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ALGORITHMS FOR TOEPLITZ MATRICES WITH APPLICATIONS

TO IMAGE DEBLURRING

by

Symon Kimitei

Under the Direction of Michael Stewart

ABSTRACT

In this thesis, we present the O(n log2 n) superfast linear least squares Schur algorithm

(sflsschur). The algorithm we will describe illustrates a fast way of solving linear equa-

tions or linear least squares problems with low displacement rank. This program is based

on the O(n2) Schur algorithm speeded up via FFT. The algorithm solves a ill-conditioned

Toeplitz-like system using Tikhonov regularization. The regularized system is Toeplitz-like

of displacement rank 4. We show the effect of choice of the regularization parameter on the

quality of the image reconstruction.

INDEX WORDS: Toeplitz matrix, Schur algorithm, Ill-posed problem, Tikhonov Regu-

larization, Gohberg-Semencul formula.
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1 Introduction

In this research effort, the basic problem consists of the restoration of images which have

been degraded by noise. The idea is that given a degraded image, it is possible to use

mathematical procedures to improve the quality of the image. There are several areas of

digital image processing of interest to scientists and these include: image restoration, image

enhancement, image compression and image recognition. We will dwell entirely in the area

of image restoration using Toeplitz systems. This field of image restoration is an important

part of digital image processing and plays a key role in many applications today such as

in satellite, military reconnaissance missions, medical, forensic science and astronomical

imaging. It is also applicable in the restoration of poor-quality family portraits.

When we talk of a degraded image, we imply that the image has noise in it. The noise

in our images may arise naturally as in poorly stored family pictures where the degradation

may be caused by environmental conditions. However, there are other cases in which the

noise may be induced by the type of equipment used to capture the images. In any case, our

quest in this thesis is to denoise the given image by solving an ill-conditioned linear least

squares problem. A more explicit explanation of image noise and how it arises can be found

in [9] and [10].

In digital image processing, an image is represented by a 2 − D signal otherwise called

an array of matrix coefficients. Before we describe the blurred image representation, it is

important that we define Toeplitz matrices. This type is of greater importance to us because

its structure is worthy of exploitation. A Toeplitz matrix is defined as

T =



s0 s1 · · · sn−1

s−1 s0
. . .

...

...
. . . . . .

...

s−(m−1) s−(m−2) · · · s−(m−n+1)


(1)

a matrix with constants along the diagonals from top left to bottom right. In a more general
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case, we define sij = sj−i such that 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1. All the matrix

coefficients are scalar quantities. When a matrix is filled with coefficients which exhibit a

structure such as T above, we refer such a matrix as Toeplitz. The values of sj−i are defined

using the point spread function(p.s.f), φ (x, y) = g (x)h (y) . In the algorithms used in this

thesis project, we will choose our p.s.f to be

g (x) = e−0.1(x2)

and

h (y) = e−0.1(y2)

because they have zero boundary conditions. Since the p.s.f is seperable, it implies that

our blurring model Bij = Bxy. The values 0 ≤ x ≤ n − 1 and 0 ≤ y ≤ m − 1. Given the

definitions, it is easy to see that the blurring model can be constructed as

Bxy =
∑
x̂ŷ

I (x̂, ŷ)φ (x− x̂, y − ŷ) (2)

=
∑
x̂ŷ

I (x̂, ŷ) g (x− x̂)h (y − ŷ)

=
∑
x̂

g (x− x̂)

(∑
ŷ

I (x̂, ŷ)h (y − ŷ)

)

If we let I1 (x, y) =
∑

ŷ I (x, ŷ)h (y − ŷ) then

I1 =



i11 i12 · · · i1n
...

... · · · ...

i(n−1)1 i(n−1)2 · · · i(n−1)(n−1)

in1 in2 · · · inn





h0 h1 · · · hn−1

h−1 h0 · · · ...

...
. . . . . . h1

h−(n−1) h−(n−2) · · · h0


.

This indicates that I1 (x, y) = I (x̂, ŷ)T1. Consequently, we can express the blurred model
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B = I2 such that

I2 =
∑
x̂

g (x− x̂) I1 (x̂, y)

=



g0 g1 · · · gn−1

g−1 g0 · · · ...

...
. . . . . . g1

g−(n−1) g−(n−2) · · · g0





i
(1)
11 i

(1)
12 · · · i

(1)
1n

...
... · · · ...

i
(1)
(n−1)1 i

(1)
(n−1)2 · · · i

(1)
(n−1)(n−1)

i
(1)
n1 i

(1)
n2 · · · i

(1)
nn


= T2 I (x̂, ŷ)T1

The matrices T1 and T2 represent matrix convolution by the point spread functions g(x)

and h(y). As seen in the blurred model representation (2), the p.s.f used is seperable which

means that we can express it as a product of two convolution matrices, T1 and T2 .

In particular, if given an image represented by X ∈ <n×n, we will assume that X is

blurred and corrupted by randomized noise, F ∈ <n×n. The random noise is small relative

to the blurred image B ∈ <n×n. Therefore, the blurred image actually seen is given by the

equation

B = T1X̂T2 + F

X̂ = T−1
1 BT−1

2 − T−1
1 FT−1

2

Our discussion of the blurred model involves substituting X̂ = I used in the explanation of

the seperable p.s.f to avoid confusion with the standard identity matrix, I.

Therefore, in the blurred model representation, both T1 and T2 are square matrices and

the matrix B ∈ <n×n is the blurry image which is represented by the original sharp image

X, the induced noise F ∈ <n×n, T1 ∈ <n×n and T2 ∈ <n×n both of which are square Toeplitz

matrices. The noise matrix F occurs in the form of image degrading features as described

earlier. So in an ideal sense, when an image is not degraded, we can define the blurred image
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matrix as

B = T1XT2.

As noted above, if T1 or T2 is ill-conditioned, it may not be sufficient to compute

X = T−1
1 BT−1

2 .

This implies that if we proceed to compute the image error, we obtain

X − X̂ = T−1
1 BT−1

2 −
(
T−1

1 BT−1
2 − T−1

1 FT−1
2

)
= T−1

1 FT−1
2 (3)

The result (3) indicates that the error in the system becomes magnified when the problem we

solve is ill-conditioned. If ‖T−1
1 ‖2 or ‖T−1

2 ‖2 is large, then the error in the solution is large as

well. If the noise present is also larger, the error becomes even more magnified. To rectify the

problem of ill-conditioning, we apply regularization which allows for the stabilization of our

solutions. There are many other ways to regularize a system. The mathematical operators

often employed include filtering regularization techniques such as: Pseudoinverse, Wiener,

Tikhonov and more. Others may be iterative such as: Richardson-Lucy, total variation,

conjugate gradient and more .

In classic image restoration techniques, the image produced is simply the sum of noise

and the blurring operator acting on the true image as indicated above. In [5], the blurring op-

erator described is regarded as a convolution with a point-spread function that characterizes

a deviation from the true image. In digital image processing, the techniques often employed

in image deblurring seek to recover the degraded image by solving an ill-conditioned least

squares problem, usually regularized through the addition of some smoothness requirement

to be satisfied by the restored image.

Clearly, the linear problem being solved is a formidable computation because of the size

of the blurring operator whose dimensions are the number of pixels in the image and the
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potential problem of ill conditioning. In [5], it is suggested that if we apply regularization

to such ill-conditioned problems, one can render them practically solvable. However, the

article alludes to the fact that regularization can remove sharp edges and similar image

distinguishing features during the process. This means that when we apply the regularization

technique, our quest is simply to try to stabilize the ill-conditioned problem and solve it

without removing image distinguishing features. When this is done, it is possible to attain

a satisfactory solution to the problem.

In our research, we employ the Tikhonov regularization technique to solve the linear least

squares problem. A linear least squares method finds the best-fit or the best approximation

to the linear problem. The goal then is to minimize the norm of the residual. As indicated

earlier, this method allows us to find an approximate solution to the image restoration

problem by practically neutralizing the ill-conditioning associated with it. To do so, we

will use a regularization parameter which is a controlled scalar quantity defined as α. The

parameter is varied to determine an optimal level of the minimized residual norm. When

we strike a reasonable balance between the non-zero residual and the solution norm, the

solution attained is referred to as the Tikhonov solution [2]. In effect, the solution of the

linear least squares system obtained is an approximation of the actual solution.

At the heart of the problem being solved is the application of the fast generalized Schur

algorithm which is known to factorize a symmetric, positive definite Toeplitz-like matrix

within a runtime of O(n2). This is in contrast to the slow O(n3) algorithms often used to

solve linear systems of equations for example the Gaussian elimination procedure. Solving

linear equations sometimes involves decomposing the matrix being solved into upper and

lower triangular and this will be the case in our algorithms. It is therefore worth noting that

the generalized Schur algorithm is a proper choice because it decomposes any symmetric

positive definite Toeplitz-like matrix via the Cholesky factorization process to yield CTC,

where C is the upper triangular Cholesky factor.

In order to speed up the computations of the generalized Schur algorithm, the superfast
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linear least squares Schur algorithm is used. The basis of this algorithm is the generalized

Schur algorithm but speeded up computationally via FFT. The idea behind the linear least

squares problem is that one can find the minimization to the residual

min
Y
‖

 T

αI

Y −

 B

0

 ‖2
F

using the Tikhonov regularization where α is called the regularization parameter and I is the

identity matrix. Using this concept, it means that it is possible for one to solve the normal

equations

(
T T αI

) T

αI

Y =

(
T T αI

) B

0


(
T TT + α2I

)
Y = T TB

Since (
T TT + α2I

)
= CTC

it means that by the Cholesky factorization procedure, the normal equations can then be

reformulated so that the linear equation we will use to solve for Y becomes

(
CTC

)
Y = T TB

Note that this equation can be solved easily by back substitution since C is an upper trian-

gular matrix. This problem has a runtime of O (n3) .

