
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

4-22-2008

WS-CDL Based Specification for Web Services
Collaboration Testing
Ahmed A. Ugaas

Follow this and additional works at: http://scholarworks.gsu.edu/cs_theses

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Computer Science Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Recommended Citation
Ugaas, Ahmed A., "WS-CDL Based Specification for Web Services Collaboration Testing" (2008). Computer Science Theses. Paper 54.

http://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_theses/54?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

WS-CDL BASED SPECIFICATION FOR WEB SERVICES

COLLABORATION TESTING

by

Ahmed Ugaas

Under the Direction of Dr. Xiolin Hu

ABSTRACT

 Service Oriented Computing(SOC) is becoming a major paradigm for developing next

generation of software systems, and one of the major challenges of Service Oriented Computing

is testing interactions and collaborations among the distributed and dynamically integrated web

services. To support automated test of web service‟s collaborations, a formal specification is

needed. This thesis proposes a specification of web services collaborations based on Web

Services Choreography Description Language (WS-CDL). We identify the basic constructs that

can be found in any web services collaboration, and we mapped them to the new WS-CDL based

language (WS-CDL+). Finally, A scenario of web services collaboration is developed and

specification in WS-CDL+ is provided. This work builds a foundation for automated web

services testing in a service oriented computing environment.

INDEX WORDS: WS-CDL, WS-CDL+, Web Service, Service Oriented Computing,

Collaboration.

WS-CDL BASED SPECIFICATION FOR WEB SERVICES

COLLABORATION TESTING

by

Ahmed Ugaas

A Thesis Submitted in Partial Fulfillment of the Requirements for the degree of

Master of Science

In the College of arts and sciences

Georgia State University

2008

WS-CDL BASED SPECIFICATION FOR WEB SERVICES

COLLABORATION TESTING

by

AHMED UGAAS

Committee Chair: Dr. Xiolin Hu

 Committee: Dr. Alex Zelikovsky

Dr. Yanqing Zhang

Electronic version Approved:

Office of Graduate studies

College of Arts and sciences

Georgia State University

May 2008

 iv

TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

WEB SERVICES TESTING ... 2
SIGNIFICANCE AND CONTRIBUTIONS OF THIS THESIS ... 5

2.0 WEB SERVICES AND SOA ... 7

2.1 BUSINESS PROCESS EXECUTION LANGUAGE (BPEL) AND SOA .. 11

3.0 WS-CDL OVERVIEW .. 14

3.1 WS-CDL ELEMENTS .. 18
3.1.1 Static WS-CDL ... 18
3.1.2 Dynamic WS-CDL .. 19

3.1.2.1 Choreography Activities ... 20
3.2 USING WS-CDL ... 24
3.3 WHY USE WS-CDL? .. 24
3.4 INTERACTION BASED INFORMATION ALIGNMENT .. 25
3.5 INTERACTION LIFE-LINE .. 26
3.6 INTERACTION SYNTAX ... 26

4.0 MAPPING COLLABORATING SERVICES TO WS-CDL ... 30

4.1 A FORMAL MODEL FOR WS-CDL ... 30
4.2 WS-CDL EXCEPTION HANDLING ... 33
4.3 COLLABORATIONS CONSTRUCTS AND WS-CDL ELEMENT MAPPING .. 34

5.0 SERVICE COLLABORATION SCENARIO ... 40

5.1 SERVICES INTERFACES ... 48

6.0 CONCLUSION... 51

6.1 FUTURE WORK ... 52

REFERENCES: ... 53

1

1.0 Introduction

Software development and maintenance is very costly; both academia and industry have

been working on ways to reduce that cost. Although many approaches have been suggested and

some were embraced by industry such as Model Driven Development by the Object

Management Group[OMG], most of these efforts did not focus on improving web services

testing, but were geared towards rapid applications development[RAD]. Web services and

Service Oriented Architecture[SOA] is becoming the standard of software development, and

instead of writing new code, SOA based applications are assembled from distributed web service

components. Although SOA makes software development more efficient and productive, there

are no well defined, automated web services testing procedures in place, therefore web services

testing and maintenance is a major impediment. Most systems today require generating new test

cases and running a new test cycle for each upgrade. A survey conducted by Gartner, an

information and technology research and advisory firm, showed that 35% of an enterprise‟s

software maintenance budget is spent on maintaining the multitude of point-to point application

links already in place, and about 42% of almost 500 IT executives polled said their systems were

more complex then necessary and maintaining and managing the excess complexity costs them

an average of 29% of their IT budgets.

SOA based systems are assembled from distributed components; these components may

be developed and hosted by different organizations that expose them in a Web Services

Description Language[WSDL]. Test cases of these SOA based systems can not be easily

deduced from the systems requirement; it requires a thorough understanding of service contracts

and accepted interactions among them. Before we delve into formal definition of these

interactions, let us look into the major SOA based applications testing; 1) Controlled Test which

2

each component is tested in isolation and its behavior compared with the service contract, this

type of test is relatively easy to achieve and its test cases are easily identified from service

contract (WSDL). 2) Collaborative Test which test cases could be quite large and exhaustive

depending on how many components participating in the collaboration and how freely they can

interact. There is a lot of research in distributed system collaborative test; although there is a lot

of progress in this area over the years, a formal language which can capture the collaboration of

services has never been formally defined. SOA based applications, dynamically and free

invoking web services, present a challenge when it comes to testing. Different services are

invoked dynamically and each interaction my in turn produce another interaction. Therefore, it

becomes very difficult to observe the behavior of the application unless there is a formal

specification of the services collaborations (rules of the game). A lot has been done to automate

web services testing and in this thesis we look into some of the research effort in the SOA based

applications testing.

Web Services Testing

A plenty of web services testing tools are available but most of them focus on a

controlled test where a service component is tested in isolation. Web Services description

Language (WSDL) File is published by service producers to a registry to be referenced by

service consumers. These published WSDLs are available through the web in an XML format.

The WSDL file provides the mechanism to access the services by either referencing it statically

or dynamically, and each provided interface is tested in isolation. The separate testing of each

provided operation is fine as long as the operations the services offer are independent from each

other, i.e. all operations can be called at any time, without influencing each others behavior. For

3

instance, think of a web service translating Italian and Spanish words into English, thus offering

two independent query operations. Testing such services boils down to testing each operation

separately. In many non-trivial services, the invocations of operations are not independent; and

services maintain state between service invocations. The result of each service invocation is

dependent of state, time and input, in other words it is state machine with a time factor. The

interactions of these services is controlled by specification driven configuration data (meta-data)

which describes the ordering of service invocation and time delays of the service invocations.

The Test Engine will consider as an input the WSDL files of all the orchestrated services and the

meta-data file which is driver of the services collaborations. A collection of operation-signatures

given in the WSDL only describes a static aspect of invocations; it is not sufficient to specify the

allowed sequences of invocations. Thus, it is crucial that the web services offer an additional

source of information, which can be accessed to discover the web services protocol a user has to

obey. To make clients aware of the protocol, its description should be published to web services

registries or passed to partners.

In order to proceed towards our goal of automatic, model-based testing of web services,

WS protocols must be formally modeled. One commonly used model for specifying WS

protocols is a state machine. We will propose using a special variant of a state machine, namely a

Symbolic Transition System (STS) as introduced in [2]. An STS has states and labeled

transitions between states modeling the actions, i.e. the inputs and outputs, of the system. Both

states and actions can be parameterized with data variables, and predicates on these variables

may guard the transitions. The use of STSs for specifications allows exploiting the well

established STS based testing theory and algorithms of [2]. These include a precise definition of

conformance of a WS implementation with respect to its specification using the implementation

4

relation ioco [3], an algorithm for the generation of test cases from an STS specification, and

notions of soundness and exhaustiveness of the generated test cases. Moreover, several testing

tools nowadays implement this test generation algorithm it, e.g. TorX [4] and the TGV-based

tools [5]. The tool TorX generates and executes test cases on-the-fly, which means that instead of

firstly computing a set of test cases from the STS, and then applying them to the System Under

Test (SUT), it generates a single test event in each step, and immediately executes it to the SUT.

As a consequence the state space explosion when generating test cases, is avoided, see also [4].

An automated testing framework based on Discrete Event System Specification (DEVS)

modeling and simulation formalism is discussed [6]. Extensible Markup Language (XML), and

System Entity Structure (SES), is being introduced at DoD‟s Joint Interoperability Test

Command (JITC) for interoperability testing. This framework supports the separation of

experimentation, models, and simulators. The experimental frames are developed to support

reusable models and simulators based on the DEVS formalism and dynamic system theory. The

hierarchical structures of the models are represented by SES and written in XML format to

promote extensibility and interoperability. In order to support the separation of models and

simulators in the software development, the Model/Simulator/View/Controller design pattern

provides the framework to support model execution and multiple network simulation protocols.

In an Automated Test Case Generator (ATC-Gen) research project funded by JITC to

support the mission of standards compliance and certification. With the advent of simulation

based acquisition, the test requirements in the simulated environment becomes how to automate

and more precisely the scope, the completeness, and the methodology for updating conformance

testing. The incorporation of the Systems Theory, the modeling and simulation concept, DEVS,

XML, SES, and the MSVC design pattern all contribute to the development of ATC-Gen to

5

automate the TADIL-J conformance testing, increasing the productivity and effectiveness of the

software test tools at JITC.

Many testing methodologies were developed to assist the test engineers to perform

conformance testing over the past decades [7]. ATC-Gen is interested in a particular

methodology in which the test exercises are carefully planned and the participants are given test

scripts and roles to play in a simulated environment. ATC-Gen becomes a participant in a testing

environment that can monitor a specific function of the MIL-STD 6016C and exchange tactical

data messages with the other players. By interpreting the transmissions and the receipt of the

tactical data messages, ATC-Gen is able to determine the degree to which a system conforms to

the TADIL-J standard.

