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ABSTRACT 

THE INTERPLAY AMONG P ROSPECTIVE SECONDARY MATHEMATICS 

TEACHERS‘AFFECT, METACOGNITION, AND MATHEMATICAL  

COGNITION IN A PROBLEM-SOLVING  

CONTEXT 

by 

Belinda P.  Edwards 

 

The purpose of this grounded theory study was to explore the interplay of 

prospective secondary mathematics teachers‘ affect, metacognition, and mathematical 

cognition in a problem-solving context.  From a social constructivist epistemological 

paradigm and using a constructivist grounded theory approach, the main research 

question guiding the study was: What is the characterization of the interplay among 

prospective teachers‘ mathematical beliefs, mathematical behavior, and mathematical 

knowledge in the context of solving mathematics problems?  I conducted four interviews 

with four prospective secondary mathematics teachers enrolled in an undergraduate 

mathematics course.  Participant artifacts, observations, and researcher reflections were 

regularly recorded and included as part of the data collection. 

The theory that emerged from the study is grounded in the participants‘ 

mathematics problem-solving experiences and it depicts the interplay among affect, 

metacognition, and mathematical cognition as meta-affect, persistence and autonomy, 

and meta-strategic knowledge.  For the participants, ―Knowing How and Knowing Why‖ 

mathematics procedures work and having the ability to justify their reasoning and 

problem solutions represented mathematics knowledge and understanding that could 



 

 

empower them to become productive problem-solvers and effective secondary 

mathematics teachers.  The results of the study also indicated that the participants 

interpreted their experiences with difficult, challenging problem-solving situations as 

opportunities to learn and understand mathematics deeply.  Although they experienced 

fear, frustration, and disappointment in difficult problem-solving and mathematics-

learning situations, they viewed such difficulty with the expectation that feelings of 

satisfaction, joy, pride, and confidence would occur because of their mathematical 

understanding.  In problem-solving situations, affect, metacognition, and mathematics 

cognition interacted in a way that resulted in mathematics understanding that was 

productive and empowering for these prospective teachers. The theory resulting from this 

study has implications for prospective teachers, teacher education, curriculum 

development, and mathematics education research. 
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1 

CHAPTER 1 

INTRODUCTION 

This study focused on the mathematical education of prospective secondary 

mathematics teachers and their problem-solving experiences. The National Council of 

Teachers of Mathematics (NCTM, 2000) Problem Solving Standard has recommended 

that ―by the end of grade 12 students should be able to: build new mathematical 

knowledge through problem solving, solve problems that arise in mathematics and in 

other contexts, apply and adapt a variety of appropriate strategies to solve problems, and 

monitor and reflect on the process of mathematical problem-solving‖ (p. 52). Likewise, 

the Georgia Performance Standards (GPS, 2005) has emphasized problem-solving 

throughout the curriculum and encouraged teachers to provide opportunities for students 

to learn mathematics through the perspectives and methods of problem-solving. 

Prospective secondary mathematics teachers need to have opportunities to develop 

substantial deep mathematics understanding for teaching in a problem-solving context to 

implement the curriculum envisioned by the NCTM and GPS (Ball, Bass, & Hill, 2005; 

CBMS, 2001; Even, 1993; Ma, 2004; Usiskin, 2001).  

Problem-solving is an important part of teaching and learning mathematics 

(NCTM, 2000). However, prospective secondary mathematics teachers often have limited 

opportunities (within a problem-solving environment) to connect their advanced college-

level mathematics with the mathematics they will teach (Usiskin, 2001). Burkhardt 

(1995) found that teacher education programs expect prospective secondary mathematics 
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teachers to teach mathematics in a way unlike the way their teachers‘ taught (Burkhardt, 

1988; Schoenfeld, 1992; Thompson, 1989). Many prospective secondary mathematics 

teachers learned mathematics in a rule-based classroom and thus have had no experience 

learning mathematics in a true problem-solving environment (Fennema & Frank, 1992). 

Schoenfeld (1992) suggested that it is up to the teacher to guide students through the 

problem-solving process and prospective secondary mathematics teachers must 

themselves have the knowledge and disposition of effective problem solvers to support 

students in a problem-solving environment (NCTM, 2000). 

Helping prospective secondary mathematics teachers develop and learn ways in 

which they can improve their problem-solving competence, deepen their knowledge and 

understanding of mathematics, and enhance their mathematical thinking is a goal of many 

mathematicians and mathematics educators (Ball, et al, 2005; Ma, 1999).  Based on my 

experience teaching mathematics and mathematics methods in a problem-solving context, 

I understand the difficulties associated with achieving this goal. Prospective teachers 

come to teacher preparation with beliefs about the nature of mathematics, mathematics 

learning and teaching, and attitudes toward problem-solving that can interfere with their 

cognitive and metacognitive behavior (Emenaker, 1988; Thompson, 1992). When helping 

prospective teachers and practicing teachers improve their problem-solving competence 

and enhance their mathematics thinking skills, Thompson (1992) found that prospective 

and practicing teachers often encounter a number of hindrances such as beliefs, values, 

and attitudes toward problem-solving. Other researchers (e.g., DeBellis & Goldin, 1997; 

Lester, 1994; McLeod, 1992; Schoenfeld, 1989) have substantiated that affective 

variables such as beliefs, attitudes, and emotions have a powerful influence on cognitive 
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behavior. Schoenfeld (1992) has suggested that purely cognitive behavior is very rare, 

and that most learners approach and carry out mathematical tasks based on how they 

view those tasks. 

Few studies in mathematics education focus on the intersection among 

prospective secondary mathematics teachers, affective behavior, and problem-solving 

(McLeod, 1992; Phillipp, 2007; Schoenfeld, 1992). Traditionally, mathematics education 

research has focused on cognitive aspects of mathematics learning and understanding 

(Malmivuori, 2001; McLeod, 1992). Because of the attention given to studies on 

cognition, there have been significant gains and progress in the field of cognitive science 

(Malmivuori, 2001). Only a few studies give attention to understanding the 

interrelationship between affect and cognitive processes during mathematics learning and 

problem-solving (Carlson & Bloom, 2005; McLeod, 1992; Schoenfeld, 1992). Those 

studies that address cognitive and affective responses during mathematics learning and 

problem-solving do so at the prospective elementary teacher or K-12 level (Phillipp, 

2007). Schoenfeld (1992) suggested that the affective and cognitive domain 

interrelationship is under-conceptualized. He explained, ―We are a long way from a 

unified perspective that allows for the meaningful integration of cognition and affect‖ (p. 

364).  

To establish the background and rationale for the study, I begin with a quote from 

the NCTM (1991) Professional Standards for Teaching Mathematics document and later 

share some of the challenges associated with preparing prospective secondary 

mathematics teachers. I continue with a discussion of my experience as a mathematics 

educator who teaches prospective secondary mathematics teachers in a mathematics 
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methods course at a southern university. I discuss some of the elements known to 

influence success in problem-solving such as affective behavior along with cognitive and 

metacognitive behavior. I state the research questions, along with the significance of the 

study, followed by operational definitions and I explain the framework guiding the study.  

Background 

Mathematics Education Research and Reform 

  Effective teachers of problem-solving must themselves have the knowledge and   

 dispositions of effective problem-solvers (NCTM, 2000, p. 341). 

 

The above National Council of Teachers of Mathematics (NCTM, 2000) statement makes 

a strong case for a rethinking of the mathematical education of prospective secondary 

mathematics teachers.  The statement addresses the need for them to have opportunities 

during teacher preparation to develop deep knowledge and understanding of school 

mathematics concepts and a productive disposition in a problem-solving context. The 

NCTM has identified problem-solving as the most important topic in the mathematics 

curriculum and it is central to learning and understanding mathematics deeply. It is 

especially important that prospective and practicing secondary mathematics teachers 

understand that mathematics presented in a problem-solving context gives meaning to the 

mathematics at hand and is a motivation tool in the classroom (Sharp & Adams, 2002). 

Part of the problem is that prospective mathematics teachers, like other mathematics 

learners, encounter hindrances during the problem-solving process (Borko & Putnam, 

1996; Ball & Wilson, 1990; DeBellis & Goldin, 1997). Beliefs, emotions, planning, 

monitoring, and attitudes toward problem-solving are some of those hindrances (Carlson 

& Bloom, 2005; McLeod, 1992; Schoenfeld, 1992; Thompson, 1992). 
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As a mathematics teacher educator teaching in the mathematics department of a 

southern suburban university, my overall goal in my work is to improve mathematics 

teaching. I believe one of the best ways to raise student achievement is to ensure a quality 

teacher in each classroom. I do this by supporting prospective teachers in developing an 

understanding of mathematics that is deep, well-connected, and conceptually grounded. 

For the past six years, I have taught mathematics and mathematics education courses 

through the perspective and methods of problem-solving. In these courses, I often 

encounter students whose beliefs, emotions, and attitudes about mathematics range 

anywhere from feelings of discomfort and panic to feelings of satisfaction, passion, and 

pride as they engage in the mathematics learning and problem-solving process.  

When teaching mathematics and engaging students in mathematical tasks, I have 

noticed that students often demonstrate negative affective behavior when they find their 

problem-solving efforts or mathematics understanding unproductive. In my six years of 

teaching mathematics and mathematics methods, I have noticed that students‘ attitudes 

and emotional behavior seems to be a determining factor in (a) how they approach 

mathematics problems, (b) how much time they spent solving a problem, and (c) whether 

or not they ask for assistance when they lack mathematical understanding. I am unsure 

about the extent to which my students‘ emotions, beliefs, and attitudes have an effect on 

their mathematics learning and problem-solving competence, but I believe that their 

negative affective behavior can be a negative force in their mathematics understanding 

and problem-solving efforts. Research has substantiated that affective variables have a 

powerful influence on problem-solvers‘ behavior (McLeod, 1992; Schoenfeld, 1992). My 
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goal in this study was to gain a better understanding of the interaction of affective, 

cognitive, and metacognitive behavior during mathematics learning and problem-solving.   

Statement of the Problem 

Researchers (Ball & McDiarmid, 1989; Ball & Wilson, 1990; Carlson & Bloom, 

2005; Garofalo & Lester, 1985; Kloosterman, 2002; McLeod, 1989; Schoenfeld, 1992; 

Shaughnessy, 1985) have linked affective behavior and metacognitive behavior to 

success or failure in mathematics learning, understanding, and problem-solving. These 

researchers have suggested that successful cognitive performance depends on having not 

only adequate mathematical knowledge but also an awareness and control over that 

knowledge. They also point to negative beliefs and attitudes about mathematics as a 

limiting factor in a learner‘s problem-solving performance.  

Beliefs influence one‘s view of mathematics, constrain one‘s choice of strategies 

used to solve mathematics problems, and even restrict the type of problems one perceives 

as mathematics (McLeod, 1992). In my experience teaching mathematics I have noticed 

that negative attitudes toward mathematics and problem-solving can act as a negative 

force in one‘s problem-solving efforts. Some elementary education students I teach, who 

demonstrate negative mathematics attitudes about mathematics in general, are more 

concerned about obtaining getting a good grade than they are about understanding the 

mathematics deeply. Secondary mathematics education students enrolled in my methods 

class have positive attitudes about mathematics, but some of them hold beliefs about 

conceptual mathematics teaching and learning that sometimes influences how they 

approach and solve mathematics problems.   
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Emenaker (1996) found that teachers‘ beliefs and attitudes have a strong influence 

on their approach to teaching mathematics and on their students‘ belief systems. 

Thompson (1992) suggested that teachers‘ views of mathematics play a significant role in 

shaping their instructional practice. Hirsch (1986) found that ―one‘s conception of what 

mathematics is affects one‘s conception of how it should be presented‖ (p. 13). It seems 

reasonable to conclude, drawing from the research on affect, prospective teachers‘ beliefs 

and other affective factors could possibly hinder their cognitive problem-solving 

processes and those of their students. When considered as a whole, these findings suggest 

that there needs to be more research examining the integration of affective behavior, 

cognitive, and metacognitive behavior relative to problem-solving. 

Rationale for the Study 

Traditionally, mathematics education research has focused on the cognitive 

aspects of mathematics learning and understanding (Malmivuori, 2001; McLeod, 1992). 

Because of the attention given to studies on cognition, there have been significant gains 

and progress in the field of cognitive science (Malmivuori, 2001). Other than beliefs, few 

studies give attention to understanding the role of affective factors and cognitive 

processes during mathematical learning and problem-solving (Carlson & Bloom, 2005; 

McLeod, 1992; Schoenfeld, 1992). Even fewer studies in mathematics education 

integrate prospective secondary mathematics teachers‘ cognition and affect. Most studies 

addressing the integration of cognition and affect during mathematics learning and 

problem-solving do so at the K-12 level or the elementary prospective teacher level 

(Phillip, 2007).  Currently, an understanding of the meaningful integration of cognition 

and affect remains under-conceptualized (Schoenfeld, 1992). 
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Although limited, recent work on beliefs points to issues of importance that 

integrate cognition and affect. McLeod (1992) found that ―the role of beliefs is central to 

the development of attitudinal and emotional responses to mathematics‖ (p. 579). He also 

found that mathematics-related beliefs that practicing teachers and prospective teachers 

hold about the nature of mathematics, what it means to do mathematics and their attitudes 

towards problem-solving can interfere with their ability to learn and understand 

mathematics deeply. Beliefs can also interfere with a teacher‘s ability to help his/her 

students become successful in problem-solving, and in learning and understanding 

mathematics (McLeod, 1989; 1992). Researchers (Emenaker, 1996; Karp, 1991; 

McLeod, 1992; Schoenfeld, 1981) have suggested that negative mathematical attitudes do 

nothing to encourage learners to engage in independent mathematical thinking; whereas, 

positive attitudes encourage learners to aggressively explore and discover mathematical 

reasoning and interrelationships in order to gain a deeper understanding of mathematics.  

Mathematics education research is incomplete when its focus is only on cognitive 

aspects of mathematics learning and problem-solving, without considering affective 

factors, making it difficult for others within or outside our community to relate our 

research findings to real situations that occur in the classroom (Malmivuori, 2001; 

McLeod, 1985). McLeod (1992) suggested that when researchers integrate affective 

factors into studies that address cognitive issues, it strengthens all mathematics education 

research. Oatley and Nundy (1996) explained, ―Neglecting the influence of the emotional 

realm would distort an understanding of the cognitive process of education in general‖ (p. 

258). Considering the lack of research on the intersection of affect and cognition at the 

secondary mathematics prospective teacher level along with the possibility that poor 
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mathematics related beliefs can lead to poor attitudes toward mathematics, mathematics 

learning, and problem-solving; there is a need to examine how secondary prospective 

mathematics teachers‘ affect and cognition interrelate during the problem-solving 

process.  

Prospective teachers‘ affective dimensions can play a critical role in the formation 

of their mathematics knowledge, beliefs, and attitudes as well as those of their potential 

students (Thompson, 1992). Mathematics education researchers can no longer overlook 

or ignore the influence of affective factors on cognitive and metacognitive processes if, as 

reported in the literature, prospective teachers‘ affective dimensions hinder their 

cognitive mathematical problem-solving process. An increased understanding of the role 

of affective factors and metacognition in mathematics learning, understanding, and 

problem-solving will enable mathematics educators to understand how they can advance 

the learning experiences of prospective secondary mathematics teachers. Mathematics 

educators and mathematicians can begin to support prospective secondary mathematics 

teachers in understanding mathematics deeply as they engage in mathematical problem-

solving if mathematicians and mathematics educators have a better understanding of the 

interplay among affective, metacognitive, and cognitive behavior. Teacher education 

programs and curriculum development can receive new directions and improve based on 

the insights gained from this study.  

Research Questions 

This study seeks to answer the main question: What is the characterization of the 

interplay among prospective teachers‘ mathematical beliefs, mathematical behavior, and 
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mathematical knowledge in the context of solving mathematics problems? In answering 

this main question, I also answer the following questions: 

(a) What are the mathematics-related beliefs of prospective secondary 

mathematics teachers? 

(b) What mathematical behaviors do prospective secondary mathematics teachers 

demonstrate as they engage in mathematical problem-solving? 

 (c) What mathematics knowledge do prospective secondary mathematics teachers 

use as they engage in mathematical problem-solving? 

Significance of the Study 

This study provides knowledge about the mathematical problem-solving process 

used by prospective secondary mathematics teachers when solving non-routine problems. 

More specifically, it provides knowledge about the intersection of prospective teachers‘ 

mathematics-related beliefs, affective behavior, metacognition, and mathematical 

cognition during the problem-solving process. The findings in this study will help to 

extend the current research on mathematical problem-solving processes. Characterizing 

the interplay among prospective teachers‘ problem-solving experiences as they engage in 

the mathematics problem-solving process will help mathematicians and mathematics 

teacher educators make the necessary changes in curriculum, instruction, and 

expectations that can better support prospective secondary mathematics teachers‘ 

development of deep mathematics knowledge and understanding in a problem-solving 

environment. Prospective secondary mathematics teachers will gain a better 

understanding of how their mathematics-related beliefs, attitudes toward mathematics, 
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how they view mathematics can affect their mathematics learning and instructional 

practices. 

The results of the study may apply to the development of teaching methods and 

curriculum. The results can improve mathematics and mathematics methods courses and 

facilitate prospective mathematics teachers in attending to their own affect, while 

developing deep mathematics knowledge and understanding, and enhancing problem-

solving competence. To gain a better understanding of prospective secondary 

mathematics teachers‘ knowledge, beliefs, and affect during mathematics problem-

solving, the conclusions and recommendations of this study suggest directions for further 

research. 

Definitions 

Problem-solving refers to a cognitive process in which the student determines how to 

solve a problem that he or she does not readily know how to solve (Mayer, 1992). 

Problem-solving processes refer to actions and strategies that students employ to solve 

problems. 

Non-routine problems/Mathematical problems are problems that the solver perceives as 

challenging and unfamiliar, yet not insurmountable (Becker & Shimada, 1997). They 

demand thinking flexibility and extension of previous knowledge and may involve 

discovery of connections among mathematical ideas (Schoenfeld, et al., 1999). A 

mathematical problem is also a task (a) in which the student is interested and engaged 

and for which he/she wishes to obtain the resolution, and (b) for which the student does 

not have a readily accessible mathematical means by which to achieve that resolution. (p. 

71).  
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Prospective secondary mathematics teacher is a college student whose goal is to teach 

mathematics at the middle-grades 4 – 8 or secondary grades 6-12 level. They have 

acceptance into a National Council for the Accreditation of Teacher Education (NCATE) 

approved teacher education program.  

Mathematics teacher or Practicing teacher is a teacher who is currently teaching 

secondary school mathematics in a public school setting. 

Conceptual Framework 

Historically, research in mathematics education and problem-solving has placed a 

lot of emphasis on cognitive and metacognitive aspects involved in the process of solving 

mathematics problems (Lester, 1980; Malmivouri, 2001; Pehkonen & Zimmerman, 1990; 

Schoenfeld, 1992; Silver, 1985). Research on mathematical knowledge and 

understanding provide several theoretical frameworks that explain either what it means to 

understand a concept or how an individual makes meaning of mathematics Hiebert & 

Carpenter, 1992; Hiebert & Lefevre, 1986; Schoenfeld, 1992; Skemp, 1976). However, 

there has been much less research on the role affect plays in problem-solving and 

mathematics learning and understanding (Malmivouri, 2001; McLeod, 1992; Schoenfeld, 

1992). The lack of  theoretical models, accurate definitions, and detailed constructions in 

consideration of affective characteristics in mathematics education provide incomplete 

research results on the role of affect in mathematics learning and understanding 

(Malmivouri, 2001; McLeod, 1988; Schoenfeld, 1992). The framework used to guide this 

study utilized the theoretical frameworks of several researchers in the field of affective 

behavior, metacognition, mathematics learning and understanding, and problem-solving.  
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Mathematical Cognition 

In this study, mathematical cognition refers to mathematical thinking, knowledge, 

and understanding. In the literature, two major domains analyze the nature of 

mathematical knowledge and understanding: conceptual knowledge and procedural 

knowledge. Hiebert and LeFevre (1986) characterize conceptual knowledge as that which 

is ―rich in relationships and thought of as a connected web of knowledge, a network in 

which the linking relationships are as prominent as the discrete pieces of information‖ 

(pp. 3-4). Conceptual knowledge enables one to build relationships between existing 

pieces of mathematical knowledge and new pieces of mathematical knowledge. 

Procedural knowledge, on the other hand, consist of two components, one part being ―the 

formal language or symbol representation system, of mathematics‖ while the other refers 

to ―rules, algorithms, or procedures used to solve mathematical tasks‖ (Hiebert & 

LeFevre, 1986, p. 6). Hiebert and LeFevre further emphasized that, while learning 

without meaning represents procedural knowledge, conceptual knowledge is learning 

with meaning. Conceptual knowledge allows one to transfer and adapt mathematical 

procedures to new situations by appropriately relating the mathematical concept to the 

symbols used to denote mathematics. 

In his framework, Skemp (1976) distinguished between two types of 

mathematical understanding. Similar to Hiebert and LeFevre‘s conceptualization of 

procedural knowledge, Skemp referred to instrumental understanding as a type of 

understanding that focuses primarily on ―rules without reason‖ (p. 9). On the other hand, 

he described relational understanding as ―knowing both what to do and why‖ (p. 9) 



14 

 

which is similar in nature to what Hiebert and LeFevre referred to as conceptual 

knowledge. 

To explore the notion of mathematical knowledge and understanding further, I 

considered Hiebert & Carpenter‘s (1992) conceptualization of understanding.  Hiebert 

and Carpenter defined mathematics understanding based on the way an individual 

structures and represents information. They explained that,   

―A mathematical idea or procedure or fact is understood if it is part of an internal 

network. More specifically, the mathematics is understood if its mental 

representation is part of a network of representations. The degree of 

understanding is determined by the number and strength of connections. A 

mathematical idea, procedure, or fact is understood thoroughly if it is linked to 

existing networks with stronger or more numerous connections‖ (p. 67).  

 

They found that understanding increased when individuals were able to talk about how 

they solved a problem or why they proposed specific strategies or approaches as well as 

connect new knowledge with existing knowledge or existing knowledge is modified, 

updated, or assimilated with new knowledge. I applied the frameworks of Hiebert and 

LeFevre, Skemp, and Hiebert and Carpenter when exploring prospective teachers‘ 

mathematical thinking, knowledge, and understanding when engaged in mathematics 

learning and problem-solving.  

Affective Dimensions 

This study also focused on the affective dimensions of prospective teachers‘ 

relationships with mathematics learning, understanding, and problem-solving. Although 

there is very little literature on the intersection between teachers and affect, several 

researchers (Mandler, 1989; McLeod, 1992; Hannula, 2002a) have developed 

frameworks that examine and evaluate student affect. I adopt the frameworks of these 

researchers to guide this study. Although these frameworks primarily focus on the affect 
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of K-12 students, I contend that the frameworks will help me in understanding the affect 

of prospective mathematics teachers engaged in mathematics learning and problem-

solving.  

McLeod (1989; 1992) developed a framework for studying the affective domain 

in mathematics education research and for understanding the influences of affect on 

problem-solving. His framework extends the work of Mandler (1989), a cognitive 

theorist, who emphasized the role of interruptions in a learner‘s planned behavior.   

Mandler found that when a learner‘s behavior is interrupted, the normal pattern of 

completion could not occur. As a result, the learner experiences a physical arousal such 

as frustration, anger, disappointment or some other emotion. McLeod (1990) identified 

three concepts used in the research on affect that can influence mathematics problem-

solving performance. They are beliefs, attitudes, and emotions that differ from each other 

in stability, intensity, and in development.  

According to Mandler (1989), researchers must take care in defining and using 

the term affect. In my study of affect, I adopt the view of McLeod (1992) who claimed, 

―The affective domain refers to a wide range of beliefs, feelings, and moods that are 

generally regarded as going beyond the domain of cognition‖ (p. 592). According to 

McLeod, emotions, attitudes, and beliefs are the three terms that make up the affective 

domain. I include mathematics-related beliefs as a component of affect because many 

researchers who have studied affect usually include beliefs as a component of affect 

(Phillipp, 2007). McLeod (1992) defined emotions as positive and negative feelings that 

change rapidly during mathematics activities. He described emotions as including 

feelings such as joy, frustration, pride, satisfaction, disappointment or anger. According 
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to McLeod (1992), attitudes refer to ―affective responses that involve positive and 

negative feelings of moderate intensity and reasonable stability‖ (p. 581). Attitudes are 

cognitive and stable more so than emotions but they are felt less intensely. Beliefs are 

deep-seated convictions or internal representations that the believer attributes to truth and 

validity (McLeod, 1988; 1992; Schoenfeld, 1989; 1992). They are also cognitive, stable, 

and are felt less intensely than emotions. McLeod included four categories of 

mathematics-related beliefs in his framework: beliefs about mathematics, beliefs about 

self, beliefs about mathematics teaching, and beliefs about the social context. I utilized 

McLeod‘s framework to inform my knowledge on affective behavior. 

Hannula (2002a) also extended the work of Mandler by adding the affective 

influences that are less intensive emotionally, such as learner‘s reactions during general 

and specific mathematical thinking. His framework classified the mathematics-related 

emotions a learner experiences using four evaluative processes. They are (a) expectations 

of a learner when thinking about doing mathematics, (b) associations a learner makes 

when thinking about mathematics or asked how they feel about mathematics, (c) 

emotions exhibited when actually doing mathematics based on mathematics-related goals 

or expectations, and (d) a cognitive analysis of their progress in achieving their 

mathematics-related goals. According to Hannula, each is a process that produces an 

expression of an evaluation or judgment of mathematics.  

The frameworks of McLeod and Hannula addressed affective factors experienced 

by learners while engaged in mathematical problem-solving and understanding. Each 

framework plays an important role in my investigation of prospective teachers‘ 

mathematics-related affect. In this study, I apply McLeod‘s framework when considering 
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emotions, attitudes, and beliefs. I also apply the framework of Hannula when considering 

the associations, expectations, and values a learner holds while engaged in mathematics 

learning and problem-solving process.  

Metacognition 

We engage in metacognitive activities every day. Metacognition enables a learner 

to be successful, and it has been associated with intelligence (Borkowski, Carr, & 

Pressley, 1987; Sternberg, 1984, 1986a, 1986b). Metacognition, defined as one‘s 

knowledge and control of one‘s cognitive system, is a central component in problem-

solving (Brown, 1987; Garofalo & Lester, 1985; Schoenfeld, 1992).  Its focus is on one‘s 

self-awareness of cognitive knowledge. Furthermore, it guides and regulates cognitive 

processes and strategies as individuals engage in solving mathematics problems (Tobias 

& Everson, 2000). It is important to understand metacognitive behavior to determine how 

learners apply their cognitive resources, because metacognition plays a critical role in 

successful learning (Brown, 1987; Garofalo & Lester, 1985).  

There are a number of theoretical models representing varying viewpoints of 

metacognition. The theoretical perspective guiding this study extends and combines 

aspects of the previously established metacognition models of Flavell (1976) and Brown 

(1987). Both models focus on the metacognitive knowledge and metacognitive 

experiences of individuals who are engaged in learning. Flavell (1976) proposed that our 

metacognitive knowledge base consist of what we have learned, through experience, 

about cognitive activities. He divided metacognitive knowledge into three interactive 

knowledge variables: task variables, which involve the learner‘s perceived difficulty of 

the task; strategy variables, related to the effectiveness of the strategies used; and 
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personal variables, related to the attitude, motivation, and prior knowledge of the 

individual. Flavell (1976) suggested that these variables are interrelated and work 

together to form learning. He also suggested that metacognitive knowledge is critical to 

successful learning and good learners have meta-cognitive knowledge about themselves 

as learners, about the nature of the current mathematical task, and about appropriate 

strategies for reaching their academic goals.  

Brown (1987) divided metacognition into two broad components. The first 

component is related to knowledge of cognition, which involves the reflection of 

cognitive abilities and activities. This involves the conscious reflection of one‘s cognitive 

abilities and the current task. The second component is related to self-regulation, which is 

often employed during the learning or problem-solving process. According to Brown, the 

two are closely related. Knowledge about cognition is stable information that individuals 

have about their own thinking. It requires that learners step back and reflect on their 

cognitive processes. Regulation of cognition consists of the activities one uses to regulate 

and keep track of their learning. These processes include planning, which includes 

choosing a strategy or applying trial and error; monitoring, which includes revising steps 

or selecting another strategy; and evaluating, which includes checking or reflecting on the 

solution.  

Malmivuori (2001) presented a theoretical analysis that focuses on the 

interrelationship among affect, beliefs, cognition, metacognition, self-monitoring, self-

perceptions, motivation, and the influence of context on these variables. Her theory, 

based on socio-cognitive and constructivist theories, focuses on the interaction of affect, 

cognition, and beliefs in specific social environments. I applied parts of her framework 
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when considering the influence of affective behavior and context on metacognitive 

knowledge and self-regulation in a problem-solving context. Malmivuori asserted that 

learners who have high confidence are more decisive and less critical of the decisions 

they make when engaging in mathematical tasks; whereas, learners who lack 

mathematical confidence are more likely to hesitate in their decision-making in pursuing 

their mathematics-related goals. 

A sound conceptual or theoretical framework is critical for any study. Garofalo 

and Lester (1985) recommended that any framework for analyzing mathematical 

performance should allow for a wide range of possible behaviors, cognitive or otherwise. 

The applied framework considers this recommendation and includes a range of 

mathematical beliefs, metacognitive behaviors, and mathematical cognition. The aim of 

this study is to provide a synthesis, analysis, and rich description of the interplay of 

prospective teachers‘ affective behavior, mathematical cognition, and metacognitive 

behavior as they engage in mathematical problem-solving situations. As such, my goal is 

to provide a reasonable explanation for the meaningful integration of affective, 

metacognitive, and mathematical behavior as prospective secondary mathematics 

teachers engage in problem-solving activities.  In order to provide a holistic view of the 

interactions among these concepts, I used a multi-theoretical approach in the 

development of the applied conceptual framework (see Figure1). 

Summary 

A critical aspect to preparing to teach mathematics is the development of a deep 

conceptually grounded understanding of mathematics (CBMS, 1996; NCTM, 2000). Too 

often, teacher educators take for granted that teachers‘ knowledge of the content of 
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school mathematics is in place by the time they complete their own K-12 learning 

experiences. Teachers teach mathematics in a way that differs substantially from how 

they were taught (Schoenfeld, 1992). Researchers (Borko & Putnam, 1996; L. Ma, 1999; 

Usiskin, 2001; Usiskin, Perissini, Marchisotto, & Stanley, 2003) have recommended that 

mathematics educators or mathematicians provide prospective teachers with opportunities 

to revisit school mathematics topics in ways that will allow them to develop deeper 

understandings of mathematics.  

Research has suggested that prospective teachers can develop deep conceptual 

understanding of mathematics through conjecturing, reasoning, and problem-solving 

(Francisco & Maher, 2005; Schoenfeld, 1992; Usiskin et al., 2003). However, researchers 

(DeBellis & Goldin, 1997; Hannula, 2004; Lester, 1994; McLeod, 1992; Schoenfeld, 

1992) have also suggested that affective behaviors such as beliefs, emotions, and attitudes 

are often instrumental in determining how prospective teachers learn, understand, and 

think about mathematics. Affective behaviors interact with cognition and can either 

hinder or facilitate the process of learning, understanding, and solving mathematics 

problems (Carlson & Bloom, 2005).  

Belief systems shape cognition and metacognition and they are both instrumental 

in determining the perspective with which an individual solves mathematics problems, 

and in turn, influences how an individual learns mathematics (Schoenfeld, 1992). 

Metacognition is also viewed as being a central component of problem-solving because it 

focuses on self-awareness of mathematical knowledge, thinking, and understanding. It 

guides and regulates cognitive processes and strategies during problem-solving (Tobias & 

Everson, 2000).  
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with cognitive and metacognitive behavior to influence mathematics performance and 

achievement. This study addresses this gap in the literature by examining the dynamic 

interplay between and among affective behaviors, mathematical knowledge and 

understanding, and mathematical metacognition in problem-solving situations.  

For conceptual clarity, a framework of affective behaviors combining the works 

of McLeod (1992) and Hannula (2002a, b) is applied. The framework also includes the 

combined works of Hiebert and LeFevre (1986), Skemp (1976), and Heibert and 

Carpenter (1992) to investigate and provide conceptual clarity for mathematical thinking, 

knowledge, and understanding. Finally, a framework for mathematical metacognitive 

behavior that combined the works of Flavell (1976), Brown (1987), and Malmivuori 

(2001) is applied. The research questions, aligned with the goals of the study and the 

framework, will provide a holistic view of the dynamic interplay among the variables in 

the study. 

