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(c) Category definition window                           

 

 (d) Simulation window 

Figure 3.3 User Interface of BehaviorSim. 
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To develop a behavior-based agent system in BehaviorSim, the following four steps 

are generally followed:  

• Define agent categories using the category definition window. Set up the 

common properties and methods for that category (see Fig.3.3 (c)).  

• Set up the agents in the agent system using the system editor window. This can 

be done by dragging and dropping a corresponding category icon into the world (see 

Fig. 3.3 (a)).  

• Define the behavior networks for agents using the behavior network editor 

window (see Fig. 3.3 (b)), where behaviors and the behavior network can be specified.  

• Run simulations to see how agents behave (see Fig. 3.3 (d)). All the 

configurations are saved as a XML file that can be loaded and modified for the future 

use. 

 

3.5 Pedestrian Crowd Simulation System 

 

To facilitate group modeling, a pedestrian crowd simulation system is developed on 

top of BehaviorSim. This simulation system implements the framework proposed at 

Chapter 2 and serves as the basis in the development of group-related applications such 

as the dynamic grouping (see Chapter 5 for details).  This section introduces the 

specification of the simulation system, followed by pedestrian agents’ perception and 

behavior model.   
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3.5.1 Pedestrian Crowd Simulation System Specification 

A pedestrian crowd simulation system is described as a tuple <Environment, Crowd>. 

Environment describes the simulation environment where pedestrian agents interact 

with each other. Crowd refers to a specific pedestrian crowd.  

The simulation environment includes simulation primitives such as the obstacle 

information e.g. size, shape, and position. Obstacles are stationary entities which do not 

move during the simulation. The obstacles serve as the boundary of movements of 

pedestrian agents. Typical obstacles include columns and walls. Note that the 

simulation environment also includes the spatial information, such as size and shape, of 

pedestrian agents.  

Besides simulation primitives, the simulation environment also provides a platform 

for pedestrian agents to communicate with each other. The communication is achieved 

by a set of functionalities provided by the environment. For example, the environment 

allows an agent to get a list of agents which are within the perception rage of the agent. 

Table 3.2 lists the major functionality provided by the environment. The major 

functionality can be roughly categorized into two categories. Each category contains a 

list of functions, one by each row.  

 

Table 3.2 Major functionality of pedestrian crowd simulation system. 

Get agent(s) 

Get the nearby agents which are GetNearbyAgents(Agent) 
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within the perception of the 
specified agent 

Get members in the specified 
group 

GetGroupMembers(GroupID) 

Get the leader of the specified 
group 

GetGroupLeader(GroupID) 

Get the agent from other groups 
which is most similar to the 
specified agent 

GetMostSimilarAgent(AgentID) 

Check and generate position 

Check whether the specified 
agent collides with others 

LegalPostionToNearbyAgents(AgentID) 

Check whether the specified 
agent collides with obstacles 

LegalPositionToNearbyObstacles(AgentID) 

Check whether the specified 
agent is inside the environment 

InsideEnvironment(AgentID) 

Generate a random position in 
the environment 

GenerateRandomPosition(Randomer) 

 

These functions and the system APIs as shown in Table 3.1 are used by pedestrian 

agents to get the information of the simulation environment e.g. the position of 

obstacles or other agents, and the distance to other agents.    

In this dissertation, pedestrian agents are arranged into a set of social groups and 

each agent belongs to one and only one group. The number of agents including in a 

group is denoted as group size. Note that different groups may have different group size. 

And if an agent does not form group with others, the agent is considered to be a group 

consisting of itself. An important aspect of our framework is to study the relationships 

between agents within a group, i.e. intra-group connections and between different groups, 

i.e. inter-group relationships. Group modeling will be described in detail in Chapter 4. A 

pedestrian crowd is described as <{Groups}, Inter-group Relationships>, and a group is 
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described as <{Agents}, Intra-group Connections>. Here, {Agents} indicates a set of 

pedestrian agents which belong to the same group.    

Each agent consists of a set of attributes and features. The attributes such as moving 

speed, moving direction, sociality, characterize the agent’s physical or psychological 

states. Two important features of pedestrian agents are behavior model and perception 

model. An agent is described as <ID, CurrentPosition, SpeedVector, Radius, 

PerceptionModel,  BehaviorModel,…>,  where 

• ID is the unique identification of the agent. 

• CurrentPosition and SpeedVector specify the current position and speed vector, 

respectively. SpeedVector specifies both moving speed and direction of the agent.  

• Each agent is of a circle shape whose radius is specified by Radius.  

Note that an agent also has other attributes such as GroupID, Role, GP, and GD which 

are used in group modeling (see Chapter 4 for more details). 

 Besides a set of attributes, each agent is also featured with a perception model and a 

behavior model.  

 

3.5.2 Agent Perception Model 

The agent perception model PerceptionModel specifies the region which agents can 

perceive. It is critical for pedestrian agents to perceive the nearby obstacles and other 

pedestrian agents. In this framework, agents are equipped with the perception model as 

shown in Fig.  3.4.  
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Figure 3.4 Perception model of pedestrian agents. 

 

Fig. 3.4 shows a widely applied perception model which is of elliptical shape. It is 

believed that this model can achieve more realistic perception since it matches the 

intuition that humans can perceive further in the front than in the side. In Fig. 3.4, the 

elliptical area represents the visible area. Only obstacles or agents in this area can be 

detected by the agent. The solid dot represents a pedestrian agent. The pedestrian’s 

current moving direction is indicated as “Direction”. Dist1 and Dist2 represent the 

maximum front and side distance for visibility respectively. Angle indicates half of the 

maximum visibility range the pedestrian can detect.  

 

3.5.3 Agent Behavior Model 

Each agent is featured with a behavior-based model which contains three behaviors: 

RandomMove, Avoid and MaintainGroup. These three behaviors compete with each other 

for the control of agent’s movement using the mutual inhibition mechanism (Fig.3.1 (b)). 

Note that social groups are modeled in MaintainGroup behavior, the design of which 

will be described in Chapter 4.   
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Below follows the description of these behaviors, in particular, the description of the 

calculation of their excitation and the associated action.  

 

1) Behavior: RandomMove  

This behavior is used to simulate the random movement of each agent. The moving 

path is the shortest path from the agent’s current location to the destination, computed 

through the Dijkstra algorithm. When a specific destination is reached, the agent will 

move to another destination which is generated randomly.  

• Excitation: Ex = 0.6, which means that this behavior will be moderately excited.   

• Action: If the agent is not at the destination area, it walks towards the destination 

according to the shortest path. Otherwise if it arrives at its destination, it will move 

to a new destination that is randomly generated. 

 

2) Behavior: Avoid  

This behavior is used to simulate the obstacle avoidance in the movement. When an 

agent is within a predefined minimum distance from the nearest neighbor agent or 

obstacle, it will stay away from it.  

• Excitation: The excitation of this behavior is calculated through Eq. 3.5. 
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In Eq.3.5, closestDistToObstacle is the distance from the agent to the surface of the 

closest obstacle to avoid, and closestDistToAgent is the distance from the agent to the 

center of the closest agent to avoid. Note that the closest obstacle or agent should be 

within the perception range of the agent. Otherwise, closestDistToObstacle and 

closestDistToAgent will be positive infinity. The constant factor 1.5 and 2.5 indicate that 

once the safety margin between the agent and the nearest wall or agent is less than half 

of Radius, this behavior will be excited. The exponential function indicates that as 

closestDistToObstacle or closestDistToAgent decreases, the more likely this behavior will 

be excited. 

• Action: The separation and friction forces from the wall and the closest agent are 

applied on the agent and the acceleration (or deceleration) is calculated, the velocity is 

updated and the agent moves one step according to the direction indicated by the 

velocity. 

 

3) Behavior: MaintainGroup 

This behavior let agents maintain both the intra-group connections and the inter-group 

relationships during the simulation.  

• Excitation: The excitation of this behavior is calculated through Eq. 3.6. 
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In Eq. 3.6, Dist is used to calculate the Euclidian distance from agent i to its group 

position GPi. myPosi is the position of agent i. DesiredDist is the distance which agent i 

wants to maintain from other members (check Chapter 4 for the description of GP and 

DesiredDist). The exponential function indicates that as Dist decreases, the more likely 

this behavior will be excited. 

• Action: Calculate the vector to maintain both the intra-group connections and the inter-

group relationships and carry out the movement guided by the vector.  

Note that, the design of RandomMove and Avoid is simple. Our focus is the 

MaintainGroup behavior which models social groups (see Chapter 4 for details).  

 The inhibitory coefficients between these three behaviors are listed in Table 3.3. 

 

Table 3.3 Inhibitory coefficients between pedestrian agents’ behaviors. 

 CasualMove Avoid MaintainGroup 

CasualMove 0.0 -0.6 -0.6 

Avoid 0.0 0.0 0.0 

MaintainGroup 0.0 -0.6 0.0 

 

As shown in Table 3.3, Avoid inhibits CasualMove and MaintainGroup, and 

MaintainGroup inhibits CasualMove, with a coefficient 0.6 which indicates an 

intermediate inhibition. 

In each simulation cycle, the excitation of each of the three behaviors is calculated, 

followed by the calculation of activation of each behavior. The behavior with highest 
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activation level will be selected as the one controlling the agent and the corresponding 

action will be carried out.  
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CHAPTER 4 

GROUP MODELING 

 

4.1  Introduction 

This chapter introduces the details of our group model. To facilitate group modeling, 

a pedestrian crowd is considered as a list of social groups, each of which is identified by 

a unique identification GroupID which is assigned automatically when the simulation 

starts. Each group contains of a list of agents. The number of agents including in a 

group is denoted as group size.  Note that different groups may have different group size. 

There are two special cases regarding the group size: 1) group size is the number of agents 

in the crowd, i.e. the crowd only consists of one group, and 2) group size is 1, i.e., there is 

no social group in the crowd.  As demonstrated later, group size has important effect on 

crowd behaviors. 

One important aspect of the group model is to study relationships within the crowd. 

Each social group is studied from two aspects, i.e. intra-group connections and inter-group 

relationship. Intra-group connections are the relationships among members, e.g. likeness, 

familiarity, in the same group. In another word, intra-group connections represent the 

member-to-member influence within a group. Inter-group relationships represent the 

relationships among groups, e.g. following, in the pedestrian crowd. Clearly, inter-group 

relationships represent the group-to-group influence within a crowd. There are two types 

of relationships: static relationship and dynamic relationship. Static relationship 
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represents the relationship which is not changed during the simulation. The static 

relationship is usually found in stable social groups, e.g. the family units, where the 

relationship is not changed as the time passes by. While dynamic relationship represents 

the ever-changing relationship and it is usually found in unstable social groups, e.g. the 

task-based groups, where the relationship is temporarily formulated and distinguished 

after some time.  The group model presented in this chapter studies static relationships. 

Chapter 5 presents an application of this group model, i.e. a dynamic group model 

which studies the dynamic relationships. 

There are two roles of agents Role in a social group, group leader and group member. 

Each group has one and only one group leader. The rest of the agents in the group are 

group members. By default, the first agent (whose ID is smallest in its group) is the leader 

in the group. The group leader is considered as a “special” agent in the group because 

this is the only agent who could be influenced by agents from other groups due to inter-

group relationships (more details are given later). A group member can only be influenced 

by other members (including the group leader) of the same group due to intra-group 

connections.  

The strength of a relationship, e.g. the degree of likeness, is represented by a real 

number. The strength of both intra-group connections and inter-group relationship is 

indicated by a list of real numbers which are represented in two-dimensional matrices 

(see the following sections for details). Intra-group connections are specified by an intra-

group matrix. Inter-group relationships are specified by an inter-group matrix. These two 
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influence matrices capture all the information needed to specify the group in a crowd. 

Note that the purpose of this group model is to simulate static social groups, i.e., both the 

intra-group and inter-group matrices are pre-specified by the user.  In other words, this 

work assumes that social groups are formed when the simulation starts and they will 

not be changed during the simulation. Possible extensions such as dynamic grouping 

will be discussed in Section 4.7. 

Our group model is implemented in the MaintainGroup behavior. The focus of this 

chapter is thus the MaintainGroup behavior and the calculation of its speed vectors. Each 

agent’s maintaining group behavior is composed of two aspects of movements: 

Aggregation and Following, which allow an agent to maintain its desired intra-group 

connections and inter-group relationships. These two aspects of movements are 

represented by two speed vectors, aggregation vector and following vector respectively. 

• Aggregation means an agent moves towards the center of the agents that are in 

the same group and have non-zero influences (as defined by the intra-group matrix) on 

this agent. This center is named the group position, denoted as GP, of this agent. 

