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Noetherian Filtrations and Finite Intersection Algebras

by

Sara Malec

Under the Direction of Dr. Florian Enescu

ABSTRACT

This paper presents the theory of Noetherian filtrations, an important concept in com-

mutative algebra. The paper describes many aspects of the theory of these objects,

presenting basic results, examples and applications. In the study of Noetherian filtra-

tions, a few other important concepts are introduced such as Rees algebras, essential

powers filtrations, and filtrations on modules. Basic results on these are presented as

well. This thesis discusses at length how Noetherian filtrations relate to important

constructions in commutative algebra, such as graded rings and modules, dimension

theory and associated primes. In addition, the paper presents an original proof of

the finiteness of the intersection algebra of principal ideals in a UFD. It concludes by

discussing possible applications of this result to other areas of commutative algebra.

INDEX WORDS: Graded Rings and Modules, Noetherian Filtrations, Rees

Algebras, E.P.F. Filtrations, Intersection Algebras
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Chapter 1

Introduction: Graded Rings and

Modules

Noetherian filtrations are a class of mathematical objects which have certain nice

properties. In this paper we will develop the theory of filtrations, and prove the

Noetherianity of a certain class of filtrations.

All rings are assumed to be commutative with identity. We will begin the first

chapter by introducing graded rings. Then we will review several notions from intro-

ductory commutative algebra, beginning with defining Noetherian rings and modules

and presenting some related results. The rest of the first chapter contains additional

definitions and results concerning graded Noetherian rings.

Once these fundamentals have been established, Chapter 2 defines the objects in

which this thesis is primarily concerned: filtrations, Rees algebras, and associated

graded rings. We again include a number of examples. Further, we compute the

dimension of Rees algebras of an ideal in a Noetherian ring.

Chapter 3 summarizes many important results concerning a special class of filtra-

tions, called Noetherian filtrations. These are studied in depth here. In the process,
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we define essential powers filtrations and discuss their relationship to Noetherian fil-

trations. Examples are given. The chapter concludes with a number of important

equivalent conditions that characterize Noetherian filtrations.

Finally, Chapter 4 presents the concept of finite intersection algebra of two ideals.

We present an original proof of the finiteness of intersection algebra of two primary

ideals in a UFD. The chapter concludes with some other related results.

We will start by giving a review of some basic facts from commutative algebra

that will be needed later in this paper. In this thesis, all rings are assumed to be

commutative with identity.

Definition 1.1. A semigroup G is a set together with a binary operation + which

is closed under addition, associative, and has an identity. A semigroup is called

cancellative if for any a, b, c ∈ G, and a+ b = a+ c, then b = c.

Definition 1.2. A graded ring over a cancellative semigroup G is a ring R that

can be written as a direct sum of abelian groups R =
⊕

i∈GRi with the additional

constraint that RiRj ⊂ Ri+j. An element r ∈ R is called homogeneous if there is

some i such that r ∈ Ri. Then i is called the degree of r. A homogeneous ideal is an

ideal generated by homogeneous elements.

It should be noted that while a ring can be graded over any cancellative semi-

group, generally in this paper they are graded over N or Z. Also, in this thesis, we

will assume that N contains 0.

Definition 1.3. If I is an ideal of R, then the graded ideal I∗ is defined to be the ideal

generated by all of the homogeneous elements in I. An ideal is called homogeneous if

I = I∗. Other equivalent definitions of a homogeneous ideal will be explored below.
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Example 1.4. The simplest example of a graded ring is the polynomial ring R = k[x].

Then R = R0⊕R1⊕ · · · ⊕Rn⊕ · · · , where Ri is the collection of the terms of degree

i. This is clearly a direct sum decomposition, since Ri ∩
⊕

j 6=iRj = ∅ for all i, and

RiRj ⊂ Ri+j since xixj = xi+j.

Example 1.5. For another example, take R = k[x, y] and use the N-grading induced

by the total order, i.e. for any monomial xiyj ∈ R, the degree of that monomial is

i+ j. Thus an example of a homogeneous ideal would be (x4y2, x3 + y3, xy3 + x2y2),

where the first term is in R6, the second in R3, and the third in R4.

Example 1.6. The same ring can have a different grading and produce different

homogeneous elements. If we instead use the multidegree order, R = k[x, y] is graded

over N × N. The degree of any element xiyj is (i, j), and therefore (x3y4, xy, x) is a

homogeneous ideal with the first element of degree (3, 4), the second of degree (1, 1)

and the third of degree (1, 0).

Proposition 1.7. Let R be a G-graded ring, where G is a cancellative semigroup.

Then 1 is in R0.

Proof. Since 1 ∈ R, 1 =
∑

i∈G xi with xi ∈ Ri. We claim x0 = 1, and thus 1 ∈

R0. Let y be homogeneous in R. Then y = y · 1 =
∑

i∈G yxi. We equate degrees

on both sides. Note that all of the terms of the sum are of distinct degrees, for

if deg(yxi) = deg(yxj), then deg(y)+ deg(xi) = deg(y)+ deg(xj), and since G is

cancellative, deg(xi) = deg(xj). So, as deg(x0) = 0, then y · x0 = y.

Example 1.8. (Yongwei Yao) An interesting example arises if G is not cancellative.

Let G = {0, b}, where b 6= 0 is such that b+ b = b. Note that this is a semigroup, as

it is closed under associative addition. Let R = 0⊕Z with the natural multiplication

on Z, where 0 is R0 and is of degree 0, and Z is Rb and with the elements of Z having
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degree b.We claim this fits the requirements for a graded ring: R0 ·Rb ⊆ Rb, since for

any z ∈ Z, 0 · z = 0 ∈ Z = Rb, and Rb · Rb ⊆ Rb as Z is closed under addition. But

here, 1 is clearly in Rb and not in R0.

Proposition 1.9. Let I be an ideal of a G-graded ring R. Let I∗ be the ideal

generated by the homogeneous elements of I, and I∗∗ be the ideal generated by the

homogeneous components of I. Then the following are equivalent:

1. If f ∈ I and f = f1 + f2 + · · ·+ fn with fi ∈ Rgi
and gi 6= gj , then fi ∈ I;

2. I = I∗∗;

3. I is generated by homogeneous elements;

4. I = I∗;

Proof. 1⇒ 2 : First, note that I∗ ⊆ I ⊆ I∗∗ always. So let f ∈ I∗∗ be a generator of

I∗∗. So f is a homogeneous component of an element of I by definition of I∗∗, and

so by hypothesis f ∈ I. Thus all of the generators of I∗∗ are in I, and thus I∗∗ ⊆ I,

therefore they are equal.

2⇒ 3 : Since I∗∗ is generated by homogeneous elements and I = I∗∗, I is generated

by homogeneous elements.

3 ⇒ 4 : We know already that I∗ ⊆ I, so now let f ∈ I be a in the set of

homogeneous generators for I. By hypothesis, f is homogeneous, and thus f ∈ I∗ by

the definition of I∗. Since the generators of I are in I∗, I ⊂ I∗ and thus I = I∗.

4⇒ 1 : Let f ∈ I, with f = f1 + f2 + · · ·+ fn, and fi be homogeneous of degree

gi. Now f ∈ I∗, so f =
∑
rjhj where rj ∈ R and the hj are homogeneous elements of

lj. Now each of the ri is a sum of homogeneous elements, so multiply out the terms

of f and identify the degrees. Then fk =
∑
r′lhl where the r′l are homogeneous, and

thus fk ∈ I∗, so fk ∈ I = I∗.
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Before we can proceed, we need a general discussion of Noetherianity of rings and

modules and a few other items from commutative algebra. The following summary is

presented without proof, and a thorough treatment can be found in an introductory

text such as [4], [9] or [5].

Definition 1.10. A ring R is said to be Noetherian if it satisfies the ascending chain

condition (A.C.C.) on ideals, i.e. for any increasing chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals

of R there exists an integer k such that In = Ik for all n ≥ k. A left R-module M is

Noetherian if it satisfies the A.C.C. on submodules.

Definition 1.11. In a dual way, we can define an Artinian ring R as one that satisfies

the descending chain condition, or D.C.C. That is for any decreasing chain of ideals

I1 ⊇ I2 ⊇ I3 ⊇ · · · there exists an integer k such that In = Ik for all n ≥ k. A left

R-module M is Artinian if it satisfies the D.C.C. on submodules.

Proposition 1.12. The following are equivalent:

1. R is a Noetherian ring (module);

2. Every ideal (submodule) of R (M) is finitely generated;

3. Every nonempty family of ideals (submodules) of R (M) has a maximal element

(under inclusion);

Proposition 1.13. Any homomorphic image of a Noetherian ring is Noetherian. In

particular, if R is Noetherian with I an ideal of R, then R/I is Noetherian.

