change the layout

by dragging or dropping the mouse and save the layout by clicking ”submit” button;

Thirdly, click ”Align” button; it will popup a new window with the alignment result; if

users are not satisfied with the layout of the pathways, click on ”Visualization” and they will

86

see a new window with the drag-and-drop visualization tool; they could change the layout

by dragging or dropping the mouse and save the layout by clicking ”submit” button.

7.2.4 How to compare a pathway with all pathways in an organism ?

First, click on ”Configuration” button in the left frame of the main web page to set up

all parameters of pathway alignments. If users do not change any parameter, the pathway

alignment will be done based on the default settings. Once they change parameters and

confirm their change by clicking ”Next”, they can use their settings in all available sessions.

Secondly, click on ”Mapping” button in the left frame of the main web page to do

pathway alignments. Choose pattern and text organism (If users want to find the pathways

they uploaded, please choose UserDefined) ; Click ”Next” button; Then choose a pattern

pathway and choose ”Entire Network” from the text pathway selection list box; Click ”Next”

button; they will a table which shows the list of mapping results; they could choose the

number of best mappings for showing pathways pairs and they could also choose the sort

rule; After they choose the show modes, click on ”Submit” and they can see the results;

Thirdly, users could click on ”View” and see a popup new window which showing path-

ways; they could click on ”Align” button on the new window and see the alignment result.

(See details in the subsection 7.2.3)

7.2.5 How to compare all pathways between two organisms?

First, click on ”Configuration” button in the left frame of the main web page to set up

all parameters of pathway alignments. If users do not change any parameter, the pathway

alignment will be done based on the default settings. Once they change parameters and

confirm their change by clicking ”Next”, they can use their settings in all available sessions.

Secondly, click on ”Mapping” button in the left frame of the main web page to do pathway

alignments. Choose pattern and text organism (If users want to find the pathways they

uploaded, please choose ”UserDefined”) ; Click ”Next” button; Choose ”Entire Network”

from the pattern and text pathway selection list box; Click ”Next” button (It will take time

87

due to the hardware limitation); they will see a table which shows the list of mapping results;

they could choose the number of best mappings for showing pathways pairs and they could

also choose the sort rule; After they choose the show modes, click on ”Submit” and they can

see the results;

Thirdly, users could click on ”View” and see a popup new window which showing path-

ways; they could click on ”Align” button on the new window and see the alignment result.

(See details in the subsection 7.2.3)

7.3 Validation and discussion

The sample input consists of metabolic pathways for five different organisms (E. coli, the

yeast S. cerevisiae, the eubacterium B. subtilis, the archeabacterium T. thermophilus and

the halobacterium H.NRC-1), in which exist partially identified or unidentified enzymes. We

align every pattern and text pathway using default parameters (see Fig. 7.3) and identify

conserved patterns (see Table 7.2) and suggest possible resolutions of the ambiguity of some

enzymes (which EC-notation has up to 4 unidentified EC categorization, for example, 1.2.4.−

or −.− .− .− (see Table 7.1).

Figure 7.3. Configuration web page with default parameters.

88

Table 7.2 identifies conserved patterns and reports the distribution of indels and mis-

matches for alignments from E. coli to S. cerevisiae. For instance, there are 275 pathway

pairs for which there is a statistically significant alignment (p ≤ 0.05) and the number range

of found indels and feasible mismatches is 1 through 5. Data curating is the complete copy-

ing of pathways; therefore, conserved pathways which are not completely matched cannot be

the result of data curating. Thus our method finds both curated and novel network motifs.

Table 7.1 summarizes the following experiments. We randomly erase EC-notations of 10%

or 20% vertices for each pathway of a single species, predict their values by alignments, and

report their correctly filled ratio classified by the hierarchical sub classes of EC-notations.

The experimental study indicates that the alignment with the above discussed deletions is

more helpful for the effective prediction on erased EC-notations than the one without pattern

vertex deletion.

Table 7.3 illustrates advantage of the network alignemnt (HH) over homomorphisms

H (network alignment without vertex deletion). For both characteristics – number of mis-

matches and number of gaps – the best homo-homeo morphism significantly outperform the

best homomorphisms.

89

Table 7.1. Accuracy ratio of filling erased EC-notations under the aligning with/without
pattern vertex deletion from T. thermophilus to E. coli. The result is classified by the
hierarchical sub classes of EC-notations. Here, deletion is specified as pattern vertex deletion.
Erasing ratio is 20%.

