
v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS IV

LIST OF TABLES VIII

LIST OF FIGURES IX

CHAPTER 1 INTRODUCTION 1

1.1 Problem Definitions 2

1.1.1 Incomplete query Web searches 2

1.1.2 Long query Web searches 3

1.1.3 Web Search Previews 4

1.2 Strategy for research problems 5

1.3 Challenges 6

1.4 Organizations of the Thesis 7

CHAPTER 2 RELATED WORK 8

2.1 Related Work for Exploring Queries’ relations 8

2.2 Related Work for Incomplete Query Web Searches 9

2.3 Related Work for Long Query Web Searches 10

2.4 Related Work for Web search previews 12

CHAPTER 3 CONSTRUCTING QUERY-CONCEPT BIPARTITE GRAPHS FOR EXPLORING QUERIES’
RELATIONS 15

3.1 Query-URL Bipartite Graphs 15

3.2 Query-Concept Bipartite Graph 16

3.3 Comparisons of Query-URL Bipartite Graphs and Query-Concept Bipartite Graphs 18

CHAPTER 4 QUERIES-CONCEPTS BIPARTITE MODEL FOR PERSONALIZED QUERY SUGGESTION 20

4.1 Methods 20

4.1.1 Constructing queries-concept bipartite graphs 21

16

Figure 3.1 Two queries refer to different contents of one Web page

3.2 Query-Concept Bipartite Graph

The Query-Concept Bipartite Graph model is useful to analyze queries’ relations even if they do

not result in same Web pages. For two given queries, their subsequently clicked Web pages may reveal

their exact meanings. If the queries’ subsequently clicked Web pages contain very similar contents, the

queries are considered to be relevant. We propose the following steps to construct Query-Concept

Bipartite Graphs to investigate queries’ relations.

A user browses several search results returned by the search engines and locates the

information matching his/her query. We assume that if the browsing period for one Web page is long

2 http://www.globalgourmet.com/food/foodday/fd0197/fd012097.html

17

enough, that page may contain the information related to the query. Therefore, the following equation

RQD(q, di) is proposed for measuring the relevance scores of one Web page di with the query q.

 1

1 1

()

(,)

()

m

j i

j

i n m

j i

i j

period d

RQD q d

period d



 






 (3.1)

In the above equation, m means that the user clicks the Web page di m times, and the period of

jth visiting is periodj(di); n is the total number of clicking Web pages for that query, and the divisor of the

equation is the total visiting period of the clicked Web pages for that query.

After the relations between queries and Web pages are calculated, Web pages that have top

relevance scores with the query are selected as the user’s favourite Web pages. Then, context terms

around the query from the selected Web pages are extracted to express the contents of the Web pages.

Based on the assumption that if a keyword or a phrase appears frequently around the query in the

user’s clicking web pages, it should be an important concept related to the query. The equation RQC(q,

ci) is proposed to measure the relation between a particular concept ci and the query q.

1

(,) (,) ()
k

m

i k d i

k

RQC q c RQD q d f c


  (3.2)

In the above equation, RQD(q, dk) is the relation between the query q and document dk

containing concept ci; fdk (ci) is the occurrence frequency of the concept ci in the document dk; m

indicates the number of clicked Web pages containing the concept ci.

After obtaining the relations between concepts and queries, the concepts that have top

relevance scores with the given query are extracted to represent the users’ favourite information. For

example, for the query “java”, based on the user’s clickthrough data, the related concepts are extracted

from Web pages, such as “programming language”, “software”, “code”, “compiler”, “technology”,

“virtual machine”, “island”, “Indonesia”, “Jakarta”, “resort”, “coffee”, “boca”, “tea”, and “gourmet.”

18

Fig. 3.2 shows a queries- Concept bipartite graph, where squares represent Concepts and

rounds represent queries. For any two queries in the bipartite graph, we may speculate their relations

based on the common number of context terms they connect.