The automated testing framework is developed based on three concepts: SES, DEVS, and

XML. SES can represent a family of hierarchical DEVS models, and serves as a means of

organizing the configuration of a model to be designed, which is extracted from a pruning

process. Pruning reduces the number of probable models to meet the system requirement. In the

automated testing framework, the minimal testable I/O pair and the test model are represented by

Pruned Entity Structures (PES). The test models obtained via PES are in executable form. XML

uses elements to break up the test model into hierarchical form, and it can be used to represent

the SES hierarchical structure. PES is directly mapped into XML, and the three SES modes

become XML elements. XMLPES offers simplicity, extensibility, and interoperability. The test

models are represented in XML-PES, which can be transformed into DEVS C++ source code.

Significance and Contributions of This Thesis

6

These above mentioned efforts of the related work do not fully capture the requirement of

collaborating services; in this thesis, we propose a new specification language for service

collaboration (WS-CDL+). This language is based on The Web Services Choreography

Description Language (WS-CDL), an XML-based language that describes peer-to-peer

collaborations of parties [8]. The WS-CDL based collaborations specification as defined in this

thesis turns out to be rich enough to formally model the interactions among a single distributed

services; more useful web services are commonly built by coordinating many simpler web

services. This implies that we must take into account service interactions comprising several web

services which interact with each other. The goal of this thesis is to discuss specification driven

testing techniques that can be applied to testing web services using Web Services Choreography

Description Language.

 Our proposed language, WS-CDL+, a language that describes peer-to-peer collaborations

from a global viewpoint, their common and complementary observable behavior; where ordered

message exchanges result in accomplishing a common business goal. The Web Services

specifications offer a communication bridge between the heterogeneous computational

environments used to develop and host applications. The future of E-Business applications

requires the ability to perform long-lived, peer-to-peer collaborations between the participating

services, within or across the trusted domains of an organization.

 WS-CDL+ extends the W3C Choreography language by introducing dependency

constraint, interaction constraint and exchange constraint. These constraints are necessary for

guarding and interaction and making sure state-full transactions are captured in the language. A

scenario of collaboration of services is presented and captured in the language to illustrate that

WS-CDL captures all stateless collaborations, and our extension covers state-full collaborations.

7

The specification should capture state-fullness of the services to keep them consistent and in

valid state before an interaction between them is allowed.

2.0 Web Services and SOA

Service-oriented architecture (SOA) is becoming one of the enabling technologies for the

emerging large-scale net-centric systems, such as distributed supply chain management systems,

networked crisis response systems, and the military Global Information Grid. This new paradigm

brings new design and testing challenges in software development [9, 10]. Among them how to

test the collaborations among multiple dynamically integrated services is becoming an

increasingly important issue. Requirements for testing service collaborations include those

derived from their decision-making, net-centric, large-scale, and dynamic behaviors. Two of the

factors underlying the challenges posed by collaboration testing are: 1) the increasing complexity

of service-oriented computing results in sophisticated interaction patterns among services. In

particular, stateful web services, i.e., services that access and manipulate state and/or stateful

resources in a timely fashion are widely deployed. A stateful service may implement a series of

operations such that the result of one operation depends on a prior operation and/or prepares for a

subsequent operation [11]. This results in temporal and logical dependencies between its

input/output messages, which make the test difficult. 2) Service-oriented applications are by

nature evolutionary and dynamical. This nature implies that supporting the sustainable long term

evolution of service applications should play a central role in developing quality assurance and

testing techniques and tools [12]. Service-oriented computing emphasizes service integration and

composition where new services are dynamically discovered and integrated. This evolutionary

8

nature calls for new test mechanisms such as “on demand” test development to support this

paradigm.

Software model is considered as a promising technology for supporting service-oriented

computing in the open distributed Grid environment [13]. In the related work of applying

modeling technology to testing web services and web applications, one focus has been on testing

at the function level by exploiting the internal structure and/or behavior of a service

component[14, 15]. Test plans are derived from data flow analyses of web applications and test

agents are constructed to carry out these test plans [15]. Another focus is at the software

component level. For example, [16] utilizes “validation agents” to automate the testing of

software components. These validation agents depend on the “component aspects” that specify

the functional and non-functional cross-cutting concerns of software components to construct

and run automated tests. Test environments for large scale service collaborations are also

developed. The Agent cities test-bed [17] is an agent-based test environment developed to

support large-scale dynamic service synthesis testing. In relation to the objectives of this paper,

two research issues emphasized by current work are: 1) automating the construction of test

models, and 2) deploying multiple models in test federations to collaborate in testing complex

distributed interaction patterns. To achieve these requires a mature methodology based on a

formal mathematical framework.

Web services technology is changing the Internet, augmenting the eyeball web with

capabilities to produce the transactional web [19]. The eyeball web is dominated by program-to-

user business-to-consumer (B2C) interactions. The transactional web will be dominated by

program-to-program business-to-business (B2B) interactions. This transformation is being fueled

by the program-to-program communication model of Web services built on existing and

9

emerging standards such as Hypertext Transfer Protocol (HTTP), Extensible Markup Language

(XML), Simple Object Access Protocol (SOAP),Web Services Description Language (WSDL),

and the Universal Description, Discovery, and Integration (UDDI) project.

Web services technologies provide a language-neutral, environment-neutral programming

model that accelerates application integration inside and outside the enterprise. Application

integration through Web services yields flexible loosely coupled business systems. Because Web

services are easily applied as a wrappering technology around existing applications and

information technology assets, new solutions can be deployed quickly and recomposed to

address new opportunities. As adoption of Web services accelerates, the pool of services will

grow, fostering development of more dynamic models of just-in-time application and business

integration over the Internet.

WS Actors

Figure 2.1 WS Actors.

A Web service is an interface that describes a collection of operations that are network-

accessible through standardized XML messaging. A Web service performs a specific task or a

set of tasks .A Web service is described using a standard, formal XML notation, called service

Service
Provider

Service
Consumer

Find Register

Bind,
Execute

Service
Registry

10

description, that provides all of the details necessary to interact with the service, including

message formats (that detail the operations), transport protocols, and location. Web service

descriptions are expressed in WSDL. We describe Web services in terms of a service-oriented

architecture. As depicted in Figure 2.1, this architecture sets forth three roles and three

operations. The three roles are the service provider, the service requester, and the service

registry. The objects acted upon are the service and the service description, and the operations

performed by the actors on these objects are publish, find, and bind. A service provider creates a

Web service and its service definition and then publishes the service with a service registry based

on a standard called the Universal Description, Discovery, and Integration (UDDI) specification.

Once a Web service is published, a service requester may find the service via the UDDI

interface. The UDDI registry provides the service requester with a WSDL service description

and a URL (uniform resource locator) pointing to the service itself. The service requester may

then use this information to directly bind to the service and invoke it. For a more complete

description of these Web services components, see the architecture document.

Web Services Technology Stack

Figure 2.2 WS Technology Stack [W3C Web Services Architecture Working Draft, August 2003]

11

2.1 Business Process Execution Language (BPEL) and SOA

Business processes can be described in two ways. Executable business processes model

actual behavior of a participant in a business interaction. Abstract business processes are partially

specified processes that are not intended to be executed. An Abstract Process may hide some of

the required concrete operational details. Abstract Processes serve a descriptive role, with more

than one possible use case, including observable behavior and process template. WS-BPEL is

meant to be used to model the behavior of both Executable and Abstract Processes. [18]WS-

BPEL provides a language for the specification of Executable and Abstract business processes.

By doing so, it extends the Web Services interaction model and enables it to support business

transactions. WS-BPEL defines an interoperable integration model that should facilitate the

expansion of automated process integration in both the intra-corporate and the business-to-

business spaces.

WS-CDL+ differs from WS-BPEL in the following ways; WS-BPEL is orchestration

which implies a centralized control mechanism whereas WS-CDL is choreography which has no

centralized control. Instead control is shared between domains. WS_BPEL is used for a single

domain while WS-CDL is used cross domains. WS-BPEL lacks formal semantics, WS-CDL is

based on formal languages. WS-BPEL is execution language (process oriented), WS-CDL is

description language (Design Oriented). BPEL Process is a container where you can declare

relationships to external partners, declarations for process data, handlers for various purposes

and, most importantly, the activities to be executed. On top, the process container has a couple of

attributes, i.e. a (mandatory) name and a (also mandatory) declaration of a namespace – as shown

in the example below. You should note that not all possible attributes of the process element are

shown in this example.

12

<process name="PrimerProcess"

targetNamespace="http://oasis-open.org/WSBPEL/Primer/"

xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable" />

BPEL Business Processes offer the possibility to aggregate web services and define the

business logic between each of these service interactions. It is also said that BPEL orchestrates

such web service interactions. Each service interaction can be regarded as a communication with

a business partner. The interaction is described with the help of partner links. Partner links are

instances of typed connectors which specify the WSDL port types the process offers to and

requires from a partner at the other end of the partner link.

Note that for one partner, there can be a set of partner links. You can regard one partner

link as one particular communication channel. Such an interaction is potentially two sided: the

process invokes the partner and the partner invokes the process. Therefore, each partnerLink is

characterized by a partner link type and a role name. This information identifies the functionality

that must be provided by the business process and by the partner service.

<partnerLinks>

<partnerLink name="ClientStartUpLink"

partnerLinkType="wsdl:ClientStartUpPLT" myRole="Client" />

</partnerLinks>

Partner link declarations can take place directly under the process element, which means

that they are accessible by all BPEL constructs within the BPEL process, or under a scope

element, which means they are only accessible from the children of that scope.

13

BPEL Composition of Web services

Figure 2.3 Composition of Web Services [Nirmal Mukhi Component Systems DepartmentIBM Research]

A‟s WSDL

Service Link Type

B‟s WSDL

Process
WSDL

Component B Component A

14

3.0 WS-CDL Overview

WS-CDL is a language for specifying peer-to-peer protocols where each party wishes to

remain autonomous and in which no party is master over any other – i.e. no centralization point.