• For a group member, Following means the member heads towards the average 

moving direction of other group members who are in the same group and have non-

zero influences on this member. This is similar to the alignment behavior (see Fig. 1.1 (b)) 

in Reynolds’s work [54]. For a group leader, Following means that the leader follows the 

moving direction of an agent from a different group to maintain the inter-group 
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relationship. In both cases, the moving direction associated with Following is named the 

group direction, denoted as GD, of this agent.  

GP and GD are two crucial parameters in the calculation of aggregation and following 

vector. As will be seen in Section 4.4, both aggregation and following vector can be 

calculated directly from these two parameters as well as the intra-group and inter-

group matrices. Before introducing how to calculate these two vectors, Section 4.2 and 

4.3 present the modeling of intra-group connection and inter-group relationship 

respectively. These two sections also present the calculation of GP and GD based on 

intra-group and inter-group matrices, and the position and speed vector of other group 

members.  Section 4.5 and 4.6 present a case study which uses the group model to create 

social groups and to explore the effect of grouping on crowd behaviors, respectively.  

Section 4.7 discusses several possible extensions of the group model to support more 

features such as clustering, dynamic grouping and so on. 

 

4.2 Modeling Intra-group Connections 

4.2.1  Intra-group Matrix  

 The intra-group matrix is used to represent the member-to-member influence 

information within a group.  In this group model, each group has an intra-group matrix, 

i.e. members within the group share the influence information.  The sharing of this 

global information makes sense especially when group size is small. For the large groups, 

it may not be practical for all agents in the group to have such global information, i.e., 
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the shared intra-group matrix. This is not considered in the group model. However, it is 

possible to extend the group model to let each member keep its own intra-group matrix. 

 An intra-group matrix is a two dimensional table where each element is a real 

number in the range of [0.0, 1.0] which represents the strength of intra-group 

connections. The number at row with ID i and column with ID j, denoted as I(i, j), 

defines how much agent i’s movement is influenced by agent j. Since each I(i, j) has a 

value, the intra-group matrix specifies not only the network structure of influences 

among the individuals, but also the influence strength. For example, I(i, j) = 0.0 means 

agent j has no influence on agent i, and I(i, j) = 1.0 means agent i is fully influenced by 

agent j. An intra-group matrix with all elements being 0.0 represents the case that 

individuals of the same group have no influence to each other. Table 4.1 shows a 

sample intra-group matrix for a group having three pedestrians with ID 0, 1 and 2, 

among which Pedestrian_0 is the group leader.  

 

Table 4.1 A sample intra-group matrix. 

ID Pedestrian_0 Pedestrian_1 Pedestrian_2 

Pedestrian_0 N/A 0 0 

Pedestrian_1 1 N/A 0 

Pedestrian_2 0 1 N/A 
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As can be seen from Table 4.1, Pedestrian_1 is influenced by Pedestrian_0; 

Pedestrian_2 is influenced by Pedestrian_1; and Pedestrian_0 (the leader) is not 

influenced by other pedestrians. Because of these influence relationships, Pedestrian_2 

follows Pedestrian_1, which in turn follows the Pedestrian_0 (the leader). As will be 

discussed later, this table defines a linear group. 

Besides the intra-group matrix, three other parameters are used to describe how far 

pedestrians can stay away from each other within the same group:  SideDist, CenterDist, 

and DesiredDist. 

• SideDist is the maximum perpendicular distance from GP to the line indicated by 

the agent’s current moving direction. Such a perpendicular distance is also called side 

distance.  

• CenterDist is the maximum Euclidian distance from GP to the agent’s current 

position. Such a Euclidian distance is also called center distance.  

• DesiredDist is the desired distance from GP to the agent’s current position. It is 

the maximum distance the individual wants to maintain during the movement. This is 

also called desired distance.  

At every movement decision, the current center distance and side distance will be 

calculated. Only if center distance is greater than desired distance, the individual’s 

maintaining group behavior will be triggered. During this process, the center distance 

and side distance are used to calculate the weight of the aggregation vector (see Section 

4.4 for more details). They accelerate the aggregation movement, as long as the moving 
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speed does not exceed a predefined maximum speed. The smaller the center distance and 

side distance, the faster an agent will move towards the group center GP, and the more 

compact the group will be.  

 

4.2.2 Calculation Of GP And GD For Group Members 

GP is the group position an agent should move towards and GD is the average 

moving direction of other group members that have non-zero influences on the agent. 

Eq. 4.1 and 4.2 show how GP and GD are calculated based on the intra-group matrix 

and the positions and speed vectors of other group members. Suppose the intra-group 

matrix is labeled with I(i, j) where i, j is ID of agent i and j. Ni is the total number of 

group members that are in the perception range (see the perception model later) of 

agent i. Note that only those agents that belong to the same group of agent i are counted. 

jitionCurrentPos and jrSpeedVecto are the current position and speed vector of agent j, 

respectively. 
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Note that Eq.4.1 and Eq.4.2 only apply for group members. Generally, the greater 

the perception range, the more neighborhood members can be detected, thus, the more 

likely the computed GP and GD will be the global group center and group direction 
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(where all members of the same group are involved in the computation), and the faster 

the desired group will be formed. For a group leader i, GPi and GDi is the position and 

moving direction of some agent in other groups, respectively. For both group member 

and group leader i, the direction of the aggregation vector is the direction from i to GPi, 

and the direction of following vector is the direction indicated by GDi. The calculation of 

GP and GD for a group leader will be based on inter-group relationships, which is 

described in the next section.  

 

4.3  Modeling Inter-group Relationships 

4.3.1 Inter-group Matrix 

Besides the member-to-member influence, different groups may also influence each 

other. For example, a group may follow other nearby groups during an emergency 

evacuation process because of the lack of objective evaluation of the emergent situations 

[40]. In this dissertation, this kind of inter-group relationship is specified by an inter-

group matrix. Similar to intra-group matrices, the inter-group matrix is a two-

dimensional table, which specifies the group-to-group relationships. Note that there is 

only one inter-group matrix for the whole crowd, while each group may be configured 

with different intra-group matrices. 

 Similar to the intra-group matrix, each element in the inter-group matrix is a real 

number in [0.0, 1.0] which represents the strength of inter-group relationships. The 

element at row with GroupID i and column with GroupID j, denoted as E(i, j) specifies 
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how much group i (specifically the group leader of that group) is influenced by the 

agents in group j. The number 0.0 means that the row group is not influenced by the 

column group even when the two groups are close to each other. The number 1.0 means 

the row group is fully influenced by the column group if the two groups are close to 

each other. Note that the situation of no inter-group relationships can be represented by 

setting all elements of the inter-group matrix to be 0.0. Table 4.2 shows a sample inter-

group matrix for a crowd including four groups with GroupID 0, 1, 2 or 3, all of which 

fully influence each other (because all elements in the inter-group matrix have value 

1.0).  

 

Table 4.2 A sample inter-group matrix. 

GroupID Group_0 Group_1 Group_2 Group_3 

Group_0 N/A 1 1 1 

Group_1 1 N/A 1 1 

Group_2 1 1 N/A 1 

Group_3 1 1 1 N/A 

 

Based on the definitions of intra-group matrix and inter-group matrix, one can see 

there are two ways to specify a crowd that is equivalent to having no group: 1) the 

whole crowd is one group and the intra-group matrix elements are all zero; 2) each 

group in the crowd has only one individual and the inter-group matrix elements are all 

zero.   



60 

 

 

4.3.2 Calculation Of GP And GD For Group Leader 

As mentioned above, only the group leader is influenced by individuals from other 

groups. The goal of modeling inter-group relationships is to let each group leader 

follow the individual that has the greatest influences on the leader. To do this each 

individual’s influence weight is calculated. Note that only the individuals, which are 

from different groups, are considered. In the group model, the calculation of influence 

weight is based on Festinger’s Social Comparison Theory (see the work of  [40]). The idea 

is to select the individual that has greatest similarity as the one that has greatest 

influence on the group leader.  This similarity depends on not only the inter-group 

relationships between the two groups that the leader and the agent belong to but also 

the Euclidian distance between the leader and the agent.  

Specifically, suppose the inter-group matrix is E and each element of the matrix is 

E(G(i), G(j)), where G(i), G(j) is GroupID of the groups which agent i and j belong to 

respectively. Suppose agent i is a group leader. Eq. 4.3 - Eq. 4.5 show the decision of 

leader i. For each agent j from another group in the perception range of leader i, the 

similarity between i and j is calculated using Eq. 4.3. As can be seen, the greater the 

inter-group relationship between two groups, and the closer the distance from i to j is, 

the more likely leader i will choose agent j to follow. Eq.4.4 and 4.5 show that the agent 

with the greatest similarity is selected as the one to follow. If no such agent exists, 

leader i will not follow any other agent.  
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The specific procedure for leader i to find an agent (of other groups) with the 

greatest similarity is shown in Fig. 4.1.  

 

procedure Find_Most_Similar_Pedestrian(Leader i) 

1 PedestrianToFollow = φ ; 

2 Similarity = 0.0; 

3 Temp = 0.0; 

4 PedestrianList = all pedestrians that are in the perception range of leader i;  

5 for each pedestrian a in PedestrianList 

6    if G(a) ≠ G(i)  then 

7                   Distance = EuclidianDistanceBetween(a,  i); 

8          Temp = E(G(i), G(a)) * 100 / Distance; 

9        if Temp > Similarity then 

10  Similarity = Temp; 

11  PedestrianToFollow = a; 

12 end for; 

13   return PedestrianToFollow; 
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end Find_Most_Similar_Pedestrian. 

Figure 4.1 Procedure of finding the most similar pedestrian. 

 

The procedure shows that only nearby pedestrians who belong to the different 

group are considered as candidates. Leader i selects the one with greatest similarity 

value to follow. Once a valid PedestrianToFollow (≠φ ) is found, GPi and GDi for leader i 

is the position and moving direction of PedestrianToFollow respectively. Otherwise, 

leader i will not follow any pedestrian from other groups.  

 

4.4 Calculation Of Agent Motion Parameters 

The focus of the group model is to calculate the two vectors, the following vector and 

aggregation vector, which guides agents to maintain both intra-group connections and 

inter-group relationships. This section shows how to calculate the two vectors with the 

value of GP and GD (calculated in previous two sections). Fig.4.2 shows a scenario 

where the two vectors of agent s are presented. Without loss of generality, suppose 

agent s is moving horizontally from right to left. The elliptical area represents a 

perception model of each agent (see section 2.3 for the perception model). Pedestrian c, 

d, and e are neighbors in the perception range of s, where agent c, d, e and s belong to 

the same group. The black solid circle is denoted as the group position sGP that s should 

move towards. The side distance and center distance are denoted as sd and cd respectively. 
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Figure 4.2 Brief description of the following and aggregation vector. 

 

Let v1 and v2 be following vector and aggregation vector respectively. There are two 

assumptions. One assumption is that neighbors in perception range of s are c, d, and e, 

which have non-zero influence on s. The other assumption is that the direction of v1 is 

the average moving direction of those neighbors.  

Eq. 4.6, Eq. 4.7, and Eq. 4.8 show the calculation of v1.  Speed is the current moving 

speed of agent s, and a is the direction indicated by GDs. For a group leader, it follows 

the moving direction of PedestrianToFollow; while for group members, they follow the 

average moving direction of nearby neighbors in perception range. 
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The calculation of v2 is shown in Eq. 4.9 - Eq. 4.12. a is the direction from s to GPs. If s 

is a group leader, factor is calculated through Eq. 4.11. Otherwise, factor is calculated 

through Eq. 4.10. The Euclidian distance from s to PedestrianToFollow is denoted as dist. 
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For each agent, it moves towards GP and tries to keep the distance from the agent to GP 

within DesiredDist. For group members, they also move towards each other to satisfy 

the predefined CenterDist and SideDist.  
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The overall speed vector v to govern the maintaining group behavior is the vector 

addition of v1 and v2 as shown in Eq. 4.13. For an agent s, it will try to move towards GPs 

to keep within DesiredDist (not shown in Fig. 4.2), and try to follow the direction GDs. In 

this way, both the intra-group connections and the inter-group relationship can be 

maintained. 

 

4.5 Case Study - Simulating Social Groups 

This section describes a case study of developing three groups using the developed 

framework. Three social groups, a linear group, a leader-follower group, and a mixed 

group, are demonstrated.   