In the next chapter, I elaborate on the ideas introduced here. I set the stage for the 

study with a review of the literature pertaining to affective behavior, mathematics-related 

beliefs, mathematical knowledge and understanding, and metacognition. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

The literature I review for this study is organized in three main sections: affective 

behavior, mathematical cognition, and metacognitive behavior associated with problem-

solving. I begin with a review of the literature pertaining to the affective domain, 

specifically emotions, attitudes, and mathematics-related beliefs. The majority of 

literature reviewed in this area deals primarily with affective behaviors as they relate to 

performance or competence during mathematics problem-solving situations. Next, I 

review the literature related to mathematical cognition. In this area, I review what the 

literature reveals about the nature of mathematical knowledge, mathematical thinking, 

and mathematics understanding in a learning and problem-solving environment. Finally, I 

review the literature on the theory of metacognition as it relates to mathematics problem-

solving. I end the review of literature with a summary. 

 Before I begin my discussion of the three main sections of the review of 

literature, let me briefly explain how problem-solving fits within the study. As discussed 

in the introduction of the study, conjecturing, reasoning, and problem-solving is seen in 

the mathematics and mathematics education community as a vehicle for learning 

mathematics deeply (Lester & Lambdin, 2004; Schoenfeld, 1992; Stein, Boaler & Silver, 

2003; Vergnaud, 1982). Problem-solving is a form of inquiry learning where existing 

knowledge is applied to new or unfamiliar situations in order to gain new knowledge 

(Killen, 1996; Sternberg, 1995). It is also a vehicle for learners to construct, evaluate, and 



24 

 

refine their own beliefs and theories about mathematics as it relates to the beliefs and 

theories of others (NCTM, 1989). Engaging in problem-solving involves, not only 

finding an answer for a particular problem, but also encouraging learners to develop their 

own ability to think mathematically (Schoenfeld, 1992). The processes involve use of 

content knowledge, procedures, strategies, language, and reflections (Garofalo & Lester, 

1985; Schoenfeld, 1985, 1987).   

Drawing from my own experience teaching mathematics and mathematics 

methods in a problem-solving environment, I have witnessed students‘ positive and 

negative affective behavior contributing to and detracting from their problem-solving 

ability. Some students are able to move beyond their mathematics anxiety, frustration, 

anger, and disappointment by putting forth an enormous amount of effort to correct their 

misconceptions and understand the mathematics. In the most difficult and challenging 

mathematics situations, they buckle down and follow through to the solution process and 

mathematics understanding. Yet there are other students who, when experiencing 

mathematics frustration, anxiety, and disappointment, abandon the problem solution 

process altogether. On the one hand, I have students whose negative affect is cognitively 

productive and there are other students whose negative affect produces counterproductive 

cognitive outcomes. I was interested in understanding the interaction among affective, 

cognitive, and metacognitive behavior as students engage in mathematics-problem 

solving. In this study, my focus was on gaining new information about the interaction of 

affect, cognition, and metacognition during problem-solving. My desire to understand 

this interaction made it appropriate to investigate these phenomena in a problem-solving 
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context where the phenomena of the study would be most likely revealed (DeBellis & 

Goldin, 1997; McLeod, 1992; Schoenfeld, 1985).   

In this study, I follow Schoenfeld‘s (1993) definition of what a mathematical 

problem is. He states:   

For any student, a mathematical problem is a task (a) in which the student is 

interested and engaged and for which he wishes to obtain the resolution, and (b) 

for which the student does not have a readily accessible mathematical means by 

which to achieve that resolution. (p. 71).  

 

I also follow Polya‘s (1957) conception of problem-solving as learning to grapple with 

new and unfamiliar mathematics problems when a solution method is not readily 

available or known to the problem solver. Each section of the literature of review that 

follows is discussed in the context of mathematics problem-solving.  

Schoenfeld (1985) suggests that there are competencies that problem solvers need 

for becoming successful problem solvers and these competencies should be considered in 

any analysis of problem-solving. They are resources, heuristics, control, and beliefs. 

With respect to this study, resources refer to the mathematics knowledge processed by an 

individual during problem-solving and will be reviewed in the mathematical cognition 

section; heuristics or strategies used during problem solving and control or monitoring 

one‘s solution path will be reviewed with metacognition; and beliefs will be reviewed 

within the literature related to the affective domain.  

Affective Dimensions  

Research in mathematics education regards cognition and affect as two different 

fields. Over the past two decades, the majority of research into mathematical thinking 

focuses primarily on the cognitive aspects of learning mathematics. More recently, 

researchers (Op t‘ Eynde 2000; Gomez Chacon, 2000; Sherer, 2000; Malmivuori, 2002; 
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McLeod, 1989, 1992; Lester, Garofalo & Kroll, 1989; DeBellis & Goldin, 1999) have 

focused on the affective domain and its interaction with cognition during mathematics 

learning and problem-solving. McLeod (1989, 1992) describes three components that 

make up the affective domain:  emotions, attitudes, and beliefs.  

The majority of research studies that investigate the relationship between affective 

behavior and learning focus mainly on attitudes or beliefs and less on emotions (McLeod, 

1992). Partly because, unlike beliefs and attitudes, emotions arise from immediate 

situations and are viewed as unstable and fleeting (McLeod, 1992). DeBellis and Goldin 

(1999) introduced a fourth component known as values, which pertain to an individual‘s 

feelings about when or if they should ask for help during a problem-solving situation. For 

the purpose of this study, I focus on McLeod‘s (1989, 1992) three affective components 

of mathematics and use them to inform my study. Consequently, I include an operational 

definition for each affective component. In the applied framework for the current study, 

aspects of values are embedded within the subcategories of the three components; 

therefore, I do not include it as a separate affective component in this study. 

Emotions 

Although there is no clear definition of emotion in the literature, there is 

agreement among researchers that there are three important components of emotions. 

There is a subjective component of feelings dealing with personal goals, a physiological 

or motor component of arousal or expressive gesture, and a functional component, which 

deals with how we cope and adapt to the mathematical problem-solving situations we 

find ourselves (Barbalet, 1998; Goldin, 2000; Hannula, 2004; Hannula, Evans, Philippou, 

& Zan, 2004; Op t' Eynde, DeCorte, & Verschaffel, 2002). Emotions are fleeting, intense 
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and unstable, negative or positive, and can either facilitate or debilitate an individual‘s 

self-esteem or confidence, which can often have a detrimental effect on mathematics 

learning and performance (DeBellis, 1998; DeBellis & Goldin, 1997; Ma & Kishor, 

1997; Malmivouri, 2001; McLeod, 1992; Op t' Eynde et al., 2002; Schoenfeld, 1989). 

Examples of intensive negative feelings that are related to mathematics problem-solving 

are fear, anger or even panic when an individual cannot solve a non-routine mathematics 

problem (Op t' Eynde et al., 2002). A short-term positive emotional reaction might be an 

―Aha!‖ moment during problem-solving. On the other hand, when an individual 

experiences an emotional reaction of satisfaction or joy after solving a challenging 

mathematics problem it is considered to be a longer-term positive emotion (Malmivouri, 

2001).  

Emotions are the most visually apparent of the three components of affective 

behavior. However, they are thought to be the most difficult to analyze and understand 

primarily because they ―may involve little cognitive appraisal and may appear and 

disappear rather quickly, as when frustration of trying to solve a hard problem is followed 

by the joy of finding a solution‖ (McLeod, 1992, p. 579).  While McLeod (1989; 1992) 

views emotions as involving ―little cognition‖ (p. 579), DeBellis and Goldin (1997) 

disagree and view the level of cognitive activity involved in emotions as being very high, 

in fact, higher than those of beliefs or attitudes. DeBellis and Goldin (1997) and Goldin 

(2000) suggest that affective behavior is not auxiliary to cognition, but instead is 

integrated with cognition. They suggest that curiosity is an emotion that elicits cognition. 

For example, frustration can evoke anxiety or fear in some; but it can also lead others to 

cognitive information that suggests the implementation of an effective strategy and 
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persistence during problem-solving, which could contribute to problem understanding or 

problem-solving success. DeBellis and Goldin (1997), however, admit that the cognitions 

interacting with fleeting emotions are often difficult to identify.    

Mandler (1989), a cognitive psychologist, is one of the first researchers to 

examine the role affect played in mathematics problem-solving. He theorizes emotions as 

developing from the interruption of an individual‘s planned activity or behavior. 

According to Mandler (1989), emotions such as joy or frustration are demonstrated when 

a cognitive interruption of an expected event either occurs or does not occur. If, for 

example, an individual engages in solving a problem but encounters a block of difficulty 

and is unable to complete the task or has to apply a new strategy then he or she might 

exhibit an emotional response such as frustration, disappointment or anger. If the 

individual is able to proceed successfully through the block of difficulty using a new 

strategy, then emotions of pride, satisfaction, or joy can occur.  

Feelings of frustration or struggle can often lead to an impasse resulting in an 

ineffective use of strategies, whereas feelings of pride and confidence may serve as a 

motivating factor leading to the exploration of a variety of strategies during problem-

solving (DeBellis & Goldin, 1997). Mandler (1989) suggests that the more alternative 

strategies one has available immediately following an interruption the more likely the 

individual will remain engaged and problem-focused, which leads to less anxiety and 

more problem-solving success. Mandler‘s finding can play an important role in this study 

because the mathematical cognition research studies initially reviewed for this study 

suggests that those who have mathematical knowledge and understanding that is deep, 
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conceptual, and well-connected are more likely to use alternative strategies to solve 

mathematics problems.   

In a mathematical research study into affective behavior, McLeod, Metzger, and 

Craviotto (1989) found that experts and novices exhibit similar kinds of emotional 

reactions as they engage in problem-solving; however, experts are better able to control 

their emotional reactions and use their knowledge more effectively than novice problem 

solvers partly because they have more well-connected mathematical knowledge . In a 

similar empirical study investigating the mathematical behavior of eight research 

mathematicians and four doctoral mathematics students, Carlson and Bloom (2005) finds 

that those who had well-connected, conceptual mathematical knowledge were able to 

cope with their affective behaviors and persist toward finding a problem solution.  

Research reveals that emotions are intense and often short-lived but can either 

facilitate or debilitate a learner‘s ability to complete mathematical tasks (DeBellis & 

Goldin, 1997; Goldin, 2000; McLeod, 1992). Although difficult to identify, there is 

evidence to suggest that emotions can elicit cognition. For example, Goldin (2000) finds 

that frustration can evoke anxiety in some, but it can lead others to persist in identifying 

an effective problem-solving strategy that results in successful problem completion. He 

proposes the construct of meta-affect to refer to ―the monitoring of affect, and affect itself 

as monitoring‖ (p. 62). He explains how a particular experience, such as difficulty 

solving a mathematics problem, might be interpreted in different ways depending upon 

the beliefs and values held by the problem solver. A problem solver who encounters 

problem difficulty might interpret the difficulty as a reflection of their failure; whereas, 

another problem solver might view the difficulty as a learning opportunity with 
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anticipation for a feeling of joy or pride in obtaining the correct solution and learning 

something new. 

 The studies reviewed in the area of emotions are limited. An individual‘s 

emotional response to problem-solving situations depends greatly on their beliefs, values, 

and interpretation of the situation. Well-connected, conceptual mathematical knowledge 

and understanding of mathematics can provide an individual with more alternative 

strategies for solving mathematics problems, which could lead to less anxiety and more 

problem-solving success. The knowledge gained from my review of the research 

literature on emotions will inform my investigation of prospective teachers‘ demonstrated 

emotions in problem-solving situations. 

Attitudes 

 

Emotions are but one aspect of affective behavior that has been found to influence 

mathematics learning and understanding, and problem-solving. Attitudes, acquired 

through learning and developed through experience, have also been found to predict 

mathematical behavior (Morris, 1996). A common theme within the literature suggests 

that attitudes toward mathematics have three main components:  cognitive, emotional and 

behavioral components. The cognitive component of an attitude consists of thoughts, 

beliefs, and perceptions relative to mathematics and problem-solving. The emotional 

component of an attitude involves subjective feelings such as fear, anger, like or dislikes 

during problem-solving (Avelson, 1979; Hannula, 2002a). The behavioral component 

determines how an individual expresses their beliefs and subjective feelings about 

mathematics and problem-solving or the context in which they learn mathematics 

(Hannula, 2002a).   
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 McLeod (1992) described a person‘s attitude towards mathematics as ―affective 

responses that involve positive and negative feelings of moderate intensity and 

reasonable stability‖ (p. 581). Attitudes related to mathematics include enjoying, liking, 

and interest in mathematics, or the opposite, and the worst case can be described as 

mathematics phobia—an overall fear of mathematics (Ernest, 1998). They can be formed 

from repeated emotional reactions that stabilize into an attitude. For example, if an 

individual has repeated negative experiences in solving discrete mathematics problems, 

their reaction to similar tasks can become more automatic. When discrete mathematics 

problems are encountered, the individual automatically views the experience as negative.  

Moreover, an attitude can be formed when an already existing attitude is assigned a new 

and related task. An example of this would include an individual who has an existing 

attitude toward geometry and who attaches that same attitude to proof or discrete math 

(McLeod, 1992).  

  The literature I review for this study includes empirical and theoretical studies 

investigating attitudes toward mathematics and achievement in mathematics. The 

majority of studies I review include the use of quantitative methods such as pre- and post-

test, surveys, or questionnaires. As a result, much of the literature fails to provide clear 

empirical findings connecting attitudes and mathematics achievement or problem-solving 

success (Ma & Kishor, 1997; Zan & DiMartino, 2003). In an action research study, 

Amato (2004) focuses on the liking dimensions of twenty-four student teachers‘ attitudes. 

Based on pre- and post- questionnaires, interviews, diaries, and pre-and post tests, the 

results of Amato‘s study indicates that those who dislike mathematics also did not 
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understand mathematics in school and those who express a liking for mathematics 

indicate that they understood mathematics well during school.     

Stanic and Hart (1995) found attitude towards mathematics and mathematics 

confidence relates to achievement at the school level, while Maree, Petorius & Eiselen 

(2003) found similar results to hold at the first year university level. But the correlation in 

both of these studies is quite small (Op t' Eynde et al., 2002). Bershinsky (1993) conducts 

a study involving developmental mathematics students at the college level. The study‘s 

purpose is to identify attitudinal and achievement variables that were important in 

predicting student outcomes. Attitudinal variables include feelings about self, school, and 

mathematics. The findings indicate that outcomes for this group of students represent 

their feelings about self, school, and mathematics.  

Ma and Kishor (1997) conduct a meta-analysis integrating and summarizing the 

findings for 113 studies concerning the relationship between attitudes toward 

mathematics and achievement in mathematics. Their findings indicate that there is not a 

significance difference in attitudes toward mathematics and mathematics achievement. 

Ma and Kishor (1997) find that the correlations are low suggesting that attitude in 

mathematics and achievement in mathematics is weak and cannot be considered to be of 

practical significant in education (Robinson, 1975; Vachon, 1984; Wolf & Blixt, 1981).    

There are many different attitudes toward mathematics and the term attitude can 

mean different things for different disciplines (McLeod, 1992).  Ma and Kishor (1997) 

suggest that instead of investigating attitudes toward mathematics in general, researchers 

should focus on a specific area of mathematics. In this study, I investigate attitude in the 

context of problem-solving. Hannula (2002a, 2002b) suggests that to establish a clear 
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picture of attitude, researchers should define attitude and what aspects of attitude are 

under investigation. I adopt McLeod‘s (1992) conceptualization of attitude as an affective 

response or learned tendency or predisposition to respond in a consistently negative or 

positive manner to some concept, situation, or object. For this study, I refer to attitude as 

the tendency on the part of a prospective teacher to respond positively or negatively 

toward a mathematical concept, situation, or person that could possibly affect their 

disposition toward mathematics. Ma and Kishor (1997) find that individuals who have 

positive feelings or disposition about mathematics exert more effort, spend more time on 

mathematics tasks, and are more effective learners than those with poor attitudes. This 

finding can inform my study in the investigation of prospective teachers‘ attitudes in 

mathematics problem-solving situations.  

Mathematics-Related Beliefs  

As with emotions and attitude, beliefs play an important role in learning and 

doing mathematics (Furinghetti & Pehkonen, 2000; Kloosterman, 2002; Lester, Garofalo, 

& Kroll, 1989; Op t' Eynde et al., 2002; Shaughnessy, 1985). There are many difficulties 

associated with defining beliefs. Some researchers (Furinghetti and Pehkonen, 2002)   

consider beliefs a part of knowledge. Others consider it a part of attitudes (Grigutsch, 

1998). Beliefs, stable and cognitive, are internal representations, which the believer 

attributes to truth and validity (Thompson, 1992). The relationship between beliefs and 

knowledge is sometimes fuzzy. However, Furinghetti and Pehkonen (2002) define two 

parts of knowledge to situate and provide a better understanding of the relationship 

between beliefs and knowledge. They distinguish between different types of knowledge:  

objective and subjective. Objective knowledge is defined as one hundred percent 
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generally accepted truth whereas subjective knowledge is uniquely based on personal 

experiences and understanding. According to Furinghetti and Pehkonen (2002), beliefs 

belong to subjective knowledge because they are based primarily on personal 

experiences.  

Lester, Garofalo and Kroll (1989) find that beliefs about the nature of 

mathematics and mathematics learning shape cognition and determine how an individual 

approaches a mathematics problem and which problem strategies are used. In a survey of 

beliefs, Schoenfeld (1992) finds that most students believe that all problems have only 

one right answer and one correct solution method. He also notes that many students in the 

study believe that ordinary students should rely on memorizing rules and applying 

procedures or algorithms because they cannot understand mathematics conceptually.  

A survey conducted by the National Assessment of Educational Progress (NAEP, 

1983) reveals that fifty-percent of the students who respond agree that learning 

mathematics consist mostly of memorizing facts. Seventy-five percent agree that doing 

mathematics requires repeated practice of rules. Ninety percent of those surveyed agree 

that there is always a rule to apply when solving mathematics problems. Schoenfeld 

(1985) suggests that beliefs are ―important determinants of students‘ mathematical 

behavior‖ (p. 198).  

In his study of  secondary students beliefs about mathematics and learning, 

Kloosterman (2002) finds a connection between belief and effort stating that ―students‘ 

belief is something that the student knows or feels that affects effort—in this case effort 

to learn mathematics‖ (p. 248). Stage and Kloosterman (1991) examines the relationship 

between beliefs about mathematics and achievement among college students enrolled in a 
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developmental mathematics course.  The findings from the study indicate that students 

have a poor conception of the nature of mathematics and their ability to do mathematics.  

Most studies investigating beliefs and other affective variables do so in isolation 

of each other. In other words, research studies focus on investigating the different kinds 

of beliefs that influence learning, how beliefs develop, and how beliefs motivate students 

to engage in mathematics. As a result, there remains little known about how various 

mathematics-related beliefs relate to each other and mathematics learning and 

understanding in a problem-solving context. Schoenfeld (1985) argued this point during 

his study of college students‘ problem-solving behaviors: 

One‘s beliefs about mathematics can determine how one chooses to 

approach a problem, which techniques will be used or avoided, how long 

and how hard one will work on it, and so on. Beliefs establish the context 

within which resources, heuristics, and control operate. (p. 45) 

In this statement, Schoenfeld (1985) proposes the construct of belief systems. That is, an 

individual‘s mathematical world view and the perspective with which he/she approaches 

mathematics or a mathematics problem situation. When you view mathematics-related 

beliefs in these terms, you begin to understand how beliefs encompasses or represents the 

whole person—their social life, goals, needs, emotions, attitudes, the context they find 

themselves in, and their knowledge.  

Op t‘ Eynde et al.‘s, (2002) framework and definition of belief, referred to earlier 

in the introduction, reflects Schoenfeld‘s (1985) conception of belief and it describes 

what constitutes a mathematics-related beliefs system. Their frame and definition will 

inform this study by providing a more comprehensive understanding of the role beliefs 

play in mathematics learning and problem-solving. According to Op t‘ Eynde et al. 

(2002), an individual‘s mathematics-related belief systems include beliefs about 
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mathematics teaching and learning, beliefs about oneself, and beliefs about the learning 

environment.  

Op t‘ Enyde et al. emphasize that each component or category of what constitutes 

a mathematics-belief system can consist of subcategories. For example in this study, 

under the category of beliefs about mathematics education, I include the subcategories of 

(a) beliefs about the nature of mathematics as conceptual or procedural (b) beliefs about 

problem-solving. The category of beliefs about self includes the subcategories (a) 

judgment/expectation about one‘s achievement in mathematics and their ability to do 

mathematics (b) desire to know and understand mathematics. The category of beliefs 

about the class context includes the subcategories (a) beliefs about one‘s functioning role 

as student (b) beliefs about the instructor‘s functioning role (c) beliefs about usefulness of 

assigned tasks. In this section, I briefly review what the literature reveals about each 

category and subcategory as it pertains to this study.  

Prospective mathematics teachers often enter teacher education programs with 

beliefs about mathematics, the nature of mathematics, and teaching and learning 

mathematics that they have developed over a lifetime (Cooney, 1994). In many cases, 

they hold naïve and incorrect beliefs about mathematics (Lampert, 1990). For example, 

prospective teachers may erroneously believe that mathematics proficiency or 

mathematical understanding primarily involves the mastery of facts, the rote performance 

of procedures, and memorizing computational formulas (Lampert, 1990). With respect to 

beliefs about mathematics, in this study I examine the beliefs of prospective teachers in 

an effort to determine if they tend to favor beliefs about mathematics from on a 

conceptual or procedural viewpoint.  
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Beliefs about mathematics can also influence how a learner engages in problem-

solving (Schoenfeld, 1985, 1989). For example, if a learner believes that a mathematics 

problem can be solved quickly then he/she might not persist to find a solution and instead 

stop the solution process prematurely (Schoenfeld, 1985). If prospective teachers believe 

that there is only one way to solve any mathematics problem, then they will not be 

inclined to seek an original approach, represent the mathematics in multiple ways, or see 

how the problem could be connected to other mathematical ideas (Thompson, 1992). As 

a result, their development of conceptual mathematical knowledge and understanding 

will be limited and they will be unable to develop their students‘ deep understanding of 

mathematics (Ma, 1999). Researchers Carlson & Bloom, 2005; Lester, 1994, Schoenfeld, 

1985, 1989) find that individuals who are successful problem solvers possess positive 

mathematical beliefs, more well-connected knowledge and rich schemata, and are 

persistent in their efforts.  

Beliefs about one‘s ability to do mathematics are related to attitudes and emotions 

with respect to confidence, security in oneself, and self-efficacy are found to influence 

mathematics learning (Cooper & Robinson, 1991; Gomez-Chacon, 2000). Social 

cognitive theorists hypothesize that students‘ self-efficacy beliefs, that is, their judgment 

or expectations about their capability to accomplish specific academic tasks, are 

important determinants of academic motivation, choices, and performance (Bandura, 

1986, 1997; Pajares, 1992). In this study, beliefs about oneself refer to 

judgment/expectations in one‘s mathematics achievement or ability to do mathematics, 

desire to know and understand mathematics, and attributions to success or failure in 

mathematics (Aiken, 1996; Gomez-Chacon, 2000; McLeod, 1992).  
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Within one‘s beliefs about their learning environment, one can differentiate 

between external authority and internal authority. The textbook or instructor represents an 

external source of knowledge whereas individuals‘s validation of their own knowledge is 

internal. Confrey (1994) suggests that a learner‘s knowledge level matures when they are 

able to transition from depending on the instructor or textbook as their source of 

knowledge and understanding to viewing the instructor and textbook as a facilitator of 

their knowledge and understanding of mathematics.  In the literature, autonomy is 

described as being a belief that one is responsible for his/her own knowledge and answers 

and that mathematics is valid and acceptable when it makes sense to the them (Confrey, 

1994; Fennema & Romberg, 1999; Goodyear, 2000) 

Piaget (1973) proposes that one of the goals of education should be to develop 

autonomous learners. The Learning Principle (NCTM, 2000) supports the idea that 

learning with understanding helps students become autonomous learners. Students 

become motivated and confident when (a) their instructors provide them with learning 

support when engaged in independent and cooperative problem-solving tasks, (b) they 

choose to engage in the mathematical task, and (c) they achieve success in completing the 

task (Fennema & Romberg, 1999; Fennema, Sowder, & Carpenter, 1999). Classroom 

interactions enhance the development of prospective teachers who are autonomous 

learners, as they propose mathematics ideas, conjectures, and learn to evaluate their own 

thinking and the thinking of others (Ball & Bass, 2003; Lampert, 1990; NCTM, 2000; 

Yackel & Cobb, 1996). Students learn more when they ―take control of their learning by 

defining their goals and monitoring their progress‖ (NCTM, 2000, p. 21).  
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Mathematical Cognition 

In this study, mathematical cognition refers to mathematical knowledge, thinking, 

and understanding (Schoenfeld, 1992). Skemp (1976) uses the terms relational and 

instrumental to distinguish two types of mathematical understanding. He describes 

relational understanding as ―knowing both what to do and why‖ when confronted with a 

mathematical tasks (p. 9). Instrumental understanding is ―rules without reason‖ (p.9). 

Hiebert and Lefevre (1986) also propose two types of mathematical knowledge and 

understanding:  conceptual and procedural. Conceptual knowledge refers to knowledge 

that is well-connected and rich in relationships, whereas procedural knowledge consists 

mostly of procedures, algorithms, and memorized rules.    

There are learners who believe that mathematics consist mostly of procedures, 

rules, and algorithms. While these are important aspects of mathematics, other 

competencies that are critical to knowing and understanding mathematics such as 

reasoning, conceptual understanding, and problem-solving (Hiebert & Lefevre, 1986; 

Schoenfeld, 1992; Stanic & Kilpatrick, 1989). Knowing and understanding mathematics 

includes not only having knowledge of facts, rules, algorithms, and procedures; but it 

includes having knowledge of how and when to use specific mathematical methods, 

strategies, procedures, and reflecting on the outcome. Knowing how and when to use 

your mathematical knowledge effectively is control or monitoring, which plays a critical 

role in achieving problem-solving success (Carlson & Bloom, 2005; Schoenfeld, 1985).  

Several studies (i.e., Carlson, 1999; Lester, 1994, 1980; Schoenfeld, 1985) 

investigating problem-solving behavior suggest that even when individuals have the 

resources or knowledge to solve a problem, they often do not practice control or access 
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their knowledge to produce a problem solution. Schoenfeld (1992) said it best when he 

stated that ―It‘s not just what you know; it‘s how, when, and whether you use it‖ (p. 355). 

Schoenfeld (1985) based this statement on a problem-solving study of undergraduate 

students who did not notice when their problem-solving efforts were unproductive, due to 

their practice of poor control during problem-solving. Lester (1994) proposes that 

effective mathematical problem solvers possess mathematical knowledge that is deep, 

conceptual, and well-connected and they appear to have knowledge and awareness of 

their weaknesses and strengths as it relates to the problem.  

Problem solvers who possess mathematical knowledge that is deep, conceptual, 

and well-connected are able to manage their affective behaviors and persist toward a 

solution to a problem (Carlson & Bloom, 2005). Deep understanding of mathematics 

implies that mathematics concepts, procedures, and strategies are well-represented and 

well-connected (Haylock, 1982). Learners who have a deeper understanding of 

mathematics can monitor their own problem-solving and are faster overall at solving 

problems because they understand the meaningful relationships between pieces of 

information, which reduces their need to remember rules, formulas, and procedures 

(Carpenter, 1988; Hiebert & LeFevre, 1986). 

Metacognition 

Metacognition encompasses both knowledge and regulation of cognitive activity 

(Moses and Baird, 1999). Metacognitive knowledge is knowledge an individual has about 

their cognitive abilities, cognitive strategies, and about mathematical tasks (Flavell, 

1979). Metacognitive regulation refers to process that coordinate cognition; for example, 

monitoring which refers to error detection and control which refers to error correction 
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(Reder & Schum, 1996). The relationship between developing conceptual knowledge and 

metacognitive knowledge is established in several studies. The development of 

knowledge about when, where, and how to apply strategies, understanding the 

mathematical task, and an awareness of the need to reflect on the content of one‘s 

knowledge has been examined by several researchers (Garofalo & Lester, 1985; Kuhn, 

Garcia-Mila, Zohar, & Anderson, 1995; Schoenfeld, 1985).  Schoenfeld found that even 

when problem solvers have the required mathematical knowledge, they often do not 

know when or how to use it when solving non-routine problems. Kuhn and his colleagues 

found that a good use of strategy requires knowledge about when and when not to apply 

that strategy. They refer to this knowledge as meta-strategic knowledge. Meta-strategic 

knowledge emerges from conceptual knowledge and metacognition and it has been found 

to guide further learning (Kuhn et al., 1995; Schoenfeld, 1985, 1987).  

Successful completion of mathematical tasks requires more than the application of 

knowledge, it requires the combination and coordination of both cognitive strategies and 

processes and metacognitive behavior (Hammouri, 2003; Schoenfeld, 1985). As 

Schoenfeld (1985) suggested, it is not just, what you know it‘s how you use what you 

know in a problem-solving situation where emotions, beliefs, and possibly attitudes are 

interacting to influence your decisions and performance. While content knowledge is 

essential for successful problem-solving, metacognitive factors enable a problem solver 

to monitor and regulate processes and evaluate solutions.   

While metacognition and cognition are related, they are quite distinct as well. 

Lester (1985) states that, ―cognition is involved in doing whereas metacognition is 

involved in choosing and planning what to do and monitoring what is being done‖ (p. 
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164). There are a number of similar descriptions of metacognition in the reviewed 

literature. Baird (1999) describes metacognition as having three components: 

metacognitive knowledge, metacognitive awareness, and metacognitive-control. 

Metacognitive knowledge deals with knowledge that relates to the nature of learning, 

learning techniques and personal learning characteristics. Metacognitive awareness 

relates to progress during task completion, and metacognitive control describes the 

making of effective decisions about one‘s problem-solving progress and outcome. The 

more problem solvers are able to control and monitor the strategies they use emotional 

behavior the better their abilities to solve a mathematical problem (Kapa, 1999; McLeod, 

1989a, 1992; Schoenfeld, 1985, 1987). 

Garofalo and Lester (1985) categorize metacognitive behaviors related to 

problem-solving. Their cognitive framework is comprised of four categories or activities 

involved in performing mathematics task:  orientation, organization, execution, and 

verification. Each category is associated with specific behaviors. For example, during the 

orientation phase, the learner is involved in understanding the problem. During the 

organization phase, planning and monitoring behavior such as identifying specific goals 

related to problem completion. Execution involves implementing a strategy to solve the 

problem. The final phase, verification, involves the evaluation of decisions and the results 

of an implemented strategy. Garofalo and Lester‘s (1985) cognitive framework identifies 

areas where decisions based on metacognitive behaviors are most likely to have an 

impact on cognitive actions. In this study, their framework is used to analyze the 

metacognitive behavior of prospective teachers during varying phases of the problem-

solving process. 
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In an effort to understand the relationship between metacognition and problem-

solving, several empirical research studies are reviewed. Simon‘s (1987) investigation of 

students problem-solving reveals that monitoring, regulation, and orientation processes 

show up more frequently in the problem-solving protocols of more successful subjects. 

He also suggests that even though a person might have the knowledge they need to solve 

a problem in a given situation, they might not access or apply it when needed.   

In a study focusing on the metacognitive behaviors of middle school students, 

Lester (1989) concluded that an individual‘s orientation to the problem has the most 

important effect on performance. While Lester‘s study involved school aged students, 

Schoenfeld (1985) found similar results with college students in his study on problem-

solving. He concludes that the choices problem solvers make at vital points during the 

problem-solving process are critical to problem-solving success. This link between 

metacognition and success in mathematics problem-solving is well documented in the 

literature (see Artz & Armour-Thomas, 1992; Carr & Biddlecomb, 1998; Shelia, 1999; 

Schoenfeld, 1985, 1989, 1993). Metacognition enables a solver to analyze a new 

problem, judge how far they are from the goal of obtaining a solution, allocate attention, 

select a strategy, attempt a solution, monitor the success or failure of the solution process, 

and decide whether a new strategy is needed to move the process forward (Flavell, 1979).  

Summary 

This chapter discusses the literature related to affective behaviors such as 

emotions, attitudes, beliefs, mathematical cognition, and metacognition during problem-

solving. Previous research is critical in understanding how these phenomena are 

identified, and interact to influence mathematics learning and problem-solving. The lack 
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of a clear definition and theoretical frame used to characterize attitudes and emotions 

creates difficulty in providing a cohesive body of literature in the affective domain of any 

real power. Consequently, Op t‘ Eynde (2002) and McLeod‘s (1992) frameworks 

referenced earlier in this paper are especially important tools for interpreting and 

conducting research in the affective domain. The review on mathematical cognition and 

metacognition will be useful in informing my study about prospective teachers‘ 

mathematical thinking and understanding.  

In the next chapter, I provide a thorough description of the methodology including 

the research paradigm, brief overview of the method, and the intended procedures used 

for analyzing the data to answer the research questions guiding the study. 
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CHAPTER 3 

METHODOLOGY 

This chapter describes the methods I used to investigate prospective teachers‘ 

experiences as they engaged in solving mathematics problems. While the research reports 

that affective and cognitive behaviors influence problem-solving performance, there is 

little information about the nature of cognitive and metacognitive processes and their 

interaction with beliefs and other affective behaviors during problem-solving (McLeod, 

1992; Phillipp, 2007; Schoenfeld, 1992). The rationale for using qualitative methodology, 

and more importantly the choice of grounded theory methods is presented along with the 

procedures used to ensure trustworthiness of the findings. 