Theorem 1.14. (Hilbert Basis Theorem) If R is a commutative Noetherian ring with

identity, then so is R[x1, . . . , xn].
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Definition 1.15. Let R be a ring. The supremum of the lengths of chains of prime

ideals of R is called the dimension of R, denoted dimR.

Definition 1.16. Let P be a prime ideal of a ring R. Then the height of P , denoted

ht(P ), is the supremum of lengths of chains of prime ideals P0 ⊂ · · · ⊂ Pn = P .

Definition 1.17. Let L/K be a field extension. The transcendence degree of the

extension is the largest cardinality of an algebraically independent subset of L over

K.

Definition 1.18. Let R be a ring. If R has a unique maximal ideal m, then we say

that R is a local ring, denoted (R,m).

Definition 1.19. Let R be a ring and S a subset of R with identity that is closed

under multiplication. Then the localization of R at S, denoted S−1R or RS, is defined

to be { r
s
|r ∈ R, s ∈ S}, with the additional requirement that r/s = r′/s′ if and only

if there exists some u ∈ S such that u(s′r − sr′) = 0.

Definition 1.20. Let R and S be as above and let M be an R-module. Then the

localization of M at S, denoted S−1M , is defined to be M ⊗R RS.

In the above two definitions, if S is the complement of a prime ideal P in R, then

the localization of the ring or module at S is called RP or MP respectively. In this

case, S is automatically a multiplicative set.

Proposition 1.21. Let (R,m) be a Noetherian ring. Then dim(R) is finite.

Proposition 1.22. Let R be Noetherian. ThenR is Artinian if and only if dim(R)=0.

Further, if R is local with maximal ideal m, then there exists an n ∈ N such that

mn = 0.
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Definition 1.23. Let R be a ring. The collection of prime ideals of R is called the

spectrum of R and denoted Spec(R). The collection of minimal primes of R is denoted

Min(R).

Definition 1.24. Let M be an R-module with P ∈ Spec(R). We say that P is

an associated prime if P is the annihilator of an element of M . The collection of

associated primes is denoted Ass(M).

Definition 1.25. The support of a module M , denoted Supp(M), is the set of prime

ideals P ∈ Spec(R) such that MP 6= 0.

Definition 1.26. Let I be an ideal in R. Then the radical of an ideal, denoted

Rad(I) or
√
I, is defined to be Rad(I) = {r ∈ R|rn ∈ I for some n ∈ N}. Note that

for any I, I ⊂ Rad(I).

Definition 1.27. Let R be a ring and P a prime ideal. Then the nth symbolic power

of P , denoted P (n), is P nRP ∩R.

The following three results are presented by Bruns and Herzog in [2] on pages

29-30. We will follow their treatment closely.

Theorem 1.28. Let R be an N-graded R0-algebra, and x1, . . . , xn homogeneous ele-

ments of positive degree. Then the following are equivalent:

1. x1, . . . , xn generate the ideal m =
⊕∞

i=1Ri;

2. x1, . . . , xn generate R as an R0-algebra.

In particular, R is Noetherian if and only if R0 is Noetherian and R is a finitely

generated R0 − algebra.
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Proof. 2⇒ 1 : By hypothesis, for any r ∈ R, there exists f(T1, . . . , Tn) ∈ R0[T1, . . . , Tn]

such that r = f(x1, . . . , xn). Let r ∈ m be a homogeneous element. Then we claim

that r = f(x1, . . . , xn) =
∑

I=(i1,...,in)(rIx
i1
1 · · ·xinn ) ⊆ (x1, . . . , xn). Since r is homo-

geneous, so f is homogeneous of the same degree. So we can match up the degrees.

Since r ∈ m, degr ≥ 1, and so each term of f has an xi in it for some i. Hence

r =
∑
r′i · xi ∈ (x1, . . . , xn). Clearly, (x1, . . . , xn) ⊆ m, so m = (x1, . . . , xn).

1⇒ 2 : Let y ∈ R be homogeneous of degree d. We do induction on d. We want

to show that y = y1x1 + · · ·+ ynxn with yi ∈ R0. If degy = 0, we are done, as y ∈ R0

already.

Now assume that the homogeneous elements of R of degree less than d are gen-

erated as an R0-algebra by x1, . . . , xn. By hypothesis, we know y ∈
⊕

i≥1Ri =

m = (x1, . . . , xn). So y = y1x1 + · · · + ynxn, with yi ∈ Ri. So y is homogeneous,

and the xi are homogeneous, but the yi may not be. Multiply out and combine

like terms. Then we have y = y′1x1 + · · · + y′nxn, where the y′i are homogeneous

of degree deg(y)−deg(xi), which is less than d. So by induction, there exists an

fi ∈ R0[T1, . . . , Tn], with y′i = fi(x1, . . . , xn). Now, non-homogeneous elements are

sums of homogeneous elements, so the statement follows.

For the last statement, if R is Noetherian, then R0
∼= R/

⊕
i≥1Ri = R/m, which

implies that R0 is Noetherian. Also, if R is Noetherian, m is finitely generated by say

(x1, . . . , xn), and by this Theorem, R is R0 finitely generated by (x1, . . . , xn). For the

other direction, if R0 is Noetherian, then since R = R0[r1, . . . , rm] = R0[T1, . . . , Th]/I,

which implies that R is Noetherian.

Theorem 1.29. Let R be a Z-graded ring. Then the following are equivalent:

1. Every graded ideal of R is finitely generated;
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2. R is a Noetherian ring;

3. R0 is Noetherian, and R is a finitely generated R0-algebra;

4. R0 is Noetherian, and both S1 =
⊕∞

i=0Ri and S2 =
⊕∞

i=0R−i are finitely gen-

erated R0-algebras.

Proof. The above theorems make 4⇒ 3⇒ 2⇒ 1 clear: assuming 4 shows that R is

a finitely generated R0-algebra, since it is a sum of S1 and S2. The previous theorem

makes 2 clear, which clearly implies 1 since every ideal of R is finitely generated.

1⇒ 4: Note that R0 is a direct summand of R as and R0-module. So IR∩R0 = I

for any ideal I of R0. We claim that R0 is Noetherian.

Take an ascending chain of ideals I0 ⊆ I1 ⊆ · · · ⊆ In ⊆ In+1 ⊆ · · · in R0. Extend

these ideals to R. So RI0 ⊆ RI1 ⊆ · · · ⊆ RIn ⊆ RIn+1 ⊆ · · · is a chain of ideals in R.

Since R is Noetherian, this chain stabilizes at say the nth position. Now contract this

chain back to R0 to get RI0 ∩R0 ⊆ RI1 ∩R0 ⊆ · · · ⊆ RIn ∩R0 = RIn+1 ∩R0 = · · · .

This chain obviously stabilizes, and since IR ∩ R0 = I, this chain is the same as the

one we started with. A similar argument for chains of submodules shows that Ri is a

finite R0-module for every i ∈ Z.

Now let m =
⊕∞

i=1Ri. We claim m is a finitely generated ideal of S1. By hypoth-

esis, mR has a finite system of generators x1, . . . , xm, and assume each generator xi

is homogeneous of degree di. Let d = max{d1, . . . , dm}. Then y ∈ m with degy ≥ d

can be written as a linear combination of x1, . . . , xm with coefficients in S1. Thus

x1, . . . , xm together with the homogeneous generators spanning R1, . . . , Rd−1 over R0

generate m as an ideal of S1. By (1.28), S1 is a finitely generated R0-algebra and S2

follows by symmetry.

Theorem 1.30. Let R be a Z-graded ring.
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1. For every prime ideal P, the ideal P∗ is a prime ideal.

2. Let M be a graded R-module

(a) If P ∈ Supp(M), then P∗ ∈ Supp(M).

(b) If P ∈ Ass(M), then P is graded; furthermore P is the annihilator of a

homogeneous element.

Proof. 1. Let a, b ∈ R with ab ∈ P ∗. We can write a =
∑

i ai, with ai ∈ Ri,

b =
∑

j bj with bj ∈ Rj. We do a proof by contradiction.

Assume a /∈ P ∗ and b /∈ P ∗. Then there exists a p, q ∈ Z such that ap /∈ P ∗

but ai ∈ P ∗ for i < p and bq /∈ P ∗, but bj ∈ P ∗ for j < q. Then the (p + q)th

homogeneous component of ab ∈ P ∗ is
∑

i+j=p+q aibj. This sum is in P ∗, since

P ∗ is graded. All summands of this sum are also in P ∗ since P ∗ is a homogeneous

ideal, so apbq ∈ P ∗. Since P ∗ ⊂ P and P is prime, then ap ∈ P or bp ∈ P . But

ap and bq are homogeneous, so either ap or bq ∈ P ∗

2. (a) Assume P ∗ /∈ Supp(M). So MP ∗ = 0. Let x ∈ M homogeneous. Then

there exists an a ∈ R \ P ∗ such that ax = 0. Since x/1 ∈ MP ∗ = 0,

there exists an a /∈ P ∗ with ax = 0. It follows that aix = 0 for any ai a

homogeneous component of a. Since a ∈ R\P ∗, there exists an i such that

ai /∈ P ∗. Since ai is homogeneous, ai /∈ P . Thus x/1 = 0 in MP , which is

a contradiction.