In the linear group, members of the same group move in a line formation. Each 

group member follows another member. The intra-group matrix I is defined in Eq. 4.14, 
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which indicates that member i will follow the member j with an ID which is one less 

than the ID of member i. 
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In the leader-follower group, members follow the group leader during the 

movement. The intra-group matrix I is defined in Eq. 4.15, which indicates that all 

members will move close to the leader. 
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In Eq. 4.14 and Eq. 4.15, c is a positive real number defined in (0.0, 1.0], which 

indicates the member-to-member influence strength. In both groups, the group leader 

finds the path and moves forward. Fig. 4.3, Fig. 4.4, and Fig. 4.5 show three groups, 

linear, leader-follower and mixed respectively.  Seven agents with ID from 0 to 6 are 

included in each group. The agent with ID 0 is the group leader (displayed with red 

label).   For each group, the intra-group matrix and a simulation scenario are given. 

Blank cells in intra-group matrices indicate the corresponding elements being 0.0. These 

three figures show how to use an intra-group matrix to present the desired group and 
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  3  2 1  0  6  5 4 

use the proposed framework to simulate it.  Groups are created and simulated in three 

simple steps. 

 

 Step 1: Express the group as a network structure (Fig. 4.3-4.5(a)).  

 Step 2: Express the relationships between network nodes in the intra-group matrix 

(Fig. 4.3-4.5(b)).  

 Step 3: Simulate the group (Fig. 4.3-4.5(c)).  

 

 

 

ID 0 1 2 3 4 5 6 

0        

1 1       

2  1      

3   1     

4    1    

5     1   

6      1  

 

(a) Linear group shape (b) Intra-group matrix (c) Simulation scenario 

 Figure 4.3 A linear group. 

 
 

ID 0 1 2 3 4 5 6 

0        

1 1       

2 1       

3 1       

4 1       

5 1       

6 1       

 

(a) Leader-follower group shape (b) Intra-group matrix (c) Simulation scenario 

Figure 4.4  

Figure 4.4 A leader-follower group. 
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ID 0 1 2 3 4 5 6 

0        

1 1       

2  1      

3   1     

4    1    

5    1    

6    1    

 

(a) Mixed group shape (b) Intra-group matrix (c) Simulation scenario 

Figure 4.5 A mixed group. 

 

 

Note that the mixed group consists of both linear and leader-follower subgroups.  In 

Fig. 4.5, agents with ID 0, 1, 2, and 3 form a linear subgroup where agent 3 follows 

agent 2, agent2 follows agent 1, and agent 1 follows agent 0. While agent 3, 4, 5, and 6 

form a leader-follower subgroup where agent 4, 5, and 6 follow agent 3. 

 

4.6 Case Study – Effect of Grouping On Crowd Behaviors 

Once we have created social groups, we can study the effect of various factors on 

crowd’s grouping behavior. Specifically this section explores how different parameters, 

e.g. the strength of intra-group connections, the strength of inter-group relationships, 

and group size, affect the crowd movement. Two typical groups, a linear group and a 

leader-follower group, are considered (see the previous section for details). Moreover, 

the effect of the strength of intra-group connections and the strength of inter-group 

relationships on pedestrian flow will also be explored.  

 

4.6.1 Effect of member-to-member influence strengths on crowd behavior 

  4 

 6  5 

 3  2 1  0 
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 To show the effect of member-to-member influence strengths, a linear group under 

four intra-group matrices is considered: one with all elements in the intra-group matrix 

being 1.0, one with all elements in the intra-group matrix being 0.7, with all elements in 

the intra-group matrix being 0.4, and the other with elements being 0.1. The effect of 

intra-group influences is measured by the average distance, from group members of the 

first group to its group center GP. The crowd contains 10 groups, each of which has 6 

agents. To only show the effect of intra-group influence strengths, there is no inter-

group relationship between groups, i.e. elements of inter-group matrix are set to zero. 

Fig. 4.6 (a) shows a simulation scenario of a full member-to-member influence on 

crowd behavior. The average distance from members of the first group to its group 

center, for the four intra-group matrices, is shown in Fig. 4.7. For all four intra-group 

matrices, the average distance is measured over same simulation time interval. In 

Fig.4.7, “I=C” represents the case that all elements in the intra-group matrix are C. As 

can be seen, intra-group influence strength affects the crowd movement. The greater the 

intra-group influence strengths, the smaller the average distance since the greater the 

intra-group influence weights, the more compact the group will be, thus the average 

distance is less than that of smaller intra-group influence strengths. For example, the 

average distance of the case “I=0.7” is less than that of the case “I=0.4”.  For the 

comparison purpose, a simulation of the crowd without social groups is shown in Fig. 

4.6 (b). Correspondingly, the average distance for the crowd without social groups 

(I=0.0) is also shown in the topmost curve in Fig. 4.7. In this case, the average distance is 
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the mathematical average of the distance from the first 6 members to the center of these 

members.  As can be seen in Fig. 4.7, the crowd without social groups has greater 

average distance than the crowd with social groups, since without social groups, each 

individual moves randomly and no specific group will be formed.  

 

       

      (a)A simulation scenario for linear group with I=1.0 (b) Crowd simulation without social groups 

Figure 4.6 Simulation scenarios for pedestrian crowds with and without social groups. 
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Figure 4.7 Average distance from members of the first group to its group center. 

 

4.6.2 Effect of group-to-group influence strengths on crowd behavior 

Besides intra-group connections, inter-group relationships also have effect on crowd 

behavior. The effect is shown in Fig. 4.9 where four inter-group matrices: one with all 

elements in the inter-group matrix being 1.0, one with all elements in the inter-group 

matrix being 0.7, with all elements in the inter-group matrix being 0.4, and the other 

with elements being 0.1, are studied. The crowd contains 10 groups, each of which has 6 

agents. Each group takes a leader-follower group with all elements of the intra-group 

matrix are 1.0 (c=1.0 in Eq. 4.15).  

The effect of inter-group relationships is measured by the number of clusters at a 

specified simulation time. The rationale is that, the greater the inter-group relationship, 

the more likely two groups will move together and a larger cluster will be formed. Thus 

the number of clusters can represent the strength of group-to-group relationships. Each 

cluster could contain several groups. The calculation of the number of clusters is based 

on the QT (quality threshold) clustering algorithm presented in the work of [55] where 

the closest distance between two clusters is no more than the quality threshold, which is 

8 times the pedestrian radius R. Procedure of the modified QT clustering algorithm is 

shown in Fig. 4.8. Once pedestrian j is added into a cluster, the members (including the 

leader) of the group which agent j belongs to are also added into the same cluster since 

group members generally stay together during the movement.  
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procedure QT_Modified_Clust(G, d) 

1  if |G| ≤ 1 then output G, else do 

2    for each i ∈G 

3         set flag = TRUE; set Ai = {i}; /* Ai is the cluster started by i*/ 

4         while flag= TRUE and Ai ≠ G 

5   find j ∈ (G - Ai) such that diameter(Ai ∪ {j}) is minimum; 

6   if diameter(Ai ∪ {j}) > d 

7     then set flag = FALSE; 

8     else  /* Also add all members of the group to cluster Ai*/ 

9             find all members (including the leader) T of the group 

which j belongs to; 

10             for each t ∈ T  

11              if t∉  Ai then set Ai = Ai ∪ {t}; 

12             end for; 

13         end while; 

14    end for; 

15    identify set C ∈ {A1, A2, …, A|G|} with maximum cardinality; 

16          output C; 

17    call QT_Modified_Clust(G - C, d); 

end procedure QT_Modified_Clust. 
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Figure 4.8 Algorithm QT_Modified_Clust takes as input the set G of pedestrian positions and a diameter 

threshold d, and returns a set of clusters. 

 

   

 (a)E=0.1, Number of clusters=9                  (b) E=0.4, Number of clusters=6 

 

   

 (c)E=0.7, Number of clusters=5                                       (d) E=1.0, Number of clusters=3 

Figure 4.9 Effect of inter-group relationships on crowd behavior. 

 

In Fig. 4.9, “E=C” represents the case that all elements in the inter-group matrix are 

C. We can see that, as the inter-group relationship becomes greater, the number of 

clusters is decreasing.  Since the greater the inter-group relationship, the more likely a 

group leader will follow other groups, and the closer the group leader  will move 



73 

 

towards other groups, as well as the higher probability that a larger cluster will be 

formed. For example, when the inter-group relationship is 1.0 (see Fig.4.9 (d)), many 

groups move together and a large cluster is formed, and the number of clusters is much 

less than that of other three cases.  

 

4.6.3 Effect of group size on crowd behavior 

As indicated by the work of [41], group size may also affect the crowd movement. 

To only explore the effect of different group sizes, the inter-group relationship E is set 

as 0.0 and intra-group connections I is set as 1.0. The effect of group sizes is measured 

by the number of clusters which is calculated in the same way as that in previous 

section. Fig. 4.10 presents a simulation scenario of a grouped crowd where group size is 

10. The number of clusters for different group sizes is shown in Fig. 4.11. 

 

 

Figure 4.10 Clusters forming for groups of size 10. 
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Figure 4.11 Number of clusters for different group sizes. 

 

As can be seen, the larger the group size, the fewer the formed clusters, because it is 

more likely that pedestrians will follow each other. When the group size is large enough 

(greater than or equal to 12), the number of clusters is same as the number of groups, 

since pedestrians in the large group cannot move so freely as that in the small groups, 

and the probability that pedestrians follow each other is less than the small groups. 

 

4.6.4 Effect of grouping on pedestrian flow 

Designing experiments for pedestrian crowd simulation is a challenging task, since 

many input factors and output responses, and their relationships should be considered. 

An interesting work related to experimental design, as well as the identification of the 

process variables of interest, is proposed by Daamen et al. [56]. To simplify the 

experiments, only the effect of intra-group connections, inter-group relationships and 
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group sizes, on one of two principal characteristics of pedestrian movement, the flow is 

explored.  

Pedestrian flows are important in the design of pedestrian facilities, such as 

shopping mall, bus station, museum, and so on. The simulation includes 60 agents 

which are situated in a circular rectangle-shaped hallway environment with the size 600 

in length and 200 in width. A simulation scenario of the environment is shown in 

Fig.4.12, where the lane width is 50. 

 

 

Figure 4.12 A circular rectangle-shaped hallway environment. 

 

To calculate the flow, a virtual “gate” is defined in the hallway (in the middle of top 

most lane), and monitored agents that move through them during a specified 

simulation time interval. Similar to the work of [39, 57, 58], the flow is then calculated as 

the number of agents passed by the “gate” divided by the length of the simulation 

interval. Two experiments are designed to show the effect of intra-group connections, 

inter-group relationship, and group sizes on pedestrian flow. 
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One experiment explores the relationship between intra-group connections/inter-

group relationships and pedestrian flow. There are four intra-group or inter-group 

matrices for the linear group: one with all elements in the inter-group matrix being 1.0, 

one with all elements in the inter-group matrix being 0.7, with all elements in the inter-

group matrix being 0.4, and the other with elements being 0.1. Each group contains 6 

agents. To explore the effect of intra-group connections, the inter-group relationships E 

is set to 0.0 to eliminate the effect of group-to-group relationships on crowd behavior. 

While in exploring the effect of inter-group relationships, elements of the intra-group 

matrix I are set as 1.0. Fig.4.13 shows the pedestrian flow under different intra-group or 

inter-group matrices. The upper curve represents the relationship between pedestrian 

flow and inter-group relationships. The other curve represents the relationship between 

pedestrian flow and intra-group influences. The pedestrian flow decreases as the intra-

group influence strengths or the inter-group relationships decrease. The smaller 

influence strengths or relationships, the less desire an agent will follow others, thus the 

fewer agents passing the “virtual” gate.  
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Figure 4.13 Pedestrian flow under different inter-group or intra-group matrices. 

 

The other experiment explores the relationship between group sizes and the 

pedestrian flow. The inter-group relationship E is set as 0.0 and intra-group connections 

I is set as 1.0. Fig. 4.14 shows the effect of group sizes on pedestrian flow under the 

leader-follower group shape. X and Y axis represent group size and the corresponding 

pedestrian flow respectively.  

 

 

Figure 4.14 Pedestrian flow under different group sizes. 
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When the group is not so large, the pedestrian flow increases as the group size 

increases. Otherwise, the pedestrian flow decreases as the group size increases. It is 

because, when the group is not so large, the larger the group sizes, the more agents will 

pass the “virtual” gate thus the flow becomes larger. However, when the group 

becomes very large, more effort will be needed on the group formation and obstacle 

avoidance, and the agents passing the “virtual” gate are fewer than those of the smaller 

group sizes. 

The two experiments show that the pedestrian flow decreases as the intra-group 

influence strengths or the inter-group relationships increase. The experiments also show 

that when the group is not so large, the pedestrian flow increases as the group sizes 

increase. Otherwise, the pedestrian flow decrease as the group sizes increase.  