Brief Overview of the Study 

This study was conducted using qualitative methods. Grounded theory methods 

were used to analyze the data. I utilized qualitative methods of semi-structured face-to-

face interviews, observations, a video-based think-aloud interview, memo logs, and a 

selection of artifacts from each participant to gather as much information as possible with 

the intent of analyzing, interpreting, and explaining the interaction among specific 

problem-solving behaviors. I used theoretical and purposeful sampling techniques to 

select a sample from a group of prospective middle-grades (4-8) and secondary (6-12) 

prospective mathematics teachers enrolled in a sixteen-week undergraduate mathematics 

course. The description, comparison, and analysis of several prospective secondary 



46 

 

mathematics teachers‘ experiences during problem-solving activities provided me with an 

understanding of their mathematical behavior. Finally, the findings in this study will help 

to extend the current research on prospective teachers‘ mathematical problem-solving 

processes. 

The main research question is: What is the characterization of the interplay among 

prospective teachers‘ mathematical beliefs, mathematical behavior, and mathematical 

knowledge in the context of solving mathematics problems? In answering this main 

question, I also answer the following questions: 

(a) What are the mathematics-related beliefs of prospective secondary 

mathematics teachers? 

(b) What mathematical behaviors do prospective secondary mathematics teachers 

demonstrate as they engage in mathematical problem-solving? 

 (c) What mathematics knowledge do prospective secondary mathematics teachers 

use as they engage in mathematical problem-solving? 

The Research Paradigm 

A paradigm is comprised of the researcher‘s views about the existence of reality, 

knowledge, choice of methods used to conduct a research study, the style of research 

reporting, and the importance of the implications of the research (Ernest, 1998).  

There are two major research paradigms, quantitative and qualitative (Creswell, 1994). 

The quantitative research paradigm is based on numbers used to interpret a phenomenon 

under study. It involves using statistical analysis and statistical variables for the 

interpretation of data.  The qualitative research paradigm is an inquiry process of 

understanding a social or human problem by examining the patterns of meaning which 



47 

 

emerge from the data represented by the participants‘ own words (Creswell, 1994). Direct 

observation and interaction with the participants enables the researcher to understand not 

just the words of the participant, but the meanings they give to their words and why they 

give the words their meaning in a specific context.  

In a qualitative or constructivist (Mertens, 2005) research paradigm, for which I 

am closely aligned, the focus is on exploring interactions with the emphasis on the world 

as socially constructed reality involving multiple perspectives. The perceptions and the 

values of all the participants in a situation are needed in order to explore the various 

possible interpretations (Ernest, 1998; LeCompte & Schensul, 1999b; Mertens, 2005).  

Rationale for Conducting Qualitative Research  

In mathematics education, research has shifted from the predominantly positivist, 

quantitative paradigm perspective to that of the naturalistic or qualitative research 

paradigm (Ernest, 1998). Qualitative methods are useful when the goal is to obtain 

intricate details about phenomena such as feelings, thought processes, and emotions that 

are difficult to understand using quantitative methods (Strauss & Corbin, 1998).  

Moreover, qualitative methods are best used to explore areas of importance for which 

little is known. Because the integration of affect and cognition is under- conceptualized 

or little is known about it, a qualitative inquiry seemed appropriate for this study.  

Lincoln and Guba (1985) made distinctions between two types of studies. They 

represent the situation where the researcher ―knows what he or she doesn‘t know‖ (p. 

209) and can therefore explain the means for finding it out, and the situation where the 

researcher ―does not know what he or she knows‖ (p. 209) in which case the researcher 



48 

 

needs to maintain a more open-ended approach in their search for an explanation. The 

later is usually a qualitative or naturalistic inquiry (Lincoln & Guba, 1985).  

Philosophical Claims of Qualitative Research 

Each paradigm inquiry consists of three underlying philosophical claims. The first 

is ontology or the belief about the nature of reality, the second is an epistemology or the 

belief about the nature of knowledge and the third is a methodology or the approach to 

inquiry. Lincoln and Guba (1994) suggests that one‘s belief about the nature of reality, 

knowledge, and one‘s approach to inquiry are interconnected with and constrained by 

each other.  

The qualitative or constructivist research paradigm is based on the assumption 

that the world is not an objective one, but exists in multiple realities (Mertens, 2005). In 

qualitative research, the world is a subjective phenomenon that is open to interpretation 

and not mathematical measurement. The world exists because of human interaction and 

perceptions, which can only be explored and discovered through meaningful description 

and interpretation. The research and evidence is achieved through exploration and 

inductive processes (Merriam, 1998). Lincoln and Guba (1999) explained that in a 

qualitative research paradigm one denies the existence of an objective reality, ―asserting 

instead that realities are social constructions of the mind, and that there exist as many 

such constructions as there are individuals, although clearly many constructions will be 

shared‖ (p. 431). Reality is relative, local, and socially constructed and every construct 

carries equal importance (Lincoln & Guba, 1994; Mertens, 2005).  

Eisner (1979) suggested that the sources of knowledge are as diverse as the 

information provided by our senses. Each of our five senses provides a unique experience 
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that cannot be replicated by the other. An individual‘s knowledge only has meaning 

within a given situation or context and each individual‘s perception can differ, creating 

many different interpretations. A constructivist epistemological paradigm views all 

knowledge and meaningful reality as socially constructed through interactions between 

individuals and the world around them in a social context (Crotty, 1998; Mertens, 2005). 

For this study, I was interested in understanding the interaction of prospective teachers‘ 

affective behavior, problem-solving behavior and experiences during their participation 

in an undergraduate mathematics course specifically focused on developing deep 

mathematics understanding in a problem-solving context. This understanding is found in 

the ―realm of the knower‖ (Smith, 1983, p. 46)—the prospective secondary mathematics 

teacher.  I approached the study from a constructivist epistemological paradigm because 

mathematics knowledge and understanding is socially constructed (Ernest, 1996).   

In a constructivist paradigm, knowledge and understanding is achieved through 

the interaction between the researcher and the researched.  These knowledge and 

understanding claims are subjective in nature. Mertens (2005) explained that the 

elimination of objectivity and bias is nearly impossible when researching the social 

world.  Values, culture, training, and experience have ―pride and place‖ (Lincoln and 

Guba, 1994, p. 114) and measures should be taken to maintain the awareness of bias and 

the role of bias should be addressed in the interpretation of findings.   

Ontological and epistemological beliefs influence methodological approach to 

doing qualitative research. Qualitative research is based on the information gained 

through listening, watching, and interacting. Prospective teachers‘ mathematical behavior 

and experiences during problem-solving can be viewed as a complex, multi-layered 
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phenomenon. Some behaviors can be observed; however, there are aspects or levels of 

experience that only an individual who is living or has lived the experience can describe 

and explain. To explore the affective behavior, mathematical behavior and experiences of 

prospective secondary mathematics teachers during problem-solving situations would 

entail many perspectives, their social behaviors, and the context of the class setting. 

Tests, questionnaires, and surveys can measure some element of behavior, but to 

understand the nature of prospective teachers‘ problem-solving and mathematics learning 

processes, a qualitative study was necessary. The analysis of interviews and observations 

provided me with insight into prospective secondary mathematics teachers‘ mathematical 

behavior, how their cognitive processes operated as they explained their mathematics 

thinking during problem solution presentations, and how their minds functioned as they 

explained their mathematics reasoning and justified their problem solutions.  

A Grounded Theory Approach  

Grounded theory (GT) methodology, a type of qualitative or naturalistic inquiry, 

focuses on the perceptions, thoughts, and actions of individuals, as well as how 

individuals define their situations (Denzin, 1989). According to Strauss and Corbin 

(1990), it is a ―qualitative research method that uses a systematic set of procedures to 

develop an inductively derived grounded theory about a phenomenon‖ (p. 24). It draws 

on the strengths of both positivist and interpretivist approaches (Charmaz, 2000). 

Orlikowski (1993) characterized GT as interpretive because it uses qualitative and 

unstructured data that represents subjective understanding, it involves subjective 

sampling (Flick, 1998), and the theory-building process is mostly inductive (Strauss & 

Corbin, 1990). The method is influenced by positivistic approaches because it provides a 
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systematic coding procedure designed to eliminate ―speculative assumptions not founded 

on observations‖ (Schweizer, 1998, p. 44), and deductive verification of concepts and 

relationships is obtained during the inductive process. For example, during the process of 

constantly comparing the data, at times, I made assumptions about themes emerging from 

the data and then collected more data to verify those assumptions. 

In this study, I used Charmaz‘s (2005) coding procedures and included aspects of 

Strauss and Corbin‘s (1998) coding techniques to move beyond making statements about 

the data to making analytic interpretations of the participants lived experiences. There 

was always the understanding that my background, beliefs, and culture would introduce 

subjectivity into the process based on how I collected data, interpreted the data provided 

by my participants, and coded the data. I collected data in an inductive manner (Morse, 

2001) and I began the study with no preconceived ideas to either prove or disprove. My 

desire was to explore and understand the interplay among affective behavior, 

mathematical behavior, and mathematics knowledge as prospective mathematics teachers 

engaged in the problem-solving process. Moreover, I wanted to characterize the 

interaction among these phenomena using a model.  The goal of GT is the construction of 

theory that gives understanding about important issues in people‘s lives and it allows the 

researcher to generate explanatory theory about social phenomena rather than generating 

results to support or test existing theories (Glaser & Strauss, 1967).  

Strauss and Corbin (1998) explained that, ―analysis is the interplay between the 

researcher and the data (p. 13). They suggested that GT analyst work to ―uncover 

relationships among categories…by answering the questions of who, what, when, why, 

how, and with what consequences‖ (p. 127). Taking a grounded theory approach, I 
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constructed theory from the data created from the participants‘ perspectives and voices 

and my experiences and relationships with the participants (Charmaz, 2005). Charmaz 

explained that when the researcher starts with the data from the lived experiences of the 

participants, from the beginning of the study the researcher attends to how they construct 

their worlds.  She explained that ―lived experiences shape the researchers‘ approach to 

data collection and analysis‖ (p. 8). Taking a grounded theory approach to conducting 

this qualitative research study enabled me to construct a theory addressing the 

relationship among the participants‘ affect, mathematics learning, and problem-solving 

behavior based on my interpretation of the meanings participants gave to their realities in 

the context of problem-solving (Charmaz, 2000).  

The constructivist paradigm is familiar in the mathematics education community 

and my own background and view is closely aligned with this view as well. The 

constructivist paradigm fits well within the interpretivist philosophy, both of which have 

the goal understanding ―the world of human experience‖ (Cohen & Manion, 1994, p.36), 

suggesting, ―reality is socially constructed‖ (Mertens, 2005, p. 12). As such, this study 

took an interpretivist-constructivist approach to GT. Like interpretivist and constructivist 

researchers, I relied on the participants‘ views of the situation being studied (Creswell, 

2003) while recognizing the impact my own background and experiences have on the 

research. The GT resulting from this study is my interpretation of the meaning the 

participants gave to their mathematics learning and problem-solving experiences--it is not 

be an exact truth. 

Three important features of GT research are theoretical sampling, coding, memo 

writing, and the constant comparative method of analysis, which involve the continuous 
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cycle of collecting, labeling, and analyzing data. Theoretical sampling is purposive and 

refers to the process of data collection where the selection of new participants for the 

sample is based on the results collected from a previous sample (Glaser & Strauss, 1967). 

As explained by Strauss and Corbin (1998), ―theoretical sampling is cumulative‖ (p. 

203). As an explanation for what is happening in the field emerges and the investigation 

focuses, so too does the sample of participants. With respect to the constant comparative 

method, the researcher begins analyzing the data as soon as it is collected and then 

continues on to compare the analysis of one set of data with another in an effort to 

develop categories. The basic strategy of the constant comparative method involves 

constantly comparing terms or phrases the participants use or incidents from interviews, 

field notes, researcher memos, and other documents with another incident in the same 

data set or other data set. Each comparison and sorting of field notes and interview 

transcriptions lead to the construction of categories representing the meanings the 

participants gave to certain incidents. As the research progresses, the researcher continues 

to interact with the participants and review the categories as additional new data is 

collected. The idea is to allow the categories to emerge from my interaction with the 

participants and with what the participants are saying and doing.  

According to Strauss and Corbin (1998), coding is the ―building blocks of theory‖ 

(p. 101) and it involves the simple act of labeling an event, object or action in the data 

that represents the participants‘ voices or a specific incident. Coding is an important 

component of grounded theory as it enables the researcher to group similar events, 

happenings and ideas under a common category. I used initial and focused coding 

(Charmaz, 2005) and axial and selective coding (Strauss & Corbin, 1998) to formulate an 
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understanding of the interplay among affective, cognitive, and metacognitive behavior 

during problem-solving. During initial coding, data were compared and I learned what 

the participants viewed as problematic during the mathematics learning and problem-

solving processes. Through focused coding, I compared the participants‘ experiences, 

actions, and interpretations, which enabled me to develop categories (Charmaz, 2005). 

Strauss and Corbin‘s approach to grounded theory outlined the use of axial coding which 

provided a frame that enabled me to develop subcategories and to link them to the 

categories developed during focused coding. I also found that using Strauss and Corbin‘s 

axial coding eliminated ambiguity and provided clarity as I sorted and synthesized the 

large amount of collected data. Selective coding enabled me to specify the relationships 

among categories and to tell a story, based on the interpretation I gave to participants‘ 

statements and actions, that integrates participants‘ disparate experiences (Charmaz, 

2005).  

Throughout the coding process and during my memo writing, I spent numerous 

hours each week formulating and constructing explanations from my interactions with the 

participants and used this information to analyze my data and to report findings. In that 

sense, my memo writings represented what Charmaz (2003) referred to as ―researcher 

created and ensuing analysis‖ (p. 523). Throughout this study, there were instances where 

I was shaped by the data, but there were also times when I shaped the data (Charmaz, 

2003).  

The research paradigm associated with a study is an important factor in the 

research design. The reliability and credibility of research is critical to research findings, 

and it is only through the quality of the data that meaningful and valid results are 
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developed. Unlike the rigor and validity applied to quantitative research, the quality and 

validity of qualitative research is judged by its trustworthiness, credibility, and 

transferability.  

Meeting Trustworthiness Criteria 

Credibility, the degree to which the researcher‘s interpretations are consistent 

with the meanings intended by the participants, is the foundation on which all other 

validity is formed (Strauss & Corbin, 1998). If the data are not accurately reported, all 

else is irrelevant (Glaser & Strauss, 1967; Strauss & Corbin, 1998). Credibility in this 

study is achieved via prolonged engagement, persistent observation, triangulation, and 

member checking. I spent ten weeks (30 hours) in the field observing the participants, 

focusing only on elements of the situation that apply to the study‘s purpose. I used a 

number of data collection methods, including interviews, observations, and video-taped 

think-aloud problem-solving episodes. After each interview and classroom observation, I 

reflected on what I saw and heard, and recorded my thoughts and hunches in the form of 

memos. I transcribed each interview verbatim and included features of the participants, 

such as the appearance of stress and verbal pitch in order to understand thoroughly the 

interviews. During subsequent interviews, the participants verified the accuracy of 

specific aspects of their transcribed interviews. Furthermore, I asked a colleague who was 

familiar with my study, but not directly involved in the study, to code the first few 

interviews and to provide support or corrective feedback on findings. She also questioned 

me about my methods, emerging theory, and biases.  

Confirmability refers to the extent to which the findings are rooted in the data or 

the participants‘ voices and views and are not a reflection of my own ideas or 
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preconceived notions. Creating and maintaining an audit trail facilitates confirmability. 

During the interviews, I asked follow-up questions based on previous observations, and I 

looked for clues within the transcript to assure accurate evaluation of the interviews. I 

read and re-read line-by-line the transcribed interviews, fieldnotes, and memos to assure 

accurate evaluation of what the informants say and do. I recorded codes in a codebook 

along with their meanings. I provided a competent well-trained colleague with a trail of 

raw data, theoretical notes, and memo notes and elicited her help to conduct the inquiry 

audit.  

Finally, generalizability can be problematic in the sense that the theory resulting 

from my study is universally applicable. The research study specifically focuses on the 

characteristics of prospective middle-grades and secondary prospective teachers enrolled 

in an undergraduate mathematics class; therefore, the findings or theory may or may not 

apply to similar groups (Strauss & Corbin, 1998). Instead of generalizability, the results 

could have explanatory power or ―predictive ability‖ (Strauss & Corbin, 1998, p. 267). 

That is, the results could have the ability to explain what might happen in a given 

situation. The results of the study are more likely to be internally generalized in the sense 

that theory specific to this study is developed from the repetitive themes, patterns, and 

categories and are applicable to the participants in this study or participants in similar 

situations.  

Transferability measures how well the researcher informs the readers of how the 

data are interpreted and analyzed. Transferability is facilitated by clear descriptions of 

how the concepts are named and categories developed by the qualitative grounded theory 

inquirer. Thick description of the process of analysis, phenomena under study, and as 
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much of the context in which the study took place as possible will contribute significantly 

to facilitating transferability decisions (Lincoln & Guba, 1989). I explain my worldview, 

method of sample selection, and include interview protocols and coding procedures in the 

appendixes so that the reader will have a clear understanding of how I arrive at my 

findings. I also maintained a reflective memo journal throughout the research process so 

that I remained aware of my own subjectivity and its potential to influence the research. 

Researcher Subjectivity/Sensitivity 

   The grounded theory approach, according to Strauss and Corbin (1990, p. 24), is 

a ―qualitative research method that uses a systematic set of procedures to develop and 

inductively derived grounded theory about a phenomenon.‖  GT draws on the strengths of 

both interpretive and positivistic approaches. Even though I used a systematic approach 

to coding my data, I viewed the whole process as one that was interpretive, maintaining 

the view that reality or coming to know is constructed inter-subjectively through 

meanings, understandings, and interpretations that are developed or constructed socially. 

Meaning took shape as the data collection proceeded and during the inductive process of 

the study, I worked from the participants‘ data to generate categories during the process 

rather than in advance of data analysis. Themes, concepts, and categories that emerged in 

this study were filtered through my worldview and colored by my own experiences.  

I used Strauss and Corbin‘s (1998) systematic coding procedures while 

understanding that my background, beliefs, and culture would introduce subjectivity into 

the process. I strived for transparency about the approach and interpretations. As such, I 

acknowledge my bias, sensitivity, and subjectivity. I believe that in doing so, the degree 

of transferability and the richness of the study are enhanced. I believe that there are 
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multiple realities. Therefore, perhaps the same study could be done again with different 

results.  

My values, beliefs, background, knowledge, and experience not only provide the 

means for helping me understand the world in which I live, but they sensitize me to the 

issues and phenomena I am investigating in this study. Some beliefs are relevant to the 

study and I share these relevant beliefs, experiences, and values with the reader below.  

My Mathematics Education Beliefs 

I currently work as a mathematics instructor and as a mathematics teacher 

educator teaching general education mathematics and secondary mathematics methods 

courses in a university setting. Previously, I taught middle-grades, secondary 

mathematics courses, and general mathematics courses at a community college. During 

my years of teaching, I have encountered students who exhibit a variety of emotional 

responses, attitudes, and academic abilities when learning mathematics concepts and 

solving mathematics problems. Therefore, I am very familiar with some of the effects of 

mathematics-related beliefs, affective behavior, and cognition on problem-solving 

success. There is a plethora of literature documenting beliefs, affective behavior, 

cognitive behavior, and problem-solving behaviors. While preparing my prospectus, I 

familiarized myself with some of that literature. The literature focuses mostly on 

describing problem-solving behavior, on identifying attributes that contribute to problem-

solving success, and on reporting problem-solving success as a function of many factors 

such as knowledge, control, beliefs, and other affective dimensions. These studies could 

have possibly played role in my preconceived notions and biases.  
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The literature, as well as my experience teaching mathematics, has shaped my 

beliefs about mathematics. I believe that mathematics does not consist primarily of rules 

and algorithms to be used during problem-solving. Instead, mathematics is rich in 

relationships that are connected by discrete pieces of conceptual and procedural 

mathematical knowledge that can be used in problem-solving situations. While my 

worldview, in some ways, shapes my study, I am open to being shaped by my research 

experiences and to having my thinking informed by the data. 

As the primary instrument for collecting and analyzing data, I was very careful to 

express the participants‘ views and perspectives but there were times when I negotiated 

meaning and defined what was happening through ―shared interpretations‖ (Charmaz, 

2002, p. 684). I revisited and reviewed the audio and video recordings of interviews, 

fieldnotes, and my reflection logs throughout the analysis of data to make meaning of 

what was happening. Finally, during the course of this study my preconceived notions, 

assumptions, any emerging theory during data analysis were challenged and debated with 

a colleague who was familiar with my study. 

Context 

Selection of Participants 

Participants were drawn from a population of prospective middle grades and 

secondary mathematics teachers enrolled in a third year mathematics course entitled 

Advanced Perspectives on Mathematics (APM). During the semester long course, 

prospective teachers are revisiting key ideas in school mathematics while using the skills 

and understandings of college course work in mathematics to solve mathematics 

problems. In this course, they reason, listen to, respond to, question their instructor and 
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one another, make conjectures, explore examples, solve problems, present solutions, and 

justify their reasoning and problem solutions. Since solving problems was a critical 

aspect of the APM course, I assumed that prospective teachers enrolled either have some 

experience with problem-solving or are in the process of gaining knowledge of problem-

solving.  

In GT, the selection of participants is based on the developing nature of the 

research and cannot be predicted at the start of the study (Glaser, 1978; Strauss & Corbin, 

1998). Instead, as the research progresses, data analysis guided the questions for 

subsequent data collection and sampling. Therefore, the researcher is not expected to 

specify how large the sample will be before the start of the study. The sampling was done 

with purpose and was guided by theoretical assumptions emerging from the data and, in 

some instances, suggested by the literature (Strauss & Corbin, 1998). Events, happenings, 

or incidents, that represent phenomena pertinent to the study, are sampled and not 

individuals per se (Strauss & Corbin, 1998). Individuals were the means to obtain 

pertinent data that were used in the development of concepts and categories essential in 

developing theory. During the process of data analysis, as concepts and categories begin 

to emerge, participants who were seen as having experiences and knowledge pertinent to 

answering the research questions were approached and asked to be a part of the study. I 

determined the final sample size by theoretical saturation or the failure to obtain new 

relationships or new information for the categories identified in the study.  

After collecting the consent and background information forms, I separated the 

background information forms into two groups. One for prospective middle-grades 

teachers and the other contained prospective secondary teachers. I read and labeled the 
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answers for the two questions on the background information form, ―What are your 

general feelings about mathematics?‖ and ―How would you describe your own ability to 

do mathematics?‖ in order to get a sense of the participants self-perceived mathematical 

ability and their general attitudes about mathematics. I noted any responses that sparked 

my attention. For example, one potential participant stated that ―I struggle with 

mathematics most of the time and it takes a while for me to ‗get it‘ but I really want to 

teach middle-grades mathematics so that my students can really understand math.‖  I 

considered the responses to these questions as provisional data and focused primarily on 

the responses that pertained to the study. The provisional data provided me with a starting 

point for areas of observation and interview questions and a point from which to begin 

my data collection. 

I began the study with a classroom observation. Following the first observation, I 

approached a middle-grades prospective teacher who subsequently agrees to participant 

in an initial semi-structured interview. After the initial coding of data, the interview from 

the first participant leads to the selection of an additional middle-grades prospective 

teacher and two secondary prospective teachers. Each interview and observation provided 

me with a piece of data on which I could build as I moved back and forth through the 

data in order to find, compare and verify patterns, concepts, and categories until I reach 

the point where no new patterns, concepts, or categories emerge. This method of 

sampling led to the final selection of participants for this study. 

Participants 

In this study, the participants were chosen from a group of 15 middle-grades and 

secondary prospective teachers enrolled in the APM course. There were 13 female and 
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two male students enrolled in the course, seven of whom are prospective secondary (6-

12) mathematics teachers and eight of whom are prospective middle-grades (4-8) 

mathematics teachers. The professor teaching the course provided me with unlimited 

access to the prospective teachers enrolled in the course. These prospective teachers were 

engaged in conjecturing, reasoning, and solving non-routine mathematics problems 

during each class session. The literature reviewed for this study revealed that, as 

individuals actively engage in problem-solving, a variety of affective behaviors, 

metacognitive behaviors, and cognition can be identified (Carlson & Bloom, 2005; 

Garofalo & Lester, 1989; Schoenfeld, 1985, 1992). Because the research questions in this 

study concern, affective behavior, metacognition, and mathematical cognition in a 

problem-solving context, choosing participants who are actively engaged in conjecturing, 

reasoning and problem-solving ensure the possibility of study-relevant sources (Miles & 

Huberman, 1994). The selection of participants from this course generated the final 

sample from which the most learning and understanding could occur. 

 On the first day of class, I explained the focus and intent of the study to all 

prospective teachers enrolled in the APM course and asked them to complete a 

background information form indicating whether they were willing to participate, would 

need more information, or were not willing to participate. To gain initial information 

about the prospective teachers‘ mathematics background and self-perceived mathematical 

ability and confidence level, I also asked them how they viewed their ability to do 

mathematics. I used three selection criteria. The first is willingness to participate. I 

wanted to be sure that the potential participants would not mind being video-taped during 

problem-solving episodes since these episodes are critical in verifying affective, 
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metacognitive, and mathematical cognitive behavior. The second criterion is for the 

participants to be secondary mathematics or middle-grades education major, and the third 

criterion is acceptance into the teacher education program. The purpose of the second and 

third criteria was to focus on issues related to teaching and learning mathematics in a 

classroom setting and in the future possibly extend the study into the participants‘ field 

experience.  

 Fifteen prospective teachers were enrolled in the APM course. Ten agreed to 

participate, two were not willing to participate, two needed further information, and one 

of the two male students did not meet the second and third criteria. On the second day of 

class, I revisited the class and explained the study in further detail to those who needed 

further information. After I answered their questions, the two who needed further 

information agreed to participate. Thus, the population from which I applied theoretical 

sampling included twelve potential participants—eleven females and one male. The study 

eventually included four participants—Tanya and Mandy (pseudonyms), both of whom 

are prospective middle-grades (4-8) mathematics teachers, and Mark and Cindy 

(pseudonyms), both of whom are prospective secondary (6-12) mathematics teachers.  

Data Collection 

 The data sources for each participant included four face-to-face semi-structured 

interviews one of which was a videotaped think-aloud problem-solving interview, ten 

weeks (30 hours) of classroom observation, and researcher memo logs. A rationale and 

description for each data source is provided in detail below. A data collection schedule is 

also listed in appendix K.  
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Face-to-face Interviews  

Face-to-face interviews are important for gaining information on the nature of 

prospective teachers‘ mathematics-related beliefs (i.e., beliefs about the nature of 

mathematics, oneself, and the classroom context) and their attitudes toward mathematics. 

These behaviors cannot be observed. Patton (1990, p. 196) explained that ―we interview 

people to find out from them those things we cannot directly observe. In my attempt to 

understand prospective teachers‘ mathematics-related beliefs, emotions, attitudes toward 

mathematics, and their metacognitive behavior during problem-solving, face-to-face 

semi-structured interviews seem appropriate. The interviews were conducted in a private 

location with adequate lighting, space, acoustics and safeguards against interruptions.  

The third interview was a think-aloud problem-solving interview. In mathematics, 

the think-aloud method is used to examine the processes involved in metacognition, self-

regulation or control during problem-solving (Artzt & Amour-Thomas, 1992; Ericsson & 

Simon, 1984; Schoenfeld, 1985). The think-aloud technique involves the participants 

verbalizing their thoughts; that is, speaking aloud all that comes to their minds during the 

problem-solving process. To investigate the processes involved during problem-solving, 

Ericsson and Simon‘s (1984) think-aloud protocol and technique were used during the 

third interview (see Appendix D). 

Video-taped Think-Aloud Problem-solving Interviews 

Three verbal methods can be used to collect data about the processes an 

individual experiences while completing a task (Ericsson and Simon, 1980). They are 

introspective, retrospective, or think-aloud. During the introspective method, the 

researcher interrupts the participant while he or she performs the task to answer questions 
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based on what he or she is thinking, feeling, and doing. This method is not considered 

reliable because not only is the participant‘s working memory interrupted, but also the 

task completion process is considered inefficient (Nisbett & Wilson, 1977). The 

retrospective method requires the participant to complete the task in its entirety and, upon 

completion, describe the strategies used while completing the task (Rowe, 1985). Nisbett 

and Wilson (1980) explained that this method is unreliable because, due to the potential 

prolonged time between task completion and the participant‘s response, he/she is more 

likely to forget the process. 

 According to Ericsson and Simon (1980), the think-aloud method shows the most 

reliability for reporting the problem-solving process (Ericsson & Simon, 1980). Before 

the interview, I thoroughly explained the think-aloud method to the participant. The 

participant was instructed to verbalize everything he or she was feeling or thinking during 

the solution process. For example, during the videotaped problem-solving interview Mark 

stated, ―Hmmm, what did I do wrong here? Why isn‘t the answer checking out 

right…hmmm, I must have done something wrong…okay, let me go back and see where 

I went wrong here.‖ Ericsson and Simon (1980) explain that think-aloud is natural and 

automatic because it does not interfere with the participant‘s working memory, nor does 

it give the participant time to make his or her own interpretations about their thinking 

(Ericsson & Simon, 1980). According to Ericsson and Simon (1980), this process 

provides for reliability and validity when compared to the introspective and retrospective 

methods. Therefore, for the purpose of this study, think-aloud is used to collect data 

about the participants‘ affective behavior, cognition, and metacognition during the 

problem-solving process. 
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Follow-up Interview 

This fourth and final interview occurred at most two days after the participant was 

finished solving the problem. During the interview, the participant was given copies of 

his or her solution to the problem from the think-aloud session. To help the participant 

recall his/her problem solution process, I played the video and stopped it at specific 

points to question the participant about his/her thinking and feelings at the time he or she 

was solving the problems.  Questions about my observations of their problem-solving 

process were asked to clarify the participants‘ problem-solving thinking and behavior and 

to clarify my interpretations. The majority of the questions are based on my observations 

during their problem-solving process; however, some questions are adopted from 

Randell, Lester, & O‘Daffer‘s (1987) ―How to Evaluate Progress in Problem-Solving.‖ 

Observations 

 This research study began with an observation of the APM classroom to decide 

how the participants may be approached for an initial interview. Face-to-face interviews 

enable me to investigate prospective teachers‘ affective behaviors and metacognitive 

behaviors. Stated affective behaviors, such as beliefs, are often different from the 

affective behaviors that can be inferred from an individual‘s actions (DeBellis & Goldin, 

1997; Thompson, 1992; Schoenfeld, 1985). To investigate the informants‘ problem 

solving experiences, classroom observations are conducted. I observed the participants‘ 

as they asked questions, solved mathematics problems at the board and their desks, 

explained their solutions, and as they engaged in mathematics discourse in the classroom 

environment.  
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Observations made it possible to record behavior as it was happening and it 

provided knowledge of the classroom context. Observations of discourse and interactions 

with their peers and instructor enabled me to monitor their mathematical thinking and 

understanding as they engaged in mathematics discourse. Information gained from the 

mathematics discourse during the observations guided theoretical sampling and in 

conjunction with interviews crystallized findings.  

Observations occurred during each class session for 1 hour 15 minutes, twice per 

week for the duration of ten weeks from January 15 through March 20, 2008. On January 

22, the professor cancelled class due to inclement weather; therefore, no observations 

occurred on that day. I observed participants on February 28 while completing their 

midterm exam to identify any affective behavior exhibited during this process. No 

observations occurred on March 4 and March 6 due to the university‘s spring break. Field 

notes were taken during each observation, adding important contextual content to the 

study. 

Memo and Reflection Logs 

As a way of monitoring the data collection process and to begin analyzing the 

information gained from the interviews, immediately following each interview and 

observation I recorded my ideas, speculations and hunches, feelings, descriptions and 

perceived moods of the participants (Bogden & Biklen, 1992; Creswell, 2003; Merriam, 

1998). Memos are meant to be analytical and conceptual rather than descriptive (Strauss 

& Corbin, 1998). However, I included descriptions as well. My reflections and memos 

were used as part of the data collection and analysis process. The following is an excerpt 

from a memo made after an observation. 
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About eight of the 15 prospective teachers (pt) in the class today were 

consistently participating in the class discussion. This is a very enthusiastic 

bunch. They seemed very intelligent, knowledgeable, and confident. The 

instructor posed the question ―What is mathematics?‖ and ―How do you learn 

mathematics?‖  I had planned to ask this question in a future interview, so I was 

excited about how the students would respond. After listening to a plethora of 

responses, I still have questions. What do the students think mathematics is not?  

What is meant by ―doing math?‖ Does ―getting it right‖ and ―explaining why 

math works‖ affect how one handles difficulties associated with ―doing math?‖ 

(Field note 1, January 15, 2008). 

This is the first of many, many, memos used to provide direction for the study and 

to keep the research grounded in the data. The memos provided an opportunity to 

describe the participants and their moods, the classroom environment, my own personal 

feelings, questions about phenomena I did not quite understand, and it enabled me to do a 

great deal of reflective thinking. The memos also enabled me to remain focused and 

aware of the relationships among emerging categories.   