Alignment Correctly filled ratio (%)
1st 2nd 3rd 4th

W/O deletion 61.9 7.1 7.1 7.1
With deletion 96.3 68.8 51.8 30.5

Table 7.2. Identifying conserved patterns and reporting the distribution of the number
of indels and feasible mismatches when aligning E. coli to S. cerevisiae. Each value is the
number of conserved pathway pairs in the range of mismatches and indels and bound on
p-value.

P-value total Number range of difference (indels + feasible mismatches)
0 1-5 6-10 11-15 16-20 ≥ 21

≤ 0.01 1083 258 274 117 17 13 372
≤ 0.05 1087 258 275 117 17 13 375
≤ 1 44625 258 397 186 29 51 786

Table 7.3. Alignment of tree pathways from different species with optimal homomorphisms
(H) and optimal network alignment (HH). The average number of mismatches and gaps is
reported on common statistically significant matched pathways.

E. coli− >T. thermophilus E. coli− >B. subtilis E. coli− >H. NRC-1 E. coli− >S. cerevisiae
Mismatches Gaps Mismatches Gaps Mismatches Gaps Mismatches Gaps

HH 0.58 0.04 0.23 0.03 1.60 0.10 0.22 0.04
H 0.76 0.07 0.38 0.06 2.31 0.12 0.22 0.05

90

CHAPTER 8

IDENTIFICATION AND FILLING OF PATHWAY HOLES

As more genomes and proteomes are characterized, comparison between them allows

us to better understand the evolutionary history of those organisms. Network mapping

can be used for comparing and exploring biological pathways, predicting unknown and par-

tially known pathways, indicating conserved pathways across examined species, identifying

potential pathway holes or alternative pathways and inconsistencies in existing pathway

descriptions. Missing protein annotations cause holes in current metabolic pathway descrip-

tions. The network-mapping tool integrated with protein database search can be used for

filling pathway holes. A metabolic pathway under consideration (pattern) is mapped into

a known metabolic pathway (text), to find homologous pathways. Pattern pathways with

incompletely or mistakenly classified enzymes can be updated based on the annotations of

the corresponding text enzyme. Text enzymes that do not show up in the pattern may be

a hole in the pattern pathway or an indication of alternative pattern pathways. Based on

the results of network alignments, we can identify the pathway holes and indicate the poten-

tial candidates of filling the holes. This is becoming a complementary approach to predict

protein function.

In this chapter, I will first introduce the definition and types of pathway holes. Then

I present how the network alignment can help find the pathway holes and suggest the cor-

responding candidates of filling the holes. Finally I describe other existing approaches to

predict protein function.

91

8.1 Definition of pathway holes

We distinguish two types of pathway holes.

1. Visible pathway holes: an enzyme with partially or completely unknown EC nota-

tion (e.g., 1.2.4.- or -.-.-.-) in the currently available pathway description. This type of

holes is caused by ambiguity in identifying a gene and its product in an organism.

2. Hidden pathway holes: an enzyme that is completely missed from the currently

available pathway description. This type of holes occurs when the gene encoding an

enzyme is not identified in an organism’s genome.

8.2 Identify and fill pathway holes

Mapping of an incomplete metabolic network of a pattern organism into a better known

metabolic network can identify possible hidden pathway holes in the pattern as well as

suggest possible candidates for filling visible and identified hidden pathway holes.

The candidates for filling pathway holes may have been previously identified in the pattern

organism. Then the pathway description with visible holes should be simply updated. In

case of hidden holes, the adjoining enzymes may have been incorrectly annotated. Otherwise,

if candidates for filling pathway holes have not been identified in the pattern organism, then

the adjoining enzymes can be searched for prosites to match the corresponding text enzyme.

The proposed framework for filling pathway holes is based on amino acid sequence ho-

mology and, therefore, should be superior to existing frameworks based on DNA homology

[36, 42], since amino acids may be coded by multiple codons. Below we apply our framework

to two examples of such holes.