Figure 3.2 A Queries- Concept bipartite graph

3.3 Comparisons of Query-URL Bipartite Graphs and Query-Concept Bipartite Graphs

 Both Query-URL bipartite graphs and Query-Concept bipartite graphs are used to investigate

clickthrough data for speculating queries’ relations. These two models assume that users may select

query-related search results from results returned by search engines, and queries’ relations can be

determined by queries’ subsequently clicked results.

As discussed in section 3.1, although two queries may lead to one common Web page clicked,

they may be still irrelevant since one Web page may contains multiple topics and the queries are

related to different topics in that page. The Query- Concept model retrieves query-related concepts

from queries’ subsequently clicked Web pages, so the concepts may indicate the query-related contents

of the clicked Web pages. Two queries having same concepts from their pages are more likely relevant

than two queries resulting in clicking same URLs. Thus, Query-Concept bipartite graphs may get more

accurate queries’ relations than Query-URL bipartite graphs. Also, the probability that two queries result

in clicking same Web pages is very low. The Query-Concept model may retrieve more relevant queries

19

for a given query than the Query-URL model. In summary, compared with Query-URL bipartite graphs,

Query-Concept graphs have following advantages:

 The Query-Concept bipartite graphs explore more precise queries’ relations than the Query-URL

graphs because the latter model ignores clicked pages’ contents.

 The Query-Concept graphs get more relevant queries for a given query than the Query-URL

graphs because the probability of two queries having the same concepts in their subsequently

clicked pages is higher than that of queries resulting in the same URLs clicked.

20

Chapter 4 QUERIES-CONCEPTS BIPARTITE MODEL FOR PERSONALIZED QUERY SUGGESTION

 Query suggestion is a way to extend queries to allow search engines to better speculate exact

meanings of incomplete queries. This chapter proposes an approach that uses the Query-Concept

bipartite graphs and Concept Relation Trees for personalized query suggestion.

 4.1 Methods

This section introduces steps to generate personalized query suggestions for incomplete queries.

In step 1, the clickthrough data that contain users’ queries and corresponding clicked URLs are analyzed,

query-related concepts are extracted, and a Query-Concept bipartite graph is constructed. In step 2,

based on concept semantic relations and co-occurrence frequencies, the extracted concepts are

clustered, and then Concept Relation Trees (CRT) can be constructed. CRTs are tree-structure concept

clusters in which concepts are represented as leaves and any two concepts’ relation is demonstrated as

the weight of their lowest common ancestor. If queries are connected by CRTs, their relations can be

calculated based on the relations of Query-Concept and Concept-Concept obtained in the first two steps.

In step 3, queries that have strong relationships with the given query are retrieved as suggestions. In

step 4, weights of Query-Concept and concepts’ relations in the CRTs are updated based on the users’

recent queries and clicked URLs. The architecture of the personalized query suggestion agent is shown

in Figure 4.1.

21

Figure 4.1 The architecture of a personalized query suggestion agent

4.1.1 Constructing queries-concept bipartite graphs

Based on the approaches introduced in section 3.2, all clicked Web pages for a given query are

collected and Query-Web page relations are calculated based on equation 3.1. Then, Web pages owning

top query relevance scores are selected. Second, the concepts from those Web pages are extracted

based on equation 3.2. Thus, we are able to construct a Queries-Concept bipartite graph as shown in

Figure 3.2.

4.1.2 Calculating the concepts’ relations

After the concepts are extracted from the Web pages, these concepts are divided into different

concept sets, and each concept set represents a cluster of closely-related concepts. To construct

clusters of extracted concepts, the following equation RCC(ci, cj) is used to calculate the relationship

between concept ci and concept cj.

1

(,) ((,) (,))
2

i j i j i j
RCC c c SR c c CO c c   (4.1)

22

Based on the above equation, two concepts’ relation RCC(ci, cj) is determined by the concepts’

semantic relation SR(ci, cj) and the co-occurrence frequency CO(ci, cj). In the following parts, the

methods to calculate the concepts’ semantic relations and co-occurrence frequencies are introduced.