Artifacts 

The artifacts included student work and any handouts given during observations. 

Analysis of these artifacts enabled me to make inferences about the prospective teachers‘ 

mathematics knowledge, thinking, and understanding. These artifacts were also used in 

conjunction with interviews and observations to substantiate findings.  
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Procedure 

The first two interviews were the same for each participant. A complete list of the 

interview protocol is located in appendix B. In the first interview, I focused on the 

prospective teachers‘ beliefs about the nature of mathematics and their self-perceived 

mathematical ability. The second interview focused on beliefs about the context of the 

classroom; primarily their learning and their beliefs about whom they perceive as being 

most responsible for their learning of mathematics. I video-taped the third interview and 

focused on the participants‘ specific metacognitive behaviors, emotions, attitudes, and 

their use of mathematics knowledge during a problem-solving episode. The participants 

solved a non-routine mathematics problem (see appendix D). The problem chosen 

follows Schoenfeld‘s (1993) definition of a mathematical problem; that is, a task in which 

the student is interested and wishes to obtain a solution, and for which the student does 

not have a readily accessible mathematics means by which to achieve that resolution. 

However, the problem chosen was not so difficult that the participant could not provide 

details about their solution process.  To investigate the processes involved during 

problem-solving, Ericsson and Simon‘s (1984) think-aloud protocol and technique were 

used during this interview.  

I asked each participant to translate their thoughts into words, recite the 

translation aloud, and verbalize aloud all the steps that occur as he or she problem solve.  

When he/she failed to verbalize, for a specified period of time (i.e., 5 seconds), I used 

prompts such as ―keep telling me what you are doing‖,  ―keep talking,‖ or ―say 

everything you are thinking and doing‖ (Montague & Applegate, 1993).   As they were 

solving the problems, I asked the participant to verbalize what they were doing and why 
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they decided to do what they were doing. I noted all emotional behavior or gestures that 

the participants demonstrated. I also noted the extent to which each participant used 

strategies, procedures, conceptual knowledge, and multiple solution paths during the 

problem-solving process. This third interview was videotaped for response recall during 

the fourth interview, at which time I asked specific questions about their problem 

solution.  

The fourth and final interview focused on the informants‘ affective, cognitive, and 

meta-cognitive responses from the videotaped think-aloud interview. To avoid 

interruptions during the problem-solving process, I conducted this interview no more than 

two days after each participant has their think-aloud videotaped interview. Each 

participant was asked questions as they reviewed their problem solution. I provided this 

opportunity so that the participants could express what they were thinking and feeling as 

they solved the mathematics problem. It also gave me an opportunity to verify my 

interpretations with respect to what I observed during the actual think-aloud interview. In 

addition, the participants had the opportunity to clarify their think-aloud responses, 

interpret their use of mathematical knowledge and problem-solving strategies.  

Summary 

This chapter provides a brief overview of the study, a description of the 

participants as well as data collection. The rationale for using qualitative methodology, 

and more importantly the choice of grounded theory methods was presented. I discussed 

the research procedures used during the study and established the trustworthiness of the 

research. In the next chapter, I discuss in detail my analysis of the data
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CHAPTER FOUR 

 

DATA ANALYSIS 

 

According to Glaser and Strauss (1990), the constant comparison and coding of 

collected data is at the heart of GT. Creativity of researchers is an essential ingredient in 

coding collected data. Strauss and Corbin (1998) explained that ―analysis  procedures 

were designed not to be followed dogmatically but rather to be used creatively and 

flexibly by researchers as they deem appropriate‖ (p. 13) and each person must find a 

system that works best for him or her during the process of applying GT techniques for 

analyzing data. Charmaz (1983) holds that every researcher that uses the GT method will 

tend to develop his or her own variations of techniques. I coded my data using the coding 

methods suggested by Charmaz (2005) along with Strauss and Corbin‘s (1998) axial and 

selective coding. When using Strauss and Corbin‘s technique, I was not necessarily 

looking to discover meaning or truth inherent in the data but instead I recognized that 

both data and analysis is created from shared experiences and relationships with the 

participants (Charmaz, 2005).  

The data represented participants‘ complex and varied views of the situation 

(Creswell, 2003). Some views or meanings were common and could be easily grouped or 

categorized, but others required further interactions, discussions, and negotiation. There 

were also times when I relied on my work related experiences or used the knowledge I 

gained from reviewing the literature to negotiate meaning. In this chapter, I explained my 
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approach to the constant comparative method, open and focused coding, axial, and 

selective coding. I describe and illustrate open, focused, and axial coding as applied in 

this study. I describe selective coding in the following chapter.  

Merriam explained that, ―without ongoing analysis, the data can be unfocused, 

repetitious, and overwhelming in the sheer volume of material that needs to be 

processed‖ (Merriam, 1998, p. 161). She emphasized that, data analysis during the 

collection process is both ―parsimonious and illuminating‖ (p. 161). In this study, data 

collection and analysis occurred in alternating sequences on January 10, 2008 and 

proceeded through July 2008.   

Open Coding 

In this study, open coding consisted of reading line by line and labeling each line, 

sentence, or paragraph with a word or phrase that best captured the meaning of what 

participants were saying and doing during classroom discourse, interactions with their 

peers, and as they participated in learning and problem-solving. When open coding, I 

remained open to exploring whatever theoretical possibilities I could discern in the data 

(Charmaz, 2005). I labeled the participants‘ actions and interactions by writing the codes 

in the margins of the transcribed interviews, observations, and other documents.  Some 

labels were given names in the terms used by the participants using ―in vivo codes‖ 

(Strauss & Corbin, 1998, p. 105) in order to capture insights into their mathematics 

learning and problem-solving experiences. Other labels given to the concepts, ideas, or 

categories were negotiated socially and were formed because of my interactions and 

discussions with and among the participants.  



73 

 

As concepts began to emerge, they were compared for similarities and differences 

and grouped together by similar code phrases into named categories. The process is 

repetitive and ensures that the generation of categories and their properties actually 

emerge from the meanings participants give to an incident or situation (Charmaz, 2003; 

Creswell, 2005; Strauss & Corbin, 1998). As suggested by Charmaz (2005) during open 

coding, I asked questions such as ―who or what was the participant talking about,‖ ―when 

did what they were talking about happen?‖, and ―how were they saying this?‖ Asking 

these questions guided my analysis of interviews, observations, and provided insights 

about what kinds of data to collect next.  

To give you an idea of how I coded during the coding process, I provide an 

illustration of open coding on an excerpt from two different participants. In Table 1, each 

line was coded using an open code that represented what the participants said and found 

problematic. I also coded incidents in my observational data. Open coding helped me 

identify implicit concerns, actions, and explicit statements from the participants. In doing 

so, I learned a lot about the participants‘ mathematics learning and problem-solving 

worlds. During my observations of the participants in the classroom, I compared what I 

observed with the knowledge and understanding I gained from initial open coding.  In my 

first observation of Mandy in the classroom, I developed the code of ―confidence in 

doing mathematics‖ because Mandy demonstrated mathematics confidence as she 

enthusiastically volunteered to explain and justify her solution to a problem at the board. 

Later, during an interview she confirmed my development of the code ―confidence in 

doing mathematics‖ when discussing her mathematics ability she stated, ―mathematics is 

my best subject... I‘ve always been good at it.‖ 
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Focused Coding 

 Focused coding (see Table 2) is the second phase of the coding process (Charmaz, 

2005). After open coding the interviews and observations, I began to move across  

interviews and observations and compared the participants‘ interpretations, experiences, 

Table 1 

Example of open coding of excerpts from an interview with Mandy and Tanya  

__________________________________________________________________ 

Excerpt Open Code 

 __________________________________________________________________ 

Excerpt 1           Mandy 

 

yeah, I love math and it‘s something  Loves math     

 

I‘ve always been good at, but it‘s Good at math 

 

something I have to work at too. Math is  Work at being good at math 

everywhere; it is  Math is everywhere 

everything in real life.   Math is real-life 

What I find difficult about math is functions. Functions are difficult 

 

__________________________________________________________________ 

 

Excerpt 2          Tanya 

Math is about discovering how to use   Math is discovering 

theories and concepts. It‘s about being   

creative and seeing patterns of similarities  Math is creative, patterns 

and differences. It‘s about understanding  Math involves understanding 

Yeah, I like math but it does not come  Likes math 

natural or easy for me. I have to work hard  Math is not easy, hard work 
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at practicing problems over and over again  Practice math 

in order to get it. It‘s not my best subject. Not my best subject 

__________________________________________________________________ 

 

Table 2 

Example of focused coding of excerpts from an interview with Mandy and Tanya  

__________________________________________________________________ 

Open Code  Focused Code 

__________________________________________________________________ 

 

Excerpt 1           Mandy 

 

Loves math   Feelings associated with doing math          

 

Good at math  Math confidence 

 

Have to work at being good at math Attitude about math 

Math is everywhere, real-life Belief about nature of math       

Functions are difficult  Math difficulty 

________________________________________________________________________

Excerpt 2          Tanya 

Math is about discovering, creative, patterns  Belief about nature of math 

Math involves understanding Belief about understanding math 

Likes math  Feelings associated with doing math 

Have to work at being good at math Attitude about math  

Math is not easy, hard work   Attitude about math  

Practice math to get it  Attitudes about math  

Not my best subject Beliefs about math ability 

________________________________________________________________________ 
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and actions (Charmaz, 2005).  I grouped and categorized similar ideas and concepts 

under a common category.  As data collection and analysis progressed, when I discovered  

another idea or concept that I identified as sharing a common characteristic from an 

earlier idea or concept, I gave it the same name (Strauss & Corbin, 1998). 

 During focused coding, I used the most significant and frequent codes from 

earlier coding to sift through and compare the data (Charmaz, 2005). I made decisions 

about which of the focused codes were most pertinent in answering the research 

questions and which ones made the most sense to categorize the data. As a result, some 

codes were dropped. The focused codes I found most useful in Table 2 were ―feelings 

associated with doing mathematics‖, ―beliefs about mathematics‖, and ―attitudes toward 

mathematics‖.  I compared incidents in which participants exhibited or expressed 

emotional behavior during the problem-solving process with those in which they had not 

exhibited such behavior. I considered the intensity and impact of the participants‘ 

emotional behavior. The focused code of ―feelings associated with doing mathematics‖ 

was developed into a category as well as ―beliefs about mathematics.‖ I grouped and 

categorized similar ideas and concepts under a common category. Coding, in general, is 

not a linear process. I constantly returned to earlier experiences that had been overlooked 

or were not explicit. Some terms were changed slightly to make them more concise in 

later stages.  The changes were made based on further interactions with the participants 

during subsequent interviews and observations.  
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Axial Coding 

I applied axial coding to the categories after the development of categories. It 

relates categories to subcategories and specifies the properties and dimensions of a 

category (Charmaz, 2005). For example, the category of ―feelings associated with doing 

mathematics‖ has dimensions: positive emotions associated with doing mathematics and 

negative emotions associated with doing mathematics. Participants demonstrate positive 

or negative emotions in different instances. The participants demonstrated negative 

emotional behavior when they were unable to obtain a problem solution or they were 

unable to justify a procedure used to obtain a problem solution. The participants were 

happy, prideful, and confident when they were able to understand challenging 

mathematics concepts and justify or explain their problem solutions. Other categories had 

similar dimensions and properties. For example, ―beliefs about mathematics‖ was 

subcategorized into beliefs about the nature of mathematics, self-mathematical ability, 

learning mathematics, and teaching mathematics. The process of axial coding enabled me 

to elaborate on a category through the development of subcategories (Strauss & Corbin, 

1998). The process enabled me to link categories to subcategories and to make sense of 

the data.  

When applying axial coding, I re-read the transcripts without stopping to look at 

the codes, all the while paying close attention to what the participants were talking about 

and why they described what was happening as they did during the interviews or 

observations. By re-reading the transcriptions in their entirety, instead of reviewing only 

the coded sections of data, I was able to learn and understand the participants‘ 

experiences and to developed ideas about the relationships among the categories and 
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subcategories that represented their experiences. I also began memo-writing to explore 

in-depth my ideas about the categories and how they represented what the participants 

were telling me about their problem-solving experiences. The categories developed from 

the focused codes were further developed using axial coding in the following way (see 

Table 3). 

Table 3 

Example of axial coding from the focused coding of excerpts from Mandy and Tanya‘s 

interview  

Category                                                                          Axial Code 

 

Feelings associated with doing math                              (+/-) Math Emotions 

Belief about the nature of math                                      Mathematics-related belief 

Beliefs about learning/understanding math                    Mathematics-related belief 

Self-Efficacy math belief                                                Mathematics-related belief 

Attitudes toward math                                                     (+/-) Attitudes toward math 

 

Table 4 illustrates steps in the process of developing a main category using 

excerpts from Mandy and Tanya‘s initial interview. Other main categories were 

developed using the same coding process. Main categories are considered to be of a 

higher, more abstract order than are open or initial codes (Strauss & Corbin, 1998). I 

explored possible relationships between categories and subcategories and how they 

related, influenced, or contradicted each other. This was done mostly through the drawing 

of diagrams and flowcharts throughout the research process and writing memos that 

described and discussed the categories and their relationships. Subsequent questioning, 
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observations, and interactions with the participants were conducted to get a better 

understanding of the relationships among the categories. Affective behavior such as 

beliefs, emotional behavior, and attitudes toward mathematics occurred in problem-

solving and mathematics learning situations.  For example, the participants‘ beliefs about 

their own mathematical ability, the nature of mathematics, mathematics teaching, and 

mathematics learning was manifested in their emotional behavior and attitudes toward 

mathematics and the problem-solving process.  

Table 4 

 Example of developing a major category from the axial coding of excerpts of Mandy and 

Tanya‘s interview  

Axial Code                                                                      Major Category 

________________________________________________________________________ 

 (+/-)Math Emotions                                                      Affective Behavior 

Mathematics-related beliefs                                            Affective Behavior 

 (+/-)Attitudes toward math                                           Affective Behavior 

 

According to Charmaz (2005) and Strauss and Corbin (1998), the categories are 

saturated as data becomes redundant when one piece is compared to another and no 

further categories or dimensions and properties emerge from the data or new information 

does not add much more to the explanation of phenomena. I was uncertain as to whether 

saturation had occurred so I returned to collect further data and to make further 

comparisons. I maintained a reflective journal throughout this process and continued 

further interaction with the participants, in each case striving to understand the meaning 

the participants were giving to their experiences. 
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The constant comparative method of grounded theory means that this process was 

not linear (Strauss & Corbin, 1998).   I continued to return to the words of the 

participants previously collected and analyzed data to influence future data collection and 

analysis until no new insights and no new properties were revealed for the major 

categories. Memo writing (Charmaz, 2000) throughout this process enabled me to be 

reflexive about the research process and track how data analysis and interpretation 

emerged throughout the process. My memos focused on reflecting on the research 

process such as how I was developing rapport with the participants, any difficulty I as 

having with interpretations, and how I decided whom to include in the study next, and 

when saturation might be reached.   

Additional participants were selected to explore themes as they emerged in the 

study and as analytic interpretations focused further data collection. As a way of 

verifying and clarifying, I sought differentiation among the participants experiences by 

deliberately seeking out participants whose experiences may not have fit with what I 

viewed as the emerging theory. The common thread woven among the participants was 

their goal to become a secondary mathematics teacher. Their interpretations of what they 

were experiencing during problem-solving and mathematics learning were quite similar. 

But there were differences in their perceptions of their mathematics learning and 

problem-solving abilities.  

As a way of gaining a better understanding of the participants similarities and in 

differentiating among the participants‘ experiences, a cross comparison of the 

participants‘ experiences was completed. In doing so, major categories emerged from 

further interaction with the participants and exploration of the categories developed 
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during axial coding. The major categories represented the participants‘ mathematics-

related beliefs, affective behavior, common heuristics used during problem-solving, their 

mathematical conceptual and procedural knowledge, and metacognitive behavior in the 

context of mathematics learning and problem solving. I returned to the data to crystallize 

my understanding of what the participants were telling me about what problem-solving 

and mathematics learning experiences were like for them as they participated in a course 

focused on developing their deep knowledge and understanding of school mathematics. I 

also returned to the data to crystallize further my understanding of their mathematics-

related beliefs, affective behavior, metacognitive behavior, and mathematical knowledge. 

I analyzed the data and worked toward understanding their mathematics-related 

beliefs, affective behavior, and mathematical behavior during problem-solving from the 

participants‘ viewpoint. I based my interpretations on what the participants were telling 

me about their problem-solving experiences. I used this information to define the major 

categories (Charmaz, 2006) that represented the participants‘ mathematics-related beliefs, 

positive and negative attitudes/emotions, use of problem-solving strategies, and 

mathematical cognition demonstrated during the mathematics learning and problem-

solving process. My exploration of the categories indicated that the participants‘ attitudes 

and emotional behavior was mostly positive, with some negative attitudes and emotions 

associated with learning mathematics, the problem-solving process, and past learning 

experiences.  

The data analyzed during open, focused, and axial coding revealed that their 

beliefs about teaching mathematics contributed to their positive attitude and motivation 

to, not only learn mathematics, but understand it deeply. Knowledge of strategies, 
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successful use of strategies, and their access to conceptual knowledge and understanding 

resulted in positive emotional behavior and often played a role in managing negative 

emotional behavior. It appeared that their mathematics-related beliefs were linked to all 

other major categories. Their attitudes appeared to be a manifestation of their beliefs 

about teaching and learning mathematics. Their emotions represented the high 

expectations they held for themselves based on their commitment to understanding 

mathematics deeply. Emotional behavior was linked to their beliefs about mathematics 

difficulty, their ability to solve math problems successfully, learning, and teaching 

mathematics.  

The participants used a variety of strategies to assist with their efforts to 

understand mathematics and successfully solve mathematics problems. Strategies, such 

as relating the problem to a similar or familiar problem, solving an easier problem, 

breaking the problem into parts, and using a diagram or picture during problem-solving 

were linked to beliefs about what it means to learn and understand mathematics, to 

conceptual and procedural knowledge, and to their emotional behavior. Knowing when 

and how to use a specific strategy, identified in the literature as metacognition, appeared 

to keep emotional behavior at a minimum.  

   After identifying the major categories and examining and identifying initial 

relationships, I returned to the raw data to re-read several interviews, observations, and 

artifacts to help stimulate my thinking and to search for examples of data not matching 

the defined relationships. I also began to further integrate the major categories and refine 

my understanding of what the participants were telling me about their experiences 

learning mathematics and what problem-solving is like for them. I searched for clues in 
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the data that could explain how the six major categories might further relate to each other 

by ―moving from description to conceptualization‖ (Strauss and Corbin, 1998, p.149). 

This process was not an objective process.  The preliminary results or initial theory began 

to emerge during the memo writing process as I described the relationships among the 

categories for the participants. 

My goal of returning to the original data was to determine what aspects of their 

problem-solving and mathematics learning experiences were most important to them. I 

asked myself how I could best represent what they shared with me about their 

experiences in a way that could help others understand what problem-solving and 

learning mathematics was like for them and how their experiences interrelated. Further 

conceptualization of the data resulted in the integration of their mathematics-related 

beliefs, emotional/attitudinal behavior, use of problem-solving strategies, metacognition, 

and mathematical knowledge and understanding, which lead to the emergence of four 

final four major categories associated with the participant‘s mathematics learning, 

understanding, and problem-solving processes, are: 

1. Affective Behavior 

2. Heuristics 

3. Metacognition  

4. Mathematical Cognition 

These categories will be discussed in detail along with an explanation of how they 

interact during mathematical learning, understanding, and problem-solving in Chapter 5. 

Summary 

 

To assist with the data analysis process, I utilized GT methodology to analyze the 
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 data by applying open and axial coding on the participants‘ individual interviews, 

observations, and artifacts, which enabled me to develop categories and reach theoretical 

saturation. Open and axial coding are not sequential acts, but instead are conducted 

together. I constantly moved between labeling data, constructing categories that describe 

the experiences of the participants in the study to relating those categories in order to 

form a more precise explanation about what is happening.  

Coding of the data is a dynamic and fluid process. Initially, five categories were 

developed from the participants‘ interviews, observations, and artifacts describing their 

problem-solving behavior. Then through axial coding several categories were integrated 

into four main categories. Categories can be developed on several levels, and insights 

about how categories relate occur throughout the axial coding process. I described and 

illustrated how the categories at each level were developed and how they related to each 

other. I eventually moved away from describing the categories into 

conceptualization/interpretation, which lead to the construction of the final three main 

categories. From the participants‘ point of view and based on the meanings they gave 

their problem-solving experiences these categories described their mathematical behavior 

as they learned mathematics in a problem-solving context. In chapter five, I discussed the 

results of the study and described in detail the final major categories and the role they 

play in constructing a model representing the interrelationships among the participants‘ 

affective behavior, heuristics, metacognition, and mathematical cognition.
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CHAPTER 5 

 

RESULTS 

 

The main purpose of this study is understand the interaction of prospective 

secondary mathematics teachers‘ mathematical behavior and experiences as they 

participated in an undergraduate mathematics course that focused on developing their 

deep understanding of school mathematics. In doing so, the study also explored the 

mathematics-related beliefs of prospective secondary mathematics teachers enrolled in a 

problem-solving mathematics course. I also determined what affective and metacognitive 

behaviors were demonstrated by prospective teachers as they engaged in mathematics 

learning and problem-solving. Finally, the study explored what mathematics knowledge 

and understanding was accessed by prospective teachers as they engaged in mathematics 

problem-solving.  

In this chapter, I describe the results of the analysis of the interviews, 

observations, and participant artifacts. The results of the analysis are presented using the 

participants‘ direct voices from the interview transcripts, discussion of the observations 

and participant artifacts, and drawing on the literature related to mathematics-related 

beliefs, affective behaviors, metacognition, and mathematics knowledge. These major 

categories contained several subcategories that emerged from my interaction with the 

participants during the course of the study. Each major category, along with its 

subcategories, are discussed and related to existing literature in order to elucidate or place 

each major category within a broader context. 
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Affective Dimensions 

 

Within the mathematics education literature, affective dimension is a term used to 

represent all of the feelings that individuals have about mathematics learning (McLeod, 

1988). Researchers (Lester, et al., 1989; McLeod, 1992; Schoenfeld, 1992) suggest that 

affective dimensions include beliefs, attitudes, and emotions and they all have a powerful 

influence on the behavior of the problem solver. Beliefs are cognitive, more so than 

attitudes or emotions (McLeod, 1985). Beliefs are considered to be deep-seated 

convictions or internal representations that the believer attributes to truth and validity 

(McLeod, 1985; 1992; Schoenfeld, 1989; 1992). In this study, I examined the 

participants‘ beliefs about mathematics, mathematics learning and teaching, self-efficacy, 

and about the learning environment. I also noted their emotions and attitudes as they 

engaged in mathematics learning and problem-solving.  

Schoenfeld (1992) suggested that although emotions are more evident than beliefs 

during problem-solving, beliefs play an important role in shaping cognition and the 

decisions that are made during the problem-solving process. McLeod (1992) explained 

that ―the role of beliefs is central in the development of attitudinal and emotional 

responses to mathematics‖ (p. 579). In this study, within affective dimensions, there were 

several subcategories, namely mathematics-related beliefs, emotions, and attitudes. In an 

effort to tell the participants‘ story about the role affective dimensions play in their 

problem-solving and mathematics learning experiences, I discussed each of the 

subcategories using the participants‘ individual voices, a synthesis of their combined 

voices, with particular references to literature related to the major and subcategories.  
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Mathematics-Related Beliefs 

Teachers‘ beliefs about the nature of mathematics are conscious or subconscious 

beliefs, concepts, meanings, rules, mental images, and preferences concerning 

mathematics as a discipline that affects their behavior (Ernest, 1989; Schoenfeld, 1992). 

Thompson (1992) explained that it is important to consider at least two kinds of beliefs. 

One is beliefs about mathematics and the other is beliefs about teaching and learning 

mathematics. Identifying and understanding the beliefs about the nature of mathematics is 

important because as Thompson (1992) suggested, these beliefs often have a crucial role 

in influencing learning experiences and teaching practices.  

Beliefs about the nature of mathematics 

 

Several beliefs about the nature of mathematics surfaced through analysis. The 

participants‘ beliefs about the nature of mathematics referred to aspects of mathematics 

creativity, content, problem-solving, and its usefulness in everyday life. The following 

are examples of their responses indicating their conception of mathematics. 

Math is about discovering how to use theories and concepts. It‘s about being 

creative and seeing patterns of similarities and differences. It‘s about 

understanding how to solve math problems (comment by Tanya during interview 

1, January 18). 

 

Mathematics is the study of relationships among numbers, quantities, shapes, 

measurements and it plays a role in almost all aspects of my life (comment by 

Mandy during interview 1, February 5). 

  

Mathematics is a lifestyle. It‘s all around us; a part of our real-life. It‘s using 

numbers, shapes, variables, problem-solving, building concepts in our everyday 

lives, trying different things to see if you can come up with solutions to problems 

(comment by Cindy during interview 1, January 28). 

 

Mathematics is the study of numbers and their operations (comment by Mark 

during interview 1, January 30). 
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In many ways, the participants‘ views on the nature of mathematics parallel the 

views represented in the NCTM Standards document. The participants used terms such 

as discovering, understanding, creative, patterns, relationships, experimenting, and real-

life to express their conceptions of mathematics. I was somewhat surprised by their 

responses because some of the findings reported in the literature suggest that some 

teachers and prospective teachers see mathematics as a fixed body of knowledge, a 

collection of procedures, rules, formulas, and theorems that are disconnected (Ball, 1990; 

2001; 2003; Nyaumwe, 2004; Thompson, 1992). So, it was heartening to see that the 

participants‘ conceptions of mathematics parallels the views of the NCTM Standards, 

which are based on best practices, research on the teaching and learning of mathematics, 

and are well respected within the mathematics education community as a solid 

curriculum program for learning mathematics.   

Beliefs about learning mathematics 

 

Participants‘ views on learning mathematics appear to be a manifestation of their 

beliefs about the nature of mathematics. They viewed mathematics as is a lifestyle, the 

study of patterns and relationships, numbers, operations, and problem-solving. Because 

the participants held beliefs about mathematics that do not include the memorization of 

rules, formulas, and procedures, they approach learning mathematics from the 

perspective of understanding mathematics.  

Schoenfeld (1985a; 1989a, b) found that students typically believe that there is 

only one way to solve any math problem, math problems can be solved quickly and in 

isolation, and solutions do not have to make sense. This was not the case for these 

participants. For them, learning mathematics for understanding has little to do with 
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remembering rules, formulas, or finding a single solution path. Instead, learning 

mathematics includes understanding mathematics. Tanya described her mathematics 

learning experiences as challenging and difficult. In fact, this was her second time 

enrolling in the course. For her learning mathematics was a struggle partly because she 

never had an understanding of mathematics that would enable her to explain her 

mathematical reasoning or the methods behind the procedures used in problem-solving.  

Cindy, a secondary prospective teacher, can be described as one who is very 

confident in her ability to learn and do mathematics. She boasted about her ability to 

memorize formulas and procedures say, ―I was always good at memorizing, that‘s why I 

did so good in my statistics courses where all you had to do was remember the formulas 

or use your formula sheet.‖  Factoring, completing the square, applying the quadratic 

formula were mathematical procedures she performed with little or no difficulty. When it 

came time to explain the reasoning underlying these mathematical procedures she was 

unable to do so. Cindy, along with other participants, attributed her inability to explain 

why a procedure worked to a lack of mathematics understanding. For these participants, 

understanding mathematics involved knowing how to explain one‘s solution process, 

solving problems in more than one way, and explaining why mathematical formulas and 

procedures work the way they do. Cindy explained that, 

Math is learned when you are solving problems and you understand why 

something works the way it does and you can explain it to other people (comment 

by Cindy during interview 1, January 28). 

 

This mathematics learning belief was not unique to Cindy. Mark and Mandy expressed 

similar beliefs when asked about their mathematics beliefs. 
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Learning math and understanding math involves explaining why; not just how it‘s 

done, but why it‘s done. In this class, I‘m always trying to remember the rules or 

the steps for how to do certain things when now I realize how important it is for 

me to understand. It‘s [trying to remember the rules] holding me back. I didn‘t 

ever really understand it [quadratic formula] now I‘m being forced to understand 

how it came about. I‘m finding out why (comment by Mark during interview 1, 

January 30). 

 

The goal of learning math is to understand why something is done instead of just 

memorizing formulas (comment by Mandy during interview 1, February 5). 

 

Their beliefs about learning mathematics parallel Hiebert‘s (1997) view that mathematics 

is not learned when rules are memorized for the purpose of applying a paper and pencil 

procedure to solve a problem. According to Hiebert et al. (1997), actively engaging in 

solving mathematics problems contributes to mathematics learning and mathematics 

understanding.  

The participants referred to mathematics as something you ―do.‖ They did not 

view mathematics as necessarily carrying out procedures or calculations during the 

process of mathematics learning or problem-solving. For them, ―doing‖ mathematics 

included ―playing‖ with mathematical ideas that could eventually lead to problem 

solutions, explaining or justifying the reasoning underlying problem solutions, examining 

the methods their peers used to solve problems, and receiving support and encouragement 

from the instructor were elements that played a crucial role in their mathematics learning 

and understanding. Mark and Cindy explained that, 

Mathematics is a player‘s sport. In order to learn mathematics you have to play 

the game, you have to do it (comment by Mark during interview 2, February 6). 

 

I need hands on learning, a chance to kinda play around with the math and try a 

lot of different things; a chance to see how my classmates are working the same 

problem (comment by Cindy during interview 2, February 8). 
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For them playing with the mathematics included trying several methods, strategies, or 

solution paths during the problem-solving process without fear of ―getting the problem 

wrong.‖  Playing with the mathematics created a less stressful, less tense learning 

environment. The participants seemed to view working through a problem and getting it 

wrong as a normal part of the process of understanding mathematics. They wanted 

opportunities to work through the mathematics without being evaluated for a grade. 

Tanya and Mandy talk about getting the wrong solution during the solution process, 

I don‘t always get it the first time around and when this happens I go back over 

the problem to see where I went wrong and I see how other students have worked 

the problem…I mean, just going back over seeing where you went wrong can 

help you understand (comment by Tanya during interview 2, February 13). 

 

Understanding mathematics is not about getting the right answer. Getting an 

answer is not learning (comment by Cindy during interview 2, February 8). 

 

Understanding the why is an important part of learning mathematics. Knowing 

formulas is not going to help you understand (comment by Mandy during an 

observation, January 17). 

 

Brownell (1946, p. 121) explained that ―a problem is not necessarily solved 

because the correct answer has been made. A problem is not truly solved unless the 

learner understands what he has done and knows why his actions were appropriate‖  The 

participants‘ espoused beliefs that learning and understanding mathematics included 

―getting it wrong,‖ looking back through the process, and rethinking the solution. In the 

literature DeBellis and Goldin (1999) identified a learner‘s desire to want to understand 

or justify their mathematical reasoning as opposed to getting the right answer, as 

mathematics integrity.  
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Beliefs about teaching mathematics 

 

Overall, the participants‘ beliefs about teaching could be explained by their own 

experiences as students along with their mathematics ability and achievement. They look 

on the instruction they received during their own education as either the correct way or 

incorrect way that mathematics should be taught. The participants expressed an 

awareness of the inadequacy of their past learning experiences and did not want to teach 

in the manner they were taught during middle school, high school, and in some college 

courses. It appeared that if the method of teaching was successful for them but was based 

primarily on their memorizing theorems, rules, formulas, and procedures and less on 

understanding the underlying mathematics, the participants rejected the method as being 

good teaching.  

Mark, a prospective secondary teacher, is a sports fanatic whose goal is to both 

coach football and teach mathematics. His best high school mathematics learning 

experience occurred in Coach Carter‘s (a pseudonym) class. Mark‘s dreamed of 

becoming an inspiring teacher like Coach Carter, except for one thing—he wants his 

students to understand why mathematics procedures work the way they do. Mark 

explained that,  

Mathematics is a player‘s sport, not something to be watched. Mathematics has to 

be taught so that the students not only learn how to do the steps to solve the 

problems, but why those steps were done the way they were. I‘ll probably end up 

taking what good teachers I‘ve had in math and end up teaching it the way they 

did it. I would make it as comfortable as I can and still make sure they are really 

learning and understanding the math (comment by Mark during interview 2, 

February 6). 
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Mandy, a prospective middle-grades mathematics teacher and the mother of two school-

aged children, expressed her beliefs about teaching with respect to her own learning. She 

explained that,  

I believe that if you are going to be a good math teacher you have to be able to 

explain the concepts you are teaching in more than one way. People learn in 

different ways and when a teacher only explains it one way, I don‘t always 

understand that one way. I‘m going to use manipulatives when I teach some of the 

math concepts to my students. This helped me to understand a lot of things I 

already knew but didn‘t really understand before. It [using manipulatives] gave 

me a way to think about explaining things in a different way (comment by Mandy 

during interview 2, February 15). 