We start the thesis project with the subsection 1.1 examining the problem of ill-conditioning

and show that we are indeed solving a perturbed system. Here, we explain what a system

condition number is and show its relevance to our project. In subsection 1.2, we discuss

the Tikhonov regularization procedure and introduce the concept of a regularization param-

eter which is used in solving the least squares problem. This is immediately followed by
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an overview of hyperbolic and plane rotations in subsections 1.3 and 1.4. Hyperbolic and

plane rotations are fundamental tools in the Schur algorithm. In these two subsections,

we will discuss what hyperbolic and plane rotations are and explain how they can be used

to introduce zeros in a matrix or a vector. Section 2 is devoted to the generalized Schur

algorithm which is the basis of the superfast linear least squares Schur algorithm. In this

Section, we start by describing the Cholesky factorization algorithm in subsection 2.1. The

Cholesky factorization procedure is used to decompose a s.p.d matrix into a lower and upper

triangular form. This subsection is followed by the subsection describing the displacement

representation of the Toeplitz matrix and how we can deduce that its displacement rank is 4.

Alongside, we explain what a generator matrix is as defined by the matrix G. Other concepts

such as proper form reduction, signature matrix, downshift matrix and the zero-bordered

Schur complement are introduced and explained also here. Subsection 2.3 is devoted towards

the reduction of the matrix G to proper form.

In Section 3, we explain the superfast linear least squares Schur algorithm. In this Sec-

tion, we define matrix generators, calculate the displacement rank of the regularized normal

equations. We will also show how the displacement rank of the regularized matrix T TT+α2I

can be reduced from 5 to 4. This is followed by the subsection which explains how we can

factorize a regularized Toeplitz-like matrix. Other procedures discussed here include the

computation of the generators of M = T TT + α2I and its subsequent application to finding

the generators of M−1. We end this Section with the fast matrix multiplication by a circu-

lant matrix used to speed up the superfast linear least squares problem via the FFT process.

In Section 4, we examine the complexity and storage analysis of the superfast linear least

squares problem. This Section is immediately followed by Section 5 which dwells on the

application of the superfast linear least squares algorithm to image deblurring. Section 6

presents the image restoration research results obtained from our experiments. This subsec-

tion is followed by a detailed analysis of the results. Additionally, in this Section we present

a summary of the results found in the thesis research. Finally, Section 7 concludes our thesis

7



research work.

1.1 The Problem of Ill-conditioning

Given a general linear system B = T1XT2, the problem is to solve for X. Note that T1,

T2 and X are the given data with some perturbations in them such as: rounding error,

measurement error, variations in the signal capture, environmental distortions and more. If

perturbation is present in the matrices used, then T̂1 = T1 +E1, T̂2 = T2 +E2 and B̂ = B+F.

In the matrix B, F represents noise present in the blurred image. In our thesis work, the

perturbations E1 and E2 present in matrices T1 and T2 are not part of our model of blurring,

but we will include them in our perturbation analysis here since they represent backward

errors in the solution of our linear system problem.

This implies that as a result of the perturbations, the system we need to solve for X

becomes

(T1 + E1)X̂(T2 + E2) = B + F

Since T1XT2 = B, one can express the equation above as

(T1 + E1)X̂(T2 + E2) = T1XT2 + F

which on further expansion, we determine that

F =
(
T1X̂ + E1X̂

)
(T2 + E2)− T1XT2.

Note that the same result can be expressed as

T1X̂T2 + E1X̂T2 + T1X̂E2 + E1X̂E2 − T1XT2 = F

8



and this is also equivalent to the equation

T1X̂T2 − T1XT2 = F −
(
E1X̂T2 + T1X̂E2 + E1X̂E2

)
.

When we simplify the result above, we determine that

T1

(
X̂ −X

)
T2 = F −

(
E1X̂T2 + T1X̂E2 + E1X̂E2

)
.

Using this derived equation, one can approximate the error in the system being solved using

the expression

X̂ −X = T−1
1

(
F −

(
E1X̂T2 + T1X̂E2

))
T−1

2 + O
(
E1X̂E2

)
.

Clearly, the neglected second order term in the error approximation is

O
(
E1X̂E2

)

Note from the calculations above that by the 2− norm

‖X̂ −X‖2 ≤ ‖T−1
1

(
F −

(
E1X̂T2 + T1X̂E2

))
T−1

2 ‖2 + O
(
‖E1X̂E2‖2

)
.

9



This further indicates that according to the triangle inequality

‖X̂ −X‖2 ≤ ‖T−1
1

(
F −

(
E1X̂T2 + T1X̂E2

))
T−1

2 ‖2

+O
(
‖E1X̂E2‖2

)
≤ ‖T−1

1 ‖2‖T−1
2 ‖2‖

(
F −

(
E1X̂T2 + T1X̂E2

))
‖2

+O
(
‖E1X̂E2‖2

)
≤ ‖T−1

1 ‖2‖T−1
2 ‖2‖F‖2 +

‖T−1
1 ‖2‖T−1

2 ‖2‖E1‖2‖X̂‖2‖T2‖2 +

‖T−1
1 ‖2‖T−1

2 ‖2‖T1‖2‖X̂‖2‖E2‖2

+O
(
‖E1X̂E2‖2

)
.

The relations obtained from the triangle inequality indicates that if we define

κ(T1) = ‖T−1
1 ‖2‖T1‖2

and

κ(T2) = ‖T−1
2 ‖2‖T2‖2

the relative error in X satisfies the following condition

‖X̂ −X‖2

‖X̂‖2

≤ κ (T1)κ (T2)
‖F‖2

‖T2‖2‖T1‖2‖X̂‖2

+

κ (T1)κ (T2)
‖E1‖2

‖T1‖2

+ κ (T1)κ (T2)
‖E2‖2

‖T2‖2

+ O
(
‖E1X̂E2‖2

)
.

The quantities κ(T1) and κ(T2) are called the condition numbers for T1 and T2 respectively.

By definition, a condition number is a natural measure of the relative distance to singularity

of the linear system being solved such that

min
T̂1singular

‖T̂1 − T1‖2

‖T1‖2

=
1

κ2(T1)

10



The reciprocal of κ(T1) gives the relative distance to singularity of the matrix under consid-

eration. If the condition number of the matrix in the system being solved is large, we define

such a system as being ill conditioned which implies that either ‖T1‖2 or ‖T−1
1 ‖2 is large.

When this is the case, we say the problem being solved is ill-posed.

Mathematically speaking, the quality of a linear system or a linear least squares problem

may be poor if the matrix involved is nearly singular. Therefore, the condition number

allows us to measure whether a matrix is singular or non-singular.

1.2 Minimizing Errors using Tikhonov Regularization

The Tikhonov regularization or otherwise called damped least squares algorithm is an algo-

rithm that was developed by Philips [7] and Tikhonov [8]. The algorithm is aimed at minimiz-

ing the ill-conditioning discussed earlier. It is well known that solutions to ill-conditioned

problems are very sensitive to noise, and regularization methods can be used to stabilize

them. To do so, one has to impose additional conditions to the solution being solved. The

question then arises: which additional conditions does one need to impose on the regularized

solution?

The Tikhonov regularization procedure is used in our research effort to damp out errors

in the linear problem we are solving. The key concept here is that given

T1XT2 = B

we set Y = XT2 and solve the regularized system which requires that we compute

min
Ŷ
‖

 T1

αI

Y −

 B

0

 ‖2
F

11



where α ≥ 0 is the regularization parameter. This means that we can compute for

Y =
(
T T1 T1 + α2I

)−1
T T1 B.

Alongside, solving for

XT2 = Y ⇔ T T2 X
T = Y T

and this fact allows for the formulation of another linear least squares problem

min
XT
‖

 T T2

αI

XT −

 Y T

0

 ‖2
F .

In this minimization problem, it is important to note that I is the identity matrix of order

n, and its normal equations are given by

(
T T2 T2 + α2I

)
XT = T T2 Y

T

Note that the regularization parameter α ≥ 0 in the least squares problem controls the

degree of minimizing the solution norm ‖XT‖F relative to minimizing the residual norm

‖T T2 XT − Y T‖2
F .

To dampen out errors in the system, one has to choose α appropriately for the given blur-

ring, noise model and image. The choice of α affects the reproduction of high frequency

information such as noise error and sharp edges. Our goal here is to choose α large enough

to damp out noise but not to eliminate image characteristics such as sharp edges. Therefore

when we use a regularization tool such as Tikhonov regularization, we seek to suppress the

noise without losing image details of interest to us.
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1.3 Application of Hyperbolic Rotations

In order to decompose the matrix being solved into upper and lower triangular form in our

algorithms, we will need to introduce zeros to a matrix or a vector appropriately. One of

the procedures needed to do so is with the application of a hyperbolic rotation which is a

matrix of the form

H =
1√

1− ρ2

 1 ρ

ρ 1


with |ρ| ≥ 0 and real. Hyperbolic rotations satisfy the relation

HTΣH = HΣHT

= Σ

for

Σ =

 1 0

0 −1


As an example, if we apply the hyperbolic rotations to a general matrix GT ∈ <2×2 where

GT =

 g11 gT12

g21 gT22


our goal is to use hyperbolic rotations to zero the element g21 in GT . The elements g11, g12,

and g22 are scalar quantities. Therefore, to introduce a zero at location for element g12, we

multiply GT by the hyperbolic rotation matrix H to yield

HG =
1√

1− ρ2

 1 ρ

ρ 1


 g11 gT12

g21 gT22


=

1√
1− ρ2

 g11 + ρg21 gT12 + ρg22

ρg11 + g21 ρgT12 + g22

 .
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If we set

ρg11 + g21 = 0⇒ ρg11 = −g21

hence

ρ =
−g21

g11

in the product HGT . Using the definition of ρ, the product

HGT =

 ĝ11 ĝT12

0 ĝT22

 .