(b) Let x ∈M with P = Ann(x). Let x = xm+ · · ·+xn with xi homogeneous,

and a = ap + · · · + aq ∈ P . Since ax = 0,
∑

i+j=r aixj = 0 for r =

m + p, . . . , n + q. Thus apxm = 0, ap+1xm+1 = 0, etc. We claim that

a2
pxm+1 = 0.
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Examine the p+m+ 1th degree terms: ap ·xm+1 +ap+1 ·xm. We know this

must be 0. Thus ap(ap · xm+1 + ap+1xm = a2
p · xm+1 + ap+1(ap · xm) = 0,

thus a2
p · xm+1 = 0. By induction, aipxm+i−1 = 0 for all x ≥ 1. So an−m+1

p

annihilates x. Since P is prime, ap ∈ P , so each homogeneous component

of a is in P , and thus P is graded.

For the second part, we need to show that AnnR(x) = AnnR(xm). Now

a ∈ P = P ∗, so ax = 0, and axi = 0 for all i, so P ⊆Ann(xi). Now

Ann(x) =
⋂
i=m Ann(xi). And

⋂
i=m Ann(xj) ⊆ P . Since P is prime, there

is an i such that P ⊇ Ann(xi) ⊇ P .

11



Chapter 2

Filtrations and Rees Algebras

The fundamental objects that we will use in this paper are filtrations of ideals and the

Rees algebras generated by them. This chapter begins with some examples, and then

develops the basic ideas behind the dimension of Rees algebras of a power filtration.

Basic facts on filtrations such as [2], [5], pages 147-150, [16], pages 93-95 and [9],

pages 93-94, and a thorough treatment is given in a remarkable book by Rees. More

specific aspects, not touched on upon here, can be found in [8].

Definition 2.1. Let R be a ring. We define a filtration of ideals of R to be a chain

of ideals {In}n starting with I0 = R, In ⊆ In−1 for all n ≥ 1, with the additional

requirement that the ideals satisfy In · Im ⊆ In+m. Let E be an R-module. Then we

define a filtration on E, denoted e = {En}n, to be a descending chain of R-submodules

En of E such that E0 = E.

Example 2.2. Let I be an ideal of R. A typical example of a filtration is the power

filtration {In}n. Then I0 = R, I1 = I, I2 = I2 and so on. Clearly this satisfies both

properties of a filtration, since In ⊃ In+1 and InIm ⊂ In+m.

Example 2.3. Note that if you “shift” a filtration up, it remains a filtration. Say,
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using the Ii from above, that J0 = I0 = R, J1 = I4, J2 = I5, and so on. Then {Jn} is

a filtration as well, for the same reasons as above.

Example 2.4. Let P be a prime ideal in a ring R. Then for all n and m, P n ·Pm ⊆

P n+m, so P nRP ·PmRP ⊆ P n+mRP . Hence (P nRP ∩R) ·(PmRP ∩R) ⊆ P n+mRP ∩R.

In other words, P (n) · P (m) ⊆ P (n+m), and so {P (n)}n forms a filtration.

Example 2.5. Another example is very close to a power filtration. Let I1 = (xayb),

I2 = (x2ayb), In = (xnayb) in R = k[x, y]. Again, this clearly satisfies both properties

of a filtration.

Example 2.6. A less obvious one is In = (xd
√
n e) in k[x] with k a field. While the

inclusion is still trivial, the other requirement requires proof.

We need to show that d
√
m+ n e ≤ d

√
m e+ d

√
n e. Obviously d

√
m+ n e ≤

d
√
m+
√
n e. Then,

√
m+ n ≤

√
m+
√
n ≤ d

√
m e+d

√
n e. Also, d

√
m e+d

√
n e ∈

N. So by the definition of the ceiling, d
√
m+ n e ≤ d

√
m e+ d

√
n e. So the second

property of a filtration is fulfilled, and {In} is a filtration of ideals on k[x].

Definition 2.7. Let f = {In} be a filtration of ideals of a ring R. Then we can define

the graded ring associated to the filtration as

grf (R) =
⊕
n≥0

In
In+1

.

For x ∈ In and y ∈ Im, multiplication is defined to be (x + In+1)(y + Im+1) =

xy + In+m+1. If the filtration is understood to be the power filtration, we can write

the associated graded ring of an ideal I as grI(R).

If A is a ring, with I ≤ A an ideal, and f = {In} is the power filtration defined

by an ideal I, then grI(A) is generated over A/I by the elements of I/I2. To see

13



this, notice that any element in In/In+1 can be written as a linear combination of

products of n elements of I/I2.

Now, using filtrations, we introduce the notion of a Rees Algebra of a filtration.

Definition 2.8. Let f = {In} be a filtration of a ring R. Then the Rees Algebra of

f is

R = {F =
n∑
k=0

Fkt
k|Fk ∈ Ik} ⊆ R[t].

By the properties of the filtration, this is a subring of R[t]. To check this, let

F = a0 + a1t+ · · ·+ ant
n and G = b0 + b1t+ · · ·+ bmt

m be in R. Then because Ii is

an ideal, ai + bi stays in Ii, so F + G is clearly still in R. Also, ait
i · bjtj = aibjt

i+j,

and since I is a filtration, aibj ∈ Ii+j.

Definition 2.9. Let u = t−1 and f = {In} be a filtration. We define the extended

Rees Algebra, R′ = · · · ⊕Ru2 ⊕Ru⊕R⊕ I1t⊕ I2t2 ⊕ · · · ⊆ R[t, t−1].

Proposition 2.10. Let R be a ring with a filtration f and R′ the extended Rees

algebra as defined above. Then gf (R) ∼= R′/uR′.

Proof. Let r ∈ R′, with r =
∑

n rnt
n, where rn ∈ In if n ≥ 0 and rn ∈ R when

n < 0. Construct a homomorphism ϕ : R′ → gf (R), where ϕ(r) =
∑

n r̄n, where

rn ∈ In/In+1 for all n ≥ 0 and rn ∈ R for n < 0. This is clearly a surjective

homomorphism. Then, if ϕ(r′) = 0, then r′ =
∑

n r
′
n+1t

n, where r′n+1 ∈ In+1, which

is the same as uR′. Thus, gf (R) ∼= R′/uR′.

Now we can compute the dimension of the Rees algebras of a power filtration.

This result is shown as Theorem 5.1.4 in [16].

Theorem 2.11. Let R be a Noetherian ring, and let I be a proper ideal of R. Then

dim R is finite if and only if the dimension of either the Rees algebra or the extended

Rees algebra is finite. Further, if dim R is finite, then:
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1.

dim R[It] =

 dim R + 1, if I * P for some prime ideal P with dim(R/P ) = dim R;

dim R otherwise.

2. dim R[It, t−1] = dim R + 1

3. If m is the only maximal ideal in R, and if I ⊆ m, then mR[It, t−1]+ItR[It, t−1]+

t−1R[It, t−1] is a maximal ideal in R[It, t−1] of height dim R + 1.

4. dim(grI(R)) = dimR.

Proof. First, let J be an ideal of R. Then,

J ⊆ JR[It] ∩R ⊆ JR[It, t−1] ∩R ⊆ JR[t, t−1] ∩R = J (2.1)

so the above inclusions are all equalities. So, any ideal in R is a contraction of an

ideal in R[It] and R[It, t−1]. In addition,

R

J
⊆ R[It]

JR[t, t−1] ∩R[It]
⊆ R[It, t−1]

JR[t, t−1] ∩R[It, t−1]
⊆ R[t, t−1]

JR[t, t−1]
. (2.2)

We claim that the two middle rings are isomorphic to the Rees algebra and the

extended Rees algebra, respectively, of the image of I in R/J . To see this, let Ī =

I+J
J
⊆ R

J
, and R̄ = R/J . Then let r ∈ R[It] = r0 + r1t + · · · , where ri ∈ I i. Define

a homomorphism ϕ : R[It] → R̄[Īt] by ϕ(r) = r̄0 + r̄1t + · · · , where r̄i ∈ Ī. Then

Ker(ϕ) = {r ∈ R[It]|ϕ(r) = 0} = {r ∈ R[It]|ri ∈ J for all i}, which is the same as

saying that r ∈ R[It] and r ∈ JR[t] ⊆ JR[t, t−1], which proves the isomorphism. The

second is done in a similar way.