 

Cindy expressed that ―mathematics is not easy for me‖ emphasizing that she puts forth a 

great deal of effort to understand mathematics but she believes that the teacher plays a 

critical role in her mathematics learning. In an interview, she stated 

I believe that a good teacher explains the math concepts in more than one way. 

They have to know more than one way to do a problem. I have a hard time 

understanding math when the teacher explains the math in just one way and I 

don‘t get that way. I also need hands-on learning experiences, like working with 

manipulatives or using a picture or diagram to solve a problem. This has always 

worked for me. This is my idea of a good teacher and this is the kind of teacher I 

want to be (comment by Cindy, February 8). 

 

The participants‘ beliefs about mathematics do not associate teaching with telling. 

Instead, for them, teaching mathematics involves explaining mathematical concepts and 

procedures in multiple ways. Their views about what constitutes good teaching is a 

reflection of what Thompson (1999) refers to as conceptual orientations. Thompson et al. 

(1994) used the term ―orientation‖ to refer to teacher‘s views about mathematics and 

mathematics teaching. Teachers with a conceptual orientation are interested in directing 

students to understand relationships among mathematical concepts and to explain and 

justify the reasoning behind their solutions. These participants espouse beliefs that are 

aligned with the conceptual orientation Thompsons described. 
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Beliefs about the learning environment 

The participants‘ beliefs about their learning environment are demonstrated in 

their comments about teaching and learning. For example, Cindy and Mark‘s comments 

reflected their beliefs about the mathematics classroom environment.  

In order to learn mathematics you have to play the game, you have to do it 

(comment by Mark during interview 2, February 6). 

 

Learning math and understanding math involves explaining (comment by Mark, 

interview 1, January 30). 

 

I need hands on learning, a chance to kinda play around with the math and try a 

lot of different things; a chance to see how my classmates are working the same 

problem. I need for them [the instructor] to give me a chance to work some of the 

problems and kinda be there to answer questions. I don‘t need for them to work 

all the problems while I watch them (comment by Cindy during interview 2, 

February 8). 

 

Math is learned when you are solving problems (comment by Cindy during 

interview 1, January 28). 

 

Mandy and Tanya made similar comments that reflected their views about the learning 

environment.  

I‘m going to use manipulatives when I teach some of the math concepts to my 

students (comment by Mandy, interview 2, February 15). 

 

I don‘t always get it the first time around and when this happens I go back over 

the problem to see where I went wrong and I see how other students have worked 

the problem (comment by Tanya, interview 2, February 13). 

 

Participants envisioned a mathematics learning environment that engaged students in 

―doing‖ mathematics. I asked the participants to define what ―doing‖ mathematics would 

be like for them. A pattern emerged representing that for them, ―doing‖ mathematics 

included ―playing‖ with mathematical ideas that could lead to problem solutions, using 

manipulatives to assist in the understanding of  mathematical concepts, examining the 

solution methods used by others enrolled in the course, and receiving support and 
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encouragement from the instructor. It seemed as though this kind of learning environment 

played a critical role in their mathematics learning and understanding and problem-

solving success.  

Self-Efficacy Beliefs 

 Bandura (1986) described self-efficacy as an individual‘s beliefs and judgments 

about one‘s self and their ability to execute an action that will lead to a desired result or 

outcome. According to Bandura, an individual‘s self-efficacy greatly influenced one‘s 

behavior and the choices they make and where they direct their actions. In this study, 

self-efficacy is described as the participants‘ beliefs about their ability to do mathematics, 

learn mathematics, and understand mathematics. I used interview protocols and 

observations to learn more about the participants and gain an understanding of their 

perceived self-efficacy and the impact it has on their mathematics learning and the 

problem-solving process.  

All but one of the participants held the belief that mathematics is their best 

subject. Unlike the other participants, Tanya discussed the difficulty and challenges she 

encounters when learning mathematics and she confessed that mathematics is not her best 

subject. She was very emotional when recalling some of the difficulties she has 

encountered in other mathematics courses. I know of no one who has shown Tanya‘s 

level of determination in mathematics learning, often spending numerous hours 

practicing or re-working mathematics problems. She finds mathematics challenging, but 

explains, 

Yeah, I like math but it does not come natural or easy for me. I have to work hard 

at practicing problems over and over again in order to get it (interview 1, January 

18). 
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I asked her to explain and she replied, 

I don‘t usually get it the first time around. I mean, I have to go back over what we 

do in class; I spend a lot of time with it. (Interview 1, January 18) 

 

Unlike Tanya, Mandy is confident in her mathematics ability. Teaching mathematics is a 

second career for Mandy. She holds a bachelors degree in business and has worked in the 

business industry for 15 years. She explained that mathematics is her ―absolute‖ best 

subject. During a classroom observation, Mandy demonstrated her mathematical 

confidence during an in-class mathematics task assignment. The instructor asked the 

entire class if division by zero is possible and to justify their answer. At their desk, some 

of the students worked independently on the problem and others worked in pairs. As the 

students were working at their desk, I quietly circulated the room to listen to their 

dialogue and monitor their progress. I noticed that Mandy worked through the solution 

correctly, but was hesitant in presenting her solution at the board. I was surprised by her 

lack of confidence to present based on her belief that mathematics is her ―absolute‖ best 

subject. She eventually volunteered to work through the solution process at the board. At 

each step she explained her solution process, but near the end of her explanation she 

appeared a bit fuzzy. In an interview that took place a few days later, she explained what 

it was like for her to work the problem at the board,  

I knew the answer—you can‘t divide by 0, I‘ve heard it a million times. I was a 

little unsure about how to go about explaining why division by zero can‘t be. I 

mean, I know that you can‘t divide by zero, but I had to be sure I could show why 

(Interview 1, February, 12). 

 

According to DeBellis and Goldin (1999), Mandy‘s response reflects her mathematics 

integrity. She was not only concerned about working through the problem and getting the 

correct solution, Mandy‘s desire was justifying her solution.  
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Mark expressed his confidence in his mathematics ability when he talked about 

the mathematics difficulty associated with solving problems. 

Math is absolutely my best subject and I‘m good at it. I believe there are no hard 

math problems, just long ones. If I spend enough time working on a problem, I‘m 

going to eventually get it (Interview 1, January 30). 

 

During this interview, Mark also talked about the importance of not only knowing how to 

apply a mathematics procedure when solving a problem, but understanding why the 

procedure works. His mathematics integrity is reflected when he talked about deriving 

the quadratic formula.   

I‘ve always known how to use the quadratic formula but I never knew why or 

exactly where it came from. It was just a formula. It wasn‘t until we were asked to 

derive it in this class that I finally got in (interview 2, February 6). 

 

I must admit, I was quite surprised by Mark‘s comment. Deriving the quadratic formula 

is an activity in which I engage my college algebra students each semester. So it was a bit 

surprising that at Mark‘s level of upper undergraduate mathematics study, he had never 

derived the quadratic formula. Cindy and Mandy openly discussed their lack of 

confidence as it relates to geometry, proofs, and functions. 

For me, the most challenging math is geometry. I have a really had time writing 

geometry proofs for theorems. I‘m just not good at it (comment by Cindy during 

interview 2, February 8). 

 

I‘m not good at functions for some reason. It‘s something that I‘ve always had a 

problem with comment by Mandy during Interview 2, February 15). 

 

The participants‘ beliefs about their mathematical ability are a reflection of their beliefs 

about mathematics learning and teaching. They demonstrate persistence and motivation 

in mathematics learning and problem solving situations. I asked each participant to 

describe what it was like for him or her to fail to find a satisfactory problem solution or 
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understand a mathematical concept either during or after a lesson. Overwhelmingly, the 

participants‘ responses indicated persistence.  

I don‘t give up easily (comment by Mandy during interview 2, February 6). 

 

I don‘t always get it the first time around and when this happens I go back over 

the problem (comment by Tanya during interview 2, February 13). 

 

When I get stuck on a problem or I can‘t figure it out right then, I‘ll take a break 

from it and go back to it later. But, one thing I don‘t usually do is give up 

(comment by Tanya during Interview 2, February 13). 

 

The participants‘ espoused self-efficacy beliefs are represented by their effort, 

persistence, and motivation in problem-solving and mathematics learning situations. For 

these participants, failure is due to the lack of effort and not the lack of ability. Therefore, 

they have a willingness to increase their efforts and persist in an attempt to learn and 

understand mathematics and to reach their problem-solving goals. 

Emotions 

As the participants talked about what it means to understand mathematics, they 

refer to ―getting it wrong‖ as being an important part of the learning process. Getting the 

wrong solution, however, is not without its consequences. When the participants get the 

wrong solution or are unable to obtain a solution during the problem-solving process they 

experienced disappointment, frustration, and embarrassment. The participants talked 

about this extensively during their interviews and I witnessed both positive and negative 

emotions during my observations of them during class and the think-aloud problem-

solving interview. Mark and Cindy talked about the anxiety and frustration they often 

experienced when solving problems and learning mathematics.  

There are times when the problems we do in this class frustrate me; like, only 

seeing one way to work through a problem and getting stuck and not being able to 

finish. I‘m frustrated because I can‘t find a way to solve the problem using a 
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different way when I get stuck (comment by Cindy during interview 2, February 

8). 

 

Also during this interview, Cindy explained that her frustration positively impacts her 

learning and mathematics understanding. Again, I was very surprised by Cindy‘s 

comment because frustration is not generally associated with positive thinking (Mandler, 

1989). She explained that,  

Some of the math problems we do frustrate me, but at the same time I‘m 

challenged and when I‘m challenged I learn. I wouldn‘t learn much if every 

problem I came across I already knew how to do. I mean, that wouldn‘t be 

learning anyway. 

 

Mark had a similar comment during an interview,  

 

I like to problem-solve; but, not understanding why something works, like 

knowing how but not why, aggravates and frustrates me; … it makes me want to 

work harder to understand it (Interview 2, February 6). 

 

An interruption in a problem-solver‘s solution plan has been reported to cause frustration, 

anger, and occasionally problem abandonment (Mandler, 1989). The solver may reduce 

their frustration by giving up on the problem or finding a new plan that might lead to 

success (McLeod, 1989). Interested in knowing how the participants handled themselves 

when unable to complete the solution process, I asked the participants to discuss their 

experiences with unsuccessful attempts at problem-solving. Tanya and Mandy responded 

with the following, 

When I get stuck on a problem or I can‘t figure it out right then, I‘ll take a break 

from it and go back to it later. But, one thing I don‘t usually do is give up. Like 

the time I could not get the polygons problem. Call me a nerd, but I thought about 

the problem when I was driving home in traffic trying to think about where I went 

wrong. I got home, and later went back over it again and finally figured out what I 

did wrong and reworked the problem (comment by Tanya during interview 2, 

February 13). 

 

I don‘t give up easily. I feel like I have to know what I‘m doing because one day 

I‘m going to be teaching math. Sure I get upset, but even if I get it wrong or I 
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don‘t know what I‘m doing, I still need to know what I did wrong. If I can‘t solve 

a problem I don‘t mind going to someone else in the class or the professor to get 

help so that I can get through it; but, no I don‘t usually give up (comment by 

Mandy during interview 2, February 6). 

 

Their concern and commitment to understanding mathematics can be thought of 

as a reflection of their mathematics intimacy. DeBellis and Goldin (1999) defined 

mathematics intimacy as the relationship between the learner and mathematics that 

connects with their sense of and value of self. A learner who is committed to working on 

a problem until there is a sense of satisfaction that a solution or understanding is achieved 

is considered to have intimacy with the mathematics. As prospective teachers, these 

participants have a desire to understand mathematics in a way that would enable them to 

justify their mathematical reasoning and explain their solutions because they believe it is 

a crucial part of becoming an effective teacher.  

During the think-aloud follow-up interview, the participants also demonstrated 

emotional behavior when unable to find a correct solution to a mathematics problem or 

they are unable to determine the error in their mathematical solution process. Their 

emotional reactions include nail biting, finger and pencil tapping, sighing, and in some 

cases problem abandonment. In my observation of Tanya during her problem-solving 

interview, after working on the problem for forty-five minutes and using a number of 

different solution methods she eventually abandoned the problem saying, 

Okay, I‘ve tried everything I know but there is something I‘m missing; not sure 

what. This is really upsetting because I‘ve seen this problem before or one like it 

and for some reason it‘s not working out the way I remember. I know there‘s 

probably something small I‘m doing wrong, but I just can‘t see it right now. 

(comment during think-aloud, March 12)  

 

With respect to this specific mathematics problem, Tanya experienced mathematics 

intimacy. The time and effort she spent working toward a solution was a reflection of her 
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concern about, and commitment to solving the problem. Tanya demonstrated 

disappointment in her inability to successfully solve the problem when she explained, 

When I first read the problem, I thought I knew I could do it because I had done a 

similar problem on the board earlier in the semester and got it wrong. I spent time 

going over that problem to make sure I understood it. So, it‘s sort of disappointing 

that I couldn‘t get it this time either. (follow-up interview 4, March 13) 

 

During my observation of Mark‘s problem-solving episode, there were moments when he 

demonstrated confidence, frustration, and satisfaction. When Mark read the problem he 

smiled and said, ―Okay, I can do this.‖  This was an expression of his confidence and 

motivation. As he continued to work through the problem he reached a point where he 

recognized a pattern but was unable to translate it into a formula. It is at this point that he 

demonstrated frustration. He expressed his frustration by resting his chin in his hands, 

taking a long pause, sighing, and eventually scratching through all previous work. He 

carefully reworks the problem, looks over what he has done, frowns, clinches his lips 

between his teeth, takes a long pause, taps his pencil on the desk and says, ―Okay, I see 

where I went wrong.‖ I sensed a moment of relief and satisfaction. He confirmed my 

sense with a smile and said, ―I think I‘ve got it now.‖ In the follow-up interview, I asked 

him to explain his feelings, mathematical thinking, and actions during the think-aloud 

episode. He explained, 

I was a little frustrated because I knew how to do the problem, but for some 

reason it wasn‘t working out. I mean, I could clearly see a pattern, but the 

numbers weren‘t working out. It was something simple I was doing wrong. So, I 

went back over it again and realized that I had made one little mistake with the 

number of sides. After, finding the formula and trying it out I knew I had it right 

and that‘s when I started to feel better. I‘m really glad I was able to figure it out 

(March 21).   

 

During several classroom observations, I observed very little negative emotional 

reactions. Instead, there were numerous moments of excitement, enthusiasm, and pride 
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during their classroom participation. Although some of the participants were unable to 

complete assigned homework problems successfully, they did not demonstrate sadness or 

disappointment. I asked the participants to describe what homework completion, class 

work, and the classroom environment was like for them. The general emerging theme 

centered around the following comment provided by Mark during an interview, ―the 

mathematics is sometimes challenging, but we have opportunities to (a) ask questions, (b) 

compare our solutions to others in the class, (c) make mistakes without being judged or 

graded,  and (d) we work problems both independently and cooperatively with others.‖  

The participants described the learning environment in the following ways: 

I feel like the professor is one of us; I really do. We ask questions and she answers 

with a question and we have to try to figure things out on our own or with our 

classmates (comment by Cindy during interview 2, February 8). 

 

I know the professor knows the answers to all of the problems we work on, but 

she doesn‘t give us answers. Like the time we had the question about the pick up 

sticks game and instead of giving us the answer we actually played the game to 

see if we could discover a winning strategy (comment by Mandy during interview 

2, February 15). 

 

I am a perfectionist and I like to know that I‘m right before I go to the board to 

explain, but I don‘t necessarily feel like I have to do that in here because there‘s 

always someone who can kinda help you figure out where you went wrong. So 

I‘m a lot better about going up and explaining even when I‘m unsure about 

whether it‘s right (comment by Tanya during interview 2, February 15). 

 

At first I thought this class was a push over. But then I realized I could do the 

math but couldn‘t explain why the math worked. So that was embarrassing at 

first. But now I‘m beginning to think that it‘s not such a push over after all and 

I‘m finally beginning to understand the why‘s behind what I‘ve been doing all 

these years and I guess I do feel pretty good about that (comment by Mark during 

interview 2, February 6). 

 

During the second interview and two days before the first exam I asked the 

participants to talk about their experiences with test anxiety. Tanya wrote about her 
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struggles with test anxiety on the background information form and discussed it in detail 

during the interview. 

I have test anxiety or math…something like that; anyway, I know this. But I like 

math, it takes a while for me to get it, I have to think things through a lot longer 

than most of the people in this class, and it‘s sometimes painful. I have to put a lot 

of effort into it, but I know I can do it; eventually I do get it, I just have to work 

harder to get it. 

 

For Tanya, math anxiety does not appear to hinder her goal to become a middle-grades 

mathematics teacher. As the study progressed, I became inspired by her commitment, 

effort, and persistence to stick with the program in light of the mathematics challenges 

and difficulty she has encountered during her program of study. Tanya has repeated 

numerous mathematics courses. During our first interview, Tanya shared an experience 

she had with a counselor who questioned her decision to pursue mathematics in light of 

her mathematics anxiety. Her response seemed to demonstrate a level of mathematics 

intimacy as she explained, 

I have a love/hate relationship with math. Math challenges me, I struggle with it; 

but it gives me a new way of thinking. My number one thing in all this is to learn 

it…understand it. I like the challenge. When I‘m challenged, I learn. When I‘m 

not, I‘m bored. (interview 1, January 18) 

  

Mandy did not discuss test anxiety specifically, instead she talked about the anxiety she 

often experiences due to the expectations she has as a prospective teacher. She explained 

that, 

My biggest fear is that a student will ask me a question and I can‘t answer it. I 

feel bad about thinking this way. I mean, I think since I‘m going to teach middle 

school I should at least know the answer to the questions any middle school 

student might ask me; but, then again I might not and that scares me sometimes. 

So I‘m really trying hard to understand all that I can. (interview 2, February 15)  

 

Mandy‘s anxiety is a reflection of her primary belief that mathematics be presented in a 

way that students can understand. Thompson (1999) identified some beliefs as primary 
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and others as derivative. She asserts that some beliefs serve as a foundation of others. In 

this same study, Thompson described a primary belief as a teacher‘s belief that presenting 

mathematics is important while a derivative belief might be that teachers should be able 

to answer any question their students ask. Mandy‘s belief about answering students‘ 

questions appears to be a derivative belief. 

Cindy associates her experience with anxiety with her teachers. She explained: 

 It‘s not the math that makes me nervous and upset. Most of the time, for me, it‘s 

the professor who makes me nervous. Especially geometry, because I have a hard 

time with proofs. But like I said, I learn better if the professor can explain the 

concepts to me in different ways in case I don‘t get it the first time. I like to know 

the professor cares and really wants me to understand what it is I‘m doing 

(Interview 2, February 8). 

 

The participants‘ emotions can be associated with several constructs discussed in 

the literature including mathematical intimacy and mathematical integrity. Each is a 

manifestation of the participants‘ beliefs. Goldin (2000) asserts that beliefs are a 

stabilizing factor in affective behavior. If a learner believes that when mathematics is 

challenging they will learn and understand it deeply, then there is an anticipation of 

satisfaction and joy for the success that will occur. It is the anticipation of satisfaction 

that stabilizes affect behavior (Goldin, 2000). Mathematics intimacy and integrity 

appeared to be a crucial factor in the participants‘ mathematics perseverance. 

Mathematics intimacy increases mathematics integrity. That is, when students are 

engaged in mathematics they will become more interested in understanding the 

mathematics and less in getting the correct answer, which tends to increase mathematics 

integrity. When the participants demonstrated mathematics intimacy and mathematics 

integrity in learning situations they expressed confidence and persistence when faced 

with difficult and challenging mathematics learning and problem-solving situations. 
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Attitudes 

 

Attitudes are often the manifestation of beliefs (Liljedahl, 2005). That is, the 

participants‘ attitudes are the responses that they have to their beliefs. The participants‘ 

beliefs about the nature of mathematics, learning and teaching mathematics results in 

attitudes of concern for understanding why rules, formulas, and procedures for solving 

problems work the way they do. Mandy, Tanya, and Mark express attitudes such as, 

The goal is for students to understand why something is done instead of just 

memorizing formulas (comment by Mandy during interview 2, February 15). 

 

I use to think of math as just working problems; but now I can see how important 

it is for me to actually solve the problems without worrying about getting the right 

answer. If I really don‘t understand what‘s going on, I ask for help so that when I 

get into the classroom I‘m able to help my students (comment by Tanya during 

interview 1, January 18). 

 

My attitude is that there are no hard math problems; some just take a long time to 

solve with many different steps that require the solver to have an overall 

understanding of concepts (comment by Mark during interview 2, February 6). 

 

For a long time I believed I couldn‘t do this stuff because math is challenging for. 

Watching the teacher work the problems and copying everything down does not 

work for me. For me, I have to have a chance to work the problems or see how 

other people have worked the problems during class so that I can get things 

figured out before I have to work the problems on my own (comment by Cindy 

during interview 2, February 8). 

 

 Themes emerging from the participants comments associated with their attitudes were 

themes regarding the role of solving mathematics problems without feeling anxious about 

getting the correct answer, asking for help, having an expectation that mathematics is 

challenging, perseverance, and the need for time during the process of mathematics 

learning and understanding and problem-solving. 
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Heuristics 

I describe the strategies participants use during the problem-solving process as 

heuristics. The diagonal problem (Appendix D) is the main vehicle for generating data on 

the heuristics used by each participant during the task-based think-aloud problem-solving 

interview. Fieldnotes and interview transcripts were scrutinized for incidents of the 

participants using strategies or heuristics to assist the learning or problem-solving 

process.  

Heuristics are the systematic search for and utilization of strategies in problem 

analysis, representation, and transformation that help the learner to make sense of a 

problem and to make progress toward a solution (Verschaffel, De Corte, & Borghart, 

1997).  Similarly, Schoenfeld (1987) defined heuristics as a general proposal, which 

helps a learner to understand and use known sources effectively to solve a problem. 

Heuristics play an important role in the creative thinking involved in problem-solving 

(Carlson & Bloom, 2005; Montague & Applegate, 1993; Schoenfeld, 1992). They are 

non-algorithmic tools and techniques used during problem-solving to find a conceptual 

solution.  

On their journey to solving the diagonal problem, the participants move through 

several problem-solving phases. I label the phases as orientation, exploration, 

implementation, and evaluation. During the orientation phase each participant reads the 

problem to obtain an initial understanding. During the exploration phase each participant 

considers whether they have completed a similar problem. Based on their considerations, 

a strategy believed to be useful in solving the problem is selected. During the 

implementation phase the participants implement their choice of strategy. Finally, they 
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evaluate the reasonableness of their choice of strategy and solution. I focus primarily on 

the heuristics the participants use as they progress through the solution process. I am 

interested in exploring the heuristics participants use during problem-solving and not so 

much the phases through which they move during the process. 

Common uses of heuristics in this study include draw a pictorial diagram, search 

for a pattern, formulate an equivalent problem, and make a table. These heuristics have 

been empirically found in the literature as playing an important role in effective problem-

solving performance. Based on what I observed during the think-aloud problem-solving 

interview, I explained how the participants employ each heuristic to help with their 

understanding and problem-solving. During their initial engagement with the problem, 

each participant thought about whether or not they had solved a similar problem at an 

earlier time. All participants used a pictorial description of the problem to reformulate or 

describe it in a simpler but equivalent form. They each began with a diagram of a triangle 

then moved to a pictorial diagram of a square, pentagon, and hexagon while drawing and 

counting the diagonals for each figure. After using a pictorial description, each 

participant created a table to help organize the number of vertices, sides, and diagonals in 

each polygon. The participants searched for patterns within the table of results in their 

attempt to find an equation to describe the relationship between the vertices or sides of 

the polygon and the number of diagonals.  

Mandy, Mark, Tanya, and Cindy discussed how their use of a pictorial diagram 

and table was helpful in simplifying the problem, recognizing a pattern, and finding an 

equation to describe the relationship between the vertices, sides, and diagonals of the 

polygon.  
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Okay, now I‘m gonna draw a seven sided polygon. I‘m seeing if there is a pattern 

to the number of points and trying to see if I can get it into a formula or equation 

(comment by Mark, problem-solving interview March 20).  

 

I‘ll start by drawing a polygon for each one to make it easier to count the 

diagonals (comment by Mandy March 18). 

 

I‘ll start by drawing a triangle. I‘m going to use colored pencils to keep me from 

losing track of the number of diagonals I draw. Okay, I‘m going to draw a 

pentagon and its diagonals (comment by Tanya, Appendix I, lines 3, 5, 6). 

 

Okay, draw a picture of each polygon as far as I can go and put that info in a table 

to help me see if there is some kind of pattern (comment by Cindy, Appendix J, 

lines 2- 3). 

 

 Two participants employed a familiar strategy used to solve a similar problem. Mandy, 

Cindy, and Mark recalled the problem-solving success in an earlier experience when 

using the current strategy to solve a previous problem. They remembered using a pictorial 

diagram, table, and pattern recognition, which lead to the successful representation of an 

equation for finding the sum of the interior angles of a convex polygon.  

I remember solving a problem like this one, the interior angles problem, a using a 

picture and a table really helped me see the pattern and come up with the formula 

(comment by Mark during the retrospective interview 4). 

 

Okay, this problem was like the interior angles problem. So I figured it would be 

a lot easier if I started by using a picture to actually do it (comment by Mandy 

during the retrospective interview 4). 

 

This problem is kinda like the one we did when we had to find a formula for 

determining the sum of the interior angles of a convex polygon) comment by 

Cindy during the retrospective interview 4). 

 

These comments reflected the participants‘ ability to evaluate whether it is useful to use a 

specific strategy before employing it to solve a problem. They remembered using the 

strategy of drawing a pictorial diagram, creating a table, and pattern recognition to solve 

a previous problem and based that information on whether it would be useful to use these 

strategies to solve the diagonal problem. They also evaluated if, after applying the 
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heuristic, it was worthwhile. This process included checking their work and backing up to 

a previous step when recognizing that the current strategy is not working. The use of this 

heuristic determined the success of the path they followed as they proceeded to solve the 

problem. There was a certain amount of confidence demonstrated by these participants in 

their use of familiar strategies. 

The picture and table because I‘m beginning to see a pattern. Now all I have to do 

is figure out how to write what‘s happening in the table into a formula (comment 

by Mark, Appendix H, line 16). 

 

 The first thing I do when I read a problem is draw a picture. It‘s a habit for me; 

it‘s just something I always do because I have to see what the problem represents. 

I am a visual learner (comment by Cindy during follow up interview 4, March 

11). 

 

Unlike the other participants, Tanya used colored pencils to keep track of the number of 

diagonals contained in each polygon. She viewed this as a worthwhile strategy because it 

helped her stay focused and organized. In the follow-up interview she explains that, 

 I used colored pencils to draw my diagonals and I‘m glad I did, because there is 

no way I would have made the diagonal and vertices connection. 

 

Tanya did not use a table initially, but her use of different pencil colors enabled her to 

quickly count the number of diagonals connected to each vertex. As a result, she was able 

to see that there is a pattern that explains the relationship between the vertex and 

diagonals even though at this point she could not represent the pattern using a formula. 

Unlike the other participants, Tanya did not make reference to using the strategy of 

drawing a pictorial diagram to assist her in recognizing a pattern or finding a solution. 

The observed heuristics or strategies the participants use indicate that using heuristics, as 

suggested by Schoenfeld (1985), requires a certain amount of sophistication. First the 

learner has to choose a familiar strategy she thinks might lead to success, she must be 
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able to break the problem down and relate its parts to familiar problems, and apply the 

solutions of previously solved problems to the task at hand. The use of problem-solving 

strategies can contribute significantly to problem-solving success if the solver has had 

experience using the strategy and is able to make judgments about or monitor whether the 

strategy is worthwhile.  

Metacognition 

In this section, I describe the range and patterns of metacognitive knowledge and 

monitoring or self-regulatory processes employed by each participant when completing 

the diagonal problem.  

The diagonal problem (Appendix D) is the main vehicle for generating data on 

metacognitive processes by each participant during their problem solution process. The 

focus of the study is not to identify the problem-solving phases in the problem-solving 

process but instead examine the uses of metacognitive processes during each participant‘s 

solution process. Activities such as planning how to approach a given learning task, 

monitoring comprehension, and evaluating progress toward the completion of a task are 

metacognitive in nature. This information was used to gain a better understanding of how 

the participants‘ metacognition interacted with their beliefs, affective behavior, use of 

heuristics, and mathematical cognition in a problem-solving context. The task-based 

interview transcripts (Appendixes G – J) are coded to identify common uses of the 

metacognition during the problem-solving process.  

In the literature, metacognition is divided into two broad categories: 

metacognitive knowledge and metacognitive control or self-regulation. Metacognitive 

knowledge includes knowledge of strategies that can be used to solve mathematical 
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problems, knowledge of the conditions under which certain strategies can be used, and 

knowledge of the extent to which certain strategies are effective, and knowledge of self 

(Flavell, 1979). Metacognitive control or self-regulatory processes are cognitive 

processes that learners use to monitor, control, and regulate their thinking and learning. 

They include activities such as planning, checking, and evaluating. Metacognitive 

knowledge refers to knowledge of cognitive strategies and not the use of those strategies.  

The solution processes for the diagonal problem used by each participant are 

unique in many ways. Although each of the participants demonstrates varying levels of 

understanding, monitoring and control, it is evident that there are recurring patterns in 

their solution processes. I frequently observed all participants monitoring and reflecting 

on the effectiveness and efficiency of their use of heuristic in the solution process.  

Mandy (Appendix G) perceived that she could solve the problem. She read the 

problem and began to make sense of it. After she read the problem, she began planning 

what strategy she would use to solve problem. After implementing her chosen strategy, 

monitoring her progress, she stopped to check if her use of the strategy would lead to a 

possible solution. 

Humm, you can‘t come out with an uneven number. Humm, what am I doing 

wrong? Okay, let me see, so I know when I have a triangle [a triangle] doesn‘t 

have any [diagonals] so that would be…so that should have been n=3. (interview 

3, lines 13, 16-20)  

 

During a classroom observation, Mandy also demonstrated metacognitive behavior as she 

worked a problem on the board. She monitored her thinking and engaged in internal 

dialogue as she explained why divisibility by zero is impossible and reflected on her 

explanation. 
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Okay that‘s right. So, that makes sense to everybody? Does everyone see that? 

(transcribed fieldnotes  # 2)   

After questioning the possibility that 
0

0
 has a solution, she monitors her thinking and 

responds by saying, 

 Anything divided by itself is 1, but then again couldn‘t it also be 0 because 0 x 0 

is really 0. Now I‘m confused, I remember talking about this before, but I don‘t 

know what it is called (transcribed fieldnotes #2). 

 

During the task-based interview and classroom observation, Mandy‘s metacognition 

represents her strategic knowledge, evaluation of problem difficulty, monitoring, and 

reflection. Her metacognitive knowledge enabled her to reflect on the usefulness of a 

familiar strategy and its implementation during the problem-solving process. She used a 

specific strategy because it enabled her to better understand and explain a problem, 

organize the information within a problem in order to find a solution. Mandy exhibited 

self-knowledge as she evaluated the difficulty of the diagonal problem and her ability to 

solve it. Her self-regulatory processes included interpretation, planning, self-questioning, 

checking, reflecting, and recalculating. 

 Mark (Appendix H) initially perceived the diagonal problem as one he can solve 

with very little difficulty. In the follow-up interview he explained that, 

 I remembered doing a similar problem so I thought I could be solved this one in 

the same way. I did not think it would be as difficult as it was for me.    

 

After reading the problem, Mark immediately began to draw a pictorial diagram of the 

first five polygons along with their diagonals. I noticed he approached the problem as 

though he has an immediate plan and strategy that will lead to a successful solution; he 

appears confident. After implementing his strategy and recognizing a pattern he reflected 

on his work before proceeding to the next step. On numerous occasions during the think-
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aloud interview, I observed Mark looking back over his steps (lines 9, 13, 15, 16, 24, 28), 

monitoring his work (lines 6, 8, 17), and reflecting on and evaluating his solutions (19, 

28, 30, 31). After obtaining his first solution (line 26) he checks his work and says, 

Okay, that doesn‘t work (line 28).  

Alright, let‘s see…No maybe…I think that works because you have n-3 (line 29). 

I‘m still trying to figure out the pattern. I‘m trying to figure out how I can 

represent the relationship between the diagonals and sides. I‘m seeing that 

however many points the figure has, if you take away two from it that‘s how 

many points have diagonals it has coming from it. No, no I‘m doing sides not 

vertices; never mind. Okay, well it still works the same though. (lines 16, 17, 19, 

20). 

 

Mark demonstrated his metacognitive knowledge and control as he evaluated the problem 

difficulty, monitored his problem-solving steps, and reflected on his solution. As he 

worked through the diagonal problem, he realized that the problem was more difficult 

than he had thought initially. Each time he obtained a possible solution he checked to see 

if his solution made sense. He revisited his steps along the solution path numerous times 

and started over when things did not appear to be going well. Although Mark did not 

manage to solve the problem successfully, his metacognition provided him the 

opportunity to persevere in his effort to find a successful solution. During Mark‘s task-

based follow-up interview he explained that with more time he would have taken a break 

and returned to the problem later and perhaps been more successful in obtaining a 

solution.  