WordNet is a large lexical database in English, developed under the direction of George A. Miller

[34]. Synonymous words are grouped together into synonym sets, called synsets. Each synset

represents a single distinct sense or concept. Each WordNet sense is associated with a tree structure in

the WordNet Is-A hierarchy. The nodes in these tree structures are WordNet hyponyms, each of which

has a unique identifier in WordNet. Therefore, each sense can be related to unique hyponyms in the

tree structure. In the Is-A hierarchy tree, each child node is an instance of the parent node, like “car” is

instance of “vehicle”, and “vehicle” is instance of “physical entity.” A part of WordNet Is-A Hierarchy is

shown in the figure 4.2.

Figure 4.2 A part of WordNet Is-A hierarchy

The semantic similarity between concepts can be estimated by the information content (IC) [39].

The information content of a concept x is defined as

 () (())IC x log p x  , (4.2)

where p(x) is the frequency of encountering an instance of concept x. The frequency of

encountering a concept includes the frequency of encountering all its subordinate concepts since the

count for a concept is added to its subsuming concept as well. If p(x) of the root node of the WordNet

23

Is-A tree is defined as 1, for any concept node c in that tree, its p(x) can be calculated by the equation:

nc/na, where nc represents the number of descendants of that concept node c, and na represents the

number of all nodes in the tree. Therefore, the information content of a concept is -log(nc/na). Then, by

applying the Jaccard similarity coefficient [49], we propose the following equation SR(ci, cj) to calculate

any two concepts’ relation,

| |

(,)

| () () () |

p

a

i j

cj pci

a a a

n
-log

n
SR c c

n nn
-log -log -log

n n n



 

. (4.3)

In the above equation, np is the number of descendants of the lowest common ancestors of ci

and cj; nci is the number of descendants of the concept ci; ncj is the number of descendants of concept cj;

na represents the number of all nodes in the tree.

Based on the above equation, we may estimate that, in Figure 4.1, concepts “car” and “ship”

have higher semantic relation than the concepts “car” and “cabin” because the lowest common

ancestor of “car” and “ship”, “vehicle”, contains fewer concepts than the lowest common ancestor

“physical entity” of “car” and “cabin”, although “car” and “cabin” have the same number of children

nodes as the concept “car” and “ship.”

The following equation CO(ci, cj) is used to calculate the frequency of co-occurrences of

concepts ci and cj.

2 ()

(,)
() ()

i j

i j

i j

f c c
CO c c

f c f c

 



 (4.4)

In the equation CO(ci, cj), f(ci ∩ cj) is the frequency of the Web pages containing both concepts ci

and cj, and f(ci) is the frequency of the Web pages containing the concept ci.

24

4.1.3 Constructing concept relation trees

After concepts are extracted based on frequencies of occurring in the users’ selected Web

pages, concepts with high co-occurrence frequencies and similar semantic relations are grouped

together. Based on the concepts’ relation equation RCC(ci, cj), an agglomerative clustering algorithm is

developed to construct concept clusters, each of which contains closely-related concepts. Section 4.1.1

extracts relevant concepts for queries. Then, the queries connected by the concepts in same clusters

should have strong relationships, and one query of them may be considered as one suggestion of

another.

Before presenting Algorithm 4.1, the term “pseudo-concept”, a node grouped by the concepts

and representing the union of set concepts, is introduced.

In Algorithm 4.1, concepts are grouped together if their relation is larger than a threshold value

δ2. The initial value of δ2 in Algorithm 4.1 is set as 0.3, and it can be adjusted later. Based on Algorithm

4.1, the extracted concepts are clustered, and CRTs can be constructed. The CRTs are tree-structure

concept clusters in which concepts are represented as leaves, and any two concepts’ relation is

demonstrated as the weight of their lowest common ancestor. For the previous “Java” example, after

the concepts related to the query “java” are extracted and their relations are calculated, based on

Algorithm 4.1, following three CRTs are created as shown in Figure 4.3. The square nodes represent the

concepts, and the round nodes represent the pseudo-concepts. The nodes’ weights indicate the

relations between concepts. For any two concepts nodes in a CRT, their relation is demonstrated as

their lowest common ancestor’s weight. For example, the relation of “island” and “resort” is 0.32. Once

the CRTs are constructed, they are saved into users’ profiles, which can be used as knowledge for

personalizing query suggestions.