The description of a peer-to-peer protocol is grounded in what we term an ordered set of

interactions, where an interaction is defined loosely as an exchange of messages between parties.

It is essential in understanding Web Services Choreography Description Language (WS-CDL) to

realize that there is no single point of control. There are no global variables, conditions or work-

units. To have them would require centralized storage and orchestration. WS-CDL does permit a

shorthand notation to enable variables and conditions to exist in multiple places, but this is

syntactic sugar to avoid repetitive definitions. There is also an ability for variables residing in

one service to be aligned (synchronized) with the variables residing in another service, giving the

illusion of global or shared state.

It is also important to understand that WS-CDL does not distinguish between observable

messages from applications, that might be considered as application or business messages, from

the infrastructure upon which an application is based, that might be considered as some form of

signal. In WS-CDL all messages are described as information types and have no special

significance over each other. All that WS-CDL describes is the ordering rules for the messages

which dictate the order in which they should be observed. When these ordering rules are broken

WS-CDL considers them to be out-of-sequence messages and this can be viewed as an error in

conformance of the services that gave rise to them against the WS-CDL description.

WS-CDL is an XML-based language that can be used to describe the common and

collaborative observable behavior of multiple services that need to interact in order to achieve

some goal. WS-CDL describes this behavior from a global or neutral perspective rather than

15

from the perspective of any one party and we call a complete WS-CDL description a global

model. Services are any form of computational process with which one may interact, examples

are a buying process and a selling process that are implemented as computational services in a

Service Oriented Architecture (SOA) or indeed as a Web Services implementation of an SOA.

Because WS-CDL is not explicitly bound to WSDL it can play the same global model role for

both SOA services and Web Services, that is it is possible to use WS-CDL to describe a global

model for services with no WSDL descriptions (perhaps they just have Java interfaces) as easily

as it is to describe services that do have or will have WSDL descriptions. The way in which WS-

CDL can be used without WSDL descriptions is however implementation dependent.

Common collaborative observable behavior is the phrase we use to describe the behavior

of a system of services, for example buyer and seller services, from a global perspective. Each

service has an observable behavior that can be described today using WSDL or some other

interface description language (e.g. Java). Such observable behavior is described as a set of

functions, possibly with parameters, that a service offers coupled with error messages or codes

that indicate failure along with the return types for the functions offered. If we used abstract

BPEL along with WSDL we can also describe the valid sequences of functions from a single

services perspective (i.e. the service we are describing), which is not possible with WSDL or

Java alone. We refer to this set as the “observable behavior” for a service. This level, the service

level, of “observable behavior” does not describe behavior of a system of services because it

only deals with a single service. The composition of a set of "observable behaviors" at a service

level is what we call the common collaborative observable behavior. The composition is not

simply the set of observable behaviors at the service level operating together because such a

composition requires further description of the dependencies that the set of services exhibit in

16

order to interoperate correctly. If we captured the ordering rules for a set of service then we

would have the common collaborative observable behavior fully specified and this is what WS-

CDL+ is for.

Individual service behaviors can be used in the composition of wider collaboration in

which a set of services with their own behaviors could be effectively used. In order to do so a

global model that described the peer to peer observable interactions of such a set of services is

required to ensure that the services will in-fact cooperate to a commonly understood script. That

script is the global model and that script is what WS-CDL+ is used to describe.

A global model ensures that the common collaborative observable behavior is not biased

towards the view of any one of the services. Instead it describes as peers the entire collaborative

observable behavior of all of the services such that no one service can be said to exert any

control over any other service. In effect it described the services as a complete distributed

application in which each service plays a distinct role and has distinct relationships with its peer

services.

One may think of WS-CDL as a language for describing the observable activities of a set

of services some of which are synchronized through some common understanding realized by a

specific business interaction between the services or by a declaration of interest in the progress

of one service by another (e.g. has the buyer accepted the price offered by the seller). The least

interesting scenario is one in which WS-CDL can be used to describe a set of services that never

synchronize at all; that is there is no observable relationships and no statement of an

unobservable relationship that exists between the services. In this case the services perform

choreography, but effectively on different stages and thus need no form of coordination (e.g. a

buyer and seller choreography for Wall-Mart versus Bloomberg Reuter‟s choreography for the

17

exchange of news items). In all other cases the synchronization is what makes life interesting

(e.g. buyer and seller choreography coupled with seller credit check choreography or indeed a

seller shipper choreography).

In WS-CDL the mechanisms for describing the common observable behavior range from

specific information alignment (e.g. when a buyer and seller record the fact that an order has

been accepted in variables that reside at the buyer and at the seller), interaction (e.g. when a

buyer requests a price from a seller and receives a price as a response from the seller) and a

declaration of interest in the progress of a choreography (e.g. has the bartering choreography

between buyer and seller “started” or has it “finished”). In the first two cases synchronization is

explicit and visible as a business related activity (e.g. the observable recording of information

and it‟s alignment and the description of an information exchange between a buyer and seller)

and in the last case (e.g. choreography has “started” or “finished”) it is implicit based on the

progress of a choreography and not any business relationships.

WS-CDL Overview Diagram

Figure 3.1 WS-CDL Overview

HTTP, BEEP, IIOP, JMS, SMTP

UDDI

WSDL

SOAP

XML, Encodings

Transport

Transport

Description

Discovery

Reliable

Messaging
Security

Context

Security

Business Process Languages

BPEL, CI, XPDL, BPML

Business Collaboration Language:

Choreography Description Language
Quality of

Service

Transactions Quality of

Service

18

3.1 WS-CDL Elements

The WS-CDL language is, as are most other languages for describing Web services,

based on XML. Given that no graphical syntax exists, descriptions of web service interactions

become large for even small examples. The WSCDL language can be understood to have two

parts: a part describing static relationships which are invariant, e.g., for characterizing types of

XML data, for defining types of communication channels, types of communication partners, and

so on. The second part describes dynamic behavior: interactions between communication

partners (web services) and their temporal interdependencies.

3.1.1 Static WS-CDL

The static part defines the collaborating entities in a WS-CDL specification. Role Types:

All interactions take place between different role types, for example between a Customer role

type and a Retailer role type. A typical definition of role types can be found on lines 30–39 in

figure 1. It would probably have been preferable to call these entities roles instead of role types,

as there is no possibility to create separate instances from a role type definition, but in this paper

we will continue using the vocabulary of the WS-CDL definition. The same confusion with

regards to types versus instances holds also for Participant and Channel Types (covered next).

Participant Types: A participant type groups together role types that are conceptually

going to be realized by the same physical entity. For instance, if both the Retailer and the

Warehouse role types of a business interaction are implemented by the same organization, the

organization could be modeled using one Participant Type. In the example the participant types

are defined on lines 9–15.

19

Relationship Types: A relationship type declares that two Role Types (invariably two)

have a need to interact to realize some set of web services, as seen on lines 41–44 in the static

part of the example.

Channel Types: Channel types describe the medium used to communicate between role

types. A communication always, surprisingly given the supposedly high-level nature of the

specification language, involves two parties. In the WS-CDL standard multi-party

communication is not possible. WS-CDL interactions have two-phases, a request followed by an

optional response. Two channel types for communicating with a retailer, and a channel for

directly communicating with a customer, are provided on lines 46–57 of the example.

A channel type identifies the responding role type but not the requesting role type.

Furthermore a channel type may include a section that describes how channel type instances may

be transmitted over another channel instance in interactions. Interestingly, the channel type may

also restrict how many times and in what circumstances channel instances are used; e.g.

stipulating for instance that a given instance can only be used once, in a single communication or

shared that it can be used in multiple communications. However, the usages of these restriction

modes for channel instances is poorly explained in the standards document, nor are such features

present in the core π-calculus formalism either. Finally the static part also contains definitions of

types, and of functions, defined in the XPath formalism, for retrieving subfields of XML based

document data.

3.1.2 Dynamic WS-CDL

The core of WS-CDL can be found in the dynamic part. Here the notion of choreography

is defined. In WS-CDL choreography represents, essentially, a use case. Choreography concerns

20

a set of relationships (interactions between role types) and includes a definition of the set of

variables used to realize the data dependent behavior of the choreography. A particular variable

is located at a particular participant type, and all role types at a participant type share access to

such a variable. A role type that is located at a different participant type from where a variable is

located cannot access the variable. Thus, in the normal case, there is no implicit communication

between web services located at different participants using shared variables.

The choreography activity construct describes the behavior of the choreography (as seen

next), while an exception block defines the handling of exceptional events during the execution

of the choreography activity, and a finalize block describes the actions to be taken upon

termination of the choreography. In addition choreography can define sub-choreographies, and

can make available to these sub choreographies its own variables.

3.1.2.1 Choreography Activities

An activity is the basic programmatic building block of WS-CDL. Essentially there are

three classes of activities: structural ones, work-unit activities, and basic activities.

Basic Activities: The principal basic activity is the interaction; an example interaction

can be seen on lines 25-53 in figure 2. An interaction describes the binary communication

between two role types, as a request–response set of events exchanging information about the

value of variables located at the respective role type (or rather: participant types). Other basic

activities include the starting of a sub-choreography (using the perform statement) and the

assigning of variables (assign).

Work-units: A work-unit is essentially a conditional and a looping construct combined

in one, enclosing an activity. A work-unit has a guard, which if true permits the execution of the

21

enclosed activity. If false, and if a blocking execution strategy has been specified, and the guard

has a chance of becoming true in the future, the execution of the guards is halted until it becomes

true. Upon successful execution of the work-unit activity the repeat condition of the work-unit is

analyzed, and if the condition is true, the work-unit is enabled for future execution. An example

work-unit that checks whether a variable has been initialized is shown on lines 15–23 in figure 2.