 Tanya (Appendix I) did not express the difficulty level associated with the 

problem. After reading the problem, she used a pictorial diagram to organize her 

thinking. Of all the participants, Tanya decided not to organize her thinking using a table. 

She used colored pencils in order to keep track of the number of diagonals drawn in each 

polygon. The colored pencils enabled her to organize her thinking and recognize a pattern 
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related to the number of diagonals and vertices. In order to represent this relationship she 

chose to use the method of finite differences. Tanya pursued this approach for the next 15 

minutes making very little progress. After evaluating her progress, she realized things 

were not proceeding well and decided to consider another option.  

 That [referring to her use of the method of finite difference] would not help my 

pattern. Can I get 4 another way? No, that won‘t work. Hum, that‘s not working 

(lines 13, 14, 15). 

 

She created a table to help organize the name of the polygon, number of polygons, 

number of vertices, and number of diagonals. Again, she returned to the method of finite 

differences in an effort to find the relationship among the variables in the problem. Tanya 

seemed convinced that she can find an equation using this method and continued to 

pursue this approach throughout the process. However, she continued to monitor and 

check her work and responded accordingly, 

Hum, that‘s not working. Okay let‘s go back and take a look, the square had 4 

starting points and they all went to one place and you ended up with 4. I‘ll need to 

go back and clarify if you have less than 4 sides ‗cause that would make a 

difference in the function or equation I‘m looking for. (lines 19, 20, 27) 

 

Tanya explained that she chose to apply the method of finite differences to the diagonals 

problem because of her recent successful use of it in the classroom setting. She 

explained: 

 I would never have thought about finite differences, but since we‘ve been 

working with them in this class I‘m beginning to like the idea (line 10) 

 

It appears that Tanya approached the problem using this method because of her recent 

experience applying it and not because she possessed the meta-strategic knowledge 

needed to recognize the appropriate situation in which this method is best used. She 

appears to understand how the method is applied, but her limited experience in applying 
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the method prevents her from knowing if it would be useful in this specific problem 

situation. Even though she was unable to make progress using this strategy, she remained 

optimistic about her solution process and confident that the strategy would be useful in 

obtaining a solution. She continued to apply this method for the remainder of the problem 

with no success in obtaining a solution. 

Tanya‘s metacognitive knowledge and regulation was a reflection of her 

persistence, motivation, monitoring, and reflection. She drew a pictorial diagram, created 

a table, and applied the method of finite differences during the solution process. She was 

persistent in her efforts and frequently revisited her steps to assess her progress in 

reaching her goal. Her mathematical intimacy became evident in the effort she put forth 

to obtaining a solution. Unlike the others, it appeared as though she and the mathematics 

became one.  Although she was not making progress in obtaining a solution, she 

proceeded with finding a recursive formula by applying the method of finite differences. 

She moved between examining her pictorial diagram, creating a table, searching for a 

pattern, applying the method of finite differences, guessing a formula, and reflecting on 

her progress. She appeared confused and indecisive about choosing a strategy or direction 

that would lead her down a path of success. She confirmed my thinking in a comment as 

she abandoned her 45 minute solution process.  

 Now it‘s like too many ways I can look at the problem. It‘s like which way should 

I do it, they‘re all running together line 29) 

 

During her problem-solving processes, Tanya demonstrated that her knowledge of 

procedures and strategies was not enough to lead to a successful solution path. Having 

knowledge about a strategy and experience using it in a variety of problem situations is a 

more useful kind of knowledge (Star, 1999). Knowledge of a procedure or strategy 
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enables one to identify a strategy or procedure that can be applied in a problem-solving 

situation. However, knowledge about a procedure or strategy goes several steps further 

and includes having (a) an understanding the goals of the procedure or strategy, (b) 

knowledge of the type of situation in which the strategy or procedure is best used, and (c) 

knowledge about what using a procedure or strategy will accomplish. This knowledge is 

similar to what Davis (1983) described as planning knowledge; but it deals strictly with 

knowledge about the procedures used to solve mathematical tasks.  

Cindy (Appendix J) perceived the diagonal problem as difficult but demonstrated 

confidence in solving it. She began the solution process by reading and interpreting the 

meaning of the problem. She restated the problem using her on words and thought 

carefully about the method or approach that would be most helpful in leading to a 

solution. She explained, 

 Okay, so you‘re asking me to explain how I would go about finding the equation 

that I can use to tell how many diagonals there are in any given polygon, right? 

(line 3) 

 

 Like I said before, drawing a picture or diagram is something I always try to do 

because it always helps me visualize the problem. (lines 5, 6, 7) 

 

Cindy‘s plan included drawing a pictorial diagram and organizing her thinking in a table. 

She chose this approach because ―it makes the problem easier to deal with and it lets me 

see what the problem is actually asking‖ (follow-up interview, March 11). Cindy has 

used this heuristic strategy successfully in similar problem-solving situations.  

At each step she looked back over her work, engaged in self-talk, and checked her 

solution to ensure that it made sense.  

Okay, I‘m doing that right. Okay, I think the vertices and the diagonals are 

related, not the sides. Well… vertices and sides are the same. So, the only thing I 
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need to do now is to find the equation that can represent this relationship between 

the vertices and the diagonal. (line 14) 

 

After examining the table of values, Cindy recognized that there was a relationship 

between the number of diagonals and the number of vertices. She used this information to 

write an expression to represent the relationship between the vertices and the diagonals of 

a polygon. She monitored and reflected on her solution process. 

 Okay, I think its N – 2. So let me check to see if this works. The square…4 vertices 

so 4 – 2 = 2; so that works. The pentagon…5 -2 = 3; No that doesn‘t work.  The 

hexagon, 6 – 2 = 4. No that won‘t work. Okay go back.  (line, 23) 

 

In general, Cindy appeared to be aware of her strengths, weaknesses, and learning 

style. This is reflected in her comments made during an interview when asked to discuss 

how she learns. 

I need hands on learning, a chance to play around with the math. I also want to be 

able to solve a problem using several approaches. Like drawing a picture, making 

a table, using a graph, working the problem backward (comment by Cindy during 

interview 2, February 8).  

 

Cindy‘s awareness of her intellectual strengths and weaknesses is a reflection of 

her metacognitive knowledge and self-regulatory process. She has an awareness of the 

strategies that she relies on to help her learn mathematics, interpret, and understand the 

mathematics problems she encounters.  

 I have no idea how I got that. I mean, I can show you, but I basically used guess 

and check. I would definitely need to go back and see if I can figure out why you 

would divide by two. Because to be honest, I basically guessed and then went 

back and checked. (Appendix I, interview 3, lines 28, 29)  

 

Cindy‘s metacognitive knowledge enabled her to know what, when, and how to 

use specific strategies. Her ability to select, combine, coordinate chosen strategies, 

monitor, and regulate her progress during problem-solving and mathematics learning 

appears to be an important component of her metacognitive control or self-regulation. 
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However, her comment also reflected her lack of confidence and understanding of the 

solution process. She was unable to make the connection between the total number of 

diagonals and the fact that each is drawn twice, so the expression must be divided by 2. 

Metacognition in mathematics problem-solving and learning involves the 

processes of planning, monitoring, evaluating specific problems, and selecting 

appropriate strategies (Flavell, 1992). Learners who take time to understand and make 

sense of the facts in the problem, check their work for accuracy, break complex problems 

into simpler steps, and engage in self-questioning and answering are likely to perform 

better during problem-solving (Artzt & Armour-Thomas, 1992). Knowledge about 

strategies and their use influences the problem-solving process, however knowing when 

and why it is appropriate to use is a specific strategy along with understanding what using 

the strategy will bring to the problem-solving effort is important for overcoming 

obstacles and achieving goals.  

Mathematical Cognition 

 While metacognitive knowledge and processes have been found to help problem 

solvers become more efficient at handling mathematics problems (Flavell, 1992; 

Schoenfeld, 1992), several researchers (i.e., Ambrose, 2004; Hiebert, 1999; Rittle-

Johnson & Kroedinger, 2002) have found that procedural and conceptual knowledge is 

important in studying problem-solving and knowledge for teaching and learning 

mathematics. This study seeks to characterize the interplay among prospective teachers‘ 

affective behavior, meta-cognition, and mathematical cognition in the context of 

problem-solving. In doing so, I defined and characterized the mathematics knowledge 

structure prospective teachers used as they engaged in mathematical problem-solving as 
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conceptual or procedural. Skemp (1992) and Hiebert and LeFevre (1992) proposed that a 

learner‘s mathematical knowledge structure can be characterized as either conceptual or 

procedural. Conceptual knowledge refers to knowledge or understanding that is 

integrated. Skemp described conceptual knowledge as ―knowing what to do and why‖ (p. 

1953). Procedural knowledge refers to the knowledge and understanding based on the 

execution of rules, procedures, and formulas without reference to their rationale or 

underlying meaning or origin. To gauge the depth, richness, and to characterize the 

knowledge demonstrated by the participants as procedural, conceptual, or otherwise, I 

relied on fieldnotes from classroom observations, participants‘ written work, and 

interview transcripts. Transcripts and fieldnotes are reviewed for statements or actions 

suggestive of a view of mathematics as procedural or conceptual, inferences from their 

written work and solution process are coded according to the criteria in appendix K. 

During the task-based interview Tanya, Mandy, Mark, and Cindy appear to have 

some knowledge that an initial drawing of a pictorial diagram and creating a table of 

values would be helpful in simplifying the problem, recognizing a pattern, and 

representing a relationship between the diagonals of the polygon and its vertices or sides. 

These participants use computational procedures during the problem-solving process; but 

they approach the problem through exploration or trial and error and not by recalling a 

formula they used in the past.  Overall, the participants seemed to have a plan for 

approaching the problem using the strategies ―draw a pictorial diagram‖ and ―create a 

table,‖ because they each had some awareness of what using those strategies would 

accomplish. Although the problem is unfamiliar, having knowledge of the outcome of 

using a specific technique or strategy is familiar to all participants. I observed the 
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application of their strategic knowledge in action during a classroom observation. The 

students were asked to solve the following problem: John can paint the house in 3 hours. 

Mark can paint the house in 4 hours, and Zach can paint the house in 5 hours. How long 

does it take them to complete the house if they all work together? I circulated the room to 

observe the participants solving the problem and examined their written work. All 

participants used a pictorial diagram, trial and error, conjecturing, and reasoning during 

the process of trying to obtaining a solution to this problem. No one began the process by 

attempting to recall a formula; instead they began with a strategy and used their 

reasoning. 

The participants‘ views about mathematics and their approach to solving 

mathematics problems appeared to be mostly conceptual. During the interviews the 

participants described mathematics as real-life, creative, pattern exploration and 

discovery, a life-style, and the relationships among quantities. For them, mathematics is 

not a fixed body of knowledge, a collection of procedures, rules, formulas, and theorems 

to be memorized. Mark, Mandy, Cindy, and Tanya repeatedly asserted the importance of 

leaning mathematics for understanding. They expressed beliefs that suggested 

memorizing mathematics is not the same as learning or understanding mathematics. This 

view was reflected in the following comments. 

Math is learned when you are solving problems and you understand why 

something works the way it does and you can explain it to other people (comment 

by Cindy, interview1, January 28). 

 

Learning math and understanding math involves explaining why; not just how it‘s 

done, but why it‘s done. In this class, I‘m always trying to remember the rules or 

the steps for how to do certain things when now I realize how important it is for 

me to understand. I didn‘t ever really understand it [quadratic formula] now I 

understand how it came about. I‘m finding out why (comment by Mark, 

interview1, January 30). 
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The goal of learning math is to understand why something is done instead of just 

memorizing formulas (comment by Mandy, interview 1, February 5). 

 

These comments represented the participants‘ assertions that it is important to understand 

the rationale in mathematics. Hiebert and LeFerve (1986) and Skemp (1976) would agree 

that their comments could be identified as someone who has a conceptual view of 

mathematics. Mathematics procedures are an important part of mathematics and problem-

solving; however, for these participants, the rationale for procedures is equally important 

when explaining concepts to others. For them, learning mathematics is synonymous to 

understanding mathematics. They view understanding mathematics as eliminating their 

need to memorize formulas and rules.   

Throughout the task-based interview, the participants monitored their progress by 

checking that the procedures and strategies they used to solve the diagonals problem were 

executed correctly and the solution process made sense. Some participants felt that 

mathematics problems generally have one solution, but multiple solution paths should 

lead to the solution. During an interview, when discussing what it means to understand 

mathematics Mandy and Cindy explained that, 

 I think one of the most important things in learning and teaching math and solving 

problems is you have different ways to approach, work; you have to have more 

than one way to explain a problem (comment by Mandy, interview 4, March 18) 

 

 If you‘re going to be a good math teacher you have to be able to explain the 

concepts you are teaching in more than one way (comment by Cindy, interview 4, 

March 10). 

 

The participants perceived understanding mathematics as being able to justify 

their reasoning and solutions, solving problems using more than one approach, and 

explaining a problem in multiple ways. During a classroom observation, Mandy and 
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Mark appeared to value their ability to explain and justify their reasoning when solving 

problems, especially at the board. While Mandy knows that division by zero is undefined, 

she was unsure about how to explain why this is true. In other words, she was unable to 

justify her solution. Consequently, her hesitation to explain her solution to the class at the 

board demonstrated a lack of confidence. In a follow-up interview she explained, 

I need to understand not just memorize, I have to not only learning it, I have to 

understand it if I‘m going to teach this stuff. (Interview 4, March 19) 

 

Mark explained that while he knew how to use the quadratic formula as a way of finding 

solutions to a quadratic equation, he did not fully understand where or how it originated. 

He explained that, 

Learning math and understanding math involves explaining why; not just how it‘s 

done, but why it‘s done. I didn‘t ever really understand it [quadratic formula] 

now…I‘m finding out why. (Interview 2, February 6) 

 

During the task-based interview, each participant demonstrated flexibility as they 

moved from one problem-solving approach to another upon evaluating the effectiveness 

of a current approach. The participants evaluated their problem-solving and mathematics 

learning success based on their understanding of the mathematics process and less on 

obtaining the correct solution. This was evident during their task-based interview. Failure 

to obtain a solution did not seem to be an indication that their process was incorrect. For 

them, the process was valid even if the solution was not correct. In an earlier interview 

when asked in general how she feels when she fails to get the correct solution, Cindy‘s 

reply was, ―Understanding mathematics is not about getting the right answer; getting the 

right answer is not learning‖ (Interview 2, February 8). 

The mathematical behavior of the participants during the problem-solving process 

indicated that their mathematics knowledge appears to be rooted in both procedural and 
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conceptual mathematics knowledge and understanding. They did not initially resort to 

using an algebraic manipulation to solve the diagonal problem. While they each searched 

for an equation to describe how they would find the number of diagonals in a polygon, 

they began the search with an initial exploration, trial and error based on conjecturing and 

deduction. While they each had the expectation that an equation or algebraic expression 

would result, the participants used the integration of a pictorial diagram, pattern 

recognition, table of quantities representing the sides, vertices, and diagonals of the 

polygons in the process of finding the solution to the diagonals problem. The participants 

are able to move between these representations to validate and justify their work.  

Summary 

I used a synthesis of Charmaz‘s (2003) constructivist grounded theory and Strauss 

and Corbin‘s (1998) grounded theory procedures of coding fieldnotes, interview 

transcriptions, and participants‘ written work to define or construct categories. My 

interest was in understanding and explaining what was happening based on what the 

participants were telling me about what their mathematics learning and problem-solving 

experiences were like for them. The collection and analysis of data was shaped by me and 

my participants (Charmaz, 2003). The categories represented the participants‘ affective 

behavior, use of problem-solving strategies or heuristics, metacognition, and 

mathematical cognition during problem-solving and mathematics learning. 

   The first category represented affective behavior. In this study, affective behavior 

refers to the participants‘ mathematics-related beliefs, emotions, and attitudes related to 

mathematics learning and problem-solving. Their beliefs about the nature of mathematics 

represent aspects of mathematics creativity, content, problem-solving, and its usefulness 
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in everyday life. For them mathematics is more than a collection of rules, formulas, and 

theorems to be memorized. The participants‘ views on learning and teaching mathematics 

appeared to be a manifestation of their beliefs. Because they are prospective teachers they 

believe that it is important to learn mathematics with understanding.  

Their beliefs about teaching appeared to be a result of their own experiences as 

students. As prospective teachers, they made distinctions between effective methods of 

teaching and ineffective methods of teaching based on their past learning experiences. If 

a method of teaching was successful for them but was based on memorizing mathematics, 

they rejected the methods as good teaching. If, on the other hand, the method of teaching 

was successful and their understanding of the mathematics enabled them to explain 

justify their reasoning for a specific solution, the participants accepted the method as 

good teaching. The participant‘s perceived understanding mathematics as being able to 

justify their reasoning and solutions, solve problems using more than one approach, and 

explain a problem in multiple ways.  

Learning mathematics in a problem-solving environment plays an important role 

in understanding mathematics. For them, learning and understanding mathematics cannot 

be achieved without doing mathematics in an environment that offers support, 

encouragement, and opportunities for ―playing‖ with mathematics without fear of 

―getting it wrong.‖ Solving problems is an important part of learning mathematics; but, 

for them, getting the correct answer during problem-solving does not constitute learning. 

The participants view ―getting it [the answer] wrong‖ as a normal part of understanding 

mathematics. 
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Getting the wrong solution, however, was not without consequence. When the 

participants get an incorrect solution or experience an interruption during the process of 

obtaining a solution they experience disappointment, frustration, and often 

embarrassment. Their affective behaviors appear to be related to their beliefs about 

teaching and learning. While they do not espouse beliefs that a teacher has all the 

answers, they believe that a good mathematics teacher is someone who understands 

mathematics. For them, understanding mathematics deeply is associated with being able 

to explain your solution process, solve problems using multiple solution paths, and 

explain why mathematical procedures work and how they connect to mathematical 

concepts. The participants believe that mathematics should be presented in a way that 

students can understand. They believe this can be achieved if the teacher understands 

mathematics. 

The participants‘ emotions appeared to be a manifestation of their beliefs. Goldin 

(1995) proposes that beliefs are a stabilizing factor in affective behavior. The participants 

asserted that they learn more mathematics when they are challenged mathematically. As a 

result, when confronted with mathematics difficulty the participants were able to control 

their emotional behavior and persevere through difficulty because they believed that it 

comes with the territory. They see it as being an important factor in their mathematics 

learning and understanding.   

The second category represented the participants‘ use of heuristics in problem-

solving. In this study, heuristics are strategies, methods, or approaches participants use 

during the mathematics learning or problem-solving process. They range anywhere from 

trial and error to draw a pictorial diagram to make a generalization. The participants‘ use 
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of heuristics enables flexibility in planning and is a reflection of their ability to reason 

mathematically. 

In the third category, I described the participants‘ metacognitive knowledge and 

metacognitive control. The participants frequently monitor and reflect on the 

effectiveness and efficiency of their solution process. Knowledge about strategies and 

their use influence the problem-solving process, however knowing when and why it is 

appropriate to use is a specific strategy appears to play an important role in overcoming 

obstacles and achieving problem solution goals.  

 The fourth and final category represented the mathematical knowledge 

participants‘ access during problem-solving. The participants‘ comments and actions 

during the interviews, observations, and in examples of their written work appear to 

convey a view about mathematics that is mostly conceptual. However, there are instances 

when they implement procedures to solve unfamiliar problems; but they do so with initial 

planning, exploration, reasoning or deduction. Their ability to plan how they will 

approach an unfamiliar mathematical problem is a reflection of their knowledge of 

problem-solving strategies, their ability to evaluate whether a specific strategy will be 

useful in obtaining a problem solution and to monitor and control their thinking during 

problem-solving. The participants‘ knowledge of the (a) structure of the problem or task, 

(b) use of a strategy or procedure (b) procedural steps and goals of the procedural steps, 

and (c) situation in which a procedure or strategy is most effectively used is knowledge 

that appears to play a role in the problem-solving process (Star, 1999).  

 In the next chapter, I further explore the principles underlying major categories in 

an effort to construct a core category or a central theme or story line of the data 
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(Charmaz, 2003) that will explain how the participants‘ affective behavior, 

metacognition, and mathematical cognition interact in the context of problem-solving. 
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CHAPTER 6 

CONCLUSION AND DISCUSSION 

 

Introduction 

  

This chapter begins with a brief summary of the overall study. A discussion of the 

selective coding technique used to develop the main category and the model is presented, 

along with the conclusions as they relate to the research questions. A description of the 

model depicting my interpretation and understanding of the interplay among affective, 

metacognitive, and mathematical behavior, its development, and evaluation follows. 

Next, the implications of the study for future research, mathematics teacher educators and 

mathematicians, and curriculum development are outlined, and then limitations of the 

study are discussed. Finally, closing statements about the study as a whole are provided.  

Summary of the Study 

The recent NCTM (2000) reform movement called for mathematics teachers to 

provide students with experiences and opportunities in problem-solving throughout the 

secondary school mathematics curricula. If prospective secondary mathematics teachers 

are expected to meet the problem-solving goals set by the NCTM, they too must be 

provided with experiences and opportunities to develop substantial deep mathematics 

understanding for teaching in a problem-solving context (Ball, Bass, & Hill, 2005; 

CBMS, 2001; Even, 1993; Ma, 2004; Usiskin, et al., 2003). However, when helping 

teachers and prospective teachers learn ways to improve their problem-solving 

competence and enhance their mathematics thinking as well as that of their students, 
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Thompson (1992) found that they often encountered a number of hindrances such as 

beliefs and attitudes toward mathematics and problem-solving.  

To get a better understanding of how affective behavior interacts with 

metacognition and mathematics cognition, this study investigated prospective teachers‘ 

mathematical problem-solving experiences as they participated in an undergraduate 

course focused on deepening their understanding of school mathematics. The main 

purpose of this study was to explore and explain the interplay of prospective teachers‘ 

affective behaviors, metacognition, and mathematical knowledge. The aim was to capture 

what these prospective teachers were thinking, saying, and doing while learning 

mathematics and solving mathematics problems and gain a better understanding of what 

the experience meant for them. I explored their mathematics-related beliefs, emotions, 

and attitudes along with their metacognitive and mathematics knowledge and 

understanding in the context of mathematics learning and problem-solving. The goal of 

the study was achieved by analyzing prospective teachers‘ perspectives of their 

mathematics-related beliefs, emotions, attitudes, metacognition, and mathematical 

knowledge as they engaged in the mathematics learning and problem-solving process. 

The main question guiding this study was: What is the characterization of the 

interplay among prospective teachers‘ mathematical beliefs, mathematical behavior, and 

mathematical knowledge of prospective in the context of solving mathematics problems?  

In answering this main question, the following questions will also be answered:   

(a) What are the mathematics-related beliefs of prospective secondary 

mathematics teachers? 



130 

 

(b) What mathematical behaviors are demonstrated by prospective secondary 

mathematics teachers as they engage in mathematical problem-solving? 

 (c) What mathematics knowledge is used by prospective secondary mathematics 

teachers as they engage in mathematical problem-solving? 

Theoretical or purposeful sampling of participants was used to identify four 

participants whom I perceived would provide the maximum amount of information for 

offering the best potential to add variation, depth, and breadth to the themes emerging 

from the data (Strauss & Corbin, 1998). Throughout the research process, grounded 

theorists develop analytic interpretations of their data to focus further data collection, 

which they use to inform and refine their developing theoretical analysis (Charmaz, 200, 

p. 509). A multistep data analysis and flexible coding technique was used to analyze the 

data (Strauss & Corbin, 1998). The coded and categorized data reflected emerging ideas 

that were used to assist in the construction of an analysis of the data rather than a 

description (Charmaz, 2003). Throughout the entire process of data analysis, memos were 

written which explored ideas about the data, codes, categories, or themes (Charmaz, 

1983). 

Through the process of open and axial coding, individual and group data were 

analyzed to initially form four main categories. The main categories were grounded in the 

comparison of data from each participant; therefore, they have relevance for and are 

applicable to all participants in the study. I used an interpretive process of selective 

coding which enabled me to identify patterns and relationships between these patterns, 

which I then presented as four interrelated main categories: affective behavior, heuristics, 

metacognition, and mathematical-cognition. Further review of patterns, themes, 



131 

 

literature, and the reexamination of the four interrelated main categories lead to the 

discovery that heuristics were central to metacognition. During the problem-solving 

process, when the participants utilized a strategy or completed a series of procedures, 

they made an evaluation of its usefulness. Flavell (1976) suggested that thoughtful 

planning, and the decision-making, or evaluation of a heuristic is metacognitive in nature. 

He explained that in order to apply a heuristic, an individual must engage in the process 

of selecting a heuristic. In this context, it is necessary to monitor the progress continually 

and make revisions when necessary. In their study of students‘ use of problem-solving 

strategies, Artz and Armour-Thomas (1992) found that this monitoring process required 

metacognitive knowledge and self-regulation. Based on this information and considering 

the context of the study, I merged heuristics and metacognition to form the single 

category of metacognitive heuristics that represents the participants‘ reflection on their 

use of problem-solving strategies.  

Selective Coding 

During open coding the researcher is concerned with labeling phenomena based 

on the information provided by interviewees and observations. The researcher collects 

participant meaning and makes interpretations of the data (Creswell, 1998). Focused 

coding consists of using the most significant codes to categorize large segments of data 

(Charmaz, 2005). During axial coding statements of relationships among the categories 

are made. By listening to the participants and interacting with them during the interviews 

and in the field, I was able to make statements about how and what the participants were 

saying and doing, as well as why they were saying and doing it. Each of the participants 

had their own story to tell and much of what they were saying had common themes. 
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These categories and common themes enabled me to make assertions about the 

relationships among the four main categories. 

During  selective coding, a central theme was selected around which I could 

represent my overall understanding of what the problem-solving and mathematics 

learning process was like for the participants (Strauss & Corbin, 1998). I related all the 

major categories and selected a major theme by determining what was most striking and 

interesting about the participants‘ experiences. Through shared interpretations, the core 

category or central theme was linked to the main categories by telling a story about what 

was happening (Charmaz, 2002).  

During selective coding I began to examine the main categories and any patterns 

to emerge during the process of the study and to explain in a few words, or using a 

diagram, my interpretation of what the research was all about and what appeared to be the 

issues or problems important to the participants. In many cases, I used the words of the 

participants to tell the story about what they experienced as they solved mathematics 

problems. Each of the main categories told a story of its own. For example, the main 

category affective behavior told a story about the participants‘ beliefs about mathematics, 

their emotions, and attitudes demonstrated during mathematics learning and problem-

solving. It also told the story of how the participants felt during the process of 

mathematics learning and problem-solving. In combination, the categories represent what 

was important and relevant to the participants as they engaged in mathematics learning 

and problem-solving. What follows is a rendering or a story of my interpretation of what 

I saw and learned about the participants in the context of problem-solving. 
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The Storyline 

My analysis of the participants‘ interviews, observations, and written work 

indicated that understanding the underlying mathematics concepts associated with a 

problem solution, justifying one‘s reasoning, and solving a problem using multiple 

approaches is more important than applying a procedure to a problem or obtaining a 

correct answer. For the participants, knowing how and knowing why was indicative of 

mathematics understanding. Collectively, the participants agreed that understanding 

mathematics deeply included both the acquisition of knowledge of procedures as well as 

the mathematics concepts underpinning the procedures.  

Tanya, a prospective middle grades mathematics teacher, demonstrated optimism 

in the most difficult of mathematics circumstances. Tanya explained that mathematics has 

not been her best subject, but she loves the challenges it presents. She described her 

relationship with mathematics as one of ―love and hate‖. Mathematics is sometimes 

problematic for her, but she finds joy in deeply understanding mathematics. This course 

is a second time around for Tanya and this time she believes she can ―understand the 

mathematics‖. Procedures, algorithms, and formulas are easily memorized, but 

understanding the mathematics underpinning the procedures presents a challenge for 

Tanya. In an interview she stated, ―learning mathematics is understanding mathematics, 

and understanding mathematics is knowing when, how, and why you use procedures‖.  

During her problem-solving think-aloud interview, Tanya struggled and was 

unsuccessful in obtaining a problem solution. She exhibited emotional behavior such as 

frustration and disappointment but her frustration did not appear to be counterproductive. 
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Instead of abandoning the problem after using an initial problem-solving strategy 

unsuccessfully, she demonstrated persistence as she worked, reworked, and reflected on 

her problem-solving steps. Despite past negative experiences with mathematics learning 

and problem-solving, she believed that with increased effort she could eventually find 

success during problem-solving and in mathematics understanding.  For Tanya, failure to 

understand a particular mathematics concept was not a reflection of her lack of ability. 

Instead, she viewed failure to understand as a lack of effort. She consistently spent a great 

deal of time practicing mathematics problems or redoing problems she worked 

incorrectly on a test or homework assignment. Tanya believed that an increased effort on 

her part would improve her mathematics ability. She demonstrated positive deposition 

about mathematics learning and understanding, persistence during difficult and 

challenging mathematics situations, and she valued understanding mathematics over 

obtaining a correct answer. 

Mandy, also a prospective middle grades mathematics teacher, currently holds a 

business administration degree and is the mother of two school aged children. During the 

study, she demonstrated powerful mathematics knowledge and understanding in 

mathematics learning and problem-solving situations. She consistently submitted class 

work, homework, and problem solutions that reflected her conceptual knowledge and 

understanding of mathematics. For Mandy, understanding why a procedure works is as 

important as implementing a procedure to obtain a correct solution. She demonstrated 

persistence in her efforts to understand the mathematics underlying the procedures she 

implemented to solve problems. She is a self professed perfectionist and  mathematics 

has always been her best subject.  
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Failure to learn mathematics with understanding has not been an option for 

Mandy. She explains that, ―I have to understand if I‘m going to teach‖.  She specifically 

chose middle-grades mathematics because she believed she could learn fourth through 

eighth grade mathematics deeply and in doing so enable her to answer all of her students‘ 

mathematics questions.  While she believed that getting the correct answer was not 

important for successful mathematics learning, Mandy was convinced that middle school 

mathematics teachers should be able to answer middle school students‘ mathematics 

questions. I related this belief to the lack of autonomy she occasionally demonstrated 

during the study. Before volunteering to explain her problem solutions at the board, she 

needed assurance that her solution was correct from either the instructor or at least one 

other student. She valued having the ability to explain and justify her solution process as 

opposed to only implementing a procedure or strategy to obtain the correct solution.    

Mark demonstrated knowledge and understanding that extended beyond knowing 

how to find a solution to a problem. For him, ―understanding how, but not why a 

procedure works the way it does‖ is both frustrating and motivating to him. He explained 

that he had recently changed his attitude about what it means to understand mathematics. 

For Mark, it is not about getting the right answer. More than anyone else in this study, 

Mark consistently explained that mathematics learning occurs when one understands 

mathematics. He demonstrated persistence and autonomy in mathematics learning and 

problem-solving situations. Deriving the quadratic formula was an ―aha‖ moment for 

him. He demonstrated excitement when sharing his derivation process with me. ―It finally 

makes sense to me‖, he said. His comment represents the pride he felt during this process.  
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Mark holds the belief that ―there are no hard problems, just long ones‖. For him, 

spending time with a problem would eventually lead him to a solution. He was confident 

in his ability to ―do‖ mathematics. It appeared to me that Marks‘ persistence, intimacy 

and integrity with mathematics was a reflection of his mathematics-related beliefs and 

values. It was important for him to not only arrive at a successful solution, but understand 

the mathematics underlying the procedure as well.  Mark exhibited a consistent and 

ongoing use of self-reflection and self-regulation. He does not put a problem aside before 

he has made progress toward finding a solution. His intimate engagement with 

mathematics and his focus on making sense of mathematics was empowering for him. 

Empowering because Mark believes that when you understand mathematics you can 

explain mathematics, and when you are able to explain mathematics you can effectively 

teach mathematics. 

 Cindy demonstrated an unyielding commitment to understanding mathematics. 

She demonstrated persistence and autonomy in her mathematics learning and problem-

solving. Mathematics is her favorite subject, but she explains that as she advances in her 

mathematics study it has become more difficult and challenging. Her ability to take a 

difficult and challenging problem-solving situation and use it as a learning opportunity 

was a direct reflection of her ―don‘t give up‖ attitude.  She stated that the ―mathematics 

we do in here is challenging, but when I‘m challenged I learn‖. Cindy values reasoning 

and explaining her problem solutions and she believes ―all problems have multiple 

solution paths‖.  Very rarely did she abandon her problem solution for a peer or instructor 

solution process even when she had obtained an incorrect solution. Instead she made it a 

point to understand where she went wrong during her problem-solving process. Obtaining 
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a correct solution as not as important as understanding the mathematical solution process. 

Cindy demonstrated mathematics knowledge, understanding, persistence, and autonomy 

during the problem-solving process.   

All participants appeared to demonstrate knowledge of procedures and strategies. 

However, all but one of the participants demonstrated planning knowledge (Davis, 1983). 