25

ALGORITHM 4.1 Constructing CRTs

INPUT:

The extracted concepts, concepts’ co-occurrence frequencies and semantic relations

OUTPUT:

Several CRTs, each of which is a concept cluster containing closely-related concepts

BEGIN

Step 1: Based on the equation RCC(ci, cj), calculate the relations for all possible pairs of extracted

concepts. The matrix of the concepts’ relations M is created.

Step 2: Merge a and b, which are disjoint concepts, pseudo-concepts or one concept and another

pseudo-concept, and they have the highest concepts’ relation. Then, create a pseudo-concept t to

represent the union of set a and b.

Step 3: Calculate the relations between that pseudo-concept t with other disjoint concepts and

pseudo-concepts. The relation r between t and another concept or pseudo-concept t' is the highest

concepts’ relation between the concepts from t and t'. Then, assign r to the relations between any

concepts from t and t'. Next, update the corresponding concepts’ relations in the matrix M.

Step 4: Repeat Steps 2 and 3 until all the relations between any concepts or pseudo-concepts are

smaller than a threshold value δ2, or all concepts are grouped into one pseudo-concept.

END ALGORITHM 4.1.

26

Figure 4.3 Concept relation trees for “java”

For the concepts related to a single query, we can create multiple CRTs, each of which contains

closely-related concepts. Also, we may construct separate CRTs related to queries if their concepts are

completely unrelated. However, if the CRTs for different queries contain the same concepts, we may

need to merge the CRTs together to indicate their relations. Thus, the following approaches are

proposed to solve this problem.

If concepts related to the query q1 are a sub set of concepts related to query q2, we only need to

construct CRTs for q2. However, we still need to calculate the concepts’ relations for q1 based on the

equation RCC(ci, cj) and use these relations to update concepts’ relations of the CRTs for q2. The updated

relation for q2 is the average value of the old relation for q2 and corresponding concepts’ relation for q1.

For the above “java” example, we construct three CRTs and one of them contains the concept “tea”,

“boca”, “coffee”, and “gourmet.” Then, we have another query “Starbucks”, and the concepts extracted

from the users’ clicking Web pages are “coffee” and “boca.” In that situation, we do not need to create

separate CRTs for the “Starbucks”, but just calculate the relation for “coffee” and “boca” based on the

equation RCC(ci, cj), and use that relation to update the “coffee” and “boca” relation in the CRT of

“java.” After the concepts’ relations are updated, the structure of the CRTs needs to be updated to keep

concepts’ relations in order. The concepts with lower common ancestors should have closer relations

27

than the concepts with higher common ancestors. Therefore, we propose Algorithm 4.2 to update CRT’s

structures based on altered concepts’ relations.

Based on Algorithm 4.2, if one altered weight is larger than the old weight, their CRT structure is

updated, and the concepts’ leaves are adjusted closer. For the example shown in Figure 4.4, the

updated relation between concepts “island” and “Jakarta” is 0.52, which is larger than the their

previous relation 0.32 and the relation of “island” and “Indonesia.” Thus, we need to break the

connection between “island” and “Indonesia”, and connect the “island” with the pair of “Jakarta” and

“resort” first because they have larger weights. Then, “Indonesia” is connected with the newly created

node that contains “island”, “Jakarta” and “resort.” After CRT is updated, “island” and “Jakarta” have a

lower common ancestor than the concepts “Indonesia” and “Jakarta.”

ALGORITHM 4.2 Updating CRT based on altered concepts’ relations

INPUT:

The old CRT with altered concepts’ relations

OUTPUT:

An updated CRT with new concepts’ relations and updated structure

BEGIN

Step 1: Store the concept pairs with altered relations in an array T. Then, rank the altered concepts’

relations decreasingly.