In particular, we claim that if P is a minimal prime of R, then PR[t, t−1] ∩R[It]
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must be minimal in R[It], and PR[t, t−1] ∩ R[It, t−1] must be minimal in R[It, t−1].

Call PR[t, t−1] ∩ R[It] = P̃ . To show that P̃ is minimal, we need that R[It]P̃ is

Artinian, which is equivalent to having P̃R[It]P̃ nilpotent. So we must show that every

element in P̃R[It]P̃ is nilpotent. We know that P̃ ∩R = P , and that RP is Artinian,

so PRP is nilpotent, and therefore PRP [t] is nilpotent. Let S = R \ P ⊆ R[It] \ P̃ .

But S−1P̃ ⊆ PPRP [t], so it is nilpotent as well. Then P̃R[It]P̃ is a further localization

of the nilpotent ideal S−1P̃ , so it is nilpotent as well.

Then, any nilpotent element of R[It] or R[It, t−1] is certainly nilpotent in R[t, t−1],

so it has to lie in the intersection of the primes of R[t, t−1] =
⋂
P∈Min(R) PR[t, t−1]. So

all the minimal prime ideals of the Rees algebras are contractions of minimal primes

of R[t, t−1] and are of the form PR[t, t−1]. So,

dimR[It] = maxQ∈MinR[It](dimR[It]
Q

) = maxP∈MinR(dim R[It]
PR[t,t−1]∩R[It]

)

= maxP∈MinR(dimR̄[Īt]) = maxP∈MinR(dimR
P

[ I+P
P
t])

Thus dim R[It] = max{dim (R
P

[ I+P
P
t])|P ∈ MinR}, and similarly dim R[It, t−1] =

max{dim (R
P

[ I+P
P
t, t−1])|P ∈ Min R}. So, to calculate dim R[It], it is enough to

show that for an integral domain R, dim R[It] = dim R if I is the zero ideal and is

dim R + 1 otherwise. Thus we can assume that R is a domain.

Proposition 2.12. (Dimension Inequality) Let R be a Noetherian integral domain,

with S a ring extension of R which is also a domain. Let Q be a prime ideal in S and

P = Q ∩R. Then

htQ+ tr. degκ(P )κ(Q) ≤ htP + tr.degRS. (2.3)

The above Proposition, proven as Theorem B.2.5 in [16], implies that, when R = R
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and S = R[It], that for every prime ideal Q in R[It],

htQ+ tr.degκ(Q∩R)κ(Q) ≤ ht(Q ∩R) + tr.degRR[It]. (2.4)

Clearly, tr.degRR[It] = 1, since the larger ring is simply R with one variable adjoined

to it. Therefore, no matter what tr.degκ(Q∩R)κ(Q) is, ht Q ≤ ht(Q ∩ R) + 1 ≤

dim R + 1. So, the height of any prime in R[It] is at most one larger than the

height of any prime in R, which proves that dim R[It] ≤ dim R + 1. Clearly dim

R[It] = dim R if I is the zero ideal, since R[(0)t] = R. So assume that I is non-zero.

Let P0 = ItR[It]. Then P0 ∩ R = (0), It ⊆ P0, htP0 > 0 (since (0) ( P0), and

R[It]/P0
∼= R which is an integral domain, proving that P0 is prime. Since P0 is

another prime added to any chain of primes that can be made in R,

dim R[It] ≥ dim R + 1.

This proves (1).

Similarly for (2), it is enough to show that when R is a domain,

dimR[It, t−1] = dimR + 1.

Again by the dimension inequality, dim R[It, t−1] ≤ dim R+1, and the other inequal-

ity follows from dim R[It, t−1] ≥ dim R[It, t−1]t−1 = dim R[t, t−1] = dim R + 1.

Lastly, let P0 ( P1 ( · · · ( Ph = m be a saturated chain of prime ideals in R,

with h = ht m. Set Qi = PiR[t, t−1] ∩ R[It, t−1]. As Qi ∩ R = Pi, Q0 ⊆ Q1 ⊆ · · · ⊆

Qh is a chain of distinct prime ideals in R. The biggest one is Qh = mR[t, t−1] ∩

R[It, t−1] = mR[It, t−1 + ItR[It, t−1], which is properly contained in the maximal

ideal Qh + t−1R[It, t−1], which proves (3).
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Chapter 3

Noetherian Filtrations

Filtrations of ideals represent an important concept in commutative algebra. They

have a rich and long history and have been studied by many authors in various

contexts. Noetherian filtrations are central among filtrations of ideals and their theory

has been developed by authors such as W. Bishop, Okon, Petro, Rattliff, Rees, and

Rush among others, see [1], [10], [11], [12], [13], and [14],.

In this chapter, we define and give examples of Noetherian filtrations, and show

that they are an interesting class of filtrations with remarkable properties. Noetherian

filtrations have finiteness conditions that are similar to power filtrations. This chapter

will explain what those conditions are. Also, we will introduce and study the notion

of an e.p.f. filtration. Our presentation follows closely [1], [12] and [13].

Proposition 3.1. Let R be a ring and I an ideal in R. Then if R is the Rees algebra

generated by the power filtration of I, R is finitely generated over R whenever I is

finitely generated. In this case, if I = (a1, . . . , an), thenR is generated by a1t, . . . , ant.

Proof. Let I = (a1, . . . , ah). Then Ik is generated by products of k elements chosen

from I. So any element of R looks like F = i0 + i1t + i2t
2 + · · · + iht

h, with ij ∈ Ij.

Let i ∈ Ij. Then i is an R-linear combination of products of the generators of I of the
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form aj11 · · · a
jk
k , where j1 + · · ·+ jh = j. But aj11 · · · a

jk
k t

j1+···+jk = (a1t)
j1 · · · (aktjk). So

every monomial in R can be written as a sum of powers of ait, where ai is a generator

of I. So R = R[a1t, . . . , ant].

Example 3.2. Let I = (x, y) ⊂ R[x, y], and construct a Rees algebra with the power

filtration of I. So any element of R looks like f =
∑n

k=0 akt
k, with ak ∈ Ik. But any

element akt
k can be written as products of powers of xt and yt, so any f ∈ R can be

written as polynomial in xt and yt, so R = R[It].

Example 3.3. Now return to the example In = (xd
√
n e) ⊆ k[x]. We claim R is not

finitely generated. Assume the contrary. Then R is generated by some elements

{xd
√
α1 etα1 , xd

√
α2 etα2 , . . . , xd

√
αn etαn}.

We can write

xd
√
m etm

as a polynomial over R in the above generators for all m.

So we need to find a1, a2, . . . , an such that:

a1α1 + a2α2 + · · ·+ anαn = m (3.1)

a1d
√
α1 e+ a2d

√
α2 e+ · · ·+ and

√
αn e = d

√
α1 + α2 + · · ·+ αn e (3.2)

Assume we have the ai, i = 1, . . . , n, such that equation (1) holds. Then, substituting

(1) into (2) gives:

a1d
√
α1 e+ a2d

√
α2 e+ · · ·+ and

√
αn e = d

√
m e
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We proved above that d
√
a+ b e ≤ d

√
a e+ d

√
b e, so:

a1d
√
α1 e+ a2d

√
α2 e+ · · ·+ and

√
αn e ≤ d

√
a1α1 e+ d

√
a2α2 e+ · · ·+ d

√
anαn e

≤ d
√
a1 ed

√
α1 e+ d

√
a2 ed

√
α2 e+ · · ·+ d

√
an ed

√
αn e

Therefore, ai ≤ d
√
ai e for all i = 1, . . . , n. But, since x ≥ d

√
x e for any x, then

ai = d√ai e for all i. Thus, all of the inequalities above are in fact equality, and so:

d
√
a1α1 + a2α2 + · · ·+ anαn e = d

√
a1α1 e+ d

√
a2α2 e+ · · ·+ d

√
anαn e.

Since x = d
√
x e only if x = 0, 1 or 2, this implies that for all i, ai can be no larger

than 2. Thus the largest αi is certainly no larger than 2. So m =
∑

i aiαi ≤ 2
∑

i αi.

So m is bounded. But this is clearly impossible, so this Rees algebra is not finitely

generated.

Definition 3.4. Let R be a ring with a filtration f = {In}. Recall that grf (R) =⊕
n≥0

In
In+1

is the graded ring associated to the filtration. We say that f is Noetherian

if grf (R) is Noetherian.

Theorem 3.5. Let R be a Noetherian ring with f = {In} the power filtration. Then

f is Noetherian.

Proof. Examine the following isomorphism:

R

IR
=

R[It]

IR[It]
' grf (R) =

⊕ In
In+1

Thus, if R is Noetherian, then R
IR

is as well, and therefore grf (R) is Noetherian, which

is the definition of a Noetherian filtration.