 

4.7 Discussions 

In the framework, MaintainGroup is one of the three behaviors. An agent maintains 

its group only when the MaintainGroup behavior is selected. This may result in 

situations such as the MaintainGroup behavior is not selected thus causing agents do not 

maintain their groups. For example, in the very crowded environment, a group can be 

separated by members from other groups. In such situation, collision avoidance will 

have a higher priority which makes the agent avoid collision with others, rather than 

maintain its group.  One of extensions is thus to let an agent maintains its groups while 

avoids the approaching obstacles and other agents. 
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Built on the current work, several other extensions can be developed for more 

advanced group modeling.  

First, the current model assumes a static group (as specified by the intra-group and 

inter-group matrices) that is maintained through the whole simulation. It also assumes 

a preselected leader that is not dynamically replaced by others. In other words, the 

current work does not concern how groups are formed and how they will be 

dynamically changed. Thus another extension of the current work is to support 

dynamic group formation and dynamical change of the groups. This extension is 

illustrated in next chapter which shows an application of the developed group model, 

i.e. a dynamic group model which studies the dynamic grouping behavior in pedestrian 

crowd simulations. 

Group formation decides who belong to the group and the relationship between 

members. Leader selection is part of that decision too. In the current model, without 

loss of generality, the leader is preselected as the first individual of a group. In more 

advanced simulations the leader might be changed during the simulation. For example, 

the leader can be replaced by the member who is more familiar with the surroundings 

when an emergent situation happens. 

During the simulation, agents’ groups can also be dynamically changed. For 

example, a “clustered” group can be dynamically changed to a “linear” group when a 

group approaches a narrow entrance of a building. Besides these factors, groups can 

also be dynamically formed and/or evolved by the change of group members and 
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intra-group connections. For example, a group member may leave the group and join 

another group; groups may be dynamically divided into multiple groups or combined 

together into a single group. In all these situations, the computation of the intra-group 

matrix and inter-group matrix depends on the desired relationships among group 

members that are application specific.  

To extend the current work to support these kinds of dynamic grouping features, a 

dedicated context modeling layer of social or psychological models, such as the Five 

Factor Model (see [36-38] for more details) can be used to support the decision of group 

formation and dynamic groups (see Fig.2.1, the work of [59], and Chapter 5 for details). 

This layer calculates the intra-group and inter-group matrices and updates them in each 

agent. At the bottom layer, based on these matrices, an agent computes its group 

position and group direction in the same way as described before.  

Another extension of the current work is to extend the three-level structure of crowd, 

crowd, group, and individual, considered in the current model to include more levels in 

a hierarchical manner. For example, a cluster level can be added on top of the group 

level: a crowd can include multiple clusters, each of which includes multiple groups. In 

this case, the model can be extended to have not only inter-group/intra-group matrices, 

but also inter-cluster/intra-cluster matrices.   

Future extension will also include improvement of the performance of large-scale 

group-based crowd simulations. By adding the group semantics, crowd simulation 

would take extra memory space to store intra-group and inter-group matrices. Also, 
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group-based crowd simulations would be slower than those without social groups since 

more logics are involved. The performance might be possibly improved on the basis of 

the work of exploiting the spatial-temporal heterogeneity existing in pedestrian crowds 

[60] which is derived from the work of [61]. The work of this extension is carried out in 

Chapter 6 which develops an efficient discrete event based simulation engine by 

exploiting the crowd system’s heterogeneity resulting from agents’ different moving 

speeds.
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CHAPTER 5 

DYNAMIC GROUPING USING THE FRAMEWORK  

 

5.1 Introduction  

Chapter 4 introduces our group model which studies static groups, i.e. intra-group 

connections and inter-group relationship are not changed during the simulation. In another 

word, the group model does not concern how groups will be dynamically changed. It is 

necessary to simulate the dynamic nature of social groups since dynamic groups 

commonly exist in our daily life. For example, a “clustered” group can be dynamically 

changed to a “linear” group when a group approaches a narrow entrance of a building. 

It is a usual case that a group member may leave the group and join another group; 

groups may be dynamically divided into multiple groups or combined together into a 

single group. Groups are dynamically changed due to various factors such as the spatial 

distance (i.e. Euclidian distance), similar goal (i.e. evacuation from emergent situation), 

social proximity (i.e. family members), and so on.  

This chapter studies the dynamic grouping behavior in agent-based pedestrian 

crowd simulations. A dynamic group model is developed by using our proposed 

framework. One assumption of this model is that initially each agent belongs to a group 

which consists of itself only. This model focuses on simulating dynamic group 

formation, i.e. a group member may leave the current group and join another group; a 

group member may leave the current group and start with a new group of itself; a 
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group member may also stay with the current group. The dynamic group formation is 

achieved through a two-step procedure, agent-to-group interaction and agent-to-agent 

interaction. In every simulation time step, agent-to-group interaction represents the 

procedure where an agent decides which group to follow, and agent-to-agent 

interaction represents the procedure where the agent decides which agent (from the 

selected group) to follow. Note that, if no group is selected to follow, an agent will start 

with a new group of itself.   

To create a realistic simulation, the dynamic group formation is driven by artificial 

intelligence and social theory which are included in a two-tiered context model. 

Artificial intelligence allows pedestrian agents to behave adaptively in the ever 

changing environment. However, there is little work integrating the effect of artificial 

intelligence in the study of social groups. This chapter utilizes one of artificial 

intelligence theory – utility theory to capture agents’ preferences in movement decision 

taken in the group-to-agent procedure based on the assumption that agents will act 

rationally even in a ever-changing environment (see the following sections for details). 

This chapter also utilizes one of social theories – social comparison theory to model the 

agent-to-agent procedure. These two theories are included in the two-tiered context 

modeling layer which captures the dynamics of both group-to-agent and agent-to-agent 

interactions. Such dynamics are specified through a set of predefined mathematical 

formulas which are designed according to the two theories. At every time step, the 
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formulas are evaluated, the results of which are used to drive the dynamics of the intra-

group connections and inter-group relationships.  

Experiments show that the developed dynamic group model can be used to simulate 

dynamic group formation and different types of social groups can be simulated 

dynamically.   

  

5.2 Context Modeling 

In this dynamic group model, content modeling layer incorporates two theories – 

Utility theory and Social comparison theory which allows pedestrian agents to adapt to 

the external environment.  

Utility theory provides a formal framework for specifying the preferences, or 

utilities, of agents’ potential actions under uncertain worlds. It is an important 

component in decision theories which assume that a person, even under a dangerous 

situation, can still make rational decisions [62] (this is also the assumption of the 

dynamic group model).  

The dynamic grouping behavior of pedestrian agents can be modeled with utility 

theory. Pedestrian crowd simulation is often featured with an ever changing and 

complex environment due to the non-linear interactions among pedestrians. In such 

environment, the adaptability is critical for pedestrians to behave rationally to create 

realistic simulations. In this dynamic group model, the adaptability refers to the 

capability of performing appropriate group behavior at different time steps. There are 
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three types of group behaviors including staying with the current group, following 

another group (i.e., leave the current group), and starting a new group. Staying with the 

current group indicates that a pedestrian agent does not want to change its group 

profile. Following another group indicates that a pedestrian agent changes to a different 

social group. Starting a new group indicates that a pedestrian agent forms a new group 

which consists of itself only at the current time step. The decision of which group 

behavior to perform is based on comparing the degree of desirability of the three group 

behaviors. The desirability is specified through a set of utility functions. At each time 

step, utility functions are evaluated and the returned values are compared. Pedestrian 

agents perform the group behavior which has a greater desirability value. If two values 

are the same, agents stay with their current group. 

The other theory used in modeling group behaviors is Festinger’s Social comparison 

theory. The basic idea is that, after the decision among following another group, staying 

with the current group, and starting a new group, has been made, a pedestrian agent 

follows a member from the target group. The member followed by the pedestrian is the 

one which is most similar with the pedestrian. The similarity is calculated according to 

Eq 4.3 and 4.4. Note that, there are many strategies of selecting which group member to 

follow. For example, the pedestrian would follow the predecessor of the selected 

member if the selected pedestrian has a predecessor (the pedestrian followed by the 

selected member). As demonstrated in Section 5, different strategies lead to different 

dynamic groups, such as the leader-follower and linear group. Grouping has significant 
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effect on crowd behaviors (see the work of [13] for details on group modeling and the 

effect of grouping on crowd behaviors). 

Utility theory and social comparison theory form a two-tiered context modeling 

layer of the dynamic group model as illustrated in Fig. 5.1, where the top and bottom 

rectangles indicate the top and bottom tier, respectively. The top tier models agent-to-

group procedure on the basis of utility theory. The bottom tier models agent-to-agent 

procedure which is based on social comparison theory. 

 

 

    

 

 

 

Figure 5.1 A two-tiered context modeling layer. 

 

Fig. 5.1 illustrates the dynamic grouping behavior of agent i at some time step t. The 

solid dot represents agent i. Circles PPi (i=1-5) indicates the nearby groups which agent 

i can perceive (the nearby groups are detected through agent’s perception model, see 

Fig.2.2 for details). Assume at the first step of agent-to-group procedure, agent i decides 

to follow group PP4. As mentioned above, the decision is based on comparing the 

returned values of utility functions. Agent i performs the group behavior whose utility 

  
PP 1  PP 3  

PP2  PP4   PP5   

Agent i  

Agent  i 

Within group   
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function has greatest returned value. Then agent i goes to next step of agent-to-agent 

procedure which decides which member (from PP4) to follow. The outer circle in the 

bottom rectangle indicates the selected group PP4. The dots inside the outer circle 

represent members in the group PP4 which agent i can perceive.  

In Fig.5.1, the top tier provides the grouping context for the bottom tier to execute 

the second step. The grouping context includes the information of its members, e.g. the 

position which provides useful information for agents to decide the most similar 

counterpart (see details in the following sections). If agent i decides to stay with its 

current group (not shown in Fig. 5.1), the second step is fulfilled between agent i and 

other members in the same group as agent i. Otherwise, if agent i decides to start a new 

group, it will not go through the second step of the agent-to-agent procedure. 

Note that, it is possible to create the context modeling layer using other theories or 

models. Fig.5.1 only shows one context model on the basis of utility theory and social 

comparison theory. The purpose is to demonstrate how to create a context modeling 

layer which can be used to model agents’ dynamic grouping behavior. It is our belief 

that this context model can produce realistic grouping behaviors. 

 

5.3 Dynamic Group Modeling 

In order to model agent-to-group and agent-to-agent interactions, several important 

parameters are introduced as follows. 
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• Uf and Us represent an agent’s utility/preference of joining another group and 

staying with the current group, respectively. Note that if both Uf and Us are less than a 

threshold Uthreshold, the agent will start a new group which consists of itself. 

• Sociality indicates how social an agent is. The greater the value, the more likely 

the agent will join another group. Sociality is a normalized real number in the range of 

[0, 1].  

• Similarity represents agents’ similarity value, which is bounded by a predefined 

minimum value Smin and a predefined maximum value Smax. 

 

5.3.1 Modeling agent-to-group interactions 

The agent-to-group interaction decides which group to follow at the current time 

step. As discussed above, an agent can join another group, stay with the current group, 

or start a new group. The decision is made through utility theory. The basic idea is that 

if both Uf and Us are less than a threshold Uthreshold, the agent will start a new group 

which consists of itself only. Otherwise, the agent will join another group if Uf > Us and 

stay with its current group if Uf <= Us.  

The calculation of Uf and Us for agent i is described in Eq.5.1-Eq.5.5. c and 

DesiredDist are constant numbers. Duration is the number of time steps agent i has 

stayed with its current group. It will be reset to 0 once the agent joins another group or 

starts with a new group. Threshold indicates the maximum number of steps within 

which agent i can join other groups. c is a constant number. Eq. 5.1 shows that the 
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distance between agent i and the nearby group GPj is the distance between i and the 

closest agent j (belonging to the group GPj) . Uf  is the maximum utility of joining other 

groups as shown in Eq.5.3.  Eq.5.2 and Eq.5.3 show that the closer to the nearby group, 

the more desirable to follow the group. The longer an agent has stayed with its group, 

the more desirable it will still stay with its group as illustrated in Fig. 5.3 and 5.4.  
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Fig.5.5 shows that when the agent is more desirable to join another group, it will join 

the group with the maximum utility Uf. 

 

5.3.2 Modeling agent-to-agent interactions 

The agent-to-agent interaction decides which member to follow from the selected 

group. This step is skipped when an agent decides to create a new group consisting of 

itself. The agent-to-agent interaction is modeled on the basis of social comparison 

theory [40]. The basic idea is to select a member (from the selected group GPToJoin) that 
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has greatest similarity as the one that has greatest influence on the agent and let the 

agent follow the selected member. The specific process is described as follows.  