Step 2: Select one concept pair (ci, cj) that has the highest altered relation in the T. Compare the

altered relation of concepts (ci, cj) with their old relations. If the altered relation is higher than their

old relation, go to step 3; otherwise, remove (ci, cj) with their concepts’ relation in the T. If no more

concept pairs in T, then end the algorithm; otherwise, go back to step 2.

28

Step 3: Compare the altered relation of concepts (ci, cj) with the weights of ci’s parent p
1
 (ci) and cj’s

parent p
1
 (cj). (The weight of p

1
 (ci) is the concepts’ relation between ci with its nearest neighbour

concept.) If the altered relation of concepts (ci, cj) is smaller than the weights of p
1
 (ci) and p

1
 (cj),

then compare the altered relation with the weights of p
1
 (p

1
 (ci)) and p

1
 (p

1
 (cj)), or p

2
 (ci) and p

2
 (cj).

Repeat this step until the altered relation of concepts (ci, cj) is larger than the weight of p
i
 (ci) or p

i

(cj), or both.

Step 4: If the altered relation of concepts (ci, cj) is larger than the weight of pi (cj) but smaller than

the weight of p
i
 (ci), break the connection between the children nodes of p

i
 (cj). Then, merge p

i
 (ci)

and the child nodes of pi-1 (cj). The weight for the new created connection is the altered relation of

concepts (ci, cj). If the altered relation of concepts (ci, cj) is larger than the weights of pi (ci) and pi (cj),

break the connection between the children nodes of pi (ci) and pi (cj).Then, merge pi-1 (ci) and pi-1

(cj).The weight for the new created connection is the altered relation of concepts (ci, cj).

Step 5: Merge the nodes whose connection are broken in step 4 and the new created nodes. Then,

remove (ci, cj) with their concepts’ relation in the array T. If no more concept pairs in T, then end the

algorithm; otherwise, go to step 2.

END ALGORITHM 4.2.

29

Figure 4.4 Updating one CRT based on the altered concepts’ relation

If the CRTs related to the queries q1 and q2 contain overlapping concepts, their CRTs are

connected by linking the overlapping concepts. If two CRTs contain lots of overlapping concepts, the

CRTs should have strong relationship, so the weight between them should be large; conversely, the

weight between them should be small. Thus, the following equation RTT(CRT1, CRT2) is proposed to

calculate the weight between CRTs, in which n(CRT1∩CRT2) represents the number of concepts

occurring in the both CRTs and n(CRT1)+n(CRT2) represents the total number of the concepts occurring in

CRT1 and CRT2. After the weight between CRTs calculated, Algorithm 4.3 is proposed to connect the

overlapping concepts occurring in both CRTs.

1 2

1 2

1 2

2 ()
(,)

() ()

n CRT CRT
RTT CRT CRT

n CRT n CRT

 



 (4.5)

ALGORITHM 4.3 Connecting CRTs

INPUT:

CRT1 and CRT2

OUTPUT:

A connected CRT that contains CRT1 and CRT2

30

BEGIN

Step 1: Based on the CRTs relation equation RTT(CRT1, CRT2), calculate the similarity between CRT1

and CRT2.

Step 2: Connect CRT1 and CRT2 by linking the concepts occurring in both of them. Then, assign the

similarity of CRT1 and CRT2 to the linkages’ weights.

END ALGORITHM 4.3.

Given three queries “java”, “holiday tours” and “beverage recipes”, we may construct following

CRTs as shown in Figure 4.5. “Java” is associated with two CRTs, (“tea”, “boca”, “coffee”, and

“gourmet”) and (“island”, “Indonesia”, “Jakarta”, and “resort”). “Beverage recipes” is associated with

the CRT that contains concepts “tea”, “drink”, “coffee” and “bean.” “Holiday tours” is associated with

the CRT that contains concepts “vacation”, “travel”, “Jakarta”, and “Florida.” For the above four CRTs,

several concepts occur in more than one CRT such as “tea”, “coffee” and “Jakarta”, so the CRTs can be

connected by linking the overlapping concepts “tea”, “coffee” and “Jakarta”. Then, assign the CRTs’

similarities, “0.5” and “0.25” to the linkage weights.