Let us analyze an example of how one can fill a visible pathway hole. The alignment of

glutamate degradation VII pathway in B. subtilis with glutamate degradation VII pathway in

T. thermophilus is shown in Figure 5.1. The pattern contains two visible pathway holes (the

corresponding enzymes are shaded). The mapping results indicate that similar corresponding

enzymes 2.3.1.61 and 1.2.4.2 with similar functions can be found in T.thermophilus. Our

92

tool queries the Swiss-Prot and TrEMBL databases to see if enzyme 2.3.1.61 and 1.2.4.2 have

been reported for B. subtilis We found that these two enzymes have been reported in Swiss-

Prot database for B. subtilis as P16263 and P23129 respectively. Therefore we recommend

filling these pathway holes with enzymes 2.3.1.61 and 1.2.4.2.

Now we will proceed with an example of a hidden pathway hole. Mapping of formaldehyde

oxidation V pathway in B. subtilis to formy1THF biosynthesis pathway in E. coli is shown in

Figure 5.3. In this case the enzyme 3.5.1.10 is present between 3.5.4.9 and 6.3.4.3 in E. coli,

but absent in the pathway description for B. subtilis. The Swiss-Prot database search shows

that this enzyme is completely missing from B. subtilis and therefore this hole does not allow

an easy fix. Still it is possible that this enzyme has not yet been included in the database

but has been already identified either in the literature (this can be detected through keyword

search) or in closely related organisms. The Swiss-Prot database search shows that 3.5.1.10

has been reported for B.clausii which is very close to B. subtilis. Therefore we recommend

filling this pathway hole with enzymes 3.5.1.10. If such search would not return hits in close

relatives, then we would investigate if the function of this enzyme has been taken up by one

of the adjoining enzymes (in this case 3.5.4.9 or 6.3.4.3), or there is an alternative pathway

existing for this function.

8.3 Practical application

Dip used our alignment tools in her thesis which is under the direction of Dr. Zelikovsky.

In her work, she read the the ambiguity and holes report from our tool and designed a

automatic flow to validate the potential candidate. In the flow, the first step is to check if

there is such an enzyme in organism. If such an enzyme exists, it agrees that the prediction

of our tool is correct and some inconsistency or mistakes occur in databases; If there is no

such enzyme, it will align neighbor enzymes. It is because functions may be taken over; If

it find nothing, it will search for the closest protein in the same group to text enzyme. If

identity is too high, i.e. more than 50, it identifies the potential candidates; If nothing is

93

found, it will align every enzyme in paths with whole genome. In her thesis, she listed a

series of potential candidates which resulted from our tool usage. The identified candidates

resolved ambiguities and can be used to fill the holes.

94

BIBLIOGRAPHY

[1] http://people.math.gatech.edu/ thomas/teach/8863/serpar.pdf.

[2] http://www.biocyc.org/.

[3] http://www.genome.jp/kegg/pathway.html.

[4] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM 42 (1995), 844-856.

[5] R. Ambauen, S. Fischer, and H. Bunke. Graph edit distance with node splitting and
merging and its application to diatom identification. IAPR-TC15 Workshop on Graph-
based Representation in Pattern Recognition, LNCS, Springer Verlag, 95- 106, 2003.

[6] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discrete Math. 12(3): 289-297, 1999.

[7] J. Barnes and P. Hut. A hierarchical o(n log n) force calculation algorithm. Nature,
v.324, 1986.

[8] Hans Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for
bounded treewidth. Proceedings 22nd International Colloquium on Automata, Lan-
guages and Programming, 1995.

[9] Hans Bodlaender and Arie Koster. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal Advance Access published July 19, 2007, 2007.

[10] Hans L. Bodlaender and Babette de Fluiter. Parallel algorithms for series parallel
graphs. Proceedings 22nd International Colloquium on Automata, Languages and Pro-
gramming, 1995.

[11] Karsten Michael Borgwardt. Graph kernels. PhD thesis in Computer Science, Ludwig-
Maximilians-University Munich, 2007.

[12] Sharon Bruckner, Falk Hffner, Richard M. Karp, Ron Shamir, and Roded Sharan.
Topology-free querying of protein interaction networks. In Proceedings of the 13th An-
nual International Conference on Research in Computational Molecular Biology (RE-
COMB ’09), 2009.

[13] H. Bunke. Error-tolerant graph matching: A formal framework and algorithms. Proceed-
ings of the Joint IAPR International Workshops on Advances in Pattern Recognition.
Lecture Notes in Computer Science. Springer, Berlin, 1998.

[14] Horst Bunke. Graph matching: Theoretical foundations, algorithms, and applications.

95

[15] M. Chen and R. Hofestaedt. Pathaligner: metabolic pathway retrieval and alignment.