Assume i and j are two agents. vi and vj is the velocity of agent i and j respectively.  vl 

and vm is the vector pointing from agent i’s current position to the position of the 

selected member and agent i’s destination, respectively. Eq.5.6-Eq.5.8 show the agent-

to-agent interaction process for agent i. a and b are two constant numbers. For each 

agent j which belongs to the selected group GPToJoin and is in the perception range of 

pedestrian i, the similarity between i and j is calculated using Eq.5.6. As can be seen, the 

greater the agent i’s sociality, and the closer the distance between i and j, the more likely 

agent i will follow agent j. The moving direction also has effect on the similarity value. 

Pedestrian agents prefer to follow the pedestrian moving in the same direction. The 

agent will follow the one with the greatest similarity as calculated in Eq.4.4 and Eq.4.5. 

If no such agent exists, agent i will not follow any agent. Once the most similar agent is 

decided, one can calculate the possibility that agent i will follow the agent, as well as the 

influence strength of the agent on agent i.  The calculation is described as follows. 
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The possibility that agent i will follow agent j is calculated according to Eq. 5.9. 

Similarity represents the similarity value between i and the selected agent j. Smax and 

Smin is the predefined maximum and minimum similarity value, respectively. As can 

be seen, the greater the similarity, the more likely agent i will follow the selected agent j. 

Notice that, the possibility is a real number within the range [0, 1]. 

 

)9.5(                        min)max/(min)( SSSSimilarityyPossibilit ii −−=

 
 

Eq.5.10 shows the calculation of the weight of influence which the selected agent j 

will enforce on agent i. ξ  is a small number which represents the noise applied in the 

calculation of forces. ran_num is a random number generated by a random number 

generator. t is proportional to the ratio of the distance between agent i and j, and a 

predefined desired distance. As can be seen, the greater the possibility i, the larger the 

distance between i and j, the greater the weight will be.  
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Note that, if no agent is selected to follow, or the similarity value is out of the 

specified range [Smin, Smax], the weight will be 0 and pedestrian i will not follow any 

agents.  
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5.3.3 Inter-group and intra-group matrix 

To make the dynamic group model be simple, the inter-group relationships are not 

considered. However it is possible to integrate the inter-group relationships by 

studying the group-to-group relationships in this dynamic group model. 

The dynamic group formation is studied through the agent-to-group and agent-to-

agent procedures. These two procedures setup the intra-group connections between 

agents. At each time step, a pedestrian agent computes the similarity between itself and 

each member in the group GPToJoin (Eq. 5.6-Eq.5.8). The possibility and weight of the 

following behavior will also be calculated (Eq. 5.9-Eq.5.11).  The normalized value of the 

greatest weight (of [0.0, 1.0]) represents the current intra-group connections of the agent. 

Specifically, the intra-group matrix for agent i at time step t is calculated in Eq. 5.12.  
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Note that agent i only has intra-group connection to the most similar agent  j. Unlike 

the intra-group connections presented in Chapter 4, the intra-group connection in this 

dynamic group model is constantly changed during the simulation.  

 

5.4 Experiments And Result Analysis 
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This section presents two experiments which explore the developed dynamic group 

model. The first experiment evaluates whether the developed model can simulate 

dynamic grouping in pedestrian crowds. The second experiment studies the effect of 

sociality on crowd behaviors. In the experiments, the crowd contains 60 agents which 

are situated in a circular rectangle-shaped hallway environment with the size 600 in 

length and 200 in width. A simulation scenario of the environment is shown in Fig.5.2, 

where the lane width is 50. The green and gray circles represent agents in and not in 

maintaining groups at the current simulation cycle, respectively. The number in circles 

indicates the ID of the agents.  

 

 

Figure 5.2 A circular rectangle-shaped hallway simulation environment. 

  

5.4.1 Experiment 1 - Simulation of dynamic groups and two groups 

This experiment studies the dynamic grouping behavior in pedestrian crowds using 

the developed dynamic group model.  
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Figure 5.3 A simulation scenario of dynamic grouping in a linear style. 

 

 

Figure 5.4 A simulation scenario of dynamic grouping in a leader-follower style. 

 

Fig. 5.3 shows a simulation scenario of agents’ dynamic grouping in the simulation. 

Half of agents move clockwise while others move anti-clockwise. All agents have the 

sociality 1.0. Each agent follows the member which is most similar with the agent. The 

crowd contains linear groups where members follow each other in a line formation. 

Note that other groups can also be simulated by changing the agent-to-agent procedure. 

Fig. 5.4 shows another simulation scenario of dynamic grouping in crowds. Different 

from Fig. 5.3, each agent follows the predecessor of the member which is most similar with 

the agent. The crowd contains leader-follower groups where a single member is 

followed by other members. 

 

5.4.2 Experiment 2 - The effect of sociality on crowd behaviors 
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This experiment explores the effect of sociality on dynamic grouping behavior in 

pedestrian crowds. Intuitively, the greater sociality, the more likely an agent will 

interact with others and the closer agents will move together. Fig. 5.5 shows the 

relationship between sociality and the average distance between members in dynamic 

groups. The average distance is calculated as the average of distances between members 

in all dynamic groups during 50 cycles starting at the cycle 2850. Five cases are tested. 

For each case, all agents are set to have same sociality. In this experiment, the desired 

distance desired_dist is set to be 30 (see Eq.5.8 for details). As can be seen, the greater the 

sociality, the closer agents move together, and the average distance decreases linearly as 

the sociality of pedestrian agents. 
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Figure 5.5 The effect of sociality on the average distance between members in dynamic groups. 

 

5.4.3 Analysis of the experimental results  
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Experiments show that the dynamic group model can be used to simulate dynamic 

groups and to study the effect of social factors such as sociality on group behaviors. The 

two-tier context modeling layer allows pedestrian to adapt to external environments by 

integrating utility theory and social comparison theory. Note that the two tiers are 

loosely coupled, i.e. the change of one tier does not affect the other tier. For example, 

one can use other artificial intelligence theories to model the agent-to-group procedure 

simply by replacing the utility theory without requiring a change on the agent-to-agent 

procedure. The flexibility is illustrated in experiment 1 where different groups can be 

formed simply by changing the strategy of selecting which member to follow in the 

agent-to-agent procedure.  

 

5.5 Discussions 

This chapter developed a dynamic group model using the proposed framework. The 

dynamic group model studies the dynamic group formation through the agent-to-

group and agent-to-agent procedures. Several improvements such as integrating the 

inter-group relationships, removing the assumption that initially each agent belongs to 

a group consisting of itself, are likely to be made to create a more dedicated group 

model. Such improvements are not the focus of this chapter.  

The purpose of this chapter is to show the applicability of the proposed framework 

by specifying the different layers according to the specific domains.  The two-tier 

Context Modeling Layer illustrates the flexibility in studying the effect of various social, 
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psychological, and artificial intelligence theories on crowd behaviors. The Group 

Modeling Layer demonstrates the simplicity in developing intra-group connections and 

inter-group relationships.  Different group-related applications can be developed by 

specifying different Context Modeling Layer and Group Modeling Layer. 
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CHAPTER 6 

AN EFFICIENT DISCRETE EVENT SIMULATION ENGINE 

 

 6.1 Introduction 

As pedestrian crowd simulation systems become pervasive, the scale of pedestrian 

crowd model also increases.  For example, New York City has several million people 

[63]. However, current sequential simulations can support at most a population size of 

several thousand [64, 65]. Besides, to create accurate simulations, people tend to use 

sophisticated decision-making model which generally downgrade the simulation 

efficiency. It is necessary to improve the performance of simulation engine in order to 

support the simulation of large-scale pedestrian crowds. 

Most of the pedestrian crowd models adopt the discrete time based approach where 

the simulation proceeds in a discrete time manner, where each agent performs a 

movement decision to decide its next movement in each time step. Although the 

discrete time based simulation approach is easy to understand, it is inefficient since 

every agent makes a decision at every time step, regardless of the agent’s individual 

difference such as movement speed, age, sex, and so on. For example, considering two 

agents situated in a large environment where one agent moves 10 times slower than the 

other. In a discrete time based approach, both agents make a movement decision in 

every time step. This is independent of the agent’s speed. However, since one agent 

moves much slower than the other, intuitively one would think that the slower agent 
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does not need to make movement decisions as frequently as the fast one. In extreme 

cases where the movement of pedestrian agents is fully blocked, e.g. in the extremely 

dense pedestrian crowd, there is no movement decision needed to be made. It is 

difficult for the discrete time based approach to exploit such information, i.e. agents’ 

individual differences. A more computationally efficient way of simulating the two 

agents is to allow the fast agent to make movement decisions more frequently and the 

slow agent to make movement decisions less frequently. In pedestrian crowd 

simulations with realistic human-like behaviors, agents typically have non-uniform 

movements due to different individual characteristics such as moving speed, 

personality, the psychological states (e.g., panic, non-panic),  and other factors. These 

non-uniform movements result in spatial and temporal heterogeneity in terms of 

agents’ movement decisions. Thus it is desirable to explore such heterogeneity for more 

computationally efficient simulations, especially for the large-scale pedestrian crowd 

simulations. For example, it is desirable to create efficient simulation for the crowd 

containing a lot of social groups. 

In this chapter, we developed a discrete event based simulation approach which is 

efficient for the simulation of heterogeneous pedestrian crowds. The discrete event 

based approach is featured with a discrete event model which uses a concept of “space 

resolution”, which defines the threshold of an agent’s position change in the 

environment, to decide the frequency of an agent’s movement decisions. With the space 

resolution, an agent’s position change less than the space resolution threshold does not 
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trigger its movement decision. Nor does it trigger the message passing from the agent 

to others. As a result, agents that move slowly make movement decisions less 

frequently than the fast agents. This concept of “space resolution” is derived directly 

from the quantization and activity concepts presented in [66]. The value of the space 

resolution has significant impacts on the crowd behavior simulation.  

On one hand, the larger the space resolution is, the less frequently agents make 

decisions, and thus the more efficient the simulation is. On the other hand, the space 

resolution means that an agent does not update its position until its position change 

bypasses the space resolution threshold. This introduces position errors in the crowd 

simulation. The larger the space resolution is, the larger the position errors are, and thus 

the less accuracy the simulation is. Note that similar kind of relationships also exists in a 

discrete time model, whose efficiency and precision depend on the value of the time 

step. A main effort of this chapter is to establish a formal “fair-comparison” rule that 

quantifies the position errors of both the discrete time and discrete event models, and 

conduct experiments from different aspects to compare the two. Note that both the 

space resolution in the discrete event model and the time step in the discrete time 

model are global variables shared by all agents. In our work, the number of decisions 

taken is used as an indicator of simulation performance. This is based on the 

observation that an agent’s decision making component usually involves complex 

logics, and thus accounts for the most significant part of computation in a simulation. 

The work is carried out based on the DEVS [67] modeling and simulation framework, in 
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particular the DEVSJAVA environment [68]. The DEVS framework was chosen due to 

its formal formalism and its capability of modeling both the discrete time and discrete 

event models. Nevertheless, note that the model design and the conclusions drawn in 

this research are general and do not rely on the DEVS framework. 

 

6.2 Discrete Time and Discrete Event Simulation Model 

The developed discrete event model represents a different modeling approach for 

pedestrian crowd simulations. Discrete time and discrete event simulation model are 

abbreviated as DTS and DES, respectively. This section presents the DES model and 

compares it with a DTS model. Both the DES model and the DTS model are 

implemented based on the DEVS modeling and simulation framework [67], in 

particular the DEVSJAVA environment [68]. The DEVS framework was chosen due to 

its formal formalism and its capability of modeling both the discrete time and discrete 

event models.     

 

6.2.1 DEVS modeling and simulation framework 

DEVS (Discrete Event System Specification) is a formal modeling and simulation 

framework featured with well-defined concepts, such as components, coupling, and 

hierarchical model composition. These concepts are expressed through a set of 

mathematical formalism which provides an approximation of dynamic systems using 

an object-oriented approach. One of the important objects in DEVS is the model. A 
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model is a set of instructions for generating data comparable to that observable in the 

real system [69]. In DEVS, the basic model is the atomic model which is described as a 

structure with several attributes: 

 

M = <X, S, Y, δint, δext, δcon, λ, ta> 

where, 

X : set of external input events such as a nearby agent notifies the source agent of 

its new position.  

S : set of sequential states, such as “make_decision”, “move” and 

“inform_neighbors” as illustrated later; 

Y : set of outputs such as agents’ new position; 

δint: S → S : internal transition function which is used to respond to the change 

of internal states. 

δext : Q × Xb → S : external transition function which is used to respond to the 

external event. 

δcon: Q × Xb → S : confluent transition function which handles the situation 

where an internal and external event occur at the same time. 