Structural Activities: The most basic structural activity is the sequence, specifying that

its arguments should be evaluated in sequence. The parallel activity, in contrast, permits parallel

execution of its activity arguments. Finally the choice activity selects, based on the excitability of

its arguments, one of its arguments for continued execution. If, for instance, one branch

continuously blocks (a work-unit waiting for its guard condition to become true) then that choice

branch will never be chosen. These constructs bear a strong resemblance to the corresponding

process operators in the π-calculus in contrast to the more flow-oriented concurrency constructs

available in WS-BPEL.

1 <i n f o rma t i o nTy p e name=” pur cha s eOrde rType ”

2 t y p e =” t n s : PurchaseOrderMsg ”/>

3 <i n f o rma t i o nTy p e name=” pur cha s eOrde rAckType”

4 t y p e =” t n s : PurchaseOrderAckMsg”/>

5 <i n f o rma t i o nTy p e name=”badPOAckType ”

t y p e =” xsd :QName” />

6 <i n f o rma t i o nTy p e name=” u r iTy p e ”

t y p e =” xsd : s t r i n g ” />

7 <i n f o rma t i o nTy p e name=” i n tTy p e ”

t y p e =” xsd : i n t e g e r ” />

8

9 <p a r t i c i p a n t T y p e name=”Consumer”>

10 <r o l eTy p e t y p eRe f =” t n s : Consumer ” />

11 </ p a r t i c i p a n tT y p e>

12

13 <p a r t i c i p a n t T y p e name=” R e t a i l e r ”>

14 <r o l eTy p e t y p eRe f =” t n s : R e t a i l e r ” />

15 </ p a r t i c i p a n tT y p e>

16

17 <t o k e n name=” pur cha s eOrde r ID ” i n f o rma t i o nTy p e =” t n s : i n tTy pe ”/>

18 <t o k e n name=” r e t a i l e r R e f ” i n f o rma t i o nTy p e =” t n s : u r iTy pe”/>

19 <t o k e n name=” consumerRef ” i n f o rma t i o nTy p e =” t n s : u r iTy p e”/>

20

21 <t o k e nLo c a t o r tokenName=” t n s : pur cha s eOrde r ID ”

22

22 i n f o rma t i o nTy p e =” t n s : pur cha s eOrde rType ”

23 que ry =” /PO/ o r d e r I d ”/>

24 <t o k e nLo c a t o r tokenName=” t n s : pur cha s eOrde r ID ”

25 i n f o rma t i o nTy p e =” t n s : pur cha s eOrde rAckType”

26 que ry =” /PO/ o r d e r I d ”/>

27 <t o k e nLo c a t o r tokenName=” t n s : r e t a i l e r R e f ”

28 que ry =” /PO/ r e t a i l e r I d ”

29 i n f o rma t i o nTy p e =” t n s : pur cha s eOrde rType ”/>

30

31 <r o l eTy p e name=”Consumer”>

32 <b e h a v i o r name=” c o n s ume r F o rRe t a i l e r ”

33 i n t e r f a c e =” r n s : Cons ume rRe t a i l e rPT ”/>

34 <b e h a v i o r name=” consumerForWarehouse ”

35 i n t e r f a c e =” r n s : ConsumerWarehousePT”/>

36 </ rol eType>

37 <r o l eTy p e name=” R e t a i l e r ”>

38 <b e h a v i o r name=” r e t a i l e r F o rCo n s ume r ”

39 i n t e r f a c e =” r n s : Re t a i l e rCons ume rPT ”/>

40 </ rol eType>

41

42 <r e l a t i o n s h i p T y p e name=” Co n s ume rRe t a i l e rRe l a t i o n s h i p”>

43 <r o l eTy p e t y p eRe f =” t n s : Consumer ”

44 b e h a v i o r =” c o n s ume r F o rRe ta i l e r”/>

45 <r o l eTy p e t y p eRe f =” t n s : R e t a i l e r ”

46 b e h a v i o r =” r e t a i l e r F o rCo n s ume r ”/>

47 </ r e l a t i o n s h i p T y p e>

48

49 <channe lType name=”ConsumerChannel”>

50 <r o l eTy p e t y p eRe f =” t n s : Consumer ”/>

51 <r e f e r e n c e> <t o k e n name=” t n s : consumerRef ”/> </ r e f e r e n c e>

52 <i d e n t i t y > <t o k e n name=” t n s : pur cha s eOrde r ID ”/> </ i d e n t i t y>

53 </ channelType>

54

55 <channe lType name=” Re t a i l e rCh a n n e l ”>

56 <p a s s i n g c h a n n e l =”ConsumerChannel” a c t i o n =” r e q ue s t ” />

57 <r o l eTy p e t y p eRe f =” t n s : R e t a i l e r ”

58 b e h a v i o r =” r e t a i l e r F o rCo n s ume r ”/>

59 <r e f e r e n c e> <t o k e n name=” t n s : r e t a i l e r R e f ”/></ r e f e r e n c e>

60 <i d e n t i t y> <t o k e n name=” t n s : pur cha s eOrde r ID ”/></ i d e n t i t y>

61 </ channelType>

Figure 1: WS-CDL Example: Static Part

1 <c h o r e o g r a p h y name=” Co n s ume rRe t a i l e rCho r eo g r ap hy” r o o t =” t r u e ”>

2 <r e l a t i o n s h i p t y p e =” t n s : Co n s ume rRe t a i l e rRe l a t i o n s h i p ”/>

3 <v a r i a b l eDe f i n i t i o n s>

4 <v a r i a b l e name=” p u r c h a s eOr d e r ”

i n f o rma t i o nTy p e =” t n s : pur cha s eOrde rType ”

5 s i l e n t =” f a l s e ” />

6 <v a r i a b l e name=” pur cha s eOrde rAck ”

7 i n f o rma t i o nTy p e =” t n s : purchaseOrderAckType” />

8 <v a r i a b l e name=” r e t a i l e r −c h a n n e l ”

channe lType =” t n s : Re t a i l e rCh a n n e l ”/>

9 <v a r i a b l e name=” consumer−c h a n n e l ”

channe lType =” t n s : ConsumerChannel”/>

10 <v a r i a b l e name=” badPur cha s eOrde rAck ”

11 i n f o rma t i o nTy p e =” t n s : badPOAckType ” />

12 </ v a r i a b l eDe f i n i t i o n s>

13

14 <sequenc e>

15 <wo r k u n i t name=” u n i t ” b l o c k =” f a l s e ”

23

16 gua rd =” n o t (c d l : i sVa r i a b l eAv a i l a b l e (

‟ t n s : pur cha s eOrde r ‟ , ‟ t n s : Consumer ‟))”>

17 <assign roleType =” tns:Consumer”>

18 <copy name=” copy1”>

19 <source expression =” cdl:doc (

 ‟ <PO> <orderId name=”10” />

 <CustomerRef name=”1000” />

<target variable =” cdl:getVariable (

‟tns:purchaseOrder ‟ , ‟ ‟ , ‟ ‟) ” / >

21 </copy>

22 </ assign>

23 </workunit>

24

25 <interaction name=” createPO ”

26 channelVar iable =” tns:RetailerChannel ”

27 operation =” handlePurchaseOrder”>

28 <p a r t i c i p a t e r e l a t i o n s h i p T y p e=”

t n s : Co n s ume rRe t a i l e rRe l a t i o n s h i p ”

29 f romRoleTypeRef =” t n s : Consumer ”

 toRol eTypeRe f=” t n s : R e t a i l e r ”/>

30 <exchange name=” r e q u e s t ”

31 i n f o rma t i o nTy p e =” t n s : pur cha s eOrde rType ”

 a c t i o n =” r e q u e s t”>

32 <s end v a r i a b l e =” c d l : g e tVa r i a b l e (‟

 t n s : pur cha s eOrde r ‟ , ‟ ‟ , ‟ ‟) ” />

33 <r e c e i v e v a r i a b l e =” c d l : g e tVa r i a b l e (‟

t n s : pur cha s eOrde r ‟ , ‟ ‟ , ‟ ‟) ”

34 r e c o r dRe f e r e n c e=

” r e c o r d−the−channe l−i n f o ” />

35 </exchange>

36 <exchange name=” r e s p o n s e ”

37 informationType =” purchaseOrderAckType”

 action =” respond”>

38 <send variable =” cdl:getVariable (‟

 tns : purchaseOrderAck ‟ , ‟ ‟ , ‟ ‟) ” />

39 <receive variable =” cdl:getVariable(‟

t n s : pur cha s eOrde rAck ‟ , ‟ ‟ , ‟ ‟) ” />

40 </exchange>

41 <exchange name=” badPurchaseOrde rAckException ”

f aul tName =” badPur cha s eOrde rAckEx c ep t i on ”

42 informationType =”badPOAckType ” action =” respon d”>

43 <send variable =” cdl:getVariable (‟

 tns : badPurchaseOrderAck ‟ , ‟ ‟ , ‟ ‟) ”

44 causeException =” tns : badPOAck” />

45 <receive variable =” cdl:getVariable (‟

 tns : badPurchaseOrderAck ‟ , ‟ ‟ , ‟ ‟) ”

46 causeException =” tns:badPOAck” />

47 </exchange>

48 <record name=” record−the−channel−info ” when=” after ”>

49 <source variable =” cdl:getVariable (‟

 tns:purchaseOrder ‟ , ‟ ‟ ,

50 ‟ /PO/CustomerRef ‟)”/>

51 <target variable =” cdl:getVariable (‟

 tns:consumer−channel ‟ , ‟ ‟ , ‟ ‟) ” / >

52 </ recor d>

53 </ interaction>

54 </ sequence>

55 </ choreography>

56 </package>

Figure 2: WS-CDL Example: Dynamic Part

24

3.2 Using WS-CDL

WS-CDL is a description and not an executable language, hence the term “Description”

in its name. It is a language that can be used to unambiguously describe observable service

collaboration; we might also refer to this as a business protocol. When WS-CDL is focused on

describing collaboration within a domain of control (e.g. a single company or enterprise) WS-

CDL is used to describe the internal workflows that involve multiple services (also called end-

points) that constitute observable collaborative behavior. The value in so doing is to encourage

conformance of services to a negotiated choreography description and to improve

interoperability of services through an agreed choreography description. This is no more than

describing a business protocol that defines an observable collaboration between services. You

can think of it as ways of ensuring services are well behaved with respect to the goals you wish

to achieve within your domain.