The implication is that using the hyperbolic rotation, one can successfully introduce zeros to

the elements in a matrix or vector as shown. More details of this procedure can be found in

[4]. In Section 2, we will show how this concept is applied to the generalized Schur algorithm.

1.4 Application of Plane Rotations

Another way to introduce zeros into a matrix or a vector is by using the plane rotations.

Details of this procedure can be found in [3]. Given w ∈ <2×1, c = cos(θ) and s = sin(θ),

one can use plane rotations to introduce zeros also in a vector or matrix selectively. Plane

rotations are also referred to as Givens rotations. As an example, suppose we wish to

introduce a zero in the second element of the vector

w =

 x

y

 .

To do so, one has to set

c =
x√

x2 + y2

s =
y√

x2 + y2
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which in turn allows for the definition of the plane rotation matrix

Q =

 c −s

s c

 .

With Q defined, one can easily deduce that this matrix is orthogonal since

QQT = QTQ = I.

To zero the second element of the matrix w, we simply have to compute the product

QTw =

 √
x2 + y2

0

 .

It follows from the result QTw that plane rotations can also be used to introduce zeros into

a vector or a matrix. This concept is applied along with the hyperbolic rotations procedure

in the generalized Schur algorithm discussed in the next Section.

2 The Generalized Schur Algorithm

In this Section we derive the generalized Schur algorithm. This algorithm is used to

factorize a symmetric positive definite Toeplitz or Toeplitz-like matrix. The fact that the

matrix M = T TT + α2I is s.p.d for T = T1 or T = T2, this implies that we can apply the

Cholesky factorization procedure so that

T TT + α2I = CTC.

The decomposition dictates that the Toeplitz-like matrix can be expressed as a product of

a lower and upper triangular matrices where the matrix C is the upper triangular part.

The factorization process can be accomplished using the Schur algorithm which is known
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to compute the Cholesky factors with a runtime of O (n2). This method is implemented

with hyperbolic rotations in a factored form also known to provide numerical stability to

the solutions. In this Section we will focus our subject matter to the discussion of the

Cholesky factorization procedure and the displacement structure of the symmetric positive

definite Toeplitz matrix T TT. We will also show how its displacement equation can be used

to define the generator matrix G. Later in the Section, we will show how the matrix G can

be reduced to proper form using both hyperbolic and plane rotations. It must be noted

that the quest of reducing the generator matrix to proper form is to successively reveal a

row of the Cholesky factor and to put the generators in a form in which the generators of

the Schur complement can be obtained with just a shift. The computation of the Cholesky

factor then proceeds recursively. When the procedure is complete, we will have obtained

the Cholesky matrix C which is an upper triangular matrix.

2.1 The Cholesky Factorization Procedure

Given a symmetric positive definite matrix, where s0 is scalar, we define the Toeplitz matrix,

T ∈ <n×n as

T =

 s0 tT1

t1 T2

 .

The procedure we will describe here is not the typical Cholesky factorization procedure but

can lead to the computation of the Cholesky factor, C, such that

T −

 √s0

t1√
s0

( √s0
tT1√
s0

)
=

 s0 tT1

t1 T2

−
 s0 tT1

t1
t1tT1
s0


 0 0

0 Ts

 =

 0 0

0 T2 − t1tT1
s0


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It is important to note that (
√
s0

tT1√
s0

)
is the first Cholesky row. If we scale the first column of the Schur complement, T2 − t1tT1

s0
,

then the result is the second row of the Cholesky factor. To reveal the rest of the Cholesky

rows, the process is done recursively to yield the Cholesky matrix C. In general, if a matrix

is symmetric positive definite as T ∈ <n×n is, then we can obtain a Cholesky factorization

from it to yield

T TT = CTC

where C is an upper triangular matrix. This fact holds true for both Toeplitz and Toeplitz-

like matrices.

To decompose a general matrix into its upper triangular form by the Cholesky factoriza-

tion procedure, one has to simply compute cij where 1 ≤ i, j ≤ n. This recursive procedure is

described above in this subsection. A more explicit way of computing the Cholesky triangle

elements, cij, is shown by the following O(n3) Cholesky factorization algorithm for a general

matrix. More details of this procedure can be found in [3]. The elements are computed

recursively as follows:

cii =

√√√√(tii − i−1∑
k=1

(cik)
2

)

cji =

(
tji −

i−1∑
k=1

(cjkcik)

cii

)
.

In the next Section, we will consider how the complexity of this algorithm can be reduced

to O(n2) or O(n log2 n) for a Toeplitz-like matrix.

2.2 The Displacement Representation of a Structured Matrix

For greater generality, we now consider a rectangular Toeplitz matrix, T ∈ <m×n
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T =



s0 s1 s2 · · · · · · sn−1

s−1 s0 s1 s2 · · · ...

s−2 s−1 s0
. . . . . .

...

...
. . . . . . . . . . . . s−(m−n−1)

...
. . . . . . . . . . . . s−(m−n)

s−(m−1) s−(n−2) · · · · · · s−1 s−(m−n+1)


(4)

Using this matrix definition, we can find a reduced representation of the s.p.d Toeplitz-like

matrix T TT and thus efficiently solve the least squares problem. To do so, the displacement

equation defined as

T TT − ZT TTZT = GΣGT

is evaluated. In the displacement equation, the matrix G is called the generator matrix, the

matrix Z is referred to as the downshift matrix while the matrix Σ is the signature matrix.

The downshift matrix Z is defined as

Z =



0 0 0 · · · 0 0

1 0 0 0
. . . 0

... 1 0
. . . 0

...

... 0
. . . . . . . . .

...

...
. . . . . . . . . . . . 0

0 0 · · · 0 1 0


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where its definition is in such a way that ones are on the subdiagonal and zeros elsewhere.

On the other hand, the signature matrix is defined as

Σ =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


such that the negative and positive ones on the main diagonalare derived from the decom-

position of the matrix displacement equation.

To show this fact, we partition T in two different ways so that

T =

 s0 tT1

t−1 T2

 =

 T2 t̂1

t̂T−1 sm−n

 .

In the partitioning, T2 ∈ <m−1×n−1, s0 is a scalar quantity while tT1 ∈ <1×n−1and t−1 ∈

<m−1×1 are both vectors. Equivalently, sm−n is a scalar quantity but t̂T−1 ∈ <m−1×1 and

t̂1 ∈ <1×n−1 are vectors.

With T defined, we can then compute

T TT =

 s0 tT−1

t1 T T2


 s0 tT1

t−1 T2


=

 s2
0 + tT−1t−1 s0t

T
1 + tT−1T2

t1s0 + T T2 t−1 t1t
T
1 + T T2 T2

 .

Alternatively if we let

T =

 T2 t̂1

t̂T−1 sm−n


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then

T TT =

 T T2 t̂−1

t̂T1 sm−n


 T2 t̂1

t̂T−1 sm−n


=

 T T2 T2 + t̂−1t̂
T
−1 T T2 t̂1 + t̂−1sm−n

t̂T1 T2 + sm−nt̂
T
−1 t̂T1 t̂1 + s2

m−n

 .

Now, using the displacement equation definition, it is easy to see that

T TT − ZT TTZT =

 s2
0 + tT−1t−1 s0t

T
1 + tT−1T2

t1s0 + T T2 t−1 t1t
T
1 + T T2 T2

−
 0 0

0 T T2 T2 + t̂−1t̂
T
−1

 .
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Algebraically, this equation is equivalent to

T TT − ZT TTZT =

 s2
0 + tT−1t−1 s0t

T
1 + tT−1T2

t1s0 + T T2 t−1 t1t
T
1 − t̂−1t̂

T
−1


=

 s0

t1

( s0 tT1

)
+

 tT−1t−1 tT−1T2

T T2 t−1 −t̂−1t̂
T
−1


=

 s0

t1

( s0 tT1

)
−

 0

t̂−1

( 0 t̂T−1

)
+

 tT−1t−1 tT−1T2

T T2 t−1 0


=

 s0

t1

( s0 tT1

)
−

 0

t̂−1

( 0 t̂T−1

)
+

 ‖ t−1 ‖2

TT2 t−1

‖t−1‖2

( ‖ t−1 ‖2

(
TT2 t−1

‖t−1‖2

)T )
−

 0

TT2 t−1

‖t−1‖2

( 0
(
TT2 t−1

‖t−1‖2

)T )
.

From the decomposition of the displacement equation we can define the generator matrix as

G =

 s0 ‖t−1‖2 0 0

t1
TT2 t−1

‖t−1‖2 t̂−1
TT2 t−1

‖t−1‖2

 .

Note from the decomposition of the displacement equation T TT − ZT TTZT that we have

conclusively deduced that the displacement rank is 4. The displacement rank is defined as

the rank of the displacement equation T TT − ZT TTZT = GΣGT . When the displacement

rank is significantly low as this one is, it alludes to the fact that we can decompose T TT

easily into CTC using the Cholesky factorization procedure.
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In general, we will work with any matrix M = T TT + α2I such that

M − ZMZT = ĜΣĜT

=

 a0 b0 c0 d0

a1 b1 c1 d1




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1





a0 aT1

b0 bT1

c0 cT1

d0 dT1


where a0, b0, c0, and d0 are scalars while a1, b1, c1, and d1 are vectors. Note that the

Σ−orthogonal matrix described here is a matrix H such that HΣHT = Σ where Σ = I⊕−I.