Xb is a set of bags over elements in X, 

λ : S → Yb : output function generating external events at the output; 

ta : S → R+: time advance function; 

Q = { (s,e) | s  S, 0 ≤ e ≤ ta(s) } is the set of total states where e is the elapsed∈  
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time since last state transition. 

 

Different models can be bound hierarchically through DEVS coupling mechanism. 

The result model is also called a coupled model. The constituted model could either be 

an atomic model or another coupled model. Models interact with each other through 

message passing. The source and destination model of the messages are specified by the 

coupling mechanism. One of the important features in DEVS is supporting the dynamic 

structure which refers to the capability of a simulation to dynamically change its model 

structure, such as the coupling information, as the simulation proceeds, through a set of 

predefined APIs [70].  

The capability of DS modeling makes it possible to study interaction intensive 

system, such as the pedestrian crowd simulation systems and other autonomous 

systems. This work uses the dynamic structure to model the ever-changing interactions 

among pedestrian agents. The dynamic interaction is achieved by setting up the 

coupling between an agent and its neighbors dynamically. That is, every time an agent 

wants to interact with the neighbors, its old coupling information will be replaced with 

a new one which allows the interaction with the desired neighbors.  

 

6.2.2 The DTS Model 

The DTS model for simulating pedestrian crowd is straightforward to understand. 

At every time step, each agent checks its environment (e.g., if a destination is reached or 
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if there are other agents in nearby locations), makes a decision to decide its next 

movement (e.g., move forward, or move sideways to avoid collision), and then carries 

out the movement action for this time step.  The movement action will change the 

agent’s position. Thus at the next time step, the agent goes through the same sequence 

again to check its environment, make a decision, and carry out the movement.  

To implement the DTS model in DEVS, each agent is modeled as a DEVS atomic 

model (see the work of [67] for the formal description of atomic model). Specifically, the 

model has two states “make_decision” and “update_position”. At the “make_decision” 

state, the agent checks its environment and makes a decision to choose a movement 

action. After that, the agent transits to the “update_position” state where its position is 

updated. The above procedure is performed for each time step. Fig. 6.1 shows the 

procedure which is implemented in the internal transition function deltint() of an agent.  

 

procedure deltint() 

   if state = “make_decision” then 

        check the environment; 

        perform a movement decision and select a movement action a; 

        holdIn(“update_position”, TimeStep);  

   else if state = “update_position” then 

        update position based on action a; 

       holdIn(“make_decision”,0.0); 
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   end if. 

end procedure deltint. 

Figure 6.1 Internal transition function of the DTS model. 

 

6.2.3 The DES Model 

Unlike the DTS model, an agent in the DES model does not make a decision at every 

time step. Instead, the movement decision is based on the changes in the environment 

and/or the changes of the agent’s own position (according to the space resolution). 

Whenever such a change happens, an agent checks its environment and makes a 

decision to choose a movement action (for example, move forward or avoid neighbor 

agents). Meanwhile, the agent informs its new position to its neighbors if its position 

change bypasses the space resolution. After a movement action is selected, the agent 

carries out the action until the next space resolution is reached or the agent is 

interrupted by messages from other agents. As a result, each agent performs its 

movement decision based on its “events” instead of a global time step.  

 

1) Space resolution and message passing 

The concept of space resolution is at the center of the DES model. It defines the 

“threshold” of an agent’s position update. Whenever an agent’s new position reaches 

this threshold, the agent updates itself to the new position and informs other agents of 

its new position. A position change within the threshold is not considered as an event, 

thus does not cause position update and message passing (i.e., an agent always 
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schedule its position update at the threshold). In a 2D environment, the space resolution 

forms a threshold circle whose center is the agent’s current position.  

Fig. 6.2 shows an example which illustrates how the space resolution works in a 2D 

environment. In Fig.6.2, the solid and dashed circles represent the threshold circles of 

the agents at two different locations. The radius of the circles is the agent’s space 

resolution SR, and PSi (i=0, 1, 2, 3, 4, 5) are the agent’s positions at different time 

instances. In this example, the agent’s initial position is at PS0, where the agent decides 

to move in the direction along line PS0-PS2. Because of the space resolution, the agent 

schedules its next destination at PS2, which is the intersection of the agent’s moving 

direction and the threshold circle. The time for the agent to reach PS2 is DistPS0-PS2/speed 

= SR/speed, where speed is the moving speed of the agent. Although the agent schedules 

to update its position at PS2, it may be interrupted before it reaches the scheduled 

destination. In Fig. 6.2, the agent receives a message at position PS1 from a nearby agent. 

Such a message indicates that the nearby agent’s position has been changed. Since this 

represents an environmental change, the agent at PS1 makes a new movement decision 

to respond to the environmental change. In the example shown in Fig. 6.2, the agent 

performs a movement decision and changes its moving direction to a new one along 

line PS1-PS4. Similarly, because of the space resolution, the agent schedules its next 

destination at PS4, which is the intersection of the agent’s moving direction and the 

threshold circle. In this case, the agent schedules the event (of reaching PS4) in time 

DistPS1-PS4/speed, where speed is the current moving speed of the agent. It is important to 
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note that the threshold circle is always based on the last updated position (PS0 instead 

of PS1), in order to avoid accumulated errors that may occur when the agent receives 

frequent messages from other agents. Fig. 6.2 shows that the agent receives another 

message at PS3 before it reaches its scheduled destination PS4, and chooses a new 

moving direction along line PS3-PS5 and schedules its new destination at PS5 on the 

threshold circle. Finally, the agent reaches PS5 (on the threshold circle). At PS5, since the 

threshold circle is reached, the agent updates its new position to PS5, and sends a 

message to its neighbor agents about its new position. The position update also moves 

the agent’s threshold circle to the new position PS5 (shown by the dashed circle in Fig. 

6.2). Meanwhile, the agent makes a decision to decide its next movement. Note that at 

position PS1 and PS3, the threshold circle is not moved and no message is sent to 

neighboring agents since the agent’s spatial change is less than the space resolution.  

 

 

Figure 6.2 Space resolution threshold in 2D environment. 

 

As can be seen, the space resolution defines the threshold of an agent’s position 

update in the space. It decides the frequency of an agent’s movement decisions. 
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Generally speaking, if an agent’s moving speed is low, it takes longer time for the agent 

to perform the next movement decision because it takes longer time for the agent to 

reach the space resolution. The value of space resolution has significant impacts on 

crowd behavior simulations. On one hand, the larger the space resolution is, the less 

frequently agents make decisions, and thus the more efficient the simulation is (In this 

work one assumption is that the time spent on movement decision accounts for the 

most significant part of the execution time in a simulation). On the other hand, the 

space resolution means that an agent does not update its position until it reaches the 

space resolution threshold. This introduces position errors in the crowd simulation. The 

larger the space resolution is, the larger the position error is, and thus the less accurate 

the simulation will be. A similar kind of tradeoffs also exists in the DTS model, whose 

efficiency and accuracy depend on the value of the time step. Time step affects the 

frequency of agents’ movement decisions. The larger the time step is, the less frequent 

an agent makes movement decision. Time step also introduces position errors in the 

crowd simulation. An agent does not update its position until the time step is reached. 

Thus, the larger the time step is, the larger the position errors will be. 

The example in Fig. 6.2 also shows the importance of message passing in the DES 

model. An agent informs its position change to other agents through message passing. 

Such messages are treated as external events by a receiving agent and thus trigger the 

agent’s movement decision to respond to the environmental change. If the agent 

receives more messages, the agent will need to make more movement decisions. In this 
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work, to avoid unnecessary message passing, an agent only passes messages to its 

nearby agents (the agents within a pre-defined distance range Dist1. Dist1=112.5 in this 

work. See Fig.2.2 for agent’s perception model). An interesting aspect of this work is 

that the number of messages passed is related to the density of the crowd. In general, 

when the crowd is very sparse, there is less interaction among agents and thus the 

number of messages passed is small. As the density increases, agents interact more 

frequently and thus the number of messages passed also increases. However, it is not 

the case when the density keeps increasing. In a very dense crowd, agents block each 

other and thus only a small portion of the agents can move freely. Note that in the DES 

model, when there is no movement, there is no message passing. Thus, in a dense 

crowd the overall number of messages passed could be very small even if there are a 

large number of agents. An example of this and performance results are provided in 

experiments 3 and 4 in the experiment section. 

 

2) DEVS implementation of the DES model 

Each agent in the DES model is also implemented as an atomic model. Fig.6.3 shows 

the state transitions of the DES model. The black solid line indicates the external 

transition when a message is received. The dashed lines represent the internal 

transitions. The red solid line indicates the output (the updated position). In the 

“make_decision” state, an agent checks its environment and makes a decision. In 
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“move” state, the agent performs the action and carries out the movement. In the 

“inform_neighbors” state, the agent informs its updated position to the nearby agents.  

 

 

Figure 6.3 Agent state transition diagram of the DES model. 

 

After initialization, the agent stays at the “make_decision” state where the agent 

performs a movement decision through the behavior model to decide the next 

movement. The result is an action which indicates where the agent should move to. The 

action is further adjusted such that the movement does not exceed the space resolution. 

The agent prepares the next movement by changing to the “move” state. After holding 

in a duration (calculated as SR/speed), the agent moves to the new position. Dynamic 

couplings between the agent and its neighbors are established. The agent goes to the 

“inform_neighbors” state to send its updated position to the neighbors, which can be 

referred by nearby agents to avoid possible collisions. After sending the message, the 

agent transits to the “make_decision” state. After each movement or when a message is 

received from nearby agents, the agent performs a new movement decision which 
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continues the procedure as mentioned above. Pseudo-codes of each function of DEVS 

atomic model are listed as follows. 

When the crowd system starts up, each agent is initialized according to the 

initialization function, as shown in Fig. 6.4. In the function, the moving speed and space 

resolution are initialized. Besides, the agent’s initial state is set as “make_decision”. In 

what follows, holdIn is a function of the DEVS framework which lets the model transit 

to the specified state with a duration time.  

 

procedure initialize() 

    speed = Agent’s moving speed; 

    SR = Predefined space resolution of the agent; 

    holdIn(“make_decision”, 0.0); # Initial state will be  “make_decision”. 

end procedure initialize. 

Figure 6.4 Initialization function of the DES model. 

 

The external transition function is used to handle the messages received from others. 

When a message is received, the position of the agent is updated to the location where 

the agent is interrupted, and then the agent transits to the “make_decision” state. The 

procedure is shown in Fig. 6.5. 

 

procedure deltext(e, x) 
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    if message received in x then 

        update agent’s position to the interrupted location based on elapse time e and 

the previous position; 

        holdin(“make_decision”, 0.0); 

   end if. 

end procedure delext. 

Figure 6.5 External transition function of the DES model. 

 

In the internal transition function, the agent performs a movement decision if the 

current state is “make_decision”. Otherwise, it performs the movement, updates its 

position and sends the new position to nearby agents if the movement distance is equal 

to its space resolution. The procedure is shown in Fig. 6.6, where action.distance 

represents the movement distance of the current action.   

 

procedure deltint() 

if state = “make_decision” then 

move the threshold circle to the current position with the radius of SR;  

perform movement decision and select a movement action action; 

if action = NULL then # Special case: No way to go, deactivate the atomic model. 

passivate( );   

return; 
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    end if 

    holdIn(“move”, action.distance/speed); 

  else if state = “inform_neighbors” then 

    holdIn(“make_decision”, 0.0); 

  else # the agent’s current state is “move”. 

update position based on action action; 

 setup couplings with the nearby agents;  

 holdIn(“inform_neighbors”, 0.0); 

   end if 

end procedure deltint. 

Figure 6.6 Internal transition function of the DES model. 

 

The output function is used to inform nearby agents of the agent’s new position if 

the current state is “inform_neighbors”. The procedure is described in Fig. 6.7. 

 

procedure output() 

if state = “inform_neigbors” then 

 inform nearby agents with new position;  

end if 

end procedure output. 

Figure 6.7 Output function of the DES model. 
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6.3 Fair Comparison Condition 

Pedestrians are autonomous agents, each of which has an ID that defines the global 

unique identification of the agent, and speed that is the agent’s moving speed. Each 

pedestrian agent is featured with two behaviors: 

1) CasualMove: This behavior is used to simulate the casual movement of each agent. 

An agent moves to pre-specified but randomly generated destinations in a sequential 

order. The moving path is the shortest path from the current position to the destination. 

When a destination is reached, the agent moves to the next destination. Note that for the 

same agent, i.e., agent with same ID, the moving path is same in both models for the 

purpose of comparison. 