When the focus of WS-CDL is across domains of control, WS-CDL is used to describe

the ordering of observable message exchanges across domains such as those that govern vertical

protocols such as FPML, FIX, TWIST and SWIFT. These protocols have some form of XML

data format definition and then proceed to describe the ordering of message exchanges using a

combination of prose and UML sequence diagrams.

3.3 Why use WS-CDL?

WS-CDL can be used to ensure interoperability within and across domains of control to

lower interoperability issues, and create solutions within and across domains of control. WS-

CDL can be used to ensure that the total cost of software systems in a distributed environment,

within a domain of control and across the world-wide-web is lowered by guaranteeing that the

25

services that participate in choreography are well behaved on a continuous basis. Both of these

benefits translate into greater up-time and so increase top line profits. At the same time they

translate into less testing time and so reduce cost of delivery which decreases bottom line costs.

3.4 Interaction Based Information Alignment

In some choreographies there may be a requirement that when the interaction is

performed, the roleTypes in the choreography have agreement on the outcome. More specifically

within an interaction, a roleType may need to have a common understanding of the observable

information creations or changes of one or more state capturing variables that are complementary

to one or more state capturing variables of its partner roleType. Additionally, within an

interaction a roleType may need to have a common understanding of the values of the

information exchange capturing variables at the partner roleType. For example, after an

interaction happens, both the "Buyer" and the "Seller" want to have a common understanding

that: State capturing variables, such as "Order State", that contain observable information at the

"Buyer" and "Seller", have values that are complementary to each other, e.g. 'Sent' at the "Buyer"

and 'Received' at the "Seller", and Information exchange capturing variables have the same types

with the same content, e.g. The "Order" variables at the "Buyer" and "Seller" have the same

informationTypes and hold the same order information.

In WS-CDL, an alignment interaction MUST be explicitly used in the cases where two

interacting participants require the alignment of their observable information changes and the

values of their exchanged information. After the alignment interaction completes, both

participants progress at the same time in a lock-step fashion, and the variable information in both

participants is aligned. Their variable alignment comes from the fact that the requesting

26

participant has to be assured that the accepting participant has received the message, and the

accepting participant has to be assured that the requesting participant has sent the message before

both of them progress. There is no intermediate state, where one participant sends a message and

then it proceeds independently, or the other participant receives a message and then it proceeds

independently. In other words, after each alignment interaction both participants act on the basis

of their shared understanding for the messages exchanged and the information recorded.

3.5 Interaction Life-line

An interaction must complete normally when its message exchanges complete

successfully. An interaction must complete abnormally when: An application signals an error

condition, during the management of a request or within a participant when processing the

request its time-to-complete timeout occurs after the interaction was initiated but before it

completed. Some other type of error occurs, such as protocol based exchange failures, security

failures, document validation errors, etc.

3.6 Interaction Syntax

The syntax of the interaction construct is:

<interaction name="NCName"

 channelVariable="QName"

 operation="NCName"

 align="true"|"false"? >

 <participate relationshipType="QName"

 fromRoleTypeRef="QName" toRoleTypeRef="QName" />

 <exchange name="NCName"

 faultName="QName"?

 informationType="QName"?|channelType="QName"?

 action="request"|"respond" >

 <send variable="XPath-expression"?

 recordReference="list of NCName"?

 causeException="QName"? />

 <receive variable="XPath-expression"?

27

 recordReference="list of NCName"?

 causeException="QName"? />

 </exchange>*

 <timeout time-to-complete="XPath-expression"

 fromRoleTypeRecordRef="list of NCName"?

 toRoleTypeRecordRef="list of NCName"? />?

 <record name="NCName"

 when="before"|"after"|"timeout"

 causeException="QName"? >

 <source variable="XPath-expression"? |

expression="XPath-expression"? />

 <target variable="XPath-expression" />

 </record>*

</interaction>

Figure 5.4 Interaction Syntax

The attribute name is used to specify a name for each interaction element declared within

choreography. The channelVariable attribute specifies the channel capturing variable used for

communicating during this interaction. The channel variable contains information about the

participant that is the target of the interaction. The information is used for determining where and

how to send and receive information to and from the participant. The channel variable used in an

interaction must be available at the two roleTypes before the interaction may occur. At runtime,

information about a channel variable is expanded further. This requires that the messages

exchanged in the choreography also contain reference and correlation information, for example

by: Including a protocol header, such as a SOAP header or Using the actual value of data within

a message, for example the "Order Number" of the "Order" that is common to all the messages

sent over the channel.

The operation attribute specifies the name of the operation that is associated with this

interaction. The specified operation belongs to the interface, as identified by the roleType and

behavior elements of the channelType specified in the channel variable used in this interaction.

The optional align attribute, when set to "true", means that this alignment interaction results in

28

the common understanding of both the information exchanged and the resulting observable

information creations or changes at the ends of the interaction, as specified in the

fromRoleTypeRef and the toRoleTypeRef elements. In other words, after each alignment

interaction both participants act on the basis of their shared understanding for the messages

exchanged and the information recorded. The default value for this attribute is "false". Within the

participate element, the relationshipType attribute specifies the relationshipType this interaction

participates in, and the fromRoleTypeRef and toRoleTypeRef attributes specify the requesting

and the accepting roleTypes respectively. The type of the roleType identified by the

toRoleTypeRef attribute must be the same as the roleType identified by the roleType element of

the channelType specified in the channel variable used in the interaction.

The optional exchange element allows information to be exchanged during an interaction.

The attribute name is used to specify a name for this exchange element. When the action

attribute is set to "request", then the information exchange happens from the 'from' roleType to

the 'to' roleType. When the action attribute is set to "respond", then the information exchange

happens from the 'to' roleType to the 'from' roleType. Within the exchange element, the send

element shows that information is sent from a roleType and the receive element shows that

information is received at a roleType respectively in the interaction.

The send and the receive elements must only use the WS-CDL function getVariable

within the variable attribute. The optional variables specified within the send and receive

elements must be of type as described in the informationType or channelType attributes. When

the action element is set to "request", then the variable specified within the send element using

the variable attribute must be defined at the 'from' roleType and the variable specified within the

receive element using the variable attribute must be defined at the 'to' roleType. When the action

29

element is set to "respond", then the variable specified within the send element using the variable

attribute must be defined at the 'to' roleType and the variable specified within the receive element

using the variable attribute must be defined at 'from' roleType. Within the send or the receive

elements of an exchange element, the recordReference attribute contains an XML-Schema list of

references to record elements in the same interaction. The same record element may be

referenced from different send or the receive elements within the same interaction thus enabling

re-use. Within the send or the receive elements of an exchange element, if the optional

causeException attribute is set, it specifies that an exception must be caused at the respective

roleTypes. In this case, the "QName" value of this attribute will identify the exception that must

be caused.

30

4.0 Mapping Collaborating Services to WS-CDL

WS-CDL is an XML based description language for describing interactions between web

services. Unlike WS-BPEL[20], WS-CDL there is no unique web services being defined through

other web services (WS Choreography). In WS-CDL the services are defined in a peer to peer

manner and there is no notion of a coordinating web services. In popular terms the developers of

WS-CDL like to distinguish between traditional orchestration languages, like WS-BPEL that

uses existing services to orchestrate a new service, and between choreography languages, like

WS-CDL, that describe the interaction points between existing Web Services without defining

new such services[21]. WS-CDL is based on formal method π-calculus process algebra, and

therefore the language is well suited for describing concurrent processes and dynamic interaction

scenarios.

4.1 A Formal Model for WS-CDL

WS-CDL models choreography with a set of participant roles and the collaboration

among them. We give the syntax and an operational semantics here. We use meta-variable R for

role declarations; A and B for activity declarations; r, f and t for role names; x, y, u and v for

variables; e, e1 and e2 for XPath expressions; g, g1, g2 and p for XPath Boolean expressions; op

for operations offered by the roles. We use R as a shorthand for R1, · · · ,Rn, for some n,

(similarly, for x, op, e, etc.), r.x to refer to the variable x in role r, and r.x := e for r.x1 := e1, · · · ,

r.xn := en. A choreography declaration includes a name C, some participant roles R, and an

activity A with the form: C[R, A]. Each role R has some local variables x and behaviors

represented as a set of operations op. A role with name r is defined as:

R ::= r[x , op]

31

The basic activities in CDL are as follows:

BA ::= skip (skip)

| r.x := e (assign)

| comm (f.x → t.y, rec, op) (request)

| comm (f.x ← t.y, rec, op) (response)

| comm (f.x → t.y, f.u ← t.v, rec, op) (req-resp)

Here op specifies what the recipient does when receiving the message, rec represents the

assignments f.x := e1, t.y := e2, where x and y are lists of state variables on the roles f and t

respectively. The syntax of the activities is:

A,B ::= BA (basic)

| p?A (condition)

| p * A (repeat)

| g :A:p (workunit)

| A;B (sequence)

| A ∩ B (non-deterministic)

| g1 =>A[] g2 =>B (general-choice)

| A || B (parallel)

The WS-CDL specification includes many well-formedness rules. In the semantic

definition, we will always assume that the WS-CDL program is well-formed [8]. From this

formal CDL Model let us assume we have n collaborating services, S1, S2, …, Sn, m service

states E11, E12, …, Enm such that service x {Sx, x=1,..,n} is in state y {Exy, x=1,…,n nad y=

1,…,m}, Let us also assume the interaction between Sx and Sy such that x ≠ y is Ixy. The

32

interaction between Sx and Sy (Ixy) is determined by operation Ixy which is provided by service y

(Sy). To model and interaction between services with state, time and sequence can be defined by

this general scenario [22]:

Service Sx calls operation Oxy on Sy with paramets Py. If Service Sy is in State Ey and it

is called within time T it sends Response Ryx to Sx otherwise it sends Exception.