20



Theorem 3.6. (P. Roberts [15]) Let R be the polynomial ring C[x, y, z] localized

at (x, y, z). Then there exists a prime ideal P in R such that
⊕

n≥0 P
(n) is not

Noetherian.

We’ve shown a few nice properties of power filtrations. But we can generalize the

power filtration to a larger class of filtrations that behave nicely.

Definition 3.7. We say that a filtration f = {In} of ideals of a ring R is an essentially

powers filtration (or e.p.f.) if there exists an m > 0 such that In =
∑m

i=1 In−iIi for all

n ≥ 1. If n− i < 0, In−1 is assumed to be R.

Let f = {In} be a filtration on a ringR. Then we can prove a number of statements

about e.p.f.’s.

Proposition 3.8. Let f = {In} be a filtration on a ring R. Then the following are

equivalent:

1. f is an e.p.f.;

2. In =
∑

(
∏k Iei

j ), where m is as given in the definition of e.p.f.’s, and the sum is

over all ei > 0 such that e1 + 2e2 + · · ·+ kek = n;

3. There exists an m ∈ N with the property that f is the least filtration on R

whose first m+ 1 terms are R, I1, I2, . . . , Im;

Proof. First, what does least mean here? And how do we know a smallest filtration

exists? For the first question, for two filtrations f = {In} and g = {Jn}, we say that

f ≤ g if Ii ⊆ Ji for all i. And we know that the smallest filtration with the given

property exists, because we can simply take the intersection of all filtrations whose

first m+ 1 terms are R, I1, I2, . . . , Im.

(1 ⇐⇒ 2)
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Let In =
∑k

i=1 In−iIi for all n ≥ 1, and let I ′n =
∑

(
∏k Iei

j ). Then aei
i ∈ I ′n can

be written as ai · · · ai (ei times), which is inside Iiei
. Since Iiei

=
∑k

j=1 Iiei−jIj, any

monomial in I ′n can be written as a product of just two terms whose degrees sum to

n, and thus it would be in In.

In ⊆ I ′n by induction

(2 ⇐⇒ 3) Let g = {Jn} be any filtration onR such that Ii = Ji for all i = 0, . . . , k.

So by the definition of a filtration,

∑
(
k∏
i=1

Iei
i ) =

∑
(
k∏
i=1

Jei
i ) ⊆ Jn

Let Kn =
∑

(
∏k

i=1 I
ei
i ) for all n ≥ k, and Kn = In for all n < k. Then let h = {Kn},

which is clearly a filtration. Since h is less than g, it is less than any filtration

that agrees with f at first on R, so it’s the smallest. So h ≤ f , but f = h, by

(1 ⇐⇒ 2)

Now assume further that R is Noetherian. Then there are a number of additional

results that we can show. This is presented as Theorem (2.7) in [12].

Theorem 3.9. Let R be a Noetherian ring with f = {In} any filtration of R. Then

the following are equivalent:

1. The extended Rees algebra R′ of f , · · · ⊕Rt−2⊕Rt−1⊕R⊕ I1t⊕ I2t2⊕ · · · , is

Noetherian;

2. R is Noetherian;

3. R is finitely generated over R;

4. f is an e.p.f.;
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Proof. Notice that, from the previous sections, 1 through 3 are equivalent, since R is

graded and R is Noetherian. So we need only show that 4 is equivalent to the others.

(4 ⇒ 3) Since f is an e.p.f., we know that R = R[tI1, . . . , t
kIk], since all terms

can be gotten from the first k terms of the filtration. (2 ⇒ 4) Let f1, . . . , fm be a

basis of N . Since N is homogeneous, we can assume the fi’s are too, since if they

are not, we can take the homogeneous components and add them to the list. So let

fi = ait
ei with ei > 0. Let k = max{ei|i = 1, . . . ,m}, so N = (tI1, t

2I2, . . . , t
kIk).

Let n > k and a ∈ In, so x = atn ∈ N . But every element of N looks like
∑
gifi for

some gi ∈ R, hence x =
∑
gifi. Assume gi = bit

n−ei , and gi is homogeneous. So:

x =
∑

gifi =
∑

bit
n−eiait

ei =
∑

aibit
n = atn

⇒ a =
∑

aibi ∈
n∑
i=1

Iei
In−ei

⊆
k∑
i=1

IjIn−j

Thus, since a ∈ In, In =
∑k

j=1 IjIn−j for n > k, which is the definition of an

e.p.f.

Definition 3.10. Let e = {En} be a filtration on an R-module E and f = {In} a

filtration on R. Then e is said to be compatible with f in case ImEn ⊆ Em+n for all

m and n.

Definition 3.11. Let e be as above. Then e is said to be f -good in case e is compatible

with f and there exists a positive integer m such that En =
∑m

i=1 In−iEi for all large

n. In other words, f is f -good if and only if f is an e.p.f.

The following Proposition as well as the associated corollary are shown as (3.5)

and (3.6) by Bishop in [1].
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Proposition 3.12. Let R be a Noetherian ring with an e.p.f. f = {In} and let E be

a finitely generated R-module with an f -filtration e = {En}. Then e is f -good if and

only if there exists a k ≥ 0 such that Ek+i = IkEi for all i ≥ k.

Proof. Assume e is f -good. Then by definition, e is compatible with f and there

exists an m such that En =
∑m

i=1 In−iEi for all large n, say n > n0. Then we claim

E =
∑
Eit

i is finitely generated over S = R[tI1, t
2I2, . . .]. Let xn ∈ En, with n > n0.

Then xn ∈
∑m

i=0 In−iEi, so xnt
n ∈

∑m
i=1 In−it

n−iEit
i, which is in SEit

i. So if x ∈ E,

then x =
∑m

i=0 xnt
n, which is in

∑m
i=1 S(Eit

i)

We showed before that f is an e.p.f. if and only if S = R[tI1, t
2I2, . . .] is finitely

generated over R. So, there exists a g > 0 such that S = R[tI1, . . . , t
gIg] since f is an

e.p.f.

Let j be the lcm of 2, 3, . . . , g. Then let mi be the positive integer such that

imi = j for all i = 1, . . . , g. Then (tiIi)
mi ⊆ tjIj ⊆ A = R[tjIj]. Thus any element

of the form tix with x ∈ Ii is integral over A. Since S is finitely generated over A by

integral elements, S is integral and finitely generated over A = R[tjIj]. Therefore E

is finite A-module.

Let Θ1, . . . ,Θm be a homogeneous system of generators for E overA, with deg(Θi) =

di and d = max di for i = 1, . . . ,m. Let n > max {d, j} and let x be an element of

En. So we can write x =
∑

i hiΘi where hi are homogeneous elements of A. These

hi are either 0 or of degree of degree n − di. By resubscripting if necessary, assume

hi 6= 0 for i = 1, . . . ,m′ ≤ m. Then n − di ≥ 1, and since all of the elements of A

have degree a multiple of j, thus for all i = 1, . . . ,m′ there exists a positive integer

ki such that jki = n− di. Thus:

x =
m′∑
i=1

hiΘi ⊆
m′∑
i=1

Iki
j Edi

⊆ Ij(

mi∑
Iki−1
j Edi

)
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And since Iki−1
j Edi

⊆ Ij(ki−1)Edi
⊆ Ej(ki−1)+di

= En−j, we have that En ⊆ IjEn−j.

The opposite inclusion is obvious since e is compatible with f , so En = IjEn−j for all

n > max{d, j}.

Last, let k = jd and i ≥ k. Then by the above equation, Ek+i = Ejd+i =

IjEj(d−1)+i. Now j(d−1) + i ≥ max (d, j) + 1, so we can continue to pull out Ij until

we are left with IdjEi, which is in IkEi. Thus, Ek ⊆ IkEi.

For the converse, let there be a positive k such that Ek+i = IkEi for all i ≥ k.

Then we claim E =
∑
Eit

i is generated as a module over S by E1t, . . . E2k−1t, since

the smallest i which is not covered in the hypothesis is i = k − 1. Then according to

(2.3) in [12], if E is finitely generated over S, then e is f . So it remains to show that E

is finitely generated over S. Let Gi be the collection of generators for Ei, i < 2k − 1.

This collection is finite, since by hypothesis, each Ei is finitely generated over R.

So for every e ∈ Ei, e =
∑

finite rjxj, where rj ∈ R and xj ∈ Ej. So to find the

generators of E, we need only to collect all the generators from each Gi and attach to

them the appropriate power of t, i.e. the generators of E over S are all of the terms

eti, where e ∈ Gi.

Corollary 3.13. Let f = {In} be a filtration on a Noetherian ring R. Then f is an

e.p.f. if and only if there exists a k > 0 such that Ik+i = IiIk for all i ≥ k.