2) Avoid: This behavior is used to simulate the obstacle avoidance during the 

movement. When an agent is within a predefined minimum distance from the nearest 

neighbor agent or obstacle, it will stay away from it.  In this behavior, if the agent is on 

the left side of the object to be avoided, it turns right with an angle; otherwise, it turns 

left. In this process, a basic “collision prediction” subroutine is used to predict if the 

current computing agent will collide with other agents once the turn is finished. If the 

subroutine returns true, the agent will try other angles recursively. If the turning left or 

right is not possible, the agent will stay at its current location. 
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For the DES model, SR defines the position change threshold of the agents. For the 

DTS model, TS defines the time step of the simulation. Note that each agent has its own 

space resolution in the DES model and the time step in the DTS model is a global 

variable shared by all agents.  

Both the DES and DTS model introduce imprecision, also referred to as position error, 

in modeling agents’ position updates. For the DTS model, an agent’s position will not 

be updated until the time step is reached. Within a time step, an agent’s position is 

considered as unchanged. For the DES model, an agent’s position will not be updated 

until the space resolution threshold is reached. Any position change within the space 

resolution threshold is not captured. This section analyzes the position error introduced 

by the DES and DTS models and studies their relationship. The goal is to build a 

ground for comparing the DES and DTS models and showing how the DES model can 

exploit the heterogeneity of the crowd system. 

Both the DTS and DES models are compared with an analytic model for an agent’s 

position update. Assume there are n agents in the crowd and the simulation is running 

over the time base [t1, t2], where t1 is the starting time and t2 is the ending time. 

Assume the position at time  t1  is known of all agents. This position is also called initial 

position. Using the analytic model, an agent j (1<=j<=n)’s position at time t (t1<j<=t2 ) is 

calculated through Eq.6.1.  

 



116 

 

)1.6(
1

,,1, dtvpp

t

t

jtjtjt ∫+=
rrr

 

 

In both the DES and DTS models, an agent’s position is updated discretely. Eq. 6.2 

and Eq. 6.3 represent the position update of the DTS and DES models respectively, 

where  is the time step of the DTS model and SR is the space resolution of the DES 

model. In the DTS model, Eq. 6.2 shows that before the time step t is reached, the agent 

j’s position jtp ,

r  is not changed.  Thus, compared with the analytical model, between the 

time step t-1 and t, there is an error of agent j’s position. Similarly, in the DES model, Eq. 

6.3 shows that an agent’s position will not be updated until the space resolution 

threshold is reached. Note that in Eq. 6.3, Pt-1 should be interpreted as the agent’s 

previous position, instead of the position at time t-1.  
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In order to make a fair comparison between DES and DTS models, the following 

condition should be satisfied: The maximum position error in both DES and DTS models is 
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same. In the DTS model, from Eq.6.2 the maximum position error is ∫
∆+−

−

tt

t

dtv

1

1

max

r . Here  
max

v  is 

the maximum moving speed among all agents. While in DES model, from Eq.6.3 the 

maximum error is the space resolution SR of agents. Thus, Eq.6.4 holds when the DES 

and DTS model are compared. 

 

 

)4.6(

1

1

max∫
∆+−

−

=
tt

t

dtvSR
r

 

 

When the moving speed of an agent is constant during a time step, Eq.6.4 can be 

simplified to Eq.6.5 shown below. In the following, TS is used to represent the time step 

of the DTS model. 

 

)5.6(         *max TSVSR =  

 

Eq.6.5 is used as a basis in this work for comparing the DES and DTS models.  In the 

next section, experiments are carried out to compare the two models based on Eq. 6.5.  

 

6.4 Experiments And Result Analysis 

The section presents the verification of the DES model through one experiment. This 

section also presents the performance measurement of both the DES model and the DTS 
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model from four experiments. Verification process is used to ensure that in a fair 

comparison between the DES model and the DTS model, Eq. 6.5 holds for both models. 

The performance measurement measures the number of decisions taken and the 

execution time of both the DES model and the DTS model. The number of decisions is 

the total number of decisions which agents have been made during a predefined 

simulation. Each transition to the “make_decision” state is considered as one movement 

decision (see Fig. 6.6 for details). The total number of decisions is thus the total number 

of transitions to the “make_decision” state in the crowd. The execution time represents 

the duration (in milliseconds) of the predefined simulation. Note that the number of 

messages passed is not measured separately since each time when an agent receiving a 

message will make a movement decision, that is, the number of messages passed is 

included in the number of decisions. Thus, only the number of decisions and execution 

time will be measured in four experiments (Experiment 1-4). Note that, the ratio of the 

number of decisions and the execution time will then be calculated. The ratio of the 

number of decisions is calculated as the number of decisions of the DTS model divided 

by that of the DES model. Similarly, the ratio of the execution time is calculated as the 

execution time of the DTS model divided by that of the DES model. The ratio of the 

execution time also represents the speedup of the DES model. The greater the ratio of 

the execution time, the more efficient of the DES model. Thus, in what follows, the 

speedup is used to measure the simulation performance of the DES model.   
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The first experiment (Experiment 1) explores the effect of space resolution (of the DES 

model) / time step (of the DTS model) on the simulation performance. The second 

experiment (Experiment 2) illustrates how the speed heterogeneity affects the 

simulation performance by varying the number of agents moving at speed 0.02 (the 

moving speed of an agent is either 0.02 or 2.0). The third experiment (Experiment 3) 

demonstrates the effect of crowd density on the simulation performance by changing 

the number of agents in the crowd. The fourth experiment (Experiment 4) shows an 

emergency evacuation example for both models with a variety of crowd densities. The 

last two experiments also illustrate the effect of space heterogeneity on the simulation 

performance due to the different crowd behaviors in different environmental regions. 

All the four experiments are carried out in a rectangle simulation environment (by 

default, 900 in length and 360 in width), with four walls of width 20 surrounded the 

environment. Note that environment size, agent size, wall width, position error, and 

space resolution have same measurement unit which is meter (m). The agent’s moving 

speed is measured by meter per second (m/s). To make a fair comparison, the same 

agent, i.e., agent with same ID, has the same destination and moving speed (in the 

range of [0.01, 2.0] by default) in both models. The time step of DTS model is defined as 

the division of space resolution by the maximum moving speed of the crowd. To make 

the simulation more realistic in that each agent contains complex logic for movement 

decision, an empty loop with 10,000 runs is included in each movement decision.  
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6.4.1 Verification Of The DES Model 

Before introducing experiments, the DES model is verified by comparing with the 

analytic model. In this experiment, the position errors of both DES and DTS models are 

compared. The crowd consists of one agent whose moving speed is 0.5. The agent 

moves through a series of pre-specified .When all destinations are reached, the 

simulation stops and the position error for each simulation time are calculated. Here, 

the position error is the difference of the position between the DES/DTS model and the 

analytic model (see Eq. 6.1). Fig. 6.8 presents the position errors of the two models 

under two space resolutions SR and two time steps TS. As described in Section 6.3, to 

ensure fair comparisons between the two models, for a specific space resolution SR in a 

DES simulation, the corresponding time step TS in a DTS simulation is calculated as TS 

= SR/v, where v is the agent’s moving speed (0.5 in this experiment).  

 

 

(a)  The DES model 
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(b)  The DTS model 

Figure 6.8 Position errors in DES model and DTS model (SR=1.35 and 2.7, correspondingly TS = 2.7 and 

5.4). 

 

Fig. 6.8(a) shows the agent position errors in DES model under two space 

resolutions 1.35 and 2.7. X-axis represents the simulation time. Y-axis indicates the 

position error at different time. For SR=1.35 the agent updates its position at time 2.7*N 

(N=1, 2, 3…) since the moving speed is 0.5. And the position error is increasing linearly 

between two position updates. Similarly, for SR = 2.7, the agent updates its position at 

time 5.4*N (N=1, 2, 3…). Fig. 6.8(a) shows that the greater the space resolution, the 

greater the position error, and the less the simulation accuracy. Fig. 6.8(b) shows the 

position errors in the DTS model under two time steps 2.7 and 5.4. It shows that the 

position error increases linearly between two time steps. For the time step 2.7, the 

maximum position error is 1.35. Note that when the agent approaches a destination (i.e. 

the time step 364.5), there is position error since in our implementation if the agent is 

near the destination within a specified distance range; the agent is assumed to have 
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reached that destination. Fig. 6.8 confirms that both the DES and DTS model introduce 

position errors in agents’ position update. To make a fair comparison, the maximum 

position error in both models should be the same. The DES model with SR=2.7 and the 

DTS model with TS=5.4 can be fairly compared since the maximum error in both 

models is the same. Similarly, the DES model with SR=1.35 and the DTS model with 

TS=2.7 can be fairly compared because of the same maximum error. 

 

6.4.2 Experiment 1 – Space Resolution/Time Step vs. Performance  

This experiment varies space resolution of the DES model (also time step of the DTS 

model calculated according to Eq. 6.5) and explores how space resolution affects the 

simulation performance. Specifically, one simulation is used to measure each space 

resolution. Each simulation lasts for 2 hours (simulate_TN(7200) in DEVS framework). 

To let the speed heterogeneity has same effect on simulation performance among 

different simulations, the speed of an agent is kept same in different simulations. The 

speed configuration of the crowd is as follows. 10 speeds are randomly generated (in 

the range of [0.01, 2.0]) and each of which is assigned to 10 percent of the agents. The 

crowd consists of 100 agents. In the following figures, “DESDM”, “DTSDM”, 

“DESTime”, “DTSTime” represent the number of decisions of the DES model, the 

number of decisions of the DTS model, the execution time of the DES model, and the 

execution time of the DTS model, respectively. “DMRatio” represents the ratio between 
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the total number of decisions made by the DTS and DES model, and “TimeRatio” is the 

ratio between the total execution time of the DTS and DES model.  

Fig. 6.9 and Fig. 6.10 show the number of decisions and the execution time under 

different space resolutions/time steps and the corresponding ratios, respectively. In 

both figures, x-axis represents space resolution of the DES model and time step of the 

DTS model. In Fig. 6.9, the y-axis represents the number of decisions of the crowd (left 

y-axis) and the execution time (right y-axis, in milliseconds). In Fig. 6.10, the y-axis 

represents the ratio of the number of decisions and the execution time between the DTS 

model and the DES model.  

 

0

20

40

60

80

100

120

140

160

180

0

50

100

150

200

250

300

0 2 4 6 8 10

E
x

e
cu

ti
o

n
 t

im
e

 (
m

s)

T
o

ta
l 

n
u

m
b

e
r 

o
f 

d
e

ci
si

o
n

 m
a

ki
n

g

x
 1

0
0

0
0

Space resolution

DESDM DTSDM DESTime DTSTime

 

Figure 6.9 The number of decisions and execution time under different space resolutions. 
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Figure 6.10 Ratio of number of decisions/execution time under different space resolutions. 

 

Fig. 6.9 shows that, as space resolution/time step increases, both the number of 

decisions and the execution time decrease in both models. This is because with the same 

speed, the greater the space resolution/time step, the longer the duration between 

successive decisions. Thus, with a predefined simulation time, the greater the space 

resolution/time step, the fewer decisions performed by the crowd. Fig. 6.9 also shows 

that the number of decisions and execution time of the DTS model are greater than 

those of the DES model. This is due to the non-uniform moving speeds of the crowd. In 

the DES model, with the same space resolution, the slower an agent moves, the less 

movement decisions will be made. Fig. 6.10 shows that, the ratio of the number of 

decisions (DM) or the execution time is not varied so much under different space 

resolutions. This is because in both models, the number of decisions decreases with a 

same rate when space resolution increases. Fig. 6.10 also shows that the DES model is 

more efficient than the DTS model and about 1.5x speedup can be achieved for crowds 

of agents with non-uniform moving speeds. 
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6.4.3 Experiment 2 – Speed Heterogeneity vs. Performance 

This experiment explores the effect of speed heterogeneity on the simulation 

performance. Speed heterogeneity is varied by the change of the number of agents 

moving at the speed 0.02. The more agents moving at speed 0.02, the greater the speed 

heterogeneity of the crowd. When all agents move at speed 0.02, there is no 

heterogeneity in the crowd. The space resolution is predefined as 1.0 and the crowd 

consists of 100 agents. Each agent moves at speed 0.02 or 2.0. The simulation lasts for 2 

hours. Fig. 6.11 presents the number of decisions and the execution time of both the 

DTS model and the DES model under different speed distributions. Fig. 6.12 shows the 

ratio of the number of decisions (DM) and the ratio of the execution time. In both 

figures, x-axis represents the number of agents moving at speed 0.02. The y-axis in Fig. 

6.11 and Fig. 6.12 has same meaning as Fig. 6.9 and Fig. 6.10, respectively.  
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Figure 6.11 The number of decisions/execution time under different speed distribution. 
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Figure 6.112 Ratio of number of decisions/execution time under different speed distribution. 