The matrix

H =
1√

1− |ρ|2



γ1 0 0 0

0 γ2 0 0

0 0 γ3 0

0 0 0 γ4





1 0 ρ 0

0 1 0 0

ρ 0 1 0

0 0 0 1


is defined in such a way that |γ1| = |γ2| = |γ3| = |γ4| = 1 and 0 ≤ |ρ| < 1. In our algorithms,

we will set

Σ = I2 ⊕−I2.

The signature matrix Σ used here enables us to construct any Σ−orthogonal matrices from

products of hyperbolic rotations and block diagonal orthogonal matrices. A block diagonal

orthogonal matrix is of the form



c1 −s1 0 0

s1 c1 0 0

0 0 c2 −s2

0 0 s2 c2


where c1 and c2 are real and non-negative scalar quantities while s1 and s2 are assumed to
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be real. These values satisfy the condition that

c2
1 + |s2|2 = c2

2 + |s2|2 = 1.

It is also instructive to note that any hyperbolic rotation used is of the form



1√
1−|ρ1|2

0 ρ1√
1−|ρ1|2

0

0 1√
1−|ρ2|2

0 ρ2√
1−|ρ2|2

ρ̄1√
1−|ρ1|2

0 1√
1−|ρ1|2

0

0 ρ̄2√
1−|ρ2|2

0 1√
1−|ρ2|2


.

The Σ−orthogonal matrix can be formed as a product of plane rotations, hyperbolic rotations

and diagonal matrices such that diagonal matrices are defined by

diag (γ1, γ2, γ3, γ4)

and |γ1| = |γ2| = |γ3| = |γ4| = 1.

2.3 Reducing G to Proper Form with Σ−Orthogonal Transforma-

tions

The idea behind the generalized Schur algorithm is that given

GT =



a0 aT1

b0 bT1

c0 cT1

d0 dT1


also defined as the generator matrix, one can use both hyperbolic and plane rotations to

introduce zeros in the elements of G as discussed in our introductory material. As a result,
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we have

GT =



1√
1−ρ2

0 ρ√
1−ρ2

0

0 1 0 0

ρ√
1−ρ2

0 1√
1−ρ2

0

0 0 0 1





c1 −s1 0 0

s1 c1 0 0

0 0 c2 −s2

0 0 s2 c2




a0 aT1

b0 bT1

c0 cT1

d0 dT1



=



â0 âT1

0 b̂T1

0 ĉT1

0 d̂T1


When these complete set of operations are done to introduce zeros as shown above, we say

that we have reduced the matrix into proper form. A matrix GT that has been reduced to

proper form has the leading element of each row except the first equal to zero.

Therefore, if given the generator matrix G and a matrix H that satisfies the relationship

HΣHT = Σ

then we can deduce that

(GH)Σ(GH)T = G(HΣHT )GT

= GΣGT .

From this result, it suffices to conclude that GH are also generators of some Toeplitz-like
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matrix M with H being an arbitrary Σ-orthogonal transformation. In general we will

always choose H to put G in proper form.

Now let us define the zero bordered Schur complement used to recursively evaluate the

other Cholesky factor rows to be

 0 0

0 Ms

 =

 0 0

0 M22 − µ21µ
−1
0 µT12


where

M =

 µ0 µT21

µ21 M22

 .

In the definition of the matrix M, µ0 is a scalar quantity, µT21 ∈ <1×n−1, µ12 ∈ <n−1×1 and

M22 ∈ <n−1×n−1. From the definition of M given, it is important to note that we are working

with the general matrix M. Equivalently, if

mT
1 =

(
µ0 µ1 · · · µn−1

)

is the first row of M, then we can denote

 0 0

0 Ms

 = M − 1

µ0

m1m
T
1 .

Using the displacement equation definition, it means that we can express

 0 0

0 Ms

− Z
 0 0

0 Ms

ZT = M − ZMZT − 1

µ0

m1m
T
1

+
1

µ0

Z
(
m1m

T
1

)
ZT

Clearly
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 0 0

0 Ms

− Z
 0 0

0 Ms

ZT =

 0 0

0 GsΣG
T
s


where

Gs =

(
Zâ b̂ ĉ d̂

)

are the proper form generators for Ms.

This illustrates that the zero-bordered Schur complement Ms inherits the displacement

structure of M. Therefore the generators of Ms are easily determined by the proper form

generators of T TT . In a more general case, the above steps of the generalized Schur

algorithm are repeated recursively on Ms with the generator matrix Gs to successively

compute the subsequent rows of the Cholesky factor.

3 The Superfast Linear Least Squares Schur Algorithm

As stated earlier in the introductory material, the quest of the superfast linear least squares

Schur algorithm is to speed up the computations of the generalized Schur algorithm. More

importantly, we already understand that the basis of this algorithm is the generalized Schur

algorithm. To speed up our computations, it was noted that the FFT process is used. This

means that the FFT process plays a major role in the matrix-vector multiplication needed

in solving our linear system of equations.

In this Section we start with subsection 3.1 which deals with the computation of the

generators of T TT . Once we compute the generators and show that it is of rank 5, we

deduce in subsection 3.2 how we can reduce the rank of Ĝ from 5 to 4. In subsection

3.3, we show how we can represent the matrix Ĝ as polynomials. This is continued with

a detailed procedure about how we can factorize the regularized system we seek to solve.

Turning to subsection 3.4, we show how we can reduce the generator matrix to proper form.
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Subsection 3.5 is devoted to the computation of the generators for the matrix M−1. Finally

in subsection 3.6, we show how the FFT process speeds up the computations involved in

solving our regularized system.

3.1 Computing the Generators of M = T TT + α2I

The first step of the superfast linear least squares Schur algorithm applied to a regularized

system is to obtain the four generators needed to represent the matrix to be factored. From

the generalized Schur algorithm, it was proved that T TT − Z
(
T TT

)
ZT is of rank 4. It was

further shown from the expansion of T TT − Z
(
T TT

)
ZT that one can obtain the generator

matrix

G =

 s0 ‖t−1‖2 0 0

t1
TT2 t−1

‖t−1‖2 t̂−1
TT2 t−1

‖t−1‖2

 .

Now if instead we use the Toeplitz-like matrix M = T TT + α2I and apply the displacement

operator to the regularized normal equations we have

(M)− Z (M)ZT = T TT + α2I − ZT TTZT − Zα2IZT

= T TT − ZT TTZT + α2I − Zα2IZT .

The result can further be expressed as

M − Z (M)ZT = GΣGT + α2e1e
T
1

= ĜΣ̂ĜT .

In the displacement equation, the vector e1 is the first standard basis vector and α is a scalar

quantity which precisely is the regularization parameter. From the above result it appears

that the displacement rank of the new generator matrix Ĝ is 5 instead of 4 deduced before.
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This new result allows us to redefine the generator matrix as

Ĝ =

 s0 ‖t−1‖2 α 0 0

t1
TT2 t−1

‖t−1‖2 0 t̂−1
TT2 t−1

‖t−1‖2


whose signature matrix is given by

Σ̂ = I3 ⊕−I2.

Clearly, we have shown that the column vectors of ĜT are also the generators of M =

T TT + α2I so that by using the displacement equation formula, we can now assert that

M − Z (M)ZT = ĜΣ̂ĜT .

With this idea in mind, one can apply this concept to solve a regularized least squares

problem.

We define a regularized least squares minimization problem to be

min
X̂
‖

 T

αI

 x̂−

 y

0

 ‖2
2

where I is the identity matrix of order n and the rest is the regularized normal equations for

the least squares problem

(
T T αI

) T

αI

 x̂ =

(
T T αI

) y

0


(T TT + α2I)x̂ = T Ty.

Mx̂ = T Ty

Since M is a symmetric and positive definite Toeplitz-like matrix, it means that it has a
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Cholesky factor. Therefore

(M)x̂ = T Ty ⇔
(
CTC

)
x̂ = T Ty.

This yields a linear problem which can easily be solved by back substitution. The overall

computational complexity for this linear probem can be deduced to be O(n2).

3.2 Reducing the Displacement Rank from 5 to 4

Given the Toeplitz-like matrix

M = T TT + α2I

then by using the displacement equation definition, we can show that

M − ZMZT =

 s0

t1

( s0 tT1

)
−

 0

t̂−1

( 0 t̂T−1

)
+

 ‖ t−1 ‖2

TT2 t−1

‖t−1‖2

( ‖ t−1 ‖2

(
TT2 t

T
−1

‖t−1‖2

)T )
−

 0

TT2 t−1

‖t−1‖2

( 0
(
TT2 t

T
−1

‖t−1‖2

)T )
+

 α

0

( α 0

)
.

Note that the above equation is equivalent to

M − ZMZT =

 s0

t1

( s0 tT1

)
−

 0

t̂−1

( 0 t̂T−1

)
+

 ‖t−1‖2
2 + α2 tT−1T2

T T2 t−1 0


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since ‖ t−1 ‖2= t−1t
T
−1. Continuing the expansion shows that

M − ZMZT =

 s0

t1

( s0 tT1

)
−

 0

t̂−1

( 0 t̂T−1

)
+


√
‖t−1‖2

2 + α2

TT2 t−1√
‖t−1‖22+α2


( √

‖t−1‖2
2 + α2 tT−1T2√

‖t−1‖22+α2

)
− 0

TT2 t−1√
‖t−1‖22+α2

( 0
tT−1T2√
‖t−1‖22+α2

)
.

Clearly

M − ZMZT = ĜΣ̂ĜT

and more importantly, it is conclusive that the rank of ĜΣ̂ĜT has been reduced from 5 to

4. This allows us to give a much more explicit definition for the column vectors of Ĝ as

Ĝ =

 s0

√
‖t−1‖2

2 + α2 0 0

t1
TT2 t−1√
‖t−1‖22+α2

t̂−1
TT2 t−1√
‖t−1‖22+α2

 .