Proof. If f is an e.p.f. then f is e-good, so let E = R and e = f in (3.12) to see that

there exists a k such that Ik+i = IiIk. If such a k exists, then if n ≥ 2k, we can easily

write

In = In−kIk ⊆
2k∑
i=1

In−1Ii ⊆ In,

so then f is an e.p.f. with m = 2k. If n < 2k, Then In =
∑2k

i=1 In−1Ii. Clearly, In is

in this, if i = n, and In is also in both of them by the definition of a filtration. So f
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is an e.p.f.

We can now show another important equivalence, but first we need a few more

results.

Proposition 3.14. Let R be a ring with a filtration f = {In}n≥0 and let E be

an R-module with an f -filtration e = {En}n≥0 and let E be an R-module with

an f -filtration e = {En}n≥0 such that En is a finitely generated R-module for all

N ≥ 1. Then G+(E, e) =
∑∞

n=1En/En+1 is a finitely generated grf (R)-submodule of

G(E, e) =
∑∞

n=0En/En+1 if and only if there exists a positive integer g such that, for

all j ≥ g, Ej+1 = IjE1 + · · · ,+Ij−g+1Eg + Ej+2.

Proof. Assume thatG+(E, e) is a finitely generated grf (R)-submodule ofG(Ee). Con-

struct the following submodules: let Aij = IjE1 + Ij−1E2 + · · ·+ Ij−i+1Ei +Ej+2 and

let Āi =
∑∞

j=0Aij/Ej+2. Then Āi is a grf (R)-submodule of G+(E, e). Also Āi ⊆ Āi+1

and
⋃∞
i=1 Āi = G+(E, e). Therefore the hypothesis implies that there exists a pos-

itive integer g such that Āg = Āg+t for all t ≥ 0 so it follows that Agj/A(g+t)j = 0

for all j ≥ 0 and t ≥ 0. In particular, if j ≥ g and t ≥ 1, then Ij−g−t+1Eg+t ⊆

IjE1 + Ij−1E2 + · · ·+ Ij−g+1Eg +Ej+2 for all j ≥ g, and since the opposite inclusion is

obvious when t = j − g + 1, we obtain Ej+1 = IjE1 + Ij−1E2 + · · ·+ Ij−g+1Eg +Ej+2

for all j ≥ g.

Now let g be as given in the hypothesis. Then, for every j ≥ g, Ej+1/Ej+2 =

(IjE1+· · ·+Ij−g+1Eg+Ej+2)/Ej+2 = (Ij/Ij+1)(E1/E2)+· · ·+(Ij−g+1/Ij−g+2)(Eg/Eg+1).

It follows that G+(E, e) is generated as a grf (R)-submodule of G(E, e) by En/En+1 for

n = 1, . . . , g. Therefore, since each En is finitely generated, it follows that G+(E, e)

is a finitely generated grf (R)-submodule of G(E, e).

Corollary 3.15. Let R be a Noetherian ring with a filtration f = {In}n≥0 and let

E be a finitely generated R-module with an f -filtration e = {En}n≥0. If G(E, e)
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is a finitely generated grf (R)-module and for each positive integer n, there exists a

positive integer ρ(n) such that Eρ(n) ⊆ (Rad(I1))
nE1, then e is f -good.

Proof. Since G(E, e) is a finitely generated grf (R)-module, let g be as given in the

previous proposition. So, by considering consecutive values of j, for all j ≥ g, Ej+1 =

IjE1 + · · ·+ Ij−g+1Eg + Ej+2. Since En+1 ⊆ En, it follows that for all j ≥ g,

Ej+1 = IjE1 + · · ·+ Ij−g+1Eg + Et (3.3)

for all t ≥ j + 2 by induction on t..

Assume that the ρ(n) described above exists. Since R is Noetherian, every ideal

of R contains a power of its radical, so there exists a positive integer m such that

(Rad(Ij))
m) ⊆ Ij. Also, (Rad(I1))

m = (Rad(Ij))
m, since Ij ⊆ I1 and Ij1 ⊆ Ij. So

(Rad(I1))
m ⊆ Ij. By assumption, or each positive integer n, there exists a positive

integer ρ(n) such that Eρ(n) ⊆ (Rad(I1))
nE1. Therefore, Eρ(m) ⊆ (Rad(I1))

mE1 ⊆

IjE1. Let t = ρ(m) in equation (3.3). Then Ej+1 = IjE1 + · · · + Ij−g+1Eg for all

j ≥ g. So for any m,n, we have ImEn ⊆ Em+n, so e is f -good.

Corollary 3.16. If f = {In}n≥0 is a filtration on a Noetherian ring R, then the

following are equivalent:

1. f is an e.p.f. ;

2. f is a Noetherian filtration and there exists a positive integer g such that Ign ⊆

(Rad(I1))
n for all large n;

3. f is a Noetherian filtration and for each positive integer n there exists a positive

integer ρ(n) such that Iρ(n) ⊆ (Rad(I1))
n.
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Proof. First, notice that since f is an e.p.f., then R is Noetherian. Since we showed

in Chapter 2 that R/uR ∼= grf (R), and quotients of Noetherian rings are Noetherian,

then f is always a Noetherian filtration.

(1⇒ 2) By the previous corollary we know that there exists a k such that Ik+i =

IkIi for all i ≥ k. Therefore, Ign = Ig
n−1Ig for all n ≥ 1. So Ign = Ig

n−1Ig ⊆

(I1)
n−1I1 ⊆ (Rad(I1))

n for all n ≥ 1.

(2⇒ 3) Clear.

(3 ⇒ 1) By 3.15, if E is a finitely generated R-module with an f -filtration e =

{En}, and if G(E, e) is a finitely generated grf (R)-module, and there exists a ρ(n)

such that Eρ(n) ⊆ (Rad(I1))
nE1, then e is f -good. Thus, if E = R and e = f , by (2)

f is f -good, i.e. f is an e.p.f.
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Chapter 4

Finite Intersection Algebras

Now that we have established some properties of Noetherian filtrations, we can look at

one example in depth that illustrates both the concepts of graded rings and Noetherian

filtrations.

Definition 4.1. ([7], pages 126-127) Given a pair (I, J) of ideals of a ring R, call the

algebra B =
⊕

r,s(I
r ∩ Js)urvs the intersection algebra of I and J . If this algebra is

finitely generated over R, we say that I and J have finite intersection algebra.

Let R be a Noetherian ring, and let I and J be ideals of R. Then denote Br,s =

(Ir ∩Js)urvs. Note that, because (Ir
′ ∩Js′) · (Ir′′ ∩Js′′) ⊆ Ir

′+r′′ ∩Js+s′′ we have that

Br′,s′ · Br′′,s′′ ⊆ Br′+r′′,s′+s′′ .

Denote Bn =
⊕

r+s=n Br,s. With this notation, B =
⊕

n≥0 Bn, which is N-graded,

because Bn′ · Bn′′ ⊆ Bn′+n′′ . Then by (1.28), B is Noetherian if and only if B is a

finitely generated R-algebra, as B0 = R is Noetherian.

The purpose of this chapter is to prove the following theorem:

Theorem 4.2. Let R be a UFD and I, J principal ideals in R. Then I, J have finite

intersection algebra.
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Proof. By the above definition, I and J having finite intersection algebra is equivalent

to B being finitely generated over R. With the notations from above, it is enough to

show the following claim.

Claim: There exists an N > 0 such that for every x ∈ Br,s there exists y ∈ Br′,s′

and z ∈ Br′′,s′′ , where x = yz, r′′ + r′ = r, s′′ + s′ = s and 0 < r′ + s′ ≤ N .

First, we will show that the Claim implies that B = R[Br,s|r + s ≤ N ]. In our

case, Br,s are R-free submodules of B of rank 1. So B = R[Br,s|r + s ≤ N ] implies

that B is a finitely generated R-algebra, hence the Theorem. To show that the Claim

implies B = R[Br,s|r + s ≤ N ], note first that R[Br,s|r + s ≤ N ] ⊆ B, because

Br′,s′ · Br′′,s′′ ⊆ Br′+r′′,s′+s′′ . Denote A = R[Br,s|r + s ≤ N ]. For B ⊆ A, it is enough

to show that for every r, s, Br,s ⊆ A. We’ll prove this by induction on r + s.

Let x ∈ Br,s. By the Claim, there exists y ∈ Br′,s′ and z ∈ Br′′,s′′ , where x = yz,

r′′ + r′ = r, s′′ + s′ = s and 0 < r′ + s′ ≤ N . Hence, x = yz, since r′′ + s′′ < r + s by

the induction assumption, it follows that z ∈ A. In conclusion, x = yz ⊆ A.

We will concentrate now on proving the Claim.

Let a, b ∈ R such that I = (a) and J = (b). R is a UFD, so a and b can be

uniquely decomposed into a product of prime elements. Thus, there exists p1, . . . , pn

primes in R, α1, . . . , αn, β1, . . . , βn ∈ N, not all zero, such that a = pα1
1 · · · pαn

n and

b = pβ1

1 · · · pβn
n .