Planning knowledge includes understanding the goals of the procedure or strategy, the 

type of situation in which the strategy or procedure is best used, and knowledge about 

what using the procedure or strategy will accomplish. Each participant demonstrated a 

different level of mathematics knowledge and understanding during the problem-solving 

interview, but they all appeared to value exploration, understanding, and self-monitoring 

of progress as opposed to recalling a formula and using it to solve the problem. This was 

true for homework problems and in problem-solving situations in the classroom as well. 

Participants‘ frustration, anger, and disappointment was demonstrated not so much when 

they obtained an incorrect solution, but when they were unable to explain their reasoning 

or justify their correct solutions.  

The participants‘ mathematics-related beliefs, values, and attitudes played an 

important role in their interpretation of mathematics learning and problem-solving 

experiences. The effective use of metacognitive knowledge, conceptual knowledge, and 

procedural knowledge in problem-solving and mathematics learning situations are 

important in stabilizing and controlling their affective behavior. This conclusion was 

reached by using coding techniques, memo writing, and diagramming throughout the 

research process.  
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Conclusions  

The Central Theme  

The central theme represented the participants‘ synthesized voices and 

experiences. Lincoln and Guba (1985) referred to the process of constructing the core 

category or central theme as developing ―pattern theories‖ that represent interconnected 

thoughts or parts linked to a whole. I was interested in understanding what the whole 

experience was like for the participants from the beginning of the problem-solving 

process through the end. 

In my application of selective coding, I related the three main categories 

(affective behavior, heuristics/metacognition, and mathematical cognition) to each other 

in an effort to understand the interaction among the participants‘ affective, metacognitive, 

and mathematical cognitive behavior during problem-solving. The overall common 

theme that appeared to interconnect the main categories pertained to the participants‘ 

belief about mathematics learning and understanding. A goal shared by all participants 

was understanding mathematics deeply which for them meant both knowing how to apply 

a procedure and why the procedure works—―knowing how and knowing why.‖ For them, 

understanding mathematics in this manner was the first step to effective mathematics 

teaching. Some participants considered mathematics their best subject and encountered 

little difficulty or conflict during the mathematics learning and problem-solving process. 

Others struggled to understand mathematics and often found themselves spending 

numerous hours working on problem solutions.  

Using GT methods, the central theme emerging from the participants‘ 

understanding of themselves as mathematics problem-solvers, prospective teachers, and 
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mathematics learners was Mathematics Understanding: Knowing How and Knowing 

Why. The study revealed that for the participants involved in this study, learning 

mathematics with understanding was a process that involved having both knowledge and 

understanding of mathematics concepts, procedures, and problem-solving strategies. 

Their beliefs appeared to center around the theme, ―learning math and understanding 

math involves explaining why; not just knowing how it‘s done.‖  For them, mathematics 

knowledge and understanding is validated when they are able to justify the procedures 

they use, explain their reasoning, and explain (in multiple ways) their problem-solving 

processes. This is a reflection of their ―mathematics integrity,‖ associated with a learner‘s 

desire to want to understand and justify one‘s reasoning (DeBellis and Goldin, 1999). 

The Emerging Interpretive Model in Relation to the Research Questions 

 The purpose of this grounded theory study was to understand the process of 

prospective teachers‘ mathematics learning and problem-solving and how their affective 

behavior, metacognition, and mathematical cognition interacted as they participated in a 

course focused on developing their understanding of school mathematics. The intended 

outcome of this study was an interpretive model representing the interaction among 

prospective teachers‘ affective behavior, metacognition, and mathematical cognition. By 

answering the research questions below, I gained a better understanding of the 

interrelationship among the participants‘ demonstrated affective behavior, metacognitive 

heuristic behavior, and mathematical knowledge. The interrelationship represents the 

participants‘ potential use of conceptual knowledge and understanding, procedural 

knowledge, procedural fluency, and procedural understanding, which develops into 

powerful productive mathematics learning and problem-solving. 
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What are the mathematics-related beliefs of prospective secondary mathematics 

teachers? 

 

The prospective teachers‘ views on the nature of mathematics paralleled the views 

put forth in the NCTM Standards document. They used terms such as discovering, 

making connections, understanding patterns, relationships, and real-life to express their 

conceptions of mathematics. With respect to learning and understanding mathematics, the 

participants did not believe that failure to understand mathematics was an option for them 

as prospective teachers. While they did not hold the belief that the teacher has all the 

answers, each believed that teachers should present mathematics in a way that engages 

students‘ mathematical thinking and supports their mathematical efforts. The participants 

held beliefs that teachers should be able to explain mathematics in more than way. Each 

participant believed that a good teacher is one who directs their students to understand 

relationships among mathematical concepts and to explain and justify the reasoning 

behind their solutions.  

With respect to the learning environment, the participants perceived that the ideal 

learning environment would provide opportunities for them to ―play with the 

mathematics.‖  For them, this involved having the opportunity to experiment with a 

variety of methods, strategies, and solution paths during the mathematics learning and 

problem-solving process without the pressure associated with it ―counting against‖ them. 

According to the participants, ―playing with the mathematics‖ reduced their anxiety level 

and increased their potential for learning and understanding. The participants perceived 

that while getting a correct answer was desirable, getting a correct answer was not an 

indication that learning or understanding had occurred. Their attitudes were a 
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manifestation of their belief that ―getting it wrong‖ was a normal part of learning and 

understanding mathematics.  

What mathematical behaviors are demonstrated by prospective secondary mathematics 

teachers as they engage in mathematical problem-solving? 

 

The prospective teachers‘ mathematics-related beliefs and values were a 

reflection of their attitudes and disposition, which played a role in how they interpreted 

the learning and problem-solving environment. For them, solving challenging and 

difficult mathematics problems often created moments of frustration, anger, and 

disappointment; but they interpreted these difficult situations as opportunities for deep 

mathematics understanding to occur. The prospective teachers demonstrated a ―don‘t 

give up‖ disposition in mathematics learning and problem-solving situations. As 

prospective teachers, failure was not an option. For them, understanding mathematics was 

a critical aspect of teaching mathematics. They associated failure with a lack of effort and 

were therefore willing to increase effort and persistence in order to achieve their 

mathematics learning and problem-solving goals. ―One thing I don‘t usually do is give 

up‖ and ―I don‘t give up easily‖ were common responses that demonstrated the 

participants‘ persistence and self-determination. When describing what it was like 

engaging in challenging mathematics learning situations and problem-solving difficulty, 

they used phrases such as ―hard work‖, ―persistence‖, and ―keep trying‖.  

The participants demonstrated ―mathematics intimacy‖ (DeBellis & Golding, 

1999) in their persistence and determination to develop deeper understandings of the 

mathematics they plan to teach. They were willing to spend time and effort toward 

understanding mathematics and finding solutions to challenging problems. For these 

prospective teachers, difficulty and unsuccessful problem-solving or mathematics 
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learning situations were not seen as moments of failure. Instead, they viewed these 

challenging moments with the anticipation of pride and joy in an expected success.   

Use of heuristics or problem-solving strategies was central to metacognition. 

During the problem-solving process, when the participants utilized a strategy or 

completed a series of procedures, they made an evaluation of its usefulness. They also 

demonstrated meta-cognitive behavior. Their thoughtful planning, decision-making, and 

evaluation of a selected strategy was identified as metacognitive in nature. When the 

participants applied a heuristic or problem-solving strategy, they engaged in self-

questioning, reflection, and monitoring. The participants frequently monitored and 

reflected on the effectiveness and efficiency of their solutions. Self-talk, mathematics 

discourse, self-reflections, and self-knowledge were applied frequently during the 

problem-solving process.  

What mathematics knowledge is demonstrated by prospective secondary mathematics 

teachers as they engage in mathematical problem-solving? 

 

The prospective teachers‘ mathematics understanding was rooted in both 

procedural and conceptual knowledge. For them, mathematics was not a collection of 

procedures, rules, or formulas to be memorized. They perceived having knowledge of the 

concepts which underpin procedures, rules, and formulas as vital to their mathematics 

understanding. They demonstrated a non-reliance on rules, formulas, and procedures in 

problem-solving situations. For them, ―getting a right answer‖ had very little meaning if 

the right answer could not be justified.  Understanding mathematics included having the 

ability to explain reasoning and justify solutions. For them, learning mathematics 

included understanding mathematics; and, understanding mathematics eliminated their 

need to memorize formulas, rules, and procedures. The participants believed that 
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knowing why a procedure worked was as important as knowing how to use a procedure. 

The participants‘ desire to explain their reasoning and justify their solutions appeared to 

be a reflection of their persistence and autonomy. 

What is the characterization of the interplay among prospective teachers‘ mathematical 

beliefs, mathematical behavior, and mathematical knowledge of prospective in the 

context of solving mathematics problems? 

 

I analyzed what these prospective secondary mathematics teachers said and did 

while learning mathematics and solving mathematics problems. In doing so, I found six 

key principles that appeared to emerge from the core category of Mathematics 

Understanding: Knowing How and Knowing Why. The key principles were (a) ―getting it 

[the solution] wrong‖ is a part of the mathematics learning process, (b) don‘t give up 

easily, keep trying (c) ― playing‖ with the mathematics decreases anxiety and increases 

learning and understanding, (d) mathematics difficulty and challenges provide learning 

opportunities, (e) understanding mathematics involves explaining and justifying solutions 

in multiple ways, and (f) learning in a supportive environment.  

These key principles represented the participants‘ mathematics-related beliefs, 

emotions, values, persistence, autonomy, and their views on mathematics learning and 

understanding and provided insights into how they viewed themselves as mathematics 

learners and prospective mathematics teachers. The main categories, central theme, and 

the six key principles lead to the development of a substantive theoretical model, 

Knowing How and Knowing Why: Mathematics Knowledge and Understanding that 

Empowers.  Mathematics knowledge and understanding appeared to empower the 

participants in challenging and difficult problem-solving and mathematics learning 

situations. The model is a rendering of my interpretation of the meaning the participants 
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gave to their mathematics learning and problem-solving experiences while enrolled in a 

mathematics course designed to develop their deep understanding of school mathematics. 

Development of the Model 

The model, Knowing How and Knowing Why: Mathematics Knowledge and 

Understanding That Empowers (see figure 2) represents patterns and relationships 

between these patterns in the context of mathematics learning and mathematics problem-

solving. It was developed by bringing together the key principles and key elements that 

emerged from the participants‘ insights around their mathematics learning, 

understanding, and problem-solving experiences and the process of making meaning of 

the participants‘ experience. The three main categories leading to the central theme were: 

affective behavior, meta-cognitive heuristics, and mathematical cognition. Each main 

category is represented by a circle. Diagramming was used as a way of capturing the 

relationships among the participants‘ affective behavior, mathematics cognition, and 

meta-cognition. Each pair of overlapping circles represented an interrelationship to 

emerge from the study. For example, the intersection of affective behavior and 

metacognitive heuristics was characterized as autonomy and persistence in a mathematics 

learning and problem-solving context. These interrelationships synthesized the process of 

making sense of the participants‘ mathematics knowledge and understanding, their 

mathematics-related beliefs, emotions, and attitudes, what mathematics learning and 

problem-solving was like for them, and what I observed in the classroom. 

The intersection of the three overlapping circles characterizes the interplay of the 

three major categories (affect, metacognitive heuristics, and mathematical cognition) as 

Empowering Mathematics Understanding that represents mathematics knowledge and 
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understanding that can lead to productive problem-solving experiences. This intersection 

represents mathematics intimacy, mathematics integrity, conceptual knowledge and 

understanding, procedural knowledge, and procedural fluency. The interactions occurred 

in a problem-solving and mathematics learning context; therefore, the overlapping circles 

are enclosed in a surrounding square that represents the mathematics learning and 

problem-solving environment and the culture in the classroom. 

The key principles that emerged from the core category were vital to the 

participants‘ problem-solving competence, deep mathematics understanding, and 

metacognitive knowledge; and thus, were placed on the outside of the three circles but 

inside the square.  For the prospective secondary mathematics teachers in this study, 

affective behavior, a metacognitive use of heuristics, and mathematical cognition interact 

and react to represent: Knowing How and Knowing Why: Knowledge and Understanding 

That Empowers (see figure 2).  Key elements of the model are presented and discussed 

below. 

Key Elements in the Model 

Meta-strategic Knowledge 

I characterize the interplay among metacognition and heuristics, and mathematical 

cognition as meta-strategic knowledge. This characterization is in keeping with the 

relationship between developing conceptual knowledge and metacognitive knowledge 

found in the study of Kuhn, Garcia-Mila, Zohar, and Anderson (1995). Meta-strategic 

knowledge is knowledge about where, when, and how to apply strategies and an 

understanding of the structure of the current mathematics task. It also includes 
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information about the strengths and weaknesses of each strategy and the effort involved 

in implementing the strategy (see figure 2 on page 150). None of the participants were 

successful in finding a specific equation for determining the solution to the diagonals 

problem. Obtaining the correct answer was not the objective. I was interested in 

exploring the processes they used to solve the problem.  

The participants demonstrated conceptual understanding and procedural fluency 

and they used prior knowledge during the problem-solving process. They demonstrated 

their ability to use strategies and reasoning by investigating and selecting appropriate 

problem-solving strategies and using a process that could possibly lead to a correct 

solution. Understanding how strategies are related to each other and the current 

mathematics problem includes knowing when and when not to apply a specific strategy. 

Thus, meta-strategic knowledge appears to be an important factor to mathematics 

understanding and problem-solving competence.  I conceptualize that the interaction 

between metacognitive/heuristics and mathematical cognition can be characterized meta-

strategic knowledge. 

Persistence and Autonomy 

The participants‘ desire to explain their reasoning and justify their solutions was 

expressed during the interviews and observations. For these prospective secondary 

mathematics teachers, explaining the underlying mathematics of an applied procedure 

validates their mathematics understanding. In the literature, autonomy is described as 

having a belief that one is responsible for his/her own knowledge and answers and that 

mathematics is valid and acceptable when it makes sense to the prospective mathematics 

teacher (Confrey, 1994; Fennema & Romberg, 1999; Goodyear, 2000).The participants 
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believed that knowing why a procedure worked was as important as knowing how to use 

a procedure. The participants‘ desire to explain their reasoning and justify their solutions 

appeared to be a reflection of their autonomy. Throughout the problem-solving protocols 

and observation fieldnotes the participants demonstrated that failure to explain or justify 

reasoning is unacceptable. They have a willingness to increase efforts and persist in their 

attempt to understand mathematics and to reach their problem-solving goals. 

Covington (1985) and Borkowski, Carr, and Rellinger (1990) proposed the theory 

of self-worth, which equates human value with ability. Those who believe failure is due 

to lack of effort are willing to work hard to achieve their goals. Those who believe that 

failure is due to a lack of ability will not put forth great effort because they hold the belief 

that they do not have the ability to succeed under any circumstance. The participants‘ 

beliefs and values related to mathematics and mathematics learning and understanding 

were in keeping with DeBellis and Goldin‘s (1999) construct of mathematics intimacy 

and integrity. The extent to which the participants‘ concern about and involvement in 

learning and understanding mathematics was a reflection of their intimacy with 

mathematics. Their focus on explaining why a procedure worked and not only on how to 

apply a procedure was a reflection of their mathematics integrity. In this study, 

mathematical intimacy and mathematics integrity were dimensions of the affective 

domain that provide important information about how the participants approached 

mathematics, mathematics learning, and problem-solving. I propose that the interplay 

between metacognition and affective behavior can be characterized as persistence and 

autonomy.  
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Meta-Affect 

The prospective teachers‘ affective behavior is demonstrated throughout the study 

in varying situations. They experienced frustration, disappointment, and embarrassment 

when they are unable to explain or justify their mathematical thinking or problem 

solutions, but not so much when encountering mathematics difficulty. The participants‘ 

self-efficacy was demonstrated in the expectations they held about their mathematics 

abilities. They are willing to accept mathematics challenges because they believe they 

will be efficacious in meeting the challenge and in successfully performing the 

mathematics task. Strong self-efficacy beliefs were demonstrated in the effort and 

persistence they exerted during problem-solving and mathematics learning situations.  

Their beliefs and values appeared to play a major role in how they interpreted the 

difficulties and challenges they experienced during mathematics learning and problem-

solving. For them, learning and understanding mathematics deeply occurred when they 

were challenged by the mathematics, and not so much when they solved routine problems 

or the instructor worked through the solution process as they watched. When they were 

unable to successfully solve a problem, while they might experience frustration, they 

viewed that difficulty and frustration with the anticipation that learning and 

understanding the mathematics would result in a feeling of pride and satisfaction at the 

expected success. Goldin (2000a) proposed that this behavior represents the participants‘ 

meta-affect or how they feel about what they feel, value, or believe, which he suggested 

is a type of monitoring. Monitoring and regulating one‘s affect, metacognition, and 

cognition has been found to assist with successful problem-solving (Carlson & Bloom, 

2005; DeBellis & Goldin, 1999; Goldin, 2000a). In this study, the interplay between 
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affective behavior and mathematics knowledge can be characterized as meta-affect (see 

figure 2).  

Validating the Model 

According to Strauss and Corbin (1998), in order to ensure that a theory or model 

is represented in the data, the adequacy of the study‘s research process and the grounding 

of the findings must be established. In this study, the substantive theoretical model, 

Knowing How and Knowing Why: Knowledge and Understanding That Empowers, 

conceptualized the interaction among affective behavior, metacognition, mathematical 

cognition. The model emerged through the open, axial, selective coding of solid, rich 

data.  The core category, Mathematics Understanding: Knowing How and Knowing Why, 

was developed by identifying patterns and relationships through the shared meanings and 

interpretations with the participants. The main categories (affective behavior, 

metacognitive heuristics, and mathematical cognition) merged to represent these patterns 

and relationships.  At the heart of the model is mathematics knowledge and 

understanding that is empowering for these prospective secondary mathematics teachers. 

Discussion 

I believe this study will make a valuable contribution to the body of knowledge on 

affect and cognition, because very little is known about the role affect plays in 

mathematics learning, understanding, and problem-solving. This study highlights the 

problem-solving and mathematics learning experiences of prospective secondary 

mathematics teachers who are enrolled in an upper level mathematics course. There is 

very little research addressing the knowledge and understanding associated with the 

interaction among meta-affect, meta-strategic knowledge, and persistence and autonomy. 
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This interaction is represented at the intersection of the affective behavior, metacognition, 

and mathematical cognition. The knowledge at this intersection appears to extend the 

application of conceptual, procedural, and meta-strategic knowledge in problem-solving 

situations.  

In this study, it appears that having a deep understanding of procedures—

knowledge of what, when, and how a specific procedure might work in conjunction with 

a specific strategy being used in a given problem-solving situation—can be as helpful as 

having conceptual or meta-strategic knowledge. Star (1999) suggests that this type of 

procedural understanding is deep and includes ―knowledge of such things as the order of 

steps, the goals and subgoals of steps, the environment or type of situation in which the 

procedure is used, constraints imposed on the procedure, and any heuristics or common 

sense knowledge which are inherent in the environment‖ (p. 84).  I propose that deep 

procedural understanding and knowledge together with metacognition, affect, and 

mathematical cognition lies at the intersection of the model and represents a kind of deep 

mathematics knowledge and understanding that is powerful in facilitating mathematics 

success.  

In this study, affect appears to play an influential role in mathematics learning and 

problem-solving success; however, unlike in some research studies on affect and 

cognition (Harper & Daane, 1998; Mapolelo, 1998; Thompson, 1992) affective behavior 

does not necessarily impede learning. The participants in this study experience emotional 

behaviors such as anger, frustration, disappointment, and struggle; however, these 

emotional behaviors did not negatively influence their efforts or they way they 

interpreted the situation. A problem-solving environment that is challenging while at the 
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same time supportive, where mistakes and incorrect answers are viewed as learning 

opportunities, and one can experiment or ―play‖ with mathematics, appears to positively 

influence mathematics learning and understanding.  

Although these prospective teachers often encountered difficulty solving 

mathematics problems and often found that the mathematics they learned was 

challenging, their mathematics-related beliefs and values enabled them to interpret these 

situations as learning opportunities. While they often experienced frustration, 

disappointment, anger, and struggle when confronting mathematics challenges and 

difficult problems, they seemed to anticipate the feeling of satisfaction at an expected 

success. The participants demonstrated positive attitudes, in part, because of their desire 

to become effective mathematics teachers. Failure to learn the mathematics with 

understanding was not an option for these prospective teachers.  

Implications 

This research study investigated the interplay of prospective teachers‘ 

mathematics-related beliefs, attitudes, emotions, metacognition, and mathematics 

cognition as they participated in an undergraduate mathematics course focused on 

deepening their understanding of school mathematics in a problem-solving context. The 

findings in this study have implications for mathematics education researchers, 

mathematics teacher educators, prospective mathematics teachers, and curriculum 

developers. These insights come from the substantive theoretical model that emerged 

from the study but also from the process coming to the model through the interviews, 

observations, participant artifacts, and the process of making meaning of the participants‘ 

experiences.  
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Implications for Mathematics Education Researchers 

Traditionally, mathematics education research has focused on cognitive or 

metacognitive aspects of mathematics learning and problem-solving. There are very few 

studies in mathematics education integrating cognitive and affective factors (McLeod, 

1992) and even fewer studies investigating the intersection between prospective teachers‘ 

affect, metacognition, and cognition in mathematics learning and problem-solving 

contexts. Emotional responses demonstrated by those learning school mathematics and 

associated attitudes have been found to linger into college-level mathematics. Some 

studies (Harper & Daane, 1998; Mapolelo, 1998) have suggested that affect impedes 

mathematics learning. This study suggests that this might not be entirely true in the case 

of prospective secondary mathematics students. Affect does not appear to necessarily 

impede their mathematics learning, thinking, or problem-solving goals. It appears that 

their beliefs and the meaning they attach to what it means to be an effective teacher plays 

a significant role in mathematics learning.  

The prospective teachers in this study experience frustration, anger, and 

disappointment in difficult, challenging mathematics problem-solving situations, but they 

appeared to interpret these challenges, not as a failure, but instead as opportunities to gain 

deep mathematics understanding. There seemed to be an expectation that the acquisition 

of deep mathematics understanding will be accompanied by frustration, anger, and 

disappointment. In other words, they demonstrated the attitude of ―it comes with the 

territory.‖ 

This study sheds light on the interrelationships among affect, metacognition, and 

mathematics cognition calling into question the idea that affective behaviors negatively 
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influences academic achievement. Affective behavior in prospective mathematics 

teachers appears to be associated with the high expectations they hold for themselves as 

prospective teachers. Their passion, frustration, disappointment, and anger can be viewed 

as the driving force behind their persistence and autonomy and their desire to learn 

mathematics with understanding.  For them understanding mathematics is a critical part 

of effective teaching. Perhaps, prospective teachers‘ affective behavior can be beneficial 

in motivating them to take the view that mathematics frustration, disappointment, and 

even anger should not be associated with failure. Previous research studies have failed to 

look closely at this relationship, which creates the challenge of building a robust 

theoretical knowledge base for this area of research. For researchers, the findings in this 

study suggest that future studies should consider the relationship among affective 

behavior and cognition.  

Implications for Mathematics Educators and Mathematicians 

The participants preferred not to be told how to apply a procedure to obtain a 

solution. They identify this as ineffective teaching.  For them, getting a right answer is 

not indicative of mathematics understanding. This is demonstrated throughout the study 

in their interviews and observations. When unable to obtain a correct solution, they 

demonstrate emotional behavior such as disappointment, frustration, and anger; however, 

they view these emotional behaviors as an often necessary part of understanding 

mathematics deeply.   

As prospective teachers, they have the desire to explain and justify their reasoning 

and solutions. Their interpretation of a learning environment or problem situation is 

based on their mathematics-related beliefs and values. Where others might interpret 
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failure to obtain a solution as their lack of knowledge, these prospective teachers viewed 

the difficulty as an opportunity to ask questions and obtain a better understanding of the 

underlying mathematics. An environment that is mathematically challenging, engaging, 

and collaborative is one in which learning and understanding will occur. This finding 

contributes to the body of literature that suggests that an environment that engages 

students in challenging mathematics problem-solving situations positively influences 

mathematics learning and understanding.   

Because prospective teachers have a desire to deeply understand mathematics, 

teacher educators might consider providing challenging and robust mathematics problem-

solving opportunities no matter how frustrating it might be for students. Students can 

develop their mathematics integrity when teacher educators provide robust mathematics 

problem-solving opportunities for students to become intimate with the mathematics. 

Problem situations that challenge students to spend quality time interacting with 

mathematics. A prospective teacher in this study stated that ―when I am challenged, I 

learn‖ and another stated ―even though the mathematics we learn makes me frustrated 

and angry, I know that I really understand the mathematics for the first time‖. They view 

a difficult, challenging mathematics problem situation or an incorrect solution, not as a 

failure, but with anticipation for a feeling of satisfaction at an expected successful 

outcome. As teacher educators we can help students attend to their frustrations and let 

them know that frustration, disappointment, and struggle are critical aspects of learning 

and understanding mathematics. With that said, we can also provide a practicing 

environment where students can act as practicing mathematicians working on problem 

solutions in an environment that is supportive and nonthreatening.  
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Implications for Curriculum Developers 

Curriculum developers can develop mathematics and mathematics methods 

courses that have problem-solving as its foundation. This can be a powerful vehicle to 

facilitate prospective teachers‘ deep mathematics understanding. Mathematics courses 

offered to prospective secondary mathematics teachers address conceptual understanding, 

procedural fluency, strategic knowledge, and reasoning. If the courses mathematics 

educators and mathematicians develop and offer to prospective secondary mathematics 

teachers fail to address disposition or affective factors, it is possible that teacher 

education programs will continue to produce teachers who lack the positive disposition 

associated with creating a positive mathematics learning environment and experiences for 

their students. According to Phillips (2007), teachers‘ affect is critically important.  

Therefore, if prospective or practicing mathematics teachers are to develop deeper 

mathematics knowledge and understanding, and productive mathematics-related beliefs 

then affect has to be addressed in the mathematics and mathematics methods courses 

offered to prospective mathematics teachers.  

Summary 

In summary, this study has implications for researchers, teacher educators, and 

curriculum developers. The study contributes to the knowledge base of mathematics and 

mathematics education by identifying prospective secondary mathematics teachers‘ 

mathematics-related beliefs and dispositions with respect to mathematics learning and 

problem-solving. It emphasizes the important need for research in the affective domain 

related to mathematics learning and understanding. It exemplifies the need for a 

theoretical framework for considering practicing and prospective teacher affect. 
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Limitations 

While similarities may be drawn with the experiences of prospective secondary 

mathematics teachers, the experiences, mathematics-related beliefs, attitudes, emotions, 

metacognition, and mathematical cognition expressed or demonstrated by those who are 

interviewed and observed are individual and therefore, unique. In order to consider if the 

views of these prospective teachers are representative of others, the model needs to be 

validated through interviews and observations of prospective teachers at other colleges 

enrolled in similar mathematics course.  

Fifteen participants agreed to participate in the study and after a theoretical or 

purposive sampling of four participants, no new information emerged from the data. The 

focus of the study is on the prospective teachers. The professor was not interviewed; 

however, during the participants‘ interviews it became apparent that she plays an 

important role in their perceptions of the learning environment and their motivation and 

perhaps even their beliefs.  The professor is not asked to comment on the content of the 

prospective teacher interviews or my observation fieldnotes. Only the perspectives of the 

prospective teachers are reported.  

The effects of the professor on the students‘ beliefs, knowledge, metacognition, 

and use of heuristics are not explicitly studied. The participants discuss their past 

experiences, their professor‘s role in learning mathematics, and the strategies they use to 

learn and understand mathematics, which indicates that the learning environment is 

closely connected to their mathematics-related beliefs and values. The teacher is a part of 

the learning environment; therefore, her mathematics-related beliefs, expectations, and 

the manner in which she presents the content might possibly send an unspoken message 
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to the students about the nature of mathematics, mathematics learning and teaching. The 

participants overall conceptual view of mathematics and their positive mathematics-

related beliefs, values, and attitudes could be heavily influenced by what the professor 

says or does. Further study can be done to include the professor mathematics-related 

beliefs, values, and expectations to get a better understanding of the level of influence a 

professor has on their students‘ affective, metacognitive, and cognitive behavior. 

Recommendations  

Recommendations for Practice 

Mathematics teacher educators and mathematicians can work with prospective 

secondary mathematics teachers as they develop beliefs about and a deep understanding 

of mathematics.  They can support prospective secondary mathematics teachers in the 

need to reason, make conjectures, justify their solutions, and communicate 

mathematically.  The value prospective secondary mathematics teachers place on 

justifying their reasoning and problem solutions can contribute to the construction of 

mathematics integrity, referring to their desire to understand the underlying mathematics 

associated with procedures.  Mathematicians and mathematics teacher educators should 

be explicit about the behavior that could result in working difficult, challenging, non-

routine mathematics problems. Instructors should let prospective mathematics teachers 

know that frustration and satisfaction comes with solving problems. An important 

affective goal in mathematics should not be to eliminate frustration or to make all 

mathematical activity easy and fun. Rather, instructors should encourage prospective 

secondary mathematics teachers in their development of meta-affect where their feelings 

or emotions associated with difficulty or impasse have a positive or productive impact on 
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their mathematics learning (Hannula, 2002). The feeling of frustration or anger with a 

mathematical problem solution process could indicate that the problem is challenging, 

non-routine or interesting. These feelings could be experienced with the anticipation of 

problem-solving success and understanding new mathematics deeply.  

In this study, prospective secondary mathematics teachers‘ mathematics- related 

beliefs and values often influenced their emotions. They value reaching challenging 

mathematical goals related to understanding mathematics and justifying mathematical 

reasoning. Prospective secondary mathematics teachers who hold such values often hold 

beliefs that are productive. Beliefs that, although mathematics is sometimes difficult and 

challenging success is in fact likely to occur if accompanied by persistence and effort. As 

mathematics educators and mathematicians, we must help prospective secondary 

mathematics teachers to consider not only what mathematics they are teaching but also 

the learning experiences they create for their students. Teachers make important and 

critical decisions about how they present mathematics and if they hold mathematics-

related beliefs, emotions, and dispositions that are counterproductive to mathematics 

learning and understanding or if they do not give explicit attention to their affect it could 

possibly negatively influence the mathematics-learning experiences they create for their 

students. 

Recommendations for Research 

Based on the limitations discussed above, future studies should examine the 

interplay of affect, metacognition, and mathematical cognition in a similar problem-

solving context at other colleges. Also, because phenomenon being considered is in the 

context of a classroom and the professor is a vital aspect in the classroom, he or she 
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should be included in the study. I find it impossible to accept that the participants are in 

no way influenced by the professor‘s mathematics-related beliefs, values, and 

expectations. In fact, the participants often referenced her teaching methods. However, 

the question that remains for me is, ―To what extent are the participants influenced by the 

professor‘s own affect, metacognition, and cognition?‖ The participants in this study are 

prospective secondary teachers, who generally have more positive affect than prospective 

elementary teachers toward mathematics. Do mathematics majors generally have more 

positive affect than prospective secondary mathematics teachers? Can the model be 

applied to mathematics majors? 

 I would like to follow the participants into their field experience to examine 

whether or not their teaching practices are in conflict with the mathematics-related beliefs 

and attitudes demonstrated and observed in this study. It would be interesting to discover 

whether the participants present the mathematics to their students from a conceptual 

orientation or a procedural orientation. Will the participant present mathematics with a 

focus primarily on procedural fluency? Will the participant encourage the students to 

focus on understanding the mathematics underpinning the procedures? There are studies 

to suggest that teacher-beliefs are known to influence their students‘ beliefs. It would also 

be interesting to learn if the mathematics integrity, mathematics intimacy, autonomy and 

persistence demonstrated by the participants during the study are active in their 

classroom. Are the students influenced by the mathematics-related beliefs, values, and 

attitudes of their teacher? How might the teacher‘s affective behavior influence the 

students?  
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Finally, this study examined the interplay of affect, metacognition, and cognition. 

The affective factors within the study only consider a subset of the participants‘ 

mathematics-related beliefs. The mathematics-related beliefs in this study focus primarily 

on teaching and learning, the nature of mathematics, and self-efficacy. There a numerous 

mathematics-related beliefs held by prospective teachers which when related to 

metacognition, heuristics, and cognition could produce very different results. Additional 

research can incorporate other beliefs such as beliefs about technology, beliefs about 

gender, and beliefs about reform. The participants in this study are prospective secondary 

teachers, who generally have more positive affect toward mathematics than prospective 

elementary teachers.  

Closing Statement 

 The study offers new insights into the relationship among prospective secondary 

mathematics teachers‘ beliefs, affective behavior, metacognition, and mathematical 

cognition in a context of mathematics learning and problem solving. Few studies focus on 

the intersection between prospective teachers‘ cognition and their affective behavior 

during problem-solving (McLeod, 1992). As a result, the meaningful integration of 

affect, metacognition, and cognition is under-conceptualized and in need of new 

explanatory models (Schoenfeld, 1992). This study explains what prospective secondary 

mathematics teachers believe, think, feel, and do during mathematics learning and 

problem-solving situations and how what they believe, think, and feel interact to 

influence what they do in a mathematics learning and problem-solving context.  