The new matrix Ĝ stores the generators of the regularized least squares linear problem. It is

also instructive to note that the generators can be representated in the form of polynomials

using the relation

Ĝ(z) =

(
1 z z2 · · · zn−1

)


a0 b0 c0 d0

a1 b1 c1 d1

...
...

...
...

an−1 bn−1 cn−1 dn−1


=

(
a0(z) b0(z) c0(z) d0(z)

)
.
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Here, the zero subscripts denote that

(
a0(z) b0(z) c0(z) d0(z)

)

are the initial generators. This representation combined with the fast multiplication of the

polynomials via the FFT will further speed up the algorithm.

3.3 Factorizing the Regularized System

In subsection 3.2, we indicated that the matrix Ĝ can be represented as polynomial genera-

tors. This means that the generator matrix becomes

Ĝ =



a0 b0 c0 d0

a1 b1 c1 d1

...
...

...
...

an−2 bn−2 cn−2 dn−2

an−1 bn−1 cn−1 dn−1


where the initial polynomial generator Ĝ is defined as

Ĝ0(z) =

(
a0(z) b0(z) c0(z) d0(z)

)
.

To perform the downshifts on the polynomial coefficients, one has to multiply the gener-

ator matrix with the downshift matrix

S(z) =



z 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


on the right. These downshifting matrix is applied along with the plane and hyperbolic
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rotations to recursively reveal the Cholesky rows needed to define the upper triangular

Cholesky matrix C.

This implies after reducing the matrix into proper form using hyperbolic and plane rota-

tions, the next step of the algorithm involves shifting the first column of G by multiplying

with the shift matrix S(z) so that

(
a1(z) b1(z) c1(z) d1 (z)

)
=

(
a0(z) b0(z) c0(z) d0 (z)

)


c1 −s1 0 0

s1 c1 0 0

0 0 c2 −s2

0 0 s2 c2




1√
1−ρ2

0 ρ√
1−ρ2

0

0 1 0 0

ρ√
1−ρ2

0 1√
1−ρ2

0

0 0 0 1





z 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

When this is done, the new generator matrix is for the Schur complement. Continuing this
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iteration, it implies that after k-steps, we have

(
ak(z) bk(z) ck(z) dk (z)

)
=

(
ak−1(z) bk−1(z) ck−1(z) dk−1 (z)

)


c1 −s1 0 0

s1 c1 0 0

0 0 c2 −s2

0 0 s2 c2




1√
1−ρ2

0 ρ√
1−ρ2

0

0 1 0 0

ρ√
1−ρ2

0 1√
1−ρ2

0

0 0 0 1





z 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

The idea here is to reduce the polynomial generators into proper form after the plane and

hyperbolic rotations have been applied so that

a(z) = a0 + a1z + a2z
2 + · · ·+ an−1z

n−1

b(z) = 0 + b1z + b2z
2 + · · ·+ bn−1z

n−1

c(z) = 0 + c1z + c2z
2 + · · ·+ cn−1z

n−1

d(z) = 0 + d1z + d2z
2 + · · ·+ dn−1z

n−1.

In terms of matrices, this means that given the generator matrix

Ĝ(z) =

(
a(z) b(z) c(z) d(z)

)

where a(z), b(z), c(z) and d(z) are polynomials with n coefficients. Then the following simple

steps are undertaken to reduce Ĝ(z) to proper form:
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1. Apply hyperbolic and plane rotations to Ĝ(z) to yield

Ĝ(z) =

(
(â0 + â1z + · · ·+ ân−1z

n−1)
(
b̂1z + · · ·+ b̂n−1z

n−1
)

(ĉ1z + · · ·+ ĉn−1z
n−1)

(
d̂1z + · · ·+ d̂n−1z

n−1
) )

2. The first Cholesky row is given by coefficients for



â0

â1

â2

...

ân−1



3. Then next we apply the downshift matrix to



â0

â1

â2

...

ân−1


so that

G̃(z) =

(
(â0 + â1z + · · ·+ ân−1z

n−1)
(
b̂1z + · · ·+ b̂n−1z

n−1
)

(ĉ1z + · · ·+ ĉn−1z
n−1)

(
d̂1z + · · ·+ d̂n−1z

n−1
) )
· S(z)

The new matrix G̃ is the generator matrix for the Schur complement after one complete
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set of operations. We can define this new generator matrix as

G̃(z) =

(
ã(z) b̃(z) c̃(z) d̃(z)

)

4. Applying the same procedure to the Schur complement gives the second row of the

Cholesky factor. The process continues recursively to reveal the rest of the Cholesky

rows needed to define the Cholesky matrix, C.

Having reduced all the polynomial generators into proper form, the superfast linear least

squares Schur algorithm can then be reformulated to use matrix-vector polynomial multi-

plication which has computational speedup via FFT. In this algorithm, given M, one can

partition it so that we can take advantage of the divide and conquer technique. The parti-

tioning is performed as follows

M =

 M11 M12

MT
12 M22


where M11 ∈ <

n
2
×n

2 , M12 ∈ <
n
2
×n

2 , MT
12 ∈ <

n
2
×n

2 and M22 ∈ <
n
2
×n

2 . Given the partitioning,

the transformations that processes k-steps of the superfast least squares Schur algorithm is

of the form

(
ak(z) bk(z) ck(z) dk(z)

)
=

(
a0(z) b0(z) c0(z) d0 (z)

)
H1S(z)H2S(z) · · ·HkS(z).

In this case, the initial generator polynomials are a0(z), b0(z), c0(z), d0(z) while the ak(z),

bk(z), ck(z), dk(z) are the polynomial generators at the kth step. The matrices H1···k rep-

resents the products of hyperbolic and plane rotations while S1···k represents the downshift

matrices applied iteratively to arrive at the kth step. The same result can be obtained by
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the operation

(
ak(z) bk(z) ck(z) dk(z)

)
=

(
a0(z) b0(z) c0(z) d0(z)

)


h
(k)
11 (z) h

(k)
12 (z) h

(k)
13 (z) h

(k)
14 (z)

h
(k)
21 (z) h

(k)
22 (z) h

(k)
23 (z) h

(k)
24 (z)

h
(k)
31 (z) h

(k)
32 (z) h

(k)
33 (z) h

(k)
34 (z)

h
(k)
41 (z) h

(k)
42 (z) h

(k)
43 (z) h

(k)
44 (z)


More generally, let H

(k)
j (z) be the matrix that performs k steps of the superfast linear least

squares Schur algorithm on the step j generators defined as

(
aj(z) bj(z) cj(z) dj(z)

)
.

Then it follows that

H
(k)
j (z) = H

( k
2

)

j (z)H
( k
2

)

j+ k
2

(z).

This is the single most important step in the algorithm. It is the doubling relation which

permits the divide-and-conquer feature in the sflsschur algorithm. In particular, let a
(l)
j (z),

b
(l)
j (z), c

(l)
j (z) and d

(l)
j (z) be generators after j steps truncated to be of length l.

This implies that the sflsschur algorithm is seen to admit the following recursive algorithm

function [H
(n)
0 (z)] = sflsschur(a

(n)
0 (z), b

(n)
0 (z), c

(n)
0 (z), d

(n)
0 (z))

H
(n
2

)

0 (z) = sflsschur(a
(n
2

)

0 (z), b
(n
2

)

0 (z), c
(n
2

)

0 (z), d
(n
2

)

0 (z))(
an

2
(z) bn

2
(z) cn

2
(z) dn

2
(z)

)
=

(
a

(n)
0 (z) b

(n)
0 (z) c

(n)
0 (z) d

(n)
0 (z)

)
H

(n
2

)

0 (z)

H
(n
2

)
n
2

(z) = sflsschur(a
(n
2

)
n
2

(z), b
(n
2

)
n
2

(z), c
(n
2

)
n
2

(z), d
(n
2

)
n
2

(z))

H
(n)
0 (z) = H

(n
2

)

0 (z)H
(n
2

)
n
2

(z)
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end

Evidently, the first step of the algorithm generates the Schur transformation matrix

H
(n
2

)

0 (z) which corresponds to performing the Schur algorithm on M11. This is defined by the

function call

H
(n
2

)

0 (z) = sflsschur(a
(n
2

)

0 (z), b
(n
2

)

0 (z), c
(n
2

)

0 (z), d
(n
2

)

0 (z)).

The procedure call evaluates the generators for the Schur complementMs = M22−MT
12M

−1
11 M12.

In the next step, we continue the factorization on Ms given that

(
an

2
(z) bn

2
(z) cn

2
(z) dn

2
(z)

)
=

(
a

(n)
0 (z) b

(n)
0 (z) c

(n)
0 (z) d

(n)
0 (z)

)
H

(n
2

)

0 (z)

The factorization of Ms is such that

H
(n
2

)
n
2

(z) = sflsschur(a
(n
2

)
n
2

(z), b
(n
2

)
n
2

(z), c
(n
2

)
n
2

(z), d
(n
2

)
n
2

(z)).