To illustrate our method of proving the Claim, we will treat first the cases n = 1

and n = 2, and then move on to the general case.

First, let us examine the case where I and J are generated by one prime element.

So I = (pα) and J = (pβ), where where p is some prime and α, β ∈ N. Then

Ir ∩ Js = (pα)r ∩ (pβ)s = (pαr) ∩ (pβs) = (pmax(αr,βs)).

Examine a generic term from the algebra with its indexing dummy variables:

pmax(αr,βs)urvs. We need to find some N such that for every (r, s), there exists an
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r′, s′ with r′ ≤ r, s′ ≤ s and r′ + s′ ≤ N such that

pmax(αr,βs)urvs

pmax(αr′,βs′)ur′vs′
= pmax(α(r−r′),β(s−s′))ur−r

′
vs−s

′
.

This equation then simplifies to

max(αr, βs)−max(αr′, βs′) = max(α(r − r′), β(s− s′)).

Let r0, s0 be such that αr0 = βs0 = [α, β]. Then, the Claim is satisfied for r′ = r0

and s′ = s0 as long as r > r0 and s > s0.

For the two prime case, let I = (pα1qα2), and J = (pβ1qβ2). We want to find N

such that for every (r, s), there exists an r′, s′ with r′ ≤ r, s′ ≤ s and r′ + s′ ≤ N

such that

max((r − r′)αi, (s− s′)βi) +max(r′αi, s
′βi) = max(rαi, sβi)

for i = 1, 2. With an additional lemma, we can simplify these equations a bit more.

Lemma 4.3. For any a, b, c, d ∈ N, max (a − b, c − d) + max (b, d) = max(a, c) ⇔

((a− b)− (c− d))(b− d) ≥ 0.

Proof. First we show the forward implication. Let b > d. If c − d > a − b, then we

have c− d+ b ≤ max(a, c). Our condition implies that c− d+ b > a, so since b > d,

c > a. But then the original equation can never hold. So if b > d, then a− b > c− d.

A similar calculation shows the same results for b < d.

For the converse, assume that ((a−b)−(c−d))(b−d) ≥ 0. Then, either a−b ≥ c−d

and b ≥ d or vice versa. Assume that this is the case. Then a−b ≥ c−d⇒ a ≥ c−d+b,

and since d < b, then a ≥ c. Therefore, max(a− b, c− d) + max (b, d) = max(a, c)
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So we can rewrite these equations as

((r − r′)αi − (s− s′)βi)(r′αi − s′βi) ≥ 0 for all i = 1, 2. (4.1)

In this case, we will find two separate sets of (r′, s′) that will handle most of the

r and s.

Let r0
1 and s0

1 such that r0
1α1 = s0

1β1 = [α1, β1] and find r0
2 and s0

2 such that

r0
2α2 = s0

2β2 = [α2, β2]. We will show the Claim for (r, s) as long as r ≥ r0
i and s ≥ s0

i

up to a possible finite list of pairs.

Look at (4.1) with r′ = r0
1 and s′ = s0

1:

((r − r0
1)α1 − (s− s0

1)β1)(r
0
1α1 − s0

1β1) ≥ 0 (4.2)

((r − r0
1)α2 − (s− s0

1)β2)(r
0
1α2 − s0

1β2) ≥ 0 (4.3)

Note that the first equation will always hold, since r0
1α1 = s0

1β1. So we look at the

second one. If it holds as well, then this r′, s′ will work. If not, then ((r − r0
1)α2 −

(s− s0
1)β2)(r

0
1α2− s0

1β2) < 0. Then repeat this process with r′ = r0
2 and s′ = s0

2. This

time, the second equation is automatically satisfied. If the first is as well, than this

r′ and s′ will work, and if not, ((r − r0
1)α2 − (s− s0

1)β2)(r
0
1α2 − s0

1β2) < 0.

Since r0
iαi = s0

iαi, we can rearrange these two resulting equations to give

((r − r0
2)α1 − (s− s0

2)β1)(
α1

β1

− α2

β2

) < 0 (4.4)

((r − r0
1)α2 − (s− s0

1)β2)(
α2

β2

− α1

β1

) < 0 (4.5)

Order the αi

βi
, renumbering if necessary, so α1

β1
≤ α2

β2
. Then look at equation (4.4),
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the one with r0
1 and s0

1. Since this equation is strictly less than 0, (α2

β2
− α1

β1
) can’t be

0, so it must be greater than 0. Thus ((r − r0
1)α2 − (s − s0

1)β2) < 0, which implies

that r < 1
α2

((s− s0
1)β2) + r0

1.

Now repeat this with the other equation. Notice that now, (α2

β2
− α1

β1
) must be less

than 0. So now r > 1
α1

((s− s0
2)β1) + r0

2.

Combining these two ranges, we get

1

α1

((s− s0
2)β1 + r0

2 <
1

α2

((s− s0
1)β2 + r0

1 (4.6)

⇒ s(
β1

α1

− β2

α2

) < r0
1 − r0

2 −
β2

α2

s0
1 +

β1

α1

s0
2. (4.7)

The term on the left is positive by assumption. So the equations only fail when

s <
r0
1 − r0

2 −
β2

α2
s0
1 + β1

α1
s0
2

β1

α1
− β2

α2

= s0
1 + s0

2 and (4.8)

r <
β2

α2

(s0
1 + s0

2 − s0
1) + r0

1 = r0
1 + r0

2. (4.9)

This shows the Claim as long as r ≥ r0
i and s ≥ s0

i , i = 1, 2.

Now to the n prime case. Let a = pα1
1 p

α2
2 · · · pαn

n and b = pβ1

1 p
β2

2 · · · pβn
n , where

pi are prime in R and αi, βi are in N. Then I = (a) and J = (b), and thus Ir ∩

Js = (pα1
1 p

α2
2 · · · pαn

n )r ∩ (pβ1

1 p
β2

2 · · · pβn
n )s = (prα1

1 prα2
2 · · · prαn

n ) ∩ (psβ1

1 psβ2

2 · · · psβn
n ) =

(p
max(α1r,β1s)
1 · · · pmax(αnr,βns)

n ).

Let x ∈ Br,s. Then x = c · pmax(α1r,β1s)
1 · · · pmax(αnr,βns)

n urvs, where c ∈ R. We

will find some N such that for all r, s, there exists an r′, s′ with r′ ≤ r, s′ ≤ s, and
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r′ + s′ ≤ N such that

p
max(α1r,β1s)
1 · · · pmax(αnr,βns)

n urvs

p
max(α1r′,β1s′)
1 · · · pmax(αnr′,βns′)

n ur′vs′

= p
max((r−r′)α1,(s−s′)β1)
1 · · · pmax((r−r′)αn,(s−s′)βn)

n ur−r
′
vs−s

′
.

If so, then by letting

y = p
max(α1r′,β1s′)
1 · · · pmax(αnr,βns))

n ur
′
vs
′

and

z = p
max((r−r′)α1,(s−s′)β1)
1 · · · pmax((r−r′)αn,(s−s′)βn)

n ur−r
′
vs−s

′
,

the Claim is proven.

What is left to be proven simplifies to

max(αir, βis)−max(αir
′, βis

′) = max(αi(r − r′), βi(s− s′)) for all i = 1, . . . , n

which, by Lemma (4.3), simplifies to the following:

((r − r′)αi − (s− s′)βi)(r′αi − s′βi) ≥ 0 for all i = 1, . . . , n. (4.10)

We will produce N > 0 such that for all r, s there exists r′, s′ with 0 < r′+ s′ ≤ N

and r ≥ r′, s ≥ s′ such that (4.10) is satisfied. For clarity, we will label the ith

equation of (4.10) by Ei.

Let r0
i and s0

i be such that r0
iαi = s0

iβi = [αi, βi], and call r0
i + s0

i = Ni. We will

show the Claim for all pairs (r, s) such that r ≥ r0
i , s ≥ s0

i for all i = 0, . . . , n. The

other possibility is easier to deal with and be treated separately.
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For r0
i = r′ and s0

i = s′, the equation Ei is automatically satisfied. If, by some

chance, all equations are satisfied for this choice of r′ and s′, then we are done, by

simply letting N = r0
i + s0

i .

If, however, one equation of 4.10 is not satisfied, then there exists some ji such

that ((r − r0
i )αji − (s− s0

i )βji)(r
0
iαji − s0

iβji) < 0. Further, since r0
iαi = s0

iβi, we can

simplify the system once more to:

((r − r0
i )αji − (s− s0

i )βji)(
αji
βji
− αi
βi

) < 0. (4.11)

We will examine now this possibility:

For all i, there exists some ji such that (4.11) happens.