31

Figure 4.5 Connected CRTs based on overlapping concepts

After CRTs are connected, the equations are needed to calculate concepts’ relations in the same

CRT and in connected CRTs. If ci and cj are in the same CRT, only one path exists between them, so their

relation d(ci, cj) is their concepts’ relation obtained from Algorithm 4.1. If ci and cj are in two connected

CRTs CRT1 and CRT2, and L connections exist between CRTs, ci and cj may have L possible concepts’

relations because one path between them may result in one concepts’ relation. In order to calculate L

possible concepts’ relations between ci and cj, we have to find L concepts {sc1, sc2, …, scL} occurring in

both CRTs. Then, the following equation CW(ci, cj) is proposed to calculate the relation of concepts ci

and cj in the different CRTs.

1 2

1

(,)
(,) ((,) (,))

2

L

i j i k k j

k

RTT CRT CRT
CW c c d c sc d sc c

L 

   (4.6)

In the above equation, sck represents one concept occurring in both CRT1 and CRT2; d(ci, sck)

represents the concepts’ relation of concept ci and sck obtained in algorithm 4.1; L indicates the number

of connections between concepts ci and cj; and RTT(CRT1, CRT2) represents the relation between CRTs.

32

Based on the above equation, one relation of ci and cj is the arithmetic average of d(ci, sck) and d(sck, cj)

multiplies the weight between CRT1 and CRT2. The relation CW(ci, cj) of concepts ci and cj in two

connected CRTs is an average value of all possible relations between ci and cj.

For example, in Figure 4.5, the relation of concepts “drink” and “boca” can be calculated by

applying the equation CW(ci, cj). Two concepts “tea” and “coffee” occur in the both CRTs, so two paths

“drink-tea-boca” and “drink-coffee-boca” exist between “drink” and “boca.” For the path “drink-tea-

boca”, the relation between “drink” and “boca” should be RTT(CRT1, CRT2) multiplying the average of

d(drink, tea) and d(tea, boca). As shown in Figure 4.5, the value of RTT(CRT1, CRT2) is 0.5, d(drink, tea)

0.71 and d(boca, tea) 0.68. Then, for the path “drink-tea-boca”, the relation of “drink” and “boca” is

0.5*(0.71+0.68)/2. Similarly, for the other path “drink-coffee-boca”, the relation of “drink” and “boca”

is 0.5*(0.41+0.47)/2. The relation CW(drink, boca) is the average relations for the paths “drink-tea-

boca” and “drink-coffee-boca.”

4.1.4 Calculating the queries’ relations

Based on the relations between queries and concepts, and relations between concepts and

concepts obtained from previous steps, queries’ relations can be calculated. If two queries have strong

relationship, one of them can be a suggestion for the other. The following two strategies are proposed

to calculate the queries’ relations.

33

Figure 4.6 Queries – CRTs bipartite graphs

Strategy 4.1. Two queries qi, qj are considered to be relevant if most of concepts related to qi

have strong relationships with most of concepts related to qj.

Given two concept sets Ci and Cj related to the queries qi and qj, respectively, the following

three equations RQQ1(qi, qj), AvgQC(qi, Ci), and AvgCC(Ci, Cj) are proposed to calculate the relations

between qi and qj.

1
1(,) ((,) (,) (,))

3
i j i i i j j j

RQQ q q AvgQC q C AvgCC C C AvgQC q C    (4.7)

1 1

1
(,) (,)

n m

i j ih j k

h k

AvgCC C C CW c c
mn  

  (4.8)

1

1
(,) (,)

m

i i i k

k

AvgQC q C RQC q c
m 

  (4.9)

In the equation RQQ1(qi, qj), AvgQC(qi, Ci) represents the average relations between qi and the

concept set Ci, and AvgCC(Ci, Cj) represents the average relations between concept sets Ci and Cj.