When we combine the first n
2

steps of the Schur algorithm with the last n
2
− steps, this yields

H
(n)
0 (z) or more equivalently

H
(n)
0 (z) = H

(n
2

)

0 (z)H
(n
2

)
n
2

(z)

where

H =



c1 −s1 0 0

s1 c1 0 0

0 0 c2 −s2

0 0 s2 c2





1√
1−ρ2

0 ρ√
1−ρ2

0

0 1 0 0

ρ√
1−ρ2

0 1√
1−ρ2

0

0 0 0 1





z 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

Using the sflsschur algorithm, the problem is halved in each step such that when n = 1,
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which corresponds to the last step of the Schur algorithm applied to

(
σ1 σ2 σ3 σ4

)

where σ1, σ2, σ3, σ4 are scalar quantities, we can reduce the matrix into

(
σ̃ 0 0 0

)

To perform the transformation, we use both hyperbolic and plane rotations. In particular

we seek to find c1, c2, s1, s2 and ρ so that

(
σ̃ 0 0 0

)
=

(
σ1 σ2 σ3 σ4

)


c1 −s1 0 0

s1 c1 0 0

0 0 c2 −s2

0 0 s2 c2




1√
1−ρ2

0 ρ√
1−ρ2

0

0 1 0 0

ρ√
1−ρ2

0 1√
1−ρ2

0

0 0 0 1


thus yielding the generators in proper form.

3.4 The Transformation to Proper Form

When n = 1, we have the matrix

(
σ1 σ2 σ3 σ4

)
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where the elements σ1, σ2, σ3, σ4 are scalar quantities and real. We need to establish here

that

(
σ̃ 0 0 0

)
=

(
σ1 σ2 σ3 σ4

)


c1 −s1 0 0

s1 c1 0 0

0 0 c2 −s2

0 0 s2 c2




1√
1−ρ2

0 ρ√
1−ρ2

0

0 1 0 0

ρ√
1−ρ2

0 1√
1−ρ2

0

0 0 0 1


Proof:

Recall from [4] that using the plane rotations, also called givens rotations, we can reduce

the matrix (
a b

)
by the operation (

a b

) c −s

s c

 =

(
r 0

)

where c = a√
a2+b2

and s = b√
a2+b2

. When we do so, we denoted that the result is in proper

form. Applying the concept to the matrix product given in this problem, we start by setting

 c1

s1

 =

 σ1

σ2


√
σ2

1 + σ2
2
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and

 c2

s2

 =

 σ3

σ4


√
σ2

3 + σ2
4

.

Equivalently, if we multiply out the right hand side with the new definitions of c1, s1, c2 and

s2 then

(
σ̂1 0 σ̂3 0

)
=

(
σ1 σ2 σ3 σ4

)


c1 −s1 0 0

s1 c1 0 0

0 0 c2 −s2

0 0 s2 c2


.

This means that if we multiply out the first part of the matrix, we can show that

σ̂1 =
σ2

1 + σ2
2√

σ2
1 + σ2

2

=
√
σ2

1 + σ2
2

and

σ̂3 =
σ2

3 + σ2
4√

σ2
3 + σ2

4

=
√
σ2

3 + σ2
4.

Alongside, if we let

ρ =
−σ̂3

σ̂1

=

√
σ2

3 + σ2
4√

σ2
1 + σ2

2
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it is easy to see that completing the multiplication

(
σ̂1 0 σ̂3 0

)


1√
1−ρ2

0 ρ√
1−ρ2

0

0 1 0 0

ρ√
1−ρ2

0 1√
1−ρ2

0

0 0 0 1


=

( (
σ̂1+σ̂3ρ√

1−ρ2

)
0 0 0

)

=

( (
σ̂1+σ̂3ρ√

1−ρ2

)
0 0 0

)

=

  σ̂1+σ̂3

“
−σ̂3
σ̂1

”
r

1−
“
−σ̂3
σ̂1

”2

 0 0 0


=


 σ̂2

1−σ̂
2
3

σ̂1s
σ̂2
1−σ̂

2
3

σ̂2
1

 0 0 0


=

(
σ̂2
1−σ̂2

3√
σ2
1−σ̂2

3

0 0 0

)
=

( √
σ̂2

1 − σ̂2
3 0 0 0

)
=

(
σ̃ 0 0 0

)

which is the proper form for the case when n = 1. Thus,

σ̃ =

√
(σ2

1 + σ2
2)−

√
σ2

3 + σ2
4

3.5 Computation of the Generators of M−1

Now recall that if given

T1XT2 = B
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to solve for X, we set Y = XT2 and solve the regularized system using the Tikhonov

regularization procedure which requires that we compute

min
Ŷ
‖

 T1

αI

Y −

 B

0

 ‖2
F

where α ≥ 0 is the regularization parameter. The normal regularized equations associated

with the minimization problem is given by

Y =
(
T T1 T1 + α2I

)−1
T T1 B.

Note that it is essential for us to compute for M−1 =
(
T T1 T1 + α2I

)−1
. Alongside, solving

for

XT2 = Y ⇔ T T2 X
T = Y T

allows for the formulation of another linear least squares problem

min
XT
‖

 T T2

αI

XT −

 Y T

0

 ‖2
F .

Note that I is the identity matrix of order n. The other associated regularized normal

equations are given by

(
T T2 T2 + α2I

)
XT = T T2 Y

T

XT =
(
T T2 T2 + α2I

)−1
T T2 Y

T

which means we must evaluate for M−1 =
(
T T2 T2 + α2I

)−1
using the Tikhonov regularization

procedure. The regularization parameter α ≥ 0 in the least squares problem controls the
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degree of minimizing the solution norm ‖XT‖F relative to minimizing the residual norm

‖T T2 XT − Y T‖2
F .

Therefore, if we define the Toeplitz-like matrix M ∈ <n×n and I ∈ <n×n so that

M = T TT + α2I

we can form the displacement equation for an augmented matrix as

 M I

I 0

−
 Z 0

0 Z


 M I

I 0


 ZT 0

0 ZT

 =

 M − ZMZT e1e
T
1

e1e
T
1 0


Note that the matrix  M I

I 0


yields the Schur complement

0− IM−1I = −M−1.

This clearly illustrates that the Schur complement can be used to evaluate the matrix inverse

M−1. We can now define the displacement equation used to find the M−1 as

M−1 − ZM−1ZT = ĜΣ̂ĜT

where

Ĝ =

(
a b c d

)

=

 s0 γ 0 0

t1
TT2 t−1

γ
t̂−1

TT2 t−1

γ


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and

γ =
√
‖t−1‖2

2 + α2.

It should be clear to the reader that the column vectors of Ĝ are also the generators of M.

More equivalently

γe1 = Ĝ



0

1

0

−1


=

 γ

TT2 t−1

γ

−
 0

TT2 t−1

γ


=

 γ

0



=

(
a b c d

)


0

1

0

−1


= b− d.
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Therefore, from the displacement equation of the augmented matrix, we evaluate that

 M I

I 0

−
 Z 0

0 Z


 M I

I 0


 ZT 0

0 ZT

 =

 M − ZMZT e1e
T
1

e1e
T
1 0


=

 ĜΣ̂ĜT e1e
T
1

e1e
T
1 0


 a b c d

0 e1
γ

0 e1
γ

Σ



aT 0

bT
eT1
γ

cT 0

dT
eT1
γ


=

 ĜΣ̂ĜT (b−d)e1
γ

e1(b−d)T

γ
0



=

 ĜΣ̂ĜT e1e
T
1

e1e
T
1 0

 .

It follows then that the generators of the Schur complement of

 M I

I 0

 = 0− IM−1I = −M−1.

are  a b c d

0 e1
γ

0 e1
γ

 ∈ <2n×4.

Recall from Calculus that

(1− α)
n∑
k=0

αj

= (1− α)
(
1 + α + α2 + α3 + · · ·+ αn−1 + αn

)
=

(
1 + α + α2 + · · ·+ αn−1 + αn

)
−
(
α + α2 + · · ·+ αn + αn+1

)
= 1− αn+1
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Hence,

(1− α)
n∑
k=0

αj = 1− αn+1

n∑
k=0

αj =
1− αn+1

1− α

Similarly, to compute the generators of M−1, one can use the following relations

n−1∑
k=0

Zj
(
M − ZMZT

)
ZjT =

(
M − ZMZT

)
+ Z

(
M − ZMZT

)
ZT + · · ·

+ Zn−1
(
M − ZMZT

)
Z(n−1)T

= M

Thus

M =
n−1∑
k=0

Zj
(
ĜΣ̂ĜT

)
ZjT

=
n−1∑
k=0

Zj


(
a b c d

)
Σ̂



aT

bT

cT

dT




ZjT

=
n−1∑
k=0

Zj
(
aaT + bbT − ccT − ddT

)
ZjT

= AAT +BBT − CCT −DDT

where

A =

(
a Za Z2a · · · Zn−1a

)
.

The matrices B, C, and D are defined similarly. Note that A, B, C, and D are lower

triangular Toeplitz matrices which are also the generators of M . The matrix M is shown to
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be represented by the sum and differences of products of lower and upper triangular Toeplitz

matrices. This fact is a generalization of the Gohberg-Semencul formula for the inverse of a

Toeplitz matrix. Since each of the A, B, C, and D can be embedded in a 2n× 2n circulant

matrix, it is clear that we can perform fast multiplication by M via the FFT. It is important

to note that after we run n steps of the superfast least squates Schur algorithm, we should

obtain the generators of the matrix M−1. Recall that if the generators are made polynomials,

then e corresponds to the constant polynomial 1 such that

K(z) =

 a(z) b(z) c(z) d(z)

0 1
γ
(1) 0 1

γ
(1)


are the polynomial generators for the augmented matrix. This means that if H(z) does

n-steps of the superfast least squares Schur algorithm with the operation

 a(z) b(z) c(z) d(z)

0 1
γ
(1) 0 1

γ
(1)

H(z)

then it implies that after n-steps, we have the polynomial generators of the augmented matrix

 0 0

0 −M−1 + ZM−1ZT

 =

 0 0

0 −M−1

−
 Z 0

0 Z


 0 0

0 −M−1

 ·
 ZT 0

0 ZT


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To calculate these polynomial generators, the equation

(
ai(z) bi(z) ci(z) di(z)

)
=

1

γ

(
0 1 0 1

)
· · ·

h11(z) h12(z) h13(z) h14(z)

h21(z) h22(z) h23(z) h24(z)

h31(z) h32(z) h33(z) h34(z)

h41(z) h42(z) h43(z) h44(z)


is used. This product evaluates the generators of M−1 and is equivalent to the matrix

1

γ

(
h21(z) + h41(z) h22(z) + h42(z) h23(z) + h43(z) h24(z) + h44(z)

)
.