<roleType name=”SampleRequestor”>
 <behavior name=”Oxy” interface=”Sx” //the role played by service x
</roleType>
<roleType name=”SampleResponder”>
 <behavior name=”Oyx” interface=”Sy” //the role played by service y
</roleType>

<relationshipType name=”SampleRelationship” > //relationship between two services req/resp

<role type=”Sx” behavior=”Oxy”/>
<role type=”Sy” behavior=”Oyx”/>

</relationshipType>

<channelType name=”smapleReqChannel>
 <role type=”SampleRequestor”/>
</channelType>

<channelType name=”smapleRespChannel>
 <role type=”SampleResponder”/>
</channelType>

<choreography name=”sampleChoreography root=”true”>
 <relationship type=”Samplerelationship”

<variabledefinitions
 <variable name=”Pxy”
 informationType=’tns:string”/> //parameters passed to the operation

 <variable name =”Ryx”
 informationType=”tns:string”/> //response sent back to Service Sx

 <variable name=”Ex1”
 informationType=tns;string/> /serice status

</vaiabledefinitions>

<sequence>

 <workunit name=”unit”
 guard="cdl:getVariable("Ex1", "", "", //controls the service to proceed
 "tns:Sx") =”normal”)"”> // only if codition is met

 </workunit>
 <interaction name = “ServiceXToServiceY”
 channellVariable=”SampleReqChannel” operation=”Oxy”> // protocol to send data

 <participate relationshipType="SampleReqSampleResp"
 fromRole="tns:SampleRequestor" toRole="SampleResponder"/>

 <exchange name=”request”

 informationType=”tns:string” action=”request”>
<send variable=”cdl;getVariable(“tns:Pxy”. “”, “”)”/>

33

<receive variable=”cdl:getVariable(“tns:Pxy”,””,””)”/>
 <exchange>

<exchange name=”response”
 informationType=”tns:string” action=”response”>

<send variable=”cdl;getVariable(“tns:Pyx”. “”, “”)”/>
<receive variable=”cdl:getVariable(“tns:Pyx”,””,””)”/>

 <exchange>

 <timeout time-to-complete="T"/>

 </interaction>
</sequence>

</choreography>

4.2 WS-CDL Exception Handling

A choreography can sometimes fail as a result of an exceptional circumstance or an "error"

that occurred during its performance. Different types of exceptions are possible including this

non-exhaustive list:

 Interaction failures - for example, the sending of a message did not succeed

 Protocol based exchange failures - for example, no acknowledgement was

received as part of a reliable messaging protocol

 Security failures - for example, a message was rejected by a recipient because

the digital signature was not valid

 Timeout errors - for example, an interaction did not complete within the required

time

 Validation errors - for example, an XML "Order" document was not well formed or

did not conform to its XML-Schema definition

 Application failures - for example, the "Goods Ordered" were 'Out of stock'

34

4.3 Collaborations Constructs and WS-CDL Element Mapping

Collaboration in general is the process of working together to achieve common objective,

it describes the dynamic relationship that exists among objects. Web Service collaboration in

particular is the process of DISTRUBUTED synchronous/asynchronous processes working

together to achieve a common objective. Large scale software development is a complex task;

hence software architects decompose the overall system into smaller components. The task of

building these components may be assigned to different teams and deployed to different nodes,

web services is a common technology used to develop these distributed components.

Web services are services that are made available from a business's Web Service Engines

for Web users or other Web-connected programs. Providers of Web services are generally known

as application service providers. Web services are ubiquitous in applications development

especially Service Oriented Architecture (SOA) shops and the accelerating creation and

availability of these services is a major Web trend. Users can access some Web services through

a peer-to-peer arrangement rather than by going to a central server. Besides the standardization

and wide availability to users and businesses of the Internet itself, Web services are also

increasingly enabled by the use of the Extensible Markup Language (XML) as a means of

standardizing data formats and exchanging data. XML is the foundation for the Web Services

Description Language. Distributed services encompass the functionality required to complete a

task or a use case for a business requirement. A one use case (business requirement) is realized

by the collaboration among two or more services. We can classify the participant of

collaboration into two categories: Initiator and Receptors (one or more collaboration

participants).

http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci213801,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212769,00.html
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci213404,00.html

35

Initiators initiate the collaboration among participants of a use case (business

requirement), it exchanges message with other participants and there is no constraint on the

initiator on a given collaboration. Receptors on the other hand receive messages from the

initiator or other receptors participating in collaboration, it exchanges messages with Initiators

and other receptors and there are often constraints on when and how to participate on a given

collaboration.

Messages are exchanged among participants of collaboration and there are two types of

exchanges possible among collaboration participants. One way messages which the Initiator

sends messages but does not receive message back; two way messages which the Initiator sends

messages and receives one back. Messages returned by services to the Initiator are classified into

two: Normal messages which hold normal response data and Exception messages which hold

exception data.

There are two major constraints on web services collaboration, interactions constraints

which one participant checks if a condition is satisfied before it can interact with other

participant; exchange constraint which one exchange type will send a particular message

depending on certain condition. A specification for collaboration should capture all the

collaborations constraints and constructs; participants, messages, exchanges, interaction,

exchange type, exchange constraints, interaction constraints, condition variables, request

message, response message and exceptions. There is a specification language called WS-CDL

which captures all of these constructs. We can also specify different choices of interactions we

can execute.

36

Interaction State Chart Diagram:

Figure 4.1 Service Interaction State Chart

Web Service Choreography Diagram:

Figure 4.2 Choreography diagram

37

WS-CDL captures interaction by defining it like this:

1 <interaction name=""

2 channelVariable="qname"

3 operation="ncname"

4 align="true"|"false"

5 initiate="true"|"false" >

6 <participate relationshipType="qname"

7 fromRole="qname"

8 toRole="qname" />

9 <exchange name="ncname"

10 informationType="qname" |

11 channelType="qname"

12 action="request" >

13 <send variable="XPath-expression"

14 recordReference="list of ncname"

15 causeException="true"|"false" />

16 <receive variable="XPath-expression"

17 recordReference="list of ncname"

18 causeException="true"|"false" />

19 </exchange>

20 <exchange name="ncname"

21 informationType="qname" |

22 channelType="qname"

23 action="response" >

24 <send variable="XPath-expression"

25 recordReference="list of ncname"

26 causeException="true"|"false" />

27 <receive variable="XPath-expression"

28 recordReference="list of ncname"

29 causeException="true"|"false" />

30 </exchange>

31 <timeout time-to-complete="XPath-expression"

32 fromRoleRecordReference="list of ncname"

33 toRoleRecordReference="list of ncname" />

34 <record name="ncname"

35 when="before"|"after"|"timeout"

36 causeException="true"|"false" >

37 <source variable="XPath-expression" |

38 expression="Xpath-expression" />

39 <target variable="XPath-expression" />

40 </record>

41 </interaction>

Figure 4.3 interaction WS-CDL

Lines 9 – 19 request exchange

Lines 20 – 30 response exchange

38

WS-CDL captures interaction constraint (guard) by defining it like this:

1 <workunit name=""

2 guard= "cdl:getVariable

(tns:connectionBResp,

tns:ServiceBRole)==ready"/> //test condition

3 repeat="xsd:boolean XPath-expression"

4 block="true|false" >

5 <interaction name="" channelVariable="qname"

6 operation="ncname" >

7 </iteraction>

8 </workunit>

Figure 4.4 interaction constraint (guard) WS-CDL construct

WS-CDL captures exchange constraint by defining it like this:

1 <exchange name="ncname"

2 informationType="qname" |

3 channelType="qname"

4 action="request"|"respond" >

5 <send variable= “(cdl:getVariable(

tns:connectionBResp,

tns:ServiceBRole)==available

?passed:failed)”/>

5 recordReference="list of ncname"

6 causeException="true"|"false" />

7 <receive variable="XPath-expression"

8 recordReference="list of ncname"

9 causeException="true"|"false" />

10 </exchange>

Figure 4.5 exchange constraint ws-cdl construct

1 <workunit name=""

2 guard= "cdl:getVariable

(tns:connectionBResp,

tns:ServiceBRole)==ready"/> //test condition

3 repeat="xsd:boolean XPath-expression"

4 block="true|false" >

<choice>

6 <interaction name="inter1" channelVariable="qname"

7 operation="ncname" >

8 </iteraction>

9 <interaction name="inter2" channelVariable="qname"

10 operation="ncname" >

11 </iteraction>

12 </choice>

16 </workunit>

Figure 4.6 processing choice WS-CDL construct

39

channelVariable(2):communications channel declared for each participant

operation(3): name of the operation in the participant to be invoked

align(4): indicates if participant variables be aligned

initiate(5): indicates if this interaction is from Initiator or this is intermediary interaction.

Participate(6): indicates the two services participating the interaction and what role each one

plays for the choreography

Exchange(9): message exchange mechanism defines the send and receive mechanism and the

message types exchanged.

causeException(18): if this interchange throws exception or not.