In the equation AvgCC(Ci, Cj), cih represents one concept in the concept set Ci and cjk represents

one concept in the concept set Cj; CW (cih, cjk) represents the relation between concept cih and concept

cjk. If Ci contains n concepts and Cj contains m concepts, there are m multiplying n combinations of

concepts’ relations between Ci and Cj. Thus, the equation AvgCC(Ci, Cj) represents the average relations

34

between concept sets Ci and Cj. In the equation AvgQC(qi, Ci), RQC(qi, ck) represents the relation

between query qi and concept ck, which can be obtained from the section 2.2.

Strategy 4.2. Two queries qi, qj are considered to be related if one concept cih related to qi has a

strong relationship with the concept cjk related to qj.

We propose the following equation RQQ2(qi, qj) to calculate the closest relation between qi and

qj. RQC(qi, cih) represents the relation between qi and cih, and CW (cih, cjk) represents the relation

between cih and cjk.

 2(,) max((,) (,) (,))
i j i ih ih jk jk j

RQQ q q RQC q c CW c c RQC c q   (4.10)

Based on Strategy 4.1, one query can be a suggestion for another query if the concepts related

to them have strong relationships. However, if the concepts related to one query are a small sub set of

the concepts related to another query, we may not be able to conclude that the first query can be a

suggestion for the second one. Thus, Strategy 4.2 is selected to calculate the queries relations.

4.1.5 Dynamically updating the weights of query-concept

For personalizing query suggestions, the relations between queries and concepts should be

updated according to the users’ most recent clickthrough data. For example, the related concepts for

the query “java” may be “code”, “software” and “coffee.” If a user is indeed interested in the concept

“coffee”, and the user clicks on the Web pages containing the concept “coffee”, the query suggestions

agent should gradually favour the concept “coffee” and the concepts in the same CRT with “coffee”, like

“gourmet.” Then, the weight between the query “java” and the concept “coffee” is increased.

The weight between a query and a concept is decreased with the time elapses. The weight will

be increased if that query hits Web pages containing the concept again. The following equation WQC(q,

c) is proposed to update the weights between queries and concepts.

35

(1 (,))

(,) (,)
(1 _)

RQC q c
WQC q c WQC q c

elapse time





 
 

 
 (4.11)

In the above equation, the updated weight is determined by the current weight WQC(q, c), the

elapse time elapse_time, and the relation RQC(q, c) obtained from the newest hitting. The initial values

for the constant ξ and σ are 0.01 and 0.1 respectively.

4.2 Experiments

The experiments and performance analysis are presented in this section. First, test data sets

were constructed based on the log data of a commercial search engine. Then, two experiments were

conducted to evaluate performance of our method.

4.2.1 Data collection

The data sets were constructed based on the log data of AOL, a commercial search engine. The

log data consist of more than 20M Web queries from 650k users over three months, from March 1,

2006 to May 31, 2006. The number of clicked URLs for the 20M Web queries is 19,442,629. The AOL log

data sets can be only used for research purpose only.

For this collection, first, the queries were filtered by only keeping the queries that only

contained alphabet characters and spaces. Second, the queries that resulted in at least five unique clicks

per session were preserved. Since it was impossible to ask the original users to evaluate the results’

quality for the queries, we assumed the clicked Web pages containing the information that the users

needed. Therefore, we used the clicks associated with the queries to approximate relevant Web pages.

More relevant documents for a query made it easier to extract concepts related to that query. Third, to

better construct users’ preference profiles, we only kept users’ IDs who submitted more than fifty

unique queries. Finally, we randomly selected thirty users’ IDs satisfying above requirements as our test

data sets. On average, each user submitted 68.5 distinct queries, and each query resulted in 8 distinct

clicks in the data sets. The basic statistic for the data sets is listed in Table 4.1.