3.6 Fast Multiplication Using FFT

Fast matrix-vector multiplication with a Toeplitz matrix can be performed at a time com-

plexity of O(n log n) flops as opposed to O(n2) flops common for a general matrix vector

multiplication. More details of this fact can be found in [2]. The superfast least squares

Schur algorithm uses the FFT algorithm to implement fast matrix-vector multiplication and

thus offers a clear computational speedup. This process works by embedding a n×n Toeplitz

matrix into a large 2n × 2n circulant matrix C so that the vectors are padded with zeros

as highlighted in the process of computing the generators of M−1. Given the superfast least

squares Schur polynomials, k-steps of the superfast least squares Schur algorithm via poly-

nomial multiplication can be performed. See details in [4]. The Schur polynomials can be

calculated using a divide and conquer approach which is based on the doubling relations as

discussed in the generalized Schur algorithm.

It should be noted that the FFT process cannot be used directly to evaluate the matrix-

vector product. Instead, the Toeplitz matrix is embedded in a circulant matrix for which

the FFT can be used to evaluate the circulant matrix-vector product. A 2n× 2n matrix is
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called circulant if it has the form

C =



c0 c2n−1 c2n−2 · · · c1

c1 c0 c2n−1 · · · c2

c2 c1 c0 · · · ...

...
...

...
. . . c2n−1

c2n−1 c2n−1 · · · c1 c0


.

Note that the matrix C is a special kind of Toeplitz matrix where each column is obtained

by doing a wrap-around downshift of the previous column. One can clearly see that the

circulant matrix C has n elements satisfying the relation cij = c
(i−j)modn.

As an example on how we can construct a circulant matrix from a Toeplitz matrix, let

T be a 3× 3 Toeplitz matrix defined as

T =


t1 0 0

t2 t1 0

t3 t2 t1

 .

This means that the first column vector of the circulant matrix denoted by c is

c =

(
t1 t2 t3 0 0 0

)T

with the extra zeros padded in it to make its dimensions 2n × 2n. Having embedded the
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Toeplitz matrix T into the circulant matrix the result becomes

C =



t1 0 0 0 t3 t2

t2 t1 0 0 0 t3

t3 t2 t1 0 0 0

0 t3 t2 t1 0 0

0 0 t3 t2 t2 0

0 0 0 t3 t2 t1


This technique is completely general and can be applied to any n× n Toeplitz matrix. One

can easily recognize the Toeplitz matrix T as the leading 3 × 3 principal submatrix of C.

Since

C =

 T S

S T


then in order to evaluate the linear equation y = Tx, one has to form a longer vector of the

same dimension as the vector c so that

x̄ =

 x

0


and thus we can obtain the matrix y as the top n elements in the result ȳ = Cx̄.

From above, note that the resulting circulant matrix can easily be diagonalized by the

fourier transformation matrix,

F2n =
1√
(2n)



1 1 1 · · · 1

1 ω1 ω2 · · · ω(2n)−1

1 ω2 ω4 · · · ω2((2n)−1)

...
...

...
...

...

1 ω2n−1 ω2((2n)−1) · · · ω2((2n)−1)×2((2n)−1)



50



which is unitary since F−1
2n = FH

2n and ω = e
−2πi
2n . It is a well known fact that a circulant

matrix can be easily decomposed into

C = F2nΩF−1
2n

where the matrix F2n is the Fourier matrix and Ω is the diagonal matrix whose elements are

the Fourier transform of the first column of C [6].

3.6.1 The Divide and Conquer FFT Algorithm

Given t0, t1, t2, · · · , tn−1 elements of the Toeplitz matrices, one can compute

yk =
1√
n

n−1∑
j=0

ωkjtj

where 0 ≤ j ≤ n− 1, ω = e
i2π
n and eiθ = cos (θ) + isin (θ) . An efficient way to evaluate the

DFT is by using the FFT algorithm such that we can denote

yk = F.t

yk =
1√
n

n−1∑
j=0

ωkjtk

= 1√
n

n
2
−1∑
j=0

ω2kj
n t2j

+

(
n−1∑
j=0

ωk(2j+1)
n t2j+1

)
= 1√

n

n
2
−1∑
j=0

ω2kj
n t2j

+ ωn

(
n−1∑
j=0

ω2kj
n t2j+1

)
The matrix F is the FFT matrix. Since

ωn = e
i2π
n
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it implies that

ω2kj
n = e

i2π2kj
n

hence

ω2kj
n
2

= e
i2πkj
n
2 .

If we rewrite the expression for yk it means that

yk = 1√
n

n
2
−1∑
j=0

ω2kj
n
2
t2j

+ ωn

(
n−1∑
j=0

ω2kj
n
2
t2j+1

)
To illustrate the FFT procedure for the case when n = 4 where ω = e

i2π
4 so that ω4 = 1 and

ω2 = −1. Using Fn



b0

b1

b2

b3


=



1 1 1 1

1 ω ω2 ω3

1 ω2 1 ω2

1 ω3 ω2 ω1





t0

t1

t2

t3


.

It is easy to see from the equation above that

b0 = t0 + t1 + t2 + t3

b1 = t0 + t1ω + t2ω
2 + t3ω

3

b2 = t0 + t1ω
2 + t2ω

4 + t3ω
6

b3 = t0 + t1ω
3 + t2ω

6 + t3ω
9
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Since ω4 = 1 and ω2 = −1, we can express

b0 = (t0 + t2) + (t1 + t3)

b2 =
(
t0 + t2ω

4
)

+
(
t1ω

4 + t3ω
6
)

= (t0 + t2)− (t1 + t3)

Note that the solution of b2 is easily derived from the solution b0 since the values (t0 + t2)

and (t1 + t3) have already been calculated. Similarly,

b1 =
(
t0 + t2ω

2
)

+
(
t1ω + t3ω

3
)

= (t0 − t2) + ω (t1 − t3)

b3 =
(
t0 + t2ω

6
)

+
(
t1ω

3 + t3ω
9
)

= (t0 − t2)− ω (t1 − t3)

Since this procedure is completely general, one can note that the computational cost is halved

in each step since we only have to find half of the unknowns. Therefore a n-dimensional

matrix requires log (n) steps. It is also easy to see that each stage of the procedure has a

computation cost of O (n) so that the overall FFT cost is O (nlog (n)) .

Therefore, given a n × n Toeplitz matrix with T = Toeplitz(t), it implies that one can

form the circulant matrix

C =

 T S

S T


where the first column vector of the circulant matrix is defined by

c =

(
t0 t1 · · · tn−1 0 t1−n · · · t−1

)T
.

This means that to compute y = Tx, the following simple steps are undertaken:

1. Compute ĉ = FFT(c) and x̂ = FFT

 x

0


2. Compute ŷ = ĉ. ∗ x̂ where .∗ represents component-wise multiplication

3. Compute y = IFFT(ŷ)
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4. Extract the first n components of y

The above FFT computation procedure is applied on all the Toeplitz matrices defined in the

Gohberg-Semencul formula used to find M−1.

4 Complexity and Storage Analysis

4.1 Storing S

From the computations involved in the superfast least squares Schur algorithm, there is need

to store the n× n generators and the Schur complements used. Each of the four generators

is of length n so that the data is stored as


a(z) b(z) c(z) d(z)

S1

S2

 .

We can define our recurrence relations as

γn = 2γn
2

+ bn.

The S1 and S2 stored above are equivalent structures. This uses the block Schur complement

recursively defined for M11 and M22 so that

 0 0

0 Ms

 =

 0 0

0 M22 −M21M
−1
11 M

T
12


where

M =

 M11 MT
21

M21 M22


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Here we assume that γn is the length of S so that γn
2

is the length of S1 and S2. It can then

be shown that the solution to the recurrence is

γn = nlogn+ bn.

4.2 Computational Speed

Recall that the polynomials coefficients are stacked up in P such that

P (z) =

(
h11(z) h21(z) h31(z) h41(z) h12(z) h22(z) · · · h44(z)

)

which are sixteen columns in total. Since the superfast least squares Schur algorithm calls

itself twice and does convolutions with a cost of k1n log n then its computational cost is

defined by

Cn = 2Cn
2

+ k1nlogn,

with

C1 = k0.

It can then be shown that this recurrence has a solution equivalent to

Cn =
k1

2
nlog2n+

k1

2
nlogn+ k0n.

which implies that the superfast least squares Schur algorithm is of O(nlog2n).

5 Application to Image Deblurring

For discrete image processing, the convolution integral is replaced by a sum. The blurry

image B ∈ <n×n is obtained from the original image X ∈ <n×n by the convolution process
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where 0 ≤ x, y, x̂, ŷ ≤ n and n = 255 so that

B = T1XT2 + F

The point spread function used is seperable which implies that in our algorithms, we will

choose

g (x− x̂) = e−0.1(x−x̂)2

and

h (y − ŷ) = e−0.1(y−ŷ)2

because they have zero boundary conditions. The values of sj−i are defined using the point

spread function φ (x− x̂, y − ŷ) = g (x− x̂)h (y − x̂) . Since the p.s.f is seperable, it implies

that the blurred model is given by the equation

Bxy =
∑
x̂ŷ

I (x̂, ŷ)φ (x− x̂, y − ŷ)

=
∑
x̂ŷ

I (x̂, ŷ) g (x− x̂)h (y − ŷ)

=
∑
x̂

g (x− x̂)

(∑
ŷ

I (x̂, ŷ)h (y − ŷ)

)

If we let



i
(1)
11 i

(1)
12 · · · i

(1)
1n

...
... · · · ...

i
(1)
(n−1)1 i

(1)
(n−1)2 · · · i

(1)
(n−1)(n−1)

i
(1)
n1 i

(1)
n2 · · · i

(1)
nn


=

∑
ŷ

I (x̂, ŷ)h (y − ŷ)
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then

I1 (x̂, y) =



i11 i12 · · · i1n
...