Order the αi

βi
, renumbering if necessary, so that α1

β1
≤ α2

β2
≤ · · · ≤ αn

βn
. We can

assume that all βi 6= 0 in the system (4.10) because the equation Ei becomes r ≥ r′

whenever βi = 0, which is a constraint that we have to satisfy anyway.

Consider r0
1, s

0
1. Hence, for some j1, we have

((r − r0
1)αj1 − (s− s0

1βj1))(
αj1
βj1
− α1

β1

) < 0. (4.12)

Due to our renumbering, we know that (
αj1

βj1
− α1

β1
) must be ≥ 0, and it cannot

equal zero because of (4.12). Therefore

((r − r0
1)αj1 − (s− s0

1)βj1) < 0 or r <
1

αj1
((s− s0

1)βj1 + r0
1. (4.13)

Consider now r0
j1
, s0
j1

. There exists j2 such that

((r − r0
j1

)αj2 − (s− s0
j1

)βj2)(
αj2
βj2
− αj1
βj1

) < 0. (4.14)

35



If (
αj2

βj2
− αj1

βj1
) > 0, then we get another upper bound on r:

r <
1

αj2
((s− s0

j1
)βj2 + r0

j1
.

If (
αj2

βj2
− αj1

βj1
) < 0, then

r >
1

αj2
((s− s0

j1
)βj2 + r0

1.

If (
αj2

βj2
− αj1

βj1
) > 0, we continue on with j2 and j3, until there is a k with

αjk+1

βjk+1
<

αjk

βjk
.

There will always be such a k, since our list of αi

βi
is finite. Look at the equation

relating these two terms, as well as the one previous to it, i.e. the one relating jk−1

to jk.

(
αjk+1

βjk+1

− αjk
βjk

)((r − r0
k)αjk+1

− (s− s0
k)βjk+1

) < 0 (4.15)

(
αjk
βjk
−
αjk−1

βjk−1

)((r − r0
k−1)αjk − (s− s0

k−1)βjk) < 0 (4.16)

Since (
αjk+1

βjk+1
− αjk

βjk
) < 0, ((r − r0

k)αjk+1
− (s− s0

k)βjk+1
) > 0, and so

r <
1

αjk+1

((s− s0
jk

)βjk+1
) + r0

jk
.

Similarly, since (
αjk

βjk
− αjk−1

βjk−1
) < 0, ((r − r0

k−1)αjk − (s− s0
k−1)βjk) > 0, and so

r >
1

αjk
((s− s0

jk−1
)βjk) + r0

jk−1
.

Putting the two together as above, we get

s(
βjk+1

αjk+1

− βjk
αjk

) < s0
jk

βjk+1

αjk+1

− s0
jk−1

βjk
αjk

+ r0
jk−1
− r0

jk
(4.17)
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Since (
βjk+1

αjk+1
− βjk

αjk
) is always positive, we always have an upper bound on s, which

induces an upper bound on r as follows:

s < s0
jk
− s0

jk−1

αjk+1
(αjkβjk−1

− αjk−1
βjk)

αjk−1
(αjkβjk+1

− αjk+1
βjk)

(4.18)

r < r0
jk
− r0

jk−1

βjk+1
(αjkβjk−1

− αjk−1
βjk)

βjk−1
(αjkβjk+1

− αjk+1
βjk)

. (4.19)

Call F the set consisting of pairs r, s satisfying all possible equations of the form

(4.18) and (4.19). Now let N0 = max{r + s|(r, s) ∈ F}. If for all i, r ≥ r0
i , s ≥ s0

i ,

then our Claim follows for N ′ = max{N0, N0
1 , . . . , N

0
n}. This is so because either

there exists one pair (r0
i , s

0
i ) that works as (r′, s′) or (r, s) ∈ F . It remains to deal

with the case when there exists k such that for all i, r < max(r0
i ), s > max(s0

i ) (the

case r > max(r0
i ), s < max(s0

i ) is similar).

Let r′ = 0, s′ = 1 in (4.10). Then there exists an i such that

(rαi − (s− 1)βi)(−βi) < 0 or r >
βi
αi
s− βi

αi
.

But r < max(r0
i ) implies that s < αi

βi
max(r0

i ) + 1. Let G ′ be the set of all such pairs

(r, s). G ′ is finite. Similarly the case where for all i s < max(s0
i ), r > max(r0

i ) gives a

finite set G ′′ of possible pairs (r, s). Let G = G ′∪G ′′, and N ′′ = max{r+s|(r, s) ∈ G}.

If (r, s) are such that there exists a k with r < r0
k and s > sk0 or r > r0

k and s < sk0,

then either (0, 1) or (1, 0) work as choices for (r′, s′) or (r, s) ∈ G. In conclusion, we

can let N = max{N ′, N}, and the Claim follows.

Corollary 4.4. Let R be a PID with I, J ideals in R. Then I and J have finite

intersection algebra.

37



Proof. Since R is a PID, I and J are principal ideals, and R is a UFD. So, by the

above theorem, I and J have finite intersection algebra.

Now let f = {In} =
⊕

m≥n Bm. This is a filtration on B, first because clearly

In+1 ⊆ In. For the other part of the definition, let x ∈ Ik and y ∈ Il. Then xy ⊆ Ik+l

because Br′,s′ · Br′′,s′′ ⊆ Br′+r′′,s′+s′′ .

Then compute grf (B).

grf (B) =
⊕
n≥0

In
In+1

=
⊕
n≥0

Bn = B.

We proved above that B is Noetherian. Thus, grf (B) is Noetherian, and by definition

f is Noetherian as well. Further, it can easily be shown that f is an e.p.f., since our

Claim (see the proof of the above theorem) shows that there exists an N > 0 such

that In =
∑N

i=1 In−iIi for every n > 1.

If I or J are not principal, I and J do not necessarily have finite intersection

algebra. This was shown by Fields in [7] as follows.

Example 4.5. Let P and R as in Theorem (3.6) such that the algebra R ⊕ P (1) ⊕

P (2) ⊕ · · · is not finitely generated. Fields has shown that there exists an f ∈ R

such that (P a : fa) = P (a) for all a. Then Fields shows in Lemma 5.6 in [7] that the

algebra
⊕

n≥0 P
(n) is a homomorphic image of the intersection algebra between (f)

and P . Since
⊕

n≥0 P
(n) is not Noetherian, (f) and P do not have finite intersection

algebra.

Although this shows that in general the intersection algebra of I, J in R is not

finite, we note that there are other known classes of ideals I and J that have finite

intersection algebra. Fields has shown in [6] that if R = k[[x1, . . . , xn]] and I and J

are monomial ideals in R, then I and J have finite intersection algebra. This result
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is a consequence of results from the theory of integer linear programming. Fields’

methods can be used to provide a proof of our theorem, 4.2. We have given a different

and original proof that also provides information on the degrees of the generators for

the finite intersection algebra. Fields’ thesis explains how intersection algebras can

be applied to the asymptotic theory of ideals. The following result illustrates more

applications of intersection algebras.

Definition 4.6. Let R be a Noetherian ring, and I, J ideals in R with J ⊆
√
I. Also

assume that I is not nilpotent and
⋂
k I

k = (0). Then for each positive integer m,

define vI(J,m) to be the largest n such that Jm ⊆ In. Also, we can examine the

sequence {vI(J,m)}m, which here we will abbreviate to v(m).

The following Proposition appears as (3.2) in [3].

Proposition 4.7. Let I, J be ideals in a Noetherian local ring R such that J ⊆
√
I,

the ideals I, J are not nilpotent, and
⋂
k I

k = (0). Assume that J is principal and

the ring B =
⊕

m,n J
m ∩ In is Noetherian. Then there exists a positive integer t such

that v(m+ t) = v(m) + v(t) for all m ≥ t.

This shows why it is of interest to establish that I and J have finite intersection

algebra.

Proposition 4.8. Let R be a UFD and I and J nonzero principal ideals in R such

that J ⊆
√
I. Then there exists a positive integer t such that v(m+ t) = v(m) + v(t).

Proof. Theorem (4.2) and Proposition (4.7) combined imply the result. However, we

will give a direct proof without relying on these results. Let J = (a) = (pα1
1 · · · p

αh
h )

and I = (b) = (pα1
1 · · · p

αh
h ). Then v(m) is the largest n such that (am) ⊆ (bn), which

is equivalent to being the largest n such that n · βi ≤ m · αi. Thus n = bmin(mαi

βi
|i =
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1, . . . , h)c = v(m). Let t be the minimum number such that tαi

βi
∈ N for all i. Then

for all m ≥ t,

bmin(
mαi
βi

)|i = 1, · · · , h)c

+b min(
tαi
βi

)|i = 1, . . . , n)c

= b min(
(m+ t)αi

βi
)|i = 1, . . . , h)c

or v(m) + v(t) = v(m+ t).
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