[16] Ming Chen and Ralf Hofest. An algorithm for linear metabolic pathway alignment. In
silico biology (In silico biol.) ISSN, 1386-6338: 111-128, 2005.

[17] Q. Cheng, P. Berman, R. Harrison, and A. Zelikovsky. Fast alignments of metabolic
networks. BIBM, 2008.

[18] Q. Cheng, R. Harrison, and A. Zelikovsky. Metnetaligner: a web service tool for
metabolic network alignments. Bioinformatics. Advanced Access published May 4, 2009.

[19] Qiong Cheng and Alexander Zelikovsky. Optimal mapping of multi source trees into
dag in biological network. ISBRA’07Poster, May 2007.

[20] Fan Chung, Linyuan Lu, Gregory Dewey, and David Galas. Duplication models for
biological networks. J. Comp. Biol., 10, 677687, 2003.

[21] L. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(10):1367.1372, 2004.

[22] Banu Dost, Tomer Shlomi, Nitin Gupta, Vineet Bafna, and Roded Sharan. Qnet: A
tool for querying biological networks. RECOMB 2007 and JCB 2008.

[23] A. Ferro, R. Giugno, A. Pulvirenti, and et al. Multi-feature graph database searching.
IEEE Transaction Pattern Analysis and Machine Intelligence, 2005.

[24] Babette Fluiter and Hans Bodlaender. Parallel algorithms for treewidth two. Tech.
report UU-CS-1997-23, Univ. Utrecht, Dept. of Computer Science, Jul 1997, 1997.

[25] P. Foggia, C. Sansone, and M. Vento. A performance comparison of five algorithms
for graph isomorphism. Proceedings of the 3rd IAPR TC-15 Workshop on Graph-based
Representations in Pattern Recognition, pages 188-199, 2001.

[26] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman and Company, 1979.

[27] R. Giugno and D. Shasha. Graphgrep: A fast and universal method for querying graphs.
ICPR, 2002.

[28] Michelle L Green and Peter D Karp. A bayesian method for identifying missing enzymes
in predicted metabolic pathway databases. BMC Bioinformatics, Sep. 2004.

[29] Jing-Dong Jackie Han. Understanding biological functions through molecular networks.
Cell Research 18:224-237., 2008.

[30] F. Hffner, R. Niedermeier, and S. Wernicke. Techniques for practical fixed-parameter
algorithms. The Computer Journal.

96

[31] M. et al. Kanehisa. From genomics to chemical genomics: new developments in kegg.
Nucleic Acids Res., 34, D354D357, 2006.

[32] I. M. Keeler, V. J. Collard, C. S. Gama, J. Ingrafts, S. Palely, I. T. Paulson, M. Peralta-
Gil, and P. D. Karp. Ecocyc: a comprehensive database resource for escherichia coli.
Nucleic Acids Research, 33(1):D334-337, 2006.

[33] Brian P. Kelly, Roded Sharan, Richard M. Karp, Taylor Sittler, David E. Root, and
Brent R. Stockwell. Pathblast: a tool for alignment of protein interaction networks.
Nucleic Acids Research, Vol.32 : W83-W88, 2004.

[34] Brian P. Kelly, Roded Sharan, Richard M. Karp, Taylor Sittler, David E. Root, and
Brent R. Stockwell. Conserved pathways within bacteria and yeast as revealed by global
protein network alignment. PNAS, 11394-11399, Sep. 30 2003.

[35] N. Ketkar, L. Holder, D. Cook, R. Shah, and et al. Subdue: Compression-based frequent
pattern discovery in graph data. ACM KDD, 2005.

[36] Vitkup D. et al Kharchenko P., Chen L. Freund Y. Identifying metabolic enzymes with
multiple types of association evidence. BMC Bioinformatics, 2006.

[37] M. Koyuturk, A. Grama, and W. Szpankowski. Pairwise local alignment of protein
interaction networks guided by model evoluation. Journal of Computational Biology,
13, 182-199, 2006.

[38] C. J. Krieger, P. Zhang, L. A. Mueller, A. Wang, S. Paley, M. Arnaud, J. Pick, S.Y.
Rheme, and P.D. Karp. Metacyc: a multiorganism database of metabolic pathways and
enzymes. Nucleic Acids Research, 32(1):D438-42, 2006.

[39] Zhenping Li, Yong Wang, Shihua Zhang, Xiang-Sun Zhang, and Luonan Chen. Align-
ment of protein interaction networks by integer quadratic programming. EMBS ’06.
28th Annual International Conference of the IEEE, 5527-5530, Aug. 2006.