Timeout(20): time to wait for the interaction to complete

40

5.0 Service Collaboration Scenario

In this section we are going to see three components which are collaborating and we will do both

the Controlled Test and Collaborative Test. In this section we are going to demonstrate:

1. How to specify and test individual services

2. How to specify and test a collaboration.

This Test Scenerio will use the Three WS Components.

 a) Service_A -- as a Service_B services consumer

 b) Service_B -- service_B service produces

 c) Security_Manager -- a proxy service between A and B

Services Sequence Diagram:

Figure 5.1, Sequence Diagram

41

Let us assume the following are three of the policies that govern the collaboration.

1. Service_A shall check Service_B‟s availability(within a time period T) before it asks for

secure connection from Security_Manager. However, the reverse may not be true, i.e.

Service A may not ask for secure connection even if it checked the availability of

Service_B.

2. SM has to reCheck B‟s availability within a time period after receiving A‟s get secure

connection

3. After answering available to Service_A, Service_B shall reply “confirm” to the

security_Manager if it receives the recheck message (with in a time period T) from the

Security Manager.

4. if Security_Manager receives „ask for secure connection” from A, it will check B or C‟s

availability but not D‟s.

In this thesis we focus on defining a language which captures the specification of this

system in a formal way. This will make us easy to develop a test engine which is fed to this

formal specification to observe that the collaborating parties adhere to the rules of the game

(collaborations allowed by the specification).

1. Service_A shall check Service_B‟s availability(within a time period T) before it asks for

secure connection from Security_Manager. However, the reverse may not be true, i.e.

Service A may not ask for secure connection even if it checked the availability of Service_B.

NetworkAvailabilityChoreography does not depend on any other choreography and we define it

this way:

<choreography name="NetworkAvailChoreography" root="true">

 <relationship type="ServiceA_serviceB"/>

 <variableDefinitions>

<variable name="netAvail"

42

informationType="networkAvailabilityType" />

 <variable name="netAvailResp"

informationType="networkAvailabilityRespType" />

 <variable name="network"

channelType="tns:ServiceBChannel"/>

 </variableDefinitions>

<sequence>

 <interaction name="checkAvailability"

channelVariable="tns:network"

operation="checkAvailability" initiate="true">

 <participate relationshipType="tns:ServiceA_ServiceB"

 fromRole="tns:ServiceARole"

 toRole="tns:ServiceBRole"/>

 <exchange name="networkAvailabilityExchange"

informationType=

"tns:networkAvailabilityType"

action="request">

 <send variable=

"cdl:getVariable(tns:netAvail,

tns:ServiceARole)"/>

 <receive variable=

"cdl:getVariable(tns:netAvail,

tns:ServiceBRole)"/>

 </exchange>

 <exchange name="networkAvailabilityRespExchange"

informationType=

"tns:networkAvailabilityRespType"

action="respond">

 <send variable=

"cdl:getVariable(tns:netAvailResp,

tns:ServiceBRole)"/>

 <receive variable=

"cdl:getVariable(tns:netAvailResp,

tns:ServiceARole)"/>

 </exchange>

 </interaction>

 </sequence>

</choreography>

<choreography name="ConnectionSecureChoreography" root="false">

 <relationship type="ServiceA_SecurityManager"/>

<variableDefinitions>

 <variable name="connection"

informationType="connectionType" free="true"

mutable="false"/>

 <variable name="connectionResp"

informationType="connectionRespType"

mutable="false"/>

 <variable name="secureConn"

channelType="tns:SecurityManagerChannel"/>

 </variableDefinitions>

 <workunit name="SecureConnection"

guard="cdl:getVariable("netAvailableCalled")==true &&

 (cdl:getVariable("avilableTime")-

 cdl:getCurrentTime()) < 20"

 block="true”>

 <interaction name="connectionSecure"

channelVariable="tns:secureConn"

operation="connectionSecure" initiate="true">

43

<participate

relationshipType="tns:ServiceA_SecurityManager"

fromRole="tns:ServiceARole"

toRole="tns:SecurityManagerRole"/>

 <exchange name="connectionExchange"

informationType="tns:connectionType"

action="request">

 <send variable="cdl:getVariable(

tns:connection, tns:ServiceARole)"/>

 <receive variable=

"cdl:getVariable(tns:connection,

tns:SecurityManagerRole)"/>

 </exchange>

 <exchange name="connectionRespExchange"

informationType="tns:connectionRespType"

action="respond">

 <send variable=

"cdl:getVariable(tns:connectionResp,

tns:SecurityManagerRole)"/>

 <receive variable=

"cdl:getVariable(tns:connectionResp,

tns:ServiceARole)"/>

 </exchange>

 </interaction>

 </workunit>

</choreography>

Figure 5.2 SecureConnection and networkAvailability choreographies

2. SM has to reCheck B‟s availability within a time period after receiving A‟s get secure

connection

3. After answering available to Service_A, Service_B shall reply “confirm” to the

security_Manager if it receives the recheck message (with in a time period T) from the

Security Manager.

Specification,#2 recheckAvailability (from ServiceA to serviceB), depends on the time

ServiceA call (getSecureConnection) to SecurityManager, the two calls has to be within T time.

SM has to reCheck B‟s availability within a time period after receiving A‟s get secure

connection.

Specification #3 recheckavailability depends on the networkAvailable varaiable if true it

returns accept otherwise reject.

44

<choreography name="RecheckAvailabilityChor" root="false">

 <relationship type="SecurityManager_serviceB"/>

<variableDefinitions>

<variable name="connectionB"

informationType="connectionBType" free="true" mutable="false"/>

 <variable name="recheckAvailabilityResp"

informationType="reCheckAvailabilityRespType"

mutable="false"/>

<variable name="secureConn"

channelType="tns:ServiceBChannel"/>

 </variableDefinitions>

 <choice>

 <workunit name="reCheckAvailability" guard="(cdl:getCurrentTime() –

 cdl:getVariable("secureConnTime")" < 10)”

block="true" >

 <interaction name="connectionSecure"

channelVariable="tns:secureConn"

operation="connectionSecure" initiate="true">

 <participate

relationshipType="tns:SecurityManager_ServiceB"

fromRole="tns:SecurityManagerRole"

toRole="tns:ServiceBRole"/>

 <exchange name="recheckAvailabiltyExchange"

informationType="tns:rechekAvailabiltyType"

action="request">

 <send variable=

"cdl:getVariable(tns:reCheckAvailability,

tns:SecurityManagerRole)/>

 <receive variable=

"cdl:getVariable(tns:reCheckAvailability,

tns:ServiceBRole)"/>

 </exchange>

 <exchange name="reCheckAvailabilityRespExchange"

informationType="tns:reCheckAvailabilityRespType"

action="respond">

 <send variable=

"cdl:getVariable(tns:reCheckAvailabiltyResp,

tns:ServiceBRole)==true?confirm:reject”/>

 <receive variable=

"cdl:getVariable(tns:reCheckAvailabilityResp,

tns:SecurityManagerRole)"/>

 </exchange>

 </interaction>

 </workunit>

 </choice>

</choreography>

Figure 5.3 recheckavailability choreography

Activities describe the actions performed within a choreography. The Activity-Notation

is used to define activities as either: An ordering structure - which combines activities with other

ordering structures in a nested way to express the ordering rules of actions performed within a

choreography. A WorkUnit-Notation - which is used to guard and/or provide a means of

repetition of those activities enclosed within the workunit. A basic activity - which is used to

45

describe the lowest level actions performed within a choreography. A basic activity is then

either: An interaction activity , which results in an exchange of information between participants

and possible synchronization of their observable information changes and the actual values of the

exchanged information. A perform activity, which means that a complete, separately defined

choreography is performed. An assign activity, which assigns, within one roleType, the value of

one variable to another variable. A silentAction activity, which provides an explicit designator

used for specifying the point where participant specific actions with non-observable operational

details are performed. A noAction activity, which provides an explicit designator used for

specifying the point where a participant does not perform any action. A finalize activity, which

enables a particular finalizerBlock in a particular instance of an immediately enclosed

choreography and thus brings that choreography to a defined conclusion.

Ordering structures combine activities with other ordering structures in a nested structure

to express the ordering rules of actions performed within a choreography. An ordering structure

is one of the following: sequence, parallel, choice: the sequence ordering structure contains one

or more Activity-Notations. When the sequence activity is enabled, the sequence element MUST

restrict the series of enclosed activities (as defined by one or more Activity-Notations) to be

enabled sequentially, in the same order that they are defined.

The syntax of this construct is:

<sequence>

 Activity-Notation+

</sequence>

46

The parallel ordering structure contains one or more Activity-Notations that are enabled

concurrently when the parallel activity is enabled. The parallel activity MUST complete

successfully when all activities (as defined by one or more Activity-Notations) performing work

within it complete successfully.

The syntax of this construct is:

<parallel>

 Activity-Notation+

</parallel>

The choice ordering structure enables specifying that only one of two or more activities

(as defined by two or more Activity-Notations) MUST be performed. If no activities are selected,

this MUST result in a runtime exception. When two or more activities are specified in a choice

element, only one activity is selected and the other activities are disabled. If the choice has

workunits with guard conditions, the first workunit that matches the guard condition is selected

and the other workunits are disabled. Where there is more than one match, lexical ordering is

used to select a match. If the choice has other activities, it is assumed that the selection criteria

for those activities are non-observable.

The syntax of this construct is:

<choice>

 Activity-Notation+

</choice>

In the example below, choice element has two interactions, "processGoodCredit" and

"processBadCredit". The interactions have the same directionality, participate within the same

47

relationshipType and have the same fromRoleTypeRef and toRoleTypeRef names. If one

interaction happens, then the other one is disabled.

<choice>

 <interaction name=""processGoodCredit"

 channelVariable="goodCredit-channel" operation="doCredit">

 ...

 </interaction>

 <interaction name=""processBadCredit"

 channelVariable="badCredit-channel" operation="doBadCredit">

 ...