 

Fig. 6.11 shows that, as the speed heterogeneity increases, in the DES model, both 

the number of decisions and execution time decrease; while in the DTS model, the 

number of decisions and execution time are not varied so much. This is because in the 

DES model, the greater the heterogeneity, the more agents moving at speed 0.02, the 

fewer decisions made by the crowd. While in the DTS model, the number of decisions 

and execution time only depends on the time step, which is not changed during the 

simulation since the space resolution is not changed during simulations. Fig. 6.11 also 

shows that for the crowd with uniform moving speed (all agents move at the speed 

0.02), the number of decisions and the execution time in both models are almost the 

same. This is because when agents move at the same speed, the number of decisions 

and execution time of both models are same since each agent performs a decision in 

each time step. Fig. 6.12 shows that, the ratio of both the number of decisions (DM) and 

the execution time increases as the speed heterogeneity increases. This is because in 
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DES model, the greater the speed heterogeneity, the fewer movement decisions of the 

crowd since more agents are “slower” agents. It can be seen that, the greatest speedup 

(about 23) can be reached when the crowd has greatest heterogeneity, i.e., only one 

agent moves at the speed 2.0. For crowds with uniform moving speed 0.02, the DES and 

DTS model have same efficiency, and the speedup is 1.0.  

 

6.4.4 Experiment 3- Crowd Density vs. Performance 

This experiment demonstrates the effect of crowd density on the simulation 

performance for both models. Different crowd densities are represented by different 

number of agents under the same simulation environment. Each density is tested by 

one simulation. The simulation lasts for half an hour, i.e., simulate_TN(1800) in DEVS 

framework. Similar as Experiment 1, 10 speeds are randomly generated and each of 

which is assigned to 10 percent of the agents. The speed of each agent is kept same in 

different simulations to let the speed heterogeneity be the same among different 

simulations. The space resolution of all agents selected as 1.0.  Thus, the time step in the 

DTS model is defined as 1.0 divided by the maximum moving speed in the crowd. Fig. 

6.13 presents the number of decisions and the execution time of both the DTS model 

and the DES model under different crowd densities. Fig. 6.14 shows the ratio of the 

number of decisions (DM) and the ratio of the execution time. In both figures, x-axis 

represents the number of agents in the crowd. The y-axis in Fig. 6.13 and Fig. 6.14 has 

same meaning as Fig. 6.9 and Fig. 6.10, respectively.  
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Figure 6.13 The number of decisions and execution time under different number of agents. 
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Figure 6.14 Ratio of number of decisions or execution time under different number of agents. 

 

Fig. 6.13 shows that, both the number of decisions and the execution time increase as 

the number of agents increases in both models. This is because the more agents in the 

crowd, the more events will occur, i.e., the change of agents’ internal status and the 

environmental status will be more frequent. Also, the number of decisions and the 

execution time of the DTS model are greater than those of the DES model due to the 

non-uniform moving speeds of the crowd. It can also be seen that, the DES model is 
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more computationally efficient than the DTS model since in the DES model, each agent 

only makes decisions when a significant external event occurs or its internal state 

changes.  

Fig. 6.14 shows that, when the crowd is sparse (number of agents less than 400), the 

ratio of both the number of decisions and the execution time decrease as the density 

increases. This is because the denser the crowd, the more interactions among agents, the 

more messages passed within the crowd, thus the more decisions performed by the 

DES model. The ratio decreases since the number of movement decisions made in the 

DTS model is not changed (the decision frequency only depends on the global time step 

which is not changed since the space resolution is not changed).  However, the two 

ratios do not necessarily decrease as the density increases for the crowded situations. 

Fig. 6.14 shows that when the number of agents is greater than 400, the ratios increase 

as the density increases. This is because agents block each other; allowing only a small 

portion of the agents can move freely. Note that in the DES model, when there is no 

movement, there is no change of agents’ internal states and the external environment 

(due to no message passed in the crowd). Therefore, in a dense crowd the overall 

number of decisions could be very small even there are a large number of agents. The 

denser the crowd, the less decisions will be made, and the greater the ratios will be. Fig. 

6.14 also shows that, for the extremely dense crowd, i.e., number of agents greater than 

1400, the increasing of the two ratios will slow down and when the threshold is reached, 

i.e., number of agents greater than 1800, the ratios keep unchanged. This is because in 
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the extremely dense crowds, the number of decisions cannot be reduced so much even 

when the density keeps increasing since the number of agents, which will be blocked, 

also keeps increasing. When the density reaches the threshold, the number of decisions 

cannot be reduced further since most agents are blocked. Fig. 6.13 and Fig. 6.14 show 

that, the DES model is more efficient than the DTS model and the speedup can be up to 

3.5X.  

This experiment also demonstrates the effect of space heterogeneity on the 

simulation performance. The denser the space, the more agents will be blocked, the 

fewer messages passed in the crowd, thus the fewer decisions are made by the crowd. 

Experiment 4 demonstrates another example of how space heterogeneity affects the 

simulation performance.    

 

6.4.5 Experiment 4 – An Emergency Evacuation Example  

This experiment demonstrates the effect of crowd density on the simulation 

performance for both models in emergency evacuations. An exit entry situates at the 

right side of the environment which is of size 360 in both width and height. The size of 

the exit entry and the size of an agent is 10 and 7.5, respectively. In the simulation, all 

agents escape from the exit entry to the outside. Agents’ moving speed is randomly 

generated in the range of [1, 3]. Agents’ destinations are also randomly generated. Space 

resolution of all agents is 1.0. The simulation lasts for half an hour. A scenario of the 

emergency evacuation near is illustrated in Fig. 6.15.  
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Figure 6.15 A simulation scenario of emergent evacuation. 

 

Fig. 6.16 presents the ratio of the number of decisions and the execution time for 

different number of agents. X-axis and Y-axis represent the number of agents in the 

crowd and the ratio of the number of decisions/execution time, respectively. Fig. 6.16 

shows that, the denser the crowd, the fewer movement decisions will be made in the 

DES model. This is because, in emergent situations, all agents move towards the exit 

entry to the outside. Near the exit entry, “clusters” of agents will be formed because of 

the slow flow in the exit entry (only one agent can enter the exit entry at each time). The 

denser the crowd, the larger the clusters will be, and the more agents cannot move 

freely. Thus, the DES model will perform fewer movement decisions. This experiment 

shows the effect of the space heterogeneity on simulation performance. 
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Figure 6.16 Ratio of the number of decisions and execution time in emergent evacuations. 

 

In this experiment, a smaller environment (360x360) is used. It is more likely to have 

greater space heterogeneity of smaller environments than that of larger environments. 

The agents cannot move so freely in smaller environments as in larger environments. 

Thus, the space heterogeneity of the smaller environments will be greater than that of 

larger environments under same conditions, e.g., agents’ destinations are same. Thus, 

the smaller the environment, the fewer movement decisions will be made, and thus the 

greater the speedup can be expected. Fig. 6.16 shows that the ratio of the number of 

decisions and the execution time are greater than the ratios presented in Fig. 6.14.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

Pedestrian crowd is a common social phenomenon in our daily life.  Computer 

simulation is often used to study the behavior of pedestrian crowds due to the 

dissimilarity nature of pedestrians and the non-linear interactions in the crowds.  

Pedestrian crowd simulations have been widely studied in a variety of areas.  As 

commonly existing in pedestrian crowds, group is an important research topic in 

sociology and psychology.  It is widely studied in the context of institution or 

organization to study the group dynamics including the roles of individuals and role 

conflicts, the effect of group dynamics on personal development, group structures etc. 

It is believed that group modeling can produce more realistic simulations. Although 

much work has been conducted in pedestrian crowd simulations, the influence of 

groups on the dynamics of crowd movement has not been incorporated into most 

existing crowd models because of the complexity of social groups. Group modeling is 

still a challenge and open problem in pedestrian crowd simulations due to the 

heterogeneity of pedestrian crowds. A well-defined system is needed to systematically 

study various social groups and to study the effect of social grouping on crowd 

behaviors.   
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This research develops a framework for group modeling in agent-based pedestrian 

crowd simulations. The framework includes multiple layers that support a systematic 

approach for modeling social groups in pedestrian crowd simulations. These layers 

include a simulation engine layer that provides efficient simulation engines to simulate 

the crowd model; a behavior-based agent modeling layers that supports developing 

agent models based on the developed BehaviorSim simulation toolkit; a group modeling 

layer that provides a well-defined way to model inter-group and intra-group 

relationships among pedestrian agents in a crowd; and finally a context modeling layer 

that allows users to incorporate various social/psychological models for studying social 

groups in pedestrian crowd. A demonstration of three social group models: leader-

follower model, clustered model, and linear model is developed using the framework 

by following several simple steps. To the best of our knowledge, it is the first 

framework which can be used to model and simulate a variety of types of social groups.  

To facilitate group modeling and simulation, a behavior-based agent simulation 

environment BehaviorSim is developed. One important effort in developing BehaviorSim 

is to propose a general and well-defined behavior-based model which can capture the 

essence of agent’s behavior. The platform is so intuitive and easy-to-use that people can 

setup a behavior-based pedestrian crowd simulation without significant programming 

skills. The flexible design makes it even applicable for the simulation of behavior-based 

agents such as robot, animat, an artificial agent in AI, a character in game design, and so 
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on. BehaviorSim has been incorporated into a modeling and simulation class to be used 

by students. 

To demonstrate the capability of the framework, we developed an application of 

dynamic grouping for pedestrian crowd simulations. The dynamic groups are studied 

using the proposed framework on the basis of utility theory and social comparison 

theory. The application is featured with a two-tiered context modeling layer which 

allows pedestrian agents to behave adaptively and intelligently in the ever changing 

environment. In the context modeling layer, dynamic grouping includes two steps, 

agent-to-group and agent-to-agent interactions. In the agent-to-group interaction, the 

selection preference of target group is specified by using utility theory. In the agent-to-

agent interaction, the most similar member within the target group is selected by using 

social comparison theory. Experiment results indicate that groups can be dynamically 

formed and grouping has significant effect on crowd behaviors. 

As the pedestrian crowd simulation systems become more and more pervasive, the 

scale of pedestrian crowd model also increases.  Besides, to create more accurate 

simulations, people tend to use a complicated decision-making model of pedestrian 

agents. These affect the simulation performance. Although traditional discrete time 

based simulation approach is easy to understand, it is inefficient since every agent 

makes a decision at every time step, regardless the difference of their behaviors and 

moving speeds. To improve the performance of pedestrian crowd simulations, we 

developed a new method for pedestrian crowd modeling and simulation. This new 
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method uses a discrete event based approach by exploiting the crowd system’s 

heterogeneity resulting from agents’ different moving speeds. Experiment results show 

that, under fair comparison, the discrete event based approach can lead to more 

computationally efficient simulations than the discrete time based approach for crowds 

with different moving speeds. 

With the framework for group modeling, the BehaviorSim environment, and the 

efficient discrete event based simulation approach, one can create efficient simulations 

for group-related applications such as dynamic grouping described in Chapter 5.  

 

7.2 Future Work 

In terms of group modeling and simulation, several future directions include 

validating the proposed framework using the realistic human behavior and movement 

data, creating a more dedicated group model, and formally analyzing the effect of 

spatial and temporal heterogeneity on simulation efficiency.   

Validation is an important step to ensure the correctness of simulations. It is 

challenge for pedestrian crowd simulations since the experiments with real humans are 

difficult, even impossible to design, specifically in certain situations such as the 

emergent evacuations. Currently, the validation of crowd behavior models is mainly 

based on mathematical and statistical theories. For example, the work of Malone and 

Kaup [71] compares data sets generated from the flocking model with different 
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parameter values and uses statistical verification approach to quantitatively show 

differences between various simulation scenarios . 

The validation of our framework is even more difficult since besides the individual 

behavior level, the group behavior level should also be validated. However, the 

framework is possibly validated using the same mathematical approach where the 

behavior and movement data of real social groups is obtained and then compared with 

the simulation results.  

Another direction of future work is creating a more dedicated group model. In 

current group model, each social group is assumed to have only one leader and each 

pedestrian agent belongs to only one group. This assumption can be improved in some 

situations where each group can have several leaders e.g. in the emergent evacuations 

several leaders guide the members to exit the building in fire. Each agent can also 

belong to one or more social groups since an agent can have several social roles which 

belong to several groups. A separate layer can be added to the framework to extend the 

current group model to allow the additional functionality. 

Another direction is to qualitatively analyze the discrete event based simulation 

approach on the effect of spatial and temporal heterogeneity on simulation efficiency.  

The analysis may be used to guide the application of the discrete event based 

simulation approach on many other domains e.g. robotics, to create efficient simulations.  
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