[40] B. T. Messmer. Efficient graph matching algorithm for preprocessing model graphs.

[41] A. Mithani, G. Preston, and J. Hein. Rahnuma: Hypergraph based tool for metabolic
pathway prediction and network comparison. Bioinformatics, 2009.

[42] Kharchenko P., Vitkup D., and Church G.M. Filling gaps in a metabolic network using
expression information. Bioinformatics, Suppl 1:i178-85, 2004.

[43] Ron Y Pinter, Oleg Rokhlenko, Esti Yeger-Lotem, and Michal Ziv-Ukelson. Alignment
of metabolic pathways. Bioinformatics.

[44] R.Y. Pinter, O. Rokhlenko, D. Tsur, and M. Ziv-Ukelson. Approximate labeled subtree
homeomorphism. In Proceedings of 15th Annual Symposium of Combinatorial Pattern
Matching.

[45] Erzsebet Ravasz and Albert-Laszlo Barabasi. Hierarchical organization of modularity
in metabolic networks. Physical Review E67, 026112, 2003.

97

[46] N. Robertson and P.D. Seymour. Graph minors. ii. algorithmic aspects of treewidth. J.
of Algorithms 7, 309322, 1986.

[47] Berry Schoenmakers. A new algorithm for the recognition of series parallel graphs. CWI
Report CS-R9504, January 1995, 1995.

[48] R. Sharan and T. Ideker. Modeling cellular machinery through biological network com-
parison.

[49] Roded Sharan, Silpa Suthram, Ryan M. Kelley, Tanja Kuhn, Scott McCuine, Peter
Uetz, Taylor Sittler, Richard M. Karp, and Trey Ideker. Conserved patterns of protein
interaction in multiple species. PNAS, Vol.102 : 1974-1979, 2005.

[50] D. Shasha, J.T-L Wang, and R. Giugno. Algorithmics and applications of tree and
graph searching. PODS, pages 39.52, 2002.

[51] O. A. Shcherbina. Tree decomposition and discrete optimization problems: A survey.
Cybernetics and Systems Analysis E67, 026112, 2007.

[52] Y. Tohsato, H. Matsuda, and A. Hashimoto. A multiple alignment algorithm for
metabolic pathway analysis using enzyme hierarchy. Proc. 8th International Confer-
ence on Intelligent Systems for Molecular Biology, 376-383, ISMB 2000.

[53] W.H. Tsai and K.S Fu. Error-correcting isomorphisms of attributed relational graphsfor
pattern recognition. Systems, Man, and Cybernetics, 9:757-768, 1979.

[54] J. Valdes, R. Tarjan, and E. Lawler. The recognition of series parallel digraphs. SIAM
J. Comput. 11 2 (1982), pp. 298313, 1982.

[55] Sebastian Wernicke. Combinatorial algorithms to cope with the complexity of biological
networks. Dissertation, December 2006.

[56] Sebastian Wernicke and Florian Rasche. Simple and fast alignment of metabolic path-
ways by exploiting local diversity. Bioinformatics 23(15):1978, 2007.

[57] Gerhard J. Woeginger. Exact algorithms for np-hard problems: A survey. Combinatorial
Optimization (Edmonds Festschrift), LNCS 2570, pp. 185207, 2003, 2003.

[58] Y. Y. Tian, R. C. McEachin, C. Santos, D. J. States, and et al. Saga: A subgraph
matching tool for biological graphs. Bioinformatics, 23(2):232-239, 2007.

[59] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. ICDM, pages
721-724, 2002.

[60] X. Yan, P. S. Yuz, and J. Hany. Graph indexing: a frequent structure-based approach.
SIGMOD, pp. 335-46, 2004.

[61] Qingwu Yang and Sing-Hoi Sze. Path matching and graph matching in biological net-
works. Journal of Computational Biology, Vol. 14, No. 1: 56-67 : 5527-5530, 2007.

98

[62] M. et al. Yeung. Estimation of the number of extreme pathways for metabolic networks.
BMC Bioinformatics, 8, 363, 2007.

[63] Anton Yuryev and Sean Ekins. Pathway Analysis for Drug Discovery: Computational
Infrastructure and Applications. Wiley knowledge for generations, ISBN: 978-0-470-
10705-8, 2008.

99