 </interaction>

<choice>

Interacting

An interaction is the basic building block of a choreography. It results in information

exchanged between collaborating participants and possibly the synchronization of their

observable information changes and the values of the exchanged information. An interaction

forms the base atom of the choreography composition. Multiple interactions are combined to

form a choreography, which can then be used in different business contexts. An interaction is

initiated when one of the roleTypes participating in the interaction sends a message through a

common channel to another roleType that is participating in the interaction. If the initial message

is a request, then the accepting roleType can optionally respond with a normal response message

or a fault message, which will be received by the initiating roleType. An interaction also contains

48

"references" to: The channel capturing variable that describes where and how the message is to

be sent to and received into the accepting roleType. The operation that specifies what the

recipient of the message should do with the message when it is received. The „from' roleType

and 'to' roleType that are involved the informationType or channelType that is being

exchanged.The information exchange capturing variables at the 'from' roleType and 'to' roleType

that are the source and destination for the message content. A list of potential state capturing

variable recordings that capture observable information changes that can occur as a result of

carrying out the interaction.

Web services Collaboration Engine Diagram:

Figure 5.3, Web Services Collaboration Engine

5.1 Services Interfaces

package edu.gsu.cs.thesis;

public interface ServiceB {

 public boolean checkAvailability();

 public boolean reCheckAvailability();

 public boolean establishConnection();

 public boolean getAvailable();

 public long getAccessedTime();

 public void resetServiceB(boolean available, long accessedTime);

}

49

package edu.gsu.cs.thesis;

public class ServiceBImpl implements java.io.Serializable {

 boolean available=true;

 long accessedTime=0;

 public boolean checkAvailability() {

 boolean ret=false;

 if (available) {

 accessedTime = System.currentTimeMillis();

 available = false;

 ret = true;

 } else {

 ret = false;

 }

 return ret;

 }

 public boolean reCheckAvailability() {

 boolean ret=false;

 if(available){

 accessedTime = System.currentTimeMillis();

 available = false;

 ret =true;

 } else {

 if((System.currentTimeMillis() - accessedTime) < 20000) {

 accessedTime = System.currentTimeMillis();

 ret=true;

 } else {

 ret=false;

 }

 return ret;

}

}

public boolean establishConnection() {

 boolean ret;

 if(reCheckAvailability()) {

 ret=true;

 } else {

 ret=false;

}

 return ret;

}

public void resetServiceB(boolean available, long accessedTime){

 this.available=available;

 this.accessedTime=accessedTime;

}

public boolean getAvailable(){

 return available;

}

public long getAccessedTime(){

 return accessedTime;

50

}

}

package edu.gsu.cs.thesis;

public interface SecurityManager {

 public boolean getSecureConnection(boolean available, long accessedTime);

}

package edu.gsu.cs.thesis;

import edu.gsu.cs.thesis.proxy.*;

public class SecurityManagerImpl {

public SecurityManagerImpl() {

 }

 public boolean getSecureConnection(boolean available, long accessedTime) {

 boolean ret= false;

 ServiceBProxy proxy = new ServiceBProxy();

 try {

 proxy.resetServiceB(available, accessedTime);

 if(proxy.reCheckAvailability()) {

 ret=true;

 } else {

 ret = false;

 }

 } catch(Exception ex) {

 }

 return ret;

 }

}

Figure 5.5 Service Interfaces

51

6.0 Conclusion

Web Services is the preferred implementation choice of Service Oriented

Architecture(SOA). The Web Services components that make up SOA application is usually

implemented by different organization and deployed into different nodes (distributed).

Describing formally the observable behavior of these services as they interact with each other

was the focus of this thesis; we have looked into few formal languages (BPEL, CDL, and

WSDL) which address related problems. Our goal was to propose a language which can capture

any collaboration among dynamic, distributed web services. We defined a WS-CDL based

language which captures the elements of collaboration such as interaction, exchange state, time,

constraints, dependence, parallel, sequence, choice and others. We have also demonstrated how

the elements of the collaborations among the service components can be mapped into the

constructs of this language. In the end, we showed how a test engine generates test cases out of

the WS-CDL based specification. One of the major challenges of SOA based systems is its lack

of formal testing methods, the service components which make up the applications are

distributed, possibly developed by different groups or organizations and because of that the

interactions among these components are not well defined especially stateful interactions. This

thesis presents a solution by proposing a language which captures the interactions among service

components, and this language is XML based so it can be easily processed by test engine to

generate a test case and run it on the fly.

This work sets a foundation for more research of automating SOA based applications

testing, The test cases generated from this specification will reduce drastically the time it takes to

generate test cases and test the SOA based applications and will improve the return of

investment(ROI). This specification addresses all kind of collaborations, especially dynamically

52

invoked and freely interacting web services components. In this kind of environment the rules of

the game is not known ahead of time and a language which defines formally for these

collaborations is needed. This specification has value in state-full e-commerce system,

especially in the B2B world, where services are invoked dynamically according to the result of

the previous invocation. Applications can not implement the rules of game since it can not

anticipate what sequence of web services invocations are required to complete a business

requirement. These rules are captured in WS-CDL+ language and it can be used to generate test

cases or it can be fed into a controller agent which observes rules of the game for conformance.

6.1 Future Work

The work on this thesis is based on the work of previous research in the area of Service

collaboration and automated testing, W3C, The World Wide Web Consortium is one of the

leading authorities in this area and they had already proposed WS-CDL and WS-BPEL which

both contribute to thesis, two area that I see as a potential future research is extending this WS-

CDL+ with annotations so that tools can generate a complete test clients, another potential

research is design and implementation of an agent which observes the rules of the game and logs

if violated, this agent will require it is own WS-CDL+ and protocol to capture request and

response of each participant.

53

References:

[1] Lars Frantzen, Jan Tretmans, Towards Model-Based Testing of Web Services.
 Institute for Computing and Information Sciences Radboud University Nijmegen

The Netherlands

[2] L. Frantzen, J. Tretmans, and T.A.C. Willemse. Test generation based on
symbolic specifications. In J. Grabowski and B. Nielsen, editors, FATES 2004,
number 3395 in LNCS, pages 1–15. Springer-Verlag, 2005.

[3] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software—Concepts and Tools, 17(3):103–120, 1996.

[4] A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S.

Mauw, and L. Heerink. Formal test automation: A simple experiment. In G.
Csopaki, S. Dibuz, and K. Tarnay, editors, 12th Int. Workshop on Testing of
Communicating Systems,pages 179–196. Kluwer Academic Publishers, 1999.

[5] C. Jard and T. Jéron. TGV: theory, principles and algorithms. In IDPT ’02,

Pasadena, California, USA, June 2002. Society for Design and Process Science.

[6] Eddie Chee-Hung Mak, Automated Testing Using XML AND DEVS.

A Thesis Submitted to the Faculty of the Department of Electrical and Computer
Engineering, University of Arizona, 2006.

[7] Zeigler, B., Hammonds, P., Fulton D., Nunn K., and Mak, E., “Simulation-based

Testing of Emerging Defense Information System,” In progress.

[8] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher,

Yves Lafon, W3C Working Draft 19 June 2006.

[9] Manes, A.T. 2005, VantagePoint 2005-2006 SOA Reality Check Version: 1.0,

Burton Group Publication, Jun 29

[10] Hull R., and Su, J., Tools for Composite Web Services: A Short Overview, ACM

SIGMOD Record, Vol 34, No. 2, June, 2005.

[11] Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D.,

Leymann, F., Nally, M., Sedukhin, I., Snelling, D., Storey, T. and Weerawaranna,
S. Modeling Stateful Resources with Web Services. Globus Alliance, 2004.

[12] Zhu, H., Cooperative Model Approach to Quality Assurance and Testing Web

Software, compsac, pp. 110-113, 28th Annual International Computer Software
and Applications Conference (COMPSAC'04), 2004.

54

[13] Foster, I., Jennings, N. R., and Kesselman, C., Brain meets brawn: Why grid and
agents need each other. Autonomous Agents and Multi-Agent Systems
(AAMAS’04), 2004.

[14] Qi, Y., Kung, D., Wong, E., An Agent-Based Testing Approach for Web

Applications, compsac, pp. 45-50, 29th Annual International Computer Software
and Applications Conference (COMPSAC'05) Volume 2, 2005

[15] Huo, Q., Zhu, H., Greenwood, S., A Multi-Model Software Environment for

Testing Web-based Applications, compsac, p. 210, 27th Annual International
Computer Software and Applications Conference, 2003

[16] Grundy, J.C., Ding, G., and Hosking, J.G., Deployed Software Component

Testing using Dynamic Validation Agents, Journal of Systems and Software:
Special Issue on Automated Component-based Software Engineering, vol.74, no.
1, January 2005, Elsevier, pp. 5-14

[17] Willmott, S., Thompson, S., Bonnefoy, D., Charlton, P., Constantinescu, I., Dale,

J., Zhang, T., Model Based Dynamic Service Synthesis in Large-Scale Open
Environments: Experiences from the Agentcities Testbed, pp. 1318-1319,
AAMAS'04, 2004

[18]. Boston, MA, USA; 12 April 2007 -- OASIS, The International Standards

Consortium

[19] K. Gottschalk, S. Graham, H. Kreger, J. Snell, IBM Systems Journal, Vol 41, NO

2, 2002

[20] Web Services Business Process Execution Language Version 2.0 (draft).

Technical report, OASIS, 2006.

[21] Lars-Ake Fredlund, Implementing WS-CDL, LSIIS, Facultad de Inform´atica,

Universidad Polit´ecnica de Madrid.

[22] I. B. Arpinar, R. Zhang, B. Aleman and A. Maduko. Ontology-Driven Web

Services Composition. IEEE E-Commerce Technology,July 6-9, San Diego, CA.

	Georgia State University
	ScholarWorks @ Georgia State University
	4-22-2008

	WS-CDL Based Specification for Web Services Collaboration Testing
	Ahmed A. Ugaas
	Recommended Citation