... · · · ...

i(n−1)1 i(n−1)2 · · · i(n−1)(n−1)

in1 in2 · · · inn


· · ·



h0 h1 · · · hn−1

h−1 h0 · · · ...

...
. . . . . . h1

h−(n−1) h−(n−2) · · · h0


This indicates that I1 = I (x̂, ŷ)T1. This fact allows us to express the blurred model B = I2

such that

I2 (x, ŷ) =
∑
x̂

g (x− x̂) I1 (x̂, y)

=



g0 g1 · · · gn−1

g−1 g0 · · · ...

...
. . . . . . g1

g−(n−1) g−(n−2) · · · g0


· · ·



i
(1)
11 i

(1)
12 · · · i

(1)
1n

...
... · · · ...

i
(1)
(n−1)1 i

(1)
(n−1)2 · · · i

(1)
(n−1)(n−1)

i
(1)
n1 i

(1)
n2 · · · i

(1)
nn


= T2 I (x̂, ŷ)T1
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As a result it is clear from the results above that the matrices T1and T2 are defined using

the p.s.f to yield

T1 = T2

=



s0 s−1 s−2 s−3 · · · s−(n−1)

s1 s0 s−1 s−2
. . . s−(n−2)

... s1 s0 s−1
. . .

...

...
. . . s1 s0

. . .
...

sn−2
. . . . . . . . . . . . s−1

sn−1 sn−2 · · · · · · s1 s0


(5)

so that sij = sj−1. These matrices are used to model convolution. Since both T1 and T2 are

square and symmetric Toeplitz matrices, then T1 ∈ <n×n and T2 ∈ <n×n.

Recall also that the noise level F ∈ <n×n induced into the system implied that B =

T1XT2 + F. In our experiments, the noise level is defined using the randomized function

with the standard deviation of the error level being std. This parameter can be varied along

with the regularization parameter α. Theoretically and experimentally, one can determine

an optimal regularization parameter using either the generalized cross-validation [11], [12]

or the L−curve [11], [12]. In these articles, the L-curve is defined as a plot of the squared

estimate norm ‖X‖2
2 against the residual sum of squares

∥∥∥∥∥∥∥
 T1

αI

Y −

 B

0


∥∥∥∥∥∥∥

2

F

where Y = XT2. It is suggested that an optimal trade off between the estimate norm and
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the RSS is found at the corner of the L-Curve. The variance squared is defined as

RSS

n
=

‖

 T1

αI

Y −

 B

0

 ‖2
F

n
= s2

More information about the generalized cross-validation procedure is detailed in the papers.

In our experiments, α and the std values are varied by trial and error to determine their

optimal values.

In defining the error in the image, we use the MATLAB statement

F = std ∗ randn(n, n),

where the RANDN function produces normally distributed random numbers such that

randn(n, n) is an n × n matrix with random entries chosen from a normal distribution.

This yields a zero mean value, a variance of one and a variable standard deviation.

Therefore if the matrix under consideration is M = T T1 T1 + α2I , one can easily create

the generator matrix Ĝ from which we extract the column vectors of Ĝ to be

Ĝ =

 s0

√
‖t−1‖2

2 + α2 0 0

t1
TT2 t−1√
‖t−1‖22+α2

t̂−1
TT2 t−1√
‖t−1‖22+α2



=



a0 b0 c0 d0

a1 b1 c1 d1

...
...

...
...

an−2 bn−2 cn−2 dn−2

an−1 bn−1 cn−1 dn−1


.

From this definition of Ĝ, the regularization parameter α indicated is varied along with the

standard deviation in our superfast linear least squares Schur algorithm as we seek to stabilize
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our solution and search for the Tikhonov solution. As indicated, the generator matrix can

be expressed in the form of polynomials. This can be seen in detail in the expression for

the generators of the matrix M calculated using the Gohberg-Semencul formular. Note that

these polynomials can be multiplied out with some computational speedup via the FFT.

Having defined the generators as the column vectors and expressed them as polynomials,

one can then invoke the sflsschur algorithm. The algorithm performs the deblurring routine

which is done via FFT as seen in the invoking of the function fconv. The process is done

row-wise and column-wise to produce the deblurred image. The need to perform row-wise

and column-wise deblurring is attributed to the fact that our image distortions involve a

seperable p.s.f.

Once the deblurred image is obtained it becomes necessary to evaluate our image re-

construction results. In image restoration, the need to measure the quality of the restored

image is essential. There are two commonly used measures of measuring image quality: the

Mean-Squared Error(MSE) , Peak Signal-to-Noise Ratio(PSNR) and the relative error. The

MSE is defined as

EMSE =
1

n2
∗
n−1∑
k=0

n−1∑
i=0

(
B̂[k, i]−X[k, i]

)2

where B̂[n, n] is the restored image while X[n, n]is the original image. On the other hand,

the Peak Signal-to-Noise Ratio(PSNR) is often used in engineering to measure the quality

of the restored images and is defined as

PSNR = −10log
EMSE

S2

where S is the maximum pixel value. The PSNR is measured in decibels (dB). It should

be noted that PSNR is a good measure for comparing restoration results for the same

image, but when comparing different images, PSNR is rendered meaningless. In both

measurements, a lower value implies a better restored image and the same argument if

otherwise. As numerical analysts, it is customary to use the relative error as a measure of
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Figure 1: Deblurring with α = 2

deviation from the actual results. In this research, we calculate the relative error to be

RelError =
max (B[i, j]−X[i, j])

max (X[i, j])
.

In our experiments we will evaluate the relative errors as a measure of the quality of the

restored images as opposed to using PSNR or EMSE.

6 Results and Analysis

As seen from the image outputs, by varying the regularization parameter α along with the

standard deviation std in our tests, one can examine the blurring effect on the images. A

good choice of the point spread function (PSF) is also needed.

From Figure 5, it is evident that as α and the standard deviation is decreased, the relative

error decreases respectively. This implies that there is an optimal value of α and the standard

deviation near zero for which one can recreate sharp images. It is suggested that by plotting

the L-curve these optimal values can be determined apriori. A good choice of α and the std

plays a greater role in the deblurring process since it is these parameters that control the
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Figure 2: Deblurring with α = 0.5

Figure 3: Deblurring with α = 0.05
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Figure 4: Deblurring with α = 0.001

Figure 5: Relative Error vs. Alpha
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Table 1: Errors for large α
α 3 2.5 2 1.7 1.3 1

Standard Deviation 1 0.1 0.05 0.01 0.005 0.001
Relative Error 0.0209 0.0177 0.0074 0.0072 0.0070 0.0070

Table 2: Errors for small α
α 0.5 0.1 0.05 0.0125 0.001

Standard Deviation 0.0069 0.0002 0.0001 0.000025 0.000001
Relative Error 0.0070 0.0079 0.0084 0.199 0.1538

degree of image details that are reconstructed. In this experiment, the point spread function

used is seperable which implies that in our algorithms, we will choose

g (x) = e−0.1(x2)

and

h (y) = e−0.1(y2)

because they have zero boundary conditions leading to the construction of the Toeplitz

matrix (5). When the algorithm is run on varied values of α and standard deviation, the

images above were attained. Note from the results obtained that when lower α and standard

deviation values is used, there is a certain threshhold when the images produced are clearly

sharp beyond which they again begin to appear blurred. This can be seen in the tabulated

results in Table 1 and Table 2.

Plotting a graph of the relative errors against α indicates that for large values of the

regularization parameter, the relative errors are magnified. Equivalently, if we reduce the

regularization parameter significantly closer to zero, the errors become magnified as well. In

both cases, the reconstructed image becomes even more blurred. However, it is evident from

our results that the standard deviation and regularization values closer to zero yield better

results leading to good image reconstruction results. This is in contrast to the case when

64



we use larger standard deviation and regularization values which yield even more blurred

images. The case when α = 0 is equivalent to the ill-conditioned scenario which produces

the “naive” solution. From the reconstruction results it is easy to see that the naive solution

corresponds to the situation when no reconstructed image output is achieved at all.

7 Conclusion

It is clear from this research that the Tikhonov regularization technique allows one to stamp

our errors when solving linear least squares problems. It is also a viable method for solving

large, structured linear least squares problems. Its results has been shown to be applicable in

image deblurring. In this thesis, we have in effect shown that the regularization parameter α

and the standard deviation controls the quality of the reconstructed image. It is also shown

conclusively that the choice of α and the standard deviation when educatedly chosen yields

better image reconstruction results. This is shown when we pick the values of α and the

standard deviation that are significantly small leading to sharper reconstructed images. The

implication is that there exists optimal values for which α and the standard deviation can

produce sharp images.

From the graph of relative error against α, we can infer that lower values of α yield

lower relative errors. One other greater result in our experiments is the speed of doing

the computations. We have shown how we can take advantage of the FFT process in our

algorithms and this allows us to work with large structured Toeplitz matrices easily without

which our computations would be formidable. More importantly, we have shown conclusively

that Tikhonov regularization can be used to damp out errors in ill-conditioned problems with

the use of the regularization parameter α. Even more clearly, it is seen that this parameter

can be used to control the level of image deblurring the field of image restoration.
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