 These prospective teachers‘ overall beliefs and dispositions are productive. Mathematics 

makes sense to them; it is useful, worthwhile, challenging, and with effort and 
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persistence, they perceive that they have the capability to learn and understand 

mathematics deeply.   The prospective teachers in this study want to understand 

mathematics deeply; and for them, understanding mathematics is integrally related to 

understanding the mathematics underpinning the procedures they apply to solve 

problems, solving problems using multiple solution paths, and explaining their reasoning 

and justifying their solutions.   

As mathematics teacher educators and researchers, we should not only support 

prospective teachers in their development of conceptual understanding, procedural 

fluency and understanding, and strategic competence; we must also provide opportunities 

for prospective teachers to become more aware of their affect and the role it plays in their 

mathematics learning. We can support prospective teachers in developing positive affect 

and mathematics dispositions by creating positive challenging mathematics learning and 

problem-solving experiences. Then, as a result, prospective teachers will gain experience 

in not only monitoring and controlling their cognition but also their affect toward 

mathematics, mathematics learning, and problem-solving. This will perhaps enable 

prospective teachers to think about both the mathematics they teach and the mathematics 

learning and problem-solving experiences they create for their students. 
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APPENDIXES 

 

APPENDIX A 

 

CONSENT FORM 
Georgia State University 

Department of Middle, Secondary, and Instructional Technology 

 

 

Title: Conceptualizing Prospective Teachers‘ Affective Behavior, Metacognitive 

Behavior, and Mathematics Cognition During Problem Solving. 
 

Principal Investigator:   Dr. Christine D. Thomas, MSIT 

 

Student Investigator:  Ms. Belinda P. Edwards, MSIT 

 

Sponsor:  None 

I.  Purpose: 

 You are invited to participate in a research study.  The purpose of this study is to determine how 

prospective middle-grades and  secondary mathematics teachers‘ affective behaviors, metacognitive 

behaviors, and mathematical cognition interplay as you conjecture, reason and communicate 

mathematically, and solve mathematics problems.  

 You are invited to participate because you are currently a  prospective middle-grades or secondary 

mathematics teacher enrolled in the course entitled Advanced Perspectives on Mathematics.  At least 3 

participants will be recruited for the study.   

II. Procedures: 

 

 If you decide to participate, you will be observed during your Advanced Perspectives on Mathematics 

course twice per week as you interact with mathematics, your peers who are also enrolled in the course, and 

your instructor.  You should understand that all students in the mathematics course will solve mathematics 

problems during class; therefore, participation in the study does not involve any extra assignments for you.  

You should also understand that you will be interviewed about your previous mathematics experiences and 

your mathematics-related beliefs. One of the interviews will be videotaped as you explain your thinking as 

you solve a mathematics problem.  You will be interviewed five times over a period of eight weeks 

(January 2008 – February 2008).  The interviews will take between 30 to 60 minutes and will be audio-

taped (one will be videotaped) and transcribed by the investigator. The investigator will use a pseudonym 

rather than your name on all records.  All transcripts of the interviews, your inscriptions and work, and a 

copy of the videotape will be kept under lock and key in a private office and destroyed by fire at the end of 

the study.  

 

III. Risks:  

 

  There are no known risks or discomfort to you from participation in the study.  However, there might be 

times when you feel uncomfortable working or discussing mathematics problems while being observed or 

you might feel embarrassed when you are not successful when solving a mathematics problem.  You might 

also reveal something in your mathematical background or a belief about mathematics that you might later 
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regret.  You can be assured that none of the information you provide will be traced back to you personally 

or used against you in any way.  There will be no judgments made about your ability or inability to perform 

mathematical tasks.  
 

IV. Benefits:  

 

 Participation in this study will not likely be any direct benefit to you, but knowledge gained from this study 

may contribute to a better understanding of how affective behavior, mathematical behavior, and use of 

mathematical understanding and knowledge interplay as you learn mathematics.  The information gain from 

this study will inform and assist mathematicians and mathematics educators in their efforts to improve 

prospective teacher education. 

 

V.  Voluntary Participation and Withdrawal:  

  

 Participation in research is voluntary.  You have the right not to be in this study.  If you decide to be in 

the study and change your mind, you have the right to drop out at any time.  You may skip questions or 

stop participating at any time.  Whatever you decide, you will not lose any benefits to which you are 

otherwise entitled.  Whether you choose to participate at all, or decide not to continue at a later time, will 

have no effect on the grade you receive in your Advance Perspectives on Mathematics course. 

 

VI. Confidentiality:  

 

 We will keep your records private to the extent allowed by law. We will use a pseudonym rather than your 

name on all records.  The key that connects you to the pseudonym will be kept in a locked file cabinet in 

my private office.  All transcripts of the interviews, the videotape, and your inscriptions and work will be 

kept under lock and key in a private office.  Only the principal investigator (Dr. Christine Thomas) and 

principal student investigator (Belinda Edwards) will have access to the information you provide. It will be 

stored in a file cabinet under lock and key and on a password- and firewall-protected computer located in 

the student investigator‘s private office.  The key to the file cabinet will be stored in a separate location 

from the data to protect your privacy. Your name and other facts that might point to you will not appear 

when we present this study or publish its results. The findings will be summarized and reported in group 

form. You will not be identified personally.  The audiotapes, videotapes, transcribed interviews, your 

inscriptions and work will be destroyed by fire at the end of the study. 

 

VII.    Contact Persons:  

 

 You may call or email Dr. Christine Thomas at 404 - 413- 8065, cthomas11@gsu.edu or Belinda Edwards at 770-

420-4727, bedwards@kennesaw.edu if you have questions about this study.  If you have questions or concerns 

about your rights as a participant in this research study, you may contact Susan Vogtner in the Office of 

Research Integrity at 404-413-3513 or svogtner1@gsu.edu. 

VIII.  Copy of Consent Form to Subject:  

 

We will give you a copy of this consent form to keep. 

If you are willing to volunteer for this research and to have your interviews audio taped and video taped, 

please sign below. 

  

____________________________________________  _________________         

Participant        Date  

____________________________________________  _________________ 

Belinda P. Edwards (Co-investigator)     Date

mailto:svogtner1@gsu.edu


 

185 

APPENDIX B 

 

INTERVIEW 1 

 

At the beginning of the interview, the informant will be reminded that they are not 

obligated to answer questions that they wish not to answer. 

 

1. Tell me about some of your experiences learning mathematics? 

2. Do you like to solve mathematical problems? If so, why? 

3. What kind of mathematical problems do you like to solve? 

4. Do you think you are a good at solving mathematics problems? Why? Why not? 

5. What do you think makes someone a good problem solver? 

6. What do you think is most descriptive of mathematics? 

7. What do you think is least descriptive of mathematics? 

8. What do you like most about mathematics? 

9. What do you like least about mathematics? 

10. Describe what learning mathematics is like for you? 

11. What was learning like you in elementary school? Middle school? High school? 

12. What is the hardest thing about learning mathematics? 

13. How do you feel when you are asked to solve unexpected mathematics problems? 

14. What do you think it means to learn mathematics? 

15. Are there times when it is more important to learn mathematics through memory as 

opposed to understanding?  Explain. 

16. How do you relate to mathematical ideas you have learned? 
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17. What does it mean to be creative in mathematics? 

18. What do you think are the important components of a mathematics problem solution? 

19. Describe your view of mathematics? 

20. Why do you think you have this view? 

21. What do you think is the difference between a conceptual understanding and a 

procedural understanding? 

22. Do you think one [conceptual versus procedural] is more important to have than the 

other is? 

23. What is the most important thing you can tell me about your beliefs about 

mathematics? 

24. For you, what does it mean to understand mathematics? 

25. Do you think that in order to learn and understand mathematics you have to enjoy it? 
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APPENDIX C 

 

INTERVIEW 2 

 

At the beginning of the interview, the informant will be reminded that they are not 

obligated to answer questions that they wish not to answer. 

 

1. Describe the best environment for mathematics learning. [Possible follow up 

questions:  What would you be doing in this environment?  What would the teacher 

be doing?] 

 

2. Describe the characteristics of a good instructor. 

3. Describe the characteristics of a bad instructor. 

4. Why do you want to teach mathematics? 

5. When did you decide you wanted to be a mathematics teacher? [At what point in your 

life; college, elementary, middle, high school, etc.] 

6. What is the most important thing your instructors can do to help you become, what 

you consider, an excellent teacher? 

7. As a prospective teacher, what do you think is the most frightening aspect of being a 

teacher? 

8. What are some things other people do to help you learn mathematics? 

9. What role should your mathematics instructor play in your learning? 

10. What are some strategies you use to help you learn mathematics, understand 

mathematics, or do mathematics? 

11. How do you learn mathematics? 

12. What do you do after you have solved a problem? 
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13. How long would you work on a problem to find a solution?  Explain. 

14. What do you do if you are unable to solve a problem or you are having difficulty with 

your homework? 

15. What do you do when you do not understand a mathematics concept explained by 

your instructor during class? 

16. How do you feel when you don‘t understand the mathematics being explained? 

17. How do you feel about being assigned homework problems that the instructor has not 

previously reviewed in class?  Explain. 

18. How do you feel about problems being placed on the test that the instructor has not 

reviewed in class?  Explain. 

19. If you could create the perfect learning environment, what characteristics would it 

have? 

20. How important do you think it is to get the right answer when solving a problem? 
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APPENDIX D 

 

INTERVIEW 3 

 

VIDEO TAPED TASK-BASED THINK-ALOUD INTERVIEW 

 

Instructions: 

The title of this study is ―Affective Behaviors, Metacognition, and Cognition in a 

Problem Solving Context.‖   I am interested in the processes you use when solving 

problems. I cannot read your mind; however, the think-aloud method will help me 

understand your ideas while solving problems. There is no time limit in which you are 

expected to complete this problem.  

Please always speak aloud while you are working on these problems and describe 

how you are solving them.  Your participation will be videotaped. The videotape will be 

erased when the study is completed and a pseudonym will be used anytime the videotape 

is referenced.  

Here are paper and pencils for you to use.  You can use your calculator if you 

wish.  When you use it, just let me know why you chose to use it.   Remember to speak 

aloud as you work on the problem. Remember, to solve this problem, you can use as 

much time as you need.  Do you have any questions before we start? 

 

THE DIAGONAL PROBLEM 

 

 

How do you determine the number of diagonals possible in an n-sided polygon? 
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APPENDIX E 

 

INTERVIEW 4 

 

VIDEO TAPED THINK-ALOUD FOLLOW-UP INTERVIEW 

 

Instructions:  
Before starting the interview, the informant will be given copies of the problem and the 

participant‘s solution paper from the think-aloud session to be reviewed with the 

interviewer. I will also play the video and stop it at specific points to question the 

participant about their thinking and feelings as they solved the problems.  The following 

questions below will be used as a guideline for the interview. Other questions may be 

added to further prompt informants‘ thought processes when they answer in varying 

ways. If the participant does not understand what they are being asked, the interviewer 

may clarify the question. 

 

Understanding the Participant‘s Problem Solving Processes 

Understanding the Problem 

Tell me about this problem?   

Have you ever seen a similar problem like this before? 

If yes, did it affect how you solved this problem? 

Did you have difficulty understanding the given information in the problem? 

If yes, explain what parts confused you? How did this make you feel? 

What did you do after reading the problem? 

Before you started working, did you think the problem was difficult to solve?  

Planning 

How did you plan to solve this problem at the beginning? Explain. 

What did you do to overcome any difficulties? 

Please explain your solution plan to me? 

Executing 

How did you decide to carry out your solution plan? 

What mathematical content did you use? Explain why and how. 

What mathematical strategies and procedures did you consider as potentially 

useful for solving the problem? 

Did you follow your solution plan? If no, explain why not. 

How did you know you solved the problem correctly? 

What did you do when you got stuck on the problem? 

Verifying 

How can you be sure that your solution is correct? 

Did you check that your solution with your plan and the given conditions of the 

problem? 
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Is it possible to get the correct answer and still not understand the problem? 

Explain. 

Do you have any other comments about your work and thoughts while working 

on this problem? 
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APPENDIX F 

 

CODE NOTES 

 

Category 
 

Code Note 

(+)  Math Emotions (+AE) 

 

(-)  Math Emotions  (-AB) 

 

 

 

Emotional Actions (AEB) 

 

 

Beliefs About Math (BAM) 

Positive Self Belief (+BS) 

 

Negative Self Belief (-ABS) 

(+) Math Attitudes  (+MA) 

(-)  Math Attitudes  (-MA) 

Problem Solving Strategies (PSS) 

 

 

Excitement, enthusiasm, confidence, 

smiles, laughter, love, satisfaction, pride, 

like, joy.  

Frustration, dislike, hate, intimidation, 

confusion, insecurity, anxiety, hesitation, 

struggle, pain staking effort, aggravating.  

Nail or Pencil Biting, Frowning, Long 

Pause, Sighing, Pencil Tapping,   

Nature, Difficulty, Learning, 

Understanding, Teaching 

Ego, math certainty, ability to explain, 

understand, and do math 

Inability to explain or do math 

Enjoyment, Interest, Engagement 

Dislike for a specific math topic/area 

Strategic methods to assist with problem 

solving:  draw a picture, write down or 

organize given information; take your time, 
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Metacognition  (MC) 

 

 

Procedural Math Engagement (PME) 

 

 

 

 

Conceptual Math Engagement (CMU) 

play with it, file back through, 

endure/persist, ask for help 

Plan, Reflect, Rethink, Restate, Recognize 

what works, Verify, Conjecture, Talk it 

through,  Detect Errors, Correct Errors 

Procedural Thinking/Understanding: 

Explores problem and Executes algorithms, 

expresses desire to justify procedures, 

monitored trial and error, feels the need to 

recall and use a procedure 

Conceptual Thinking:  Justifies procedures, 

Uses multiple approaches to solving and 

explaining, Uses number sense or 

approximate, Checks for reasonableness of 

answer, Looks back and provides 

summary. 
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APPENDIX G 

 

Mandy‘s transcribed and coded task-based think-aloud interview. 

 

Mandy‘s Transcribed Interview Open code located in the margins of the 

transcribed interview. 

(1)  Participant Reads the Problem Initial Engagement/Motivation 

(2)  I‘ll start by drawing a polygon for each 

one to make it easier to count the diagonals.  

Strategy 

(3)  Say I had a 5 sided, one, two, three, four,  

(4)  five sided (draws a pentagon) so you have 

(5)  to have n times n minus two divided by 2. 

(6) (She writes on the paper 
2

)2(nn
). 

Organizes Knowledge 

Strategy 

Procedural Knowledge 

 

Organizes Math Knowledge 

(7) Because you can draw a diagonal from 

every vertex to another vertex in the 

polygon except the one that‘s right next to 

it because then it wouldn‘t be a diagonal, 

because if you did that it would be a 

straight line so that means if you have a 5-

sided, you can only have  

Explains/Justifies a Math Procedure 

(8)  uhmmm 1, 2, 3, you should have 3, okay Conjecture 
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(9)  1, 2, 3 and the reason you‘re dividing it by     

2 is because you only want to use one, each 

vertex one time, otherwise you would have 

uhmmm, you‘d end up with 6 of them but 

some of them are already used again. 

Explains/Justifies a Math Procedure 

 

 

 

(10)   So, if you had an n-sided polygon, say   

for instance you had a 5-sided it would be 

5 times (11)  2 divided by 2 (she 

writes
2

)25(5
).  

(12)   Which is 
2

)3(5
 = 

2

15
 .   

Explains/Justifies a Math Procedure 

 

Organizes Math Knowledge/Procedure 

 

 

Executes a Procedure 

(13)  Hummm, you can‘t come out with an 

uneven number, humm, what am I doing 

wrong.  

(14)  (long pause)  

Monitoring, Reflecting on Solution 

 

Exhibits Emotional Behavior 

(15)  Hummm  n times n minus 2.  

(16)  I know that‘s right…  I remember this…..  

Monitoring 

Confidence, Recall 

(17)  Okay, let me see, so I know when I  

(18)  have a triangle (she draws a triangle) 

doesn‘t have any so that would be …..  

(19) (hand to chin, twist lips/mouth to left side) 

Monitoring 

Math Knowledge, Strategy 

Organizes Knowledge 

Exhibits Emotional Behavior 

(20)  So that would have been n= 3,  

so 3 times 3 minus 2 over 2.  So that‘s 3 

Monitoring/Checking/Reflecting 
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times 3 minus 2 is 1 over 2  

(21) (She writes
2

3

2

)23(3
) that‘s 3 halves.   

 

Organizes Math Knowledge 

(22) Okay, what am I doing wrong?  Its n times 

n minus 2 (she writes )2(nn .   

(23)  So let‘s draw a square.  That‘s an easy 

one, so 1, 2, 3, 4 sides  

         (draws a square and its diagonals), so you 

get 1, 2 diagonals so I‘ll find that will be 

(24)   2 times 2 minus 2 (she 

writes 0)0(2)22(2  ,  

(25)   so no that‘s wrong. 

Monitoring/Reflecting on Solution 

 

Strategy 

 

 

 

Executes Procedure 

 

Monitoring/Reflecting on Solution 

(26)  Because you‘ll end up with 0 and 2 times, 

(27)  that‘s 0 and you do have 2 diagonals here 

in the square I drew, not 0. 

Conjectures 

 

Monitoring 

(28) Okay, let‘s see….humm…. 1, 2, is it that   

minus?    

(Long pause, hand to chin, taps pencil to desk). 

Monitoring 

 

Exhibits Emotional Behavior 

(29) Okay, that‘s what‘s wrong… you have 4 

sides, okay 1, 2, 3, 4.   So, n is 4.   

Monitoring/Reflection 

(30)  4 times 4 minus 2 over 2, right?  

(31)  (She writes 4
2

8

2

)2(4

2

)24(4
).   

         4 minus 2 is 2 and 4 times 2 is 8 divided 

Organizes Math Knowledge 

 

Executes a Procedure 
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by 2 is 4 and there is only 2 diagonals. 

(32)  Is it, could it be 2 times n minus 2 over 2? 

(33)  (She writes
2

)2(2 n
).  Let‘s try that one.  

which would be 4   minus 2 is 2 and 2 

times 2 is 4 and that‘s over 2, that is 2. 

Conjecture 

 

Organizes Math Knowledge 

 

Executes Procedure 

(34)  Let‘s see if it works for the other one.   

Let‘s see,  

(35) 5 sided would be 2 times 5 minus 2 which 

is 3 times 2 is 6.  That is divided by 2 is 3.   

(36)  (She writes 3
2

6

2

)2(3

2

)25(2
). 

Monitoring/Reflecting/Checking 

 

Executes Procedure 

 

 

Organizes knowledge 

(37) Okay, that‘s what I did wrong; so it‘s 2 

times n-2 over 2. 

(38) (She writes,
2

)2(2 n
).   

Reflecting on process 

 

 

Organizes Knowledge 

(39) This is how you do it for the nth polygon;  

 n = the number of sides of a polygon.  n 

is the number of sides. I think that works. 

Explains/Justifies a Procedure 

(40) Wow (shakes her head left to right). 

Harder than I thought. 

Exhibits Emotional Behavior 

Reflection on difficulty of the problem 
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APPENDIX H 

 

Mark‘s transcribed and coded task-based think-aloud interview. 

 

Mark‘s Transcribed Interview Open code located in the margins of the 

transcribed interview. 

(1)   Reads the problem Initial Engagement/Motivation 

(2)   What I‘m gonna do is, I‘m gonna draw 

one shape.   

(3)    I‘m gonna make a table, okay I‘m 

gonna start with a shape that has 4 

sides. 

(4)    So, how many diagonals does it have, 

it has 2 diagonals and it has one 

point, two points, three, four. 

Strategy 

 

Strategy 

 

 

 

Mathematical Cognition 

(5)  Okay, now I‘m gonna draw the next 

shape with five sides, it should have 5 

points.  

(6) Okay, that‘s right it has one, two, three, 

four, five diagonals 

Strategy 

Conjecture 

 

 

Monitoring 

(7) A six sided polygon (He draws the 

polygon) is probably gonna have 7 

Mathematical Cognition 

Conjecture 
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diagonals. (He draws the diagonals for 

the six sided figure)   

(8) Yeah, it does, that‘s right. 

Strategy 

 

Monitoring 

(9)  (He goes back over everything he has    

already done) 

Reflects on process 

(10)  Okay, now I‘m gonna draw a seven 

sided polygon.  

        (He attempts to draw a seven sided 

figure, but then erases it--struggles) 

Strategy 

 

 

Affect 

(11)  Well I‘m seeing that the first point 

that I go to has four diagonals 

coming from it.  The second one has 

one, two, three, four. The third one 

has one, two, three. 

Conjecture 

Organizes thinking 

(12)   I‘m seeing if there is a pattern to the 

number of points and trying to see if I 

can get it into a formula or rule. 

Organizing 

(13)  (Silence, He goes back to the square 

and redraws the diagonals and again 

to the pentagon; struggles)  

Monitoring, Reflecting on process 

 

Affect 

(14)   I see that there is a pattern.  There is 

a pattern with the number of points. 

(15)  (He scratches through the hexagon 

Conjecture 

 

Affect 
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and redraws it along with all its 

diagonals--struggles) 

(16)   The picture and table helps because 

I‘m beginning to see a pattern.  Now 

all I have to do is figure out how to 

write what‘s happening in the table 

into a formula. (Rethinks process) 

Monitoring, Reflecting on process 

(17)   I‘m seeing that however many points 

the figure has, if you take away two 

from it that‘s how many points have 

diagonals it has coming from it.   

(18)   So it looks like whatever you want to 

use for points—say its n minus 2.   

(19)   No, no I‘m doing sides, never mind.  

 

Monitoring 

 

Mathematical Cognition 

 

Conjecture 

 

Monitoring, Reflecting on process 

(20)   Okay, well it still works the same. 

(22)   Sides minus 2 gives you how many…  

(23)   (long pause—10 seconds) 

Monitoring, Reflecting on process 

Executes a procedure 

 

Affect 

(24) (He looks back over what he has  

written) 

(25)  Okay, sides minus 3 factorial gives 

you the number of diagonals. 

Reflects on process 

 

Executes 
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(26)  Okay, I think this will work.  Let me 

try a few numbers to see if it works. 

Conjecture 

(27)  Okay there are 4 sides, a square so 

that‘s 4(6-3) 4(3!) which is 4(6) 

which equals 24. 

Mathematical Cognition 

(28)  Okay that doesn‘t work. (He goes 

back to the beginning of the problem 

and reconsiders his steps) 

Reflects on process 

(29)  Alright, let‘s see.  (4 – 3)! + 1 

         No, maybe…  N(N-3)!   

         I think that works because you have N 

– 3.  You‘re gonna go 2, 2! 

Executes 

 

Conjecture 

 

(30) (He rethinks his steps, taps his pencil, 

sits silently for about 20 seconds) 

Reflects on process 

(31)  There has to be something like the 

number of sides times something.  I 

think there is a relationship between 

the number of sides and the 

diagonals.  The number of sides, 

factorial.  N! + 3  (Sits in silence) 

Reflects on problem and his solution 

 

 

 

 

Affect 

(32)   I‘m not sure…….(disappointment) Affect 
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APPENDIX I 

 

Tanya‘s transcribed and coded task-based think-aloud interview. 

 

Tanya‘s Transcribed Interview Open code located in the margins of the 

transcribed interview. 

(1)    Reads the problem Initial Engagement/Motivation 

(2)    Convex being a really cool word 

because it means it‘s on the inside. 

Mathematical Cognition 

(3)     If we did, you can‘t have a one sided 

or two sided shape so you have to 

start with three sides.  So the number 

of diagonals inside will actually be 

the wall. 

Mathematical Cognition 

(4)     Do a triangle it has 0 diagonals.  So 

if we do a square, then that would be 

two diagonals. 

Mathematical Cognition 

(5)    I‘m going to use colored pencils to 

keep me from losing track of the 

number of diagonals I‘m drawing. 

Strategy 

(6)    Okay, I‘m going to draw a pentagon 

and draw it‘s diagonals (She draws a 

Strategy 
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triangle, square, and pentagon along 

with their diagonals) 

(7)    I‘m going to predict now that I know 

that I have enough …I have a finite 

difference. 

Conjecture 

(8)    The first difference is 0, second one 

being 4, the next one being 9. 

Mathematical Cognition 

(9)    Okay, so we have 0
2
, 2

2
, 3

2
; just for 

fun let‘s do the next one which will be 

six sides. 

Organizes thinking 

(10)   I would have never thought about 

finite differences, but since we‘ve 

been working with them in this class 

I‘m beginning to like that idea. 

(laughter) 

Knowledge of Self 

 

 

 

Affect 

(11)   Okay, I‘m going to use colored 

pencils because that makes it easier 

to double check my diagonals. 

Strategy 

(12)  (She goes back to the previously 

drawn polygons and recounts the 

diagonals for the triangle, square, and 

pentagon) 

Monitoring, Reflecting on process 

(13)   5, 10, 15, 18, that would not be four Organizes thinking 
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cubed.  That would not help my 

pattern at all. 

(14)  Can I get 4 another way? Conjectures 

(15)   So the factors of 18 are 2, 9, 3, 6; 

factors of 9 are 9, 3; factors of 4 are 

2.  So none of those are going to 

work.  No, that won‘t work. 

Mathematical Cognition 

(15)   That would be linear, that would be 

quadratic, that would be cubic, 

tougher but possible. (trying a 

number of different solution methods, 

self talk) 

Mathematical Cognition  

(16)   Okay, let me think.  I vaguely 

remember a concept something about 

the number of sides related to the 

number of diagonals.  So, the square 

has 4 sides and 2 diagonals; so, 2
2
 

equals 4.   

Organizes thinking 

 

 

Mathematical Cognition 

(17)  5 sides to 9 diagonals and 6 sides to 

18 diagonals.   

         Hum, that‘s not working.   

Mathematical Cognition 

 

Monitoring, Reflecting on process 

(18)  Okay. Let‘s play with it.  (She draws a 

table) 

Strategy 
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(19)   Okay let‘s go back and take a look, 

the square had 4 starting points and 

they all went to one place and you 

ended up with 4. 

Monitoring, Reflecting on process 

(20)  The pentagon had 5 starting points 

and you ended up with 9.  That one 

(points to the hexagon) had 6 and it 

went to 18.  Okay, now I have a 

different thought. 

 

 

 

Rethinking process 

(21)  Let‘s see; that‘s what it was; one 

[diagonal] out of each point, two out 

of each point, three out of each 

point…so this one will probably have 

4 out of each place.   

 

 

 

Conjecture 

(22)  The only reason I noticed that, is 

because I used colored pencils. There 

is no way I would have made that 

correction had I not used colored 

pencils because the numbers would 

not have jumped out at me like the 

colors did.  

Reflecting on process 

 

(23)   Looking at the table, I think there 

might be a pattern, but now how do I 

Conjecture 
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write it so I can explain it to someone 

else. 

(24)  This is where talking it through out 

loud really helps because I can 

process it better. 

(25)  (long pause, taps pencil, looks over 

previous work) 

Monitoring 

 

 

Affect 

Monitoring 

(26)  All those (referring to the table 

values) have a difference of one, so it 

would be one plus the previous one.  

Mathematical Cognition 

(27)   I‘ll need to go back and clarify if you 

have less than 4 sides ‗cause that 

would make a difference in the 

function. 

Monitoring 

(28)  After that you can have an infinite 

number of sides and that would 

follow the pattern and 

(struggles)….Hum… 

Mathematical Cognition 

 

 

Affect 

(29)   Now, it‘s like I too many ways I can 

look at this problem.  It‘s like which 

way should I do it, they‘re all running 

together. 

Monitoring, Reflecting on process 

(30)  Well, at least I‘ll be able to explain it Reflecting 
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in several different ways.  

(31)  (long pause, 3 minutes) 

 

Affect 

(32)  Okay, I‘m thinking about how do I do 

this.  I know in my head, okay think 

back 

Self talk 
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APPENDIX J 

 

Cindy‘s transcribed and coded task-based think-aloud interview. 

 

Cindy‘s Transcribed Interview Open code located in the margins of the 

transcribed interview. 

(1)    Reads the problem Initial Engagement/Motivation 

(2)    Hmmmm, let‘s see Mathematical Cognition 

(3)    Okay, so you‘re asking me to explain 

how I would go about finding the 

equation that I can use to tell how 

many diagonals there are in any 

given polygon, right? 

Restate the problem, Make sense of 

problem 

(4)    Well, let‘s see the first thing …. Planning 

(5)    Well, the first thing I‘m gonna do is 

draw a picture because I‘m a visual 

person.  

(6)    Okay, a triangle first then a square, a 

pentagon, a hexagon. Okay that‘s 

probably far enough.  

(7)    Like I said before, drawing a picture 

or diagram is something I always try 

to do because it always helps me 

visualize the problem. (lines 5, 6, 7) 

Planning, Strategy 

Metacognition 

 

Organizing thinking 

 

 

Knowledge of  

(6)    (She draws a triangle, square, and 

pentagon along with their diagonals) 

Strategy 

 

(7)   Now that I have them drawn, I can 

draw in the diagonals for each one  

Planning 

(8)    Okay the triangle doesn‘t have any 

[diagonals] 

Mathematical Cognition 

(9)    The square has two, pentagon 5, 

hexagon, hmmmm, 1,2,3,4,5,6,7,8, 

Okay the hexagon has 9. 

Mathematical Cognition‘ 

 

Organizes thinking 

(10)   Okay, so 2, 5, 9.  (she writes these 

numbers in a vertical column) see if  

there might be some kind of pattern 

(she taps pencil, smiles) 

Reflects 

Organizes thinking 

 

Affect 

(11)   Okay for the square that‘s 4 sides 

and 2 diagonals; Well the triangle 

has 3 sides but no diagonals, so that‘s 

3 and 0. Hmmmmm; the pentagon has 

Mathematical Cognition 
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5 sides and 5 diagonals; the hexagon 

has 6 sides and  9 (she is now pairing 

the sides with the diagonals—sides in 

one column, diagonals in another) 

 

Strategy 

Organizes thinking 

(12)   Hmmmmm, let‘s see (she looks back 

over what she has done) 

Monitoring, Reflecting on process 

(13)   So, 3 for 0; 4 for 2; 5 for 5; and 6 for 

9. There has to be some kind of 

pattern in this. 

Organizes thinking and Reflects 

Conjecture 

(14)  Okay, I‘m doing that right. Okay, I 

think the vertices and the diagonals 

are related, not the sides. Well… 

vertices and sides are the same. So, 

the only thing I need to do now is to 

find the equation that can represent 

this relationship between the vertices 

and the diagonal. 

(silence for 4 minutes) 

Conjecture 

 

Monitoring, Reflecting 

 

 

 

(15)   Well… okay, let‘s see Monitoring 

(16)   Okay it‘s probably something related 

to the diagonals and the vertices, 

since I use the vertices to draw the 

diagonals. 

Conjecture 

 

 

(17)   Let me try, let me try a guess first 

and then plug in some 

numbers…hmmmm 

Strategy 

Organizes thinking 

 

(18)  Let‘s see… 4 and 2; 4 – 2 is 2; 5 and 

5; 5-2… N-2 maybe…no that‘s not 

right. Well, let‘s see (N-2) could be 

…. N is the number of vertices 

Mathematical Cognition 

Monitoring, Reflecting on process 

(19)  Okay let me go back and look at  the 

picture….(silence for 3 minutes) 

Monitoring 

(20)   Alright..the square. I can draw 2 

diagonals  but I only use 2 vertices, 

the other 2 I don‘t use because if 

would just be a duplicate. 

Monitoring, Reflecting on process 

(21)  Now, the pentagon. I can draw the 

diagonals from 3 of the vertices. If I 

use the other 2, I would be 

duplicating again. But the third 

vertex has one has 1 less 

Rethinking process 

(22)  Okay, I going to guess again. Let‘s 

see. (N-2) times 2.  (she writes the 

expression)   

 

 

Conjecture 

(23)  So let me check to see if this works. 

The square…4 vertices so 4 – 2 = 2; 

Reflecting on process 
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so that works. The pentagon…5 -2 = 

3; No that doesn‘t work.  The 

hexagon, 6 – 2 = 4. No that won‘t 

work. Okay go back… 

 

 

Monitoring 

(24)   Hmmmm.  Maybe N-3 will work. 4 – 

3 = 1; 5-3=2; 6-3=3 

Square is 4 – 3 = 1 

Pentagon is 5 – 3 = 2  

Hexagon is 6 – 3 = 3 

 

(25) Okay, I have to be close. I see by 

subtracting I get 1, 2, 3. There is a 

pattern here. 

Conjecture 

 

 

 

 

 

Monitoring 

(26) Okay multiply by 2 I get 2 for the 

square; 

Multiply by 2 I get 10 for the 

pentagon; 

Multiply by 3 I get 18 for the 

hexagon. 

Mathematics Cognition 

(27) Okay, that‘s it I divide by 2 and that 

gives it ...  So (N – 3)3 divided by 2 

Monitoring 

(28) I have no idea how I got that. I mean, I 

can show you, but I basically used 

guess and check.  

Self-questioning, awareness 

 

Reflection, Awareness 

(29) I would definitely need to go back and 

see if I can figure out why you would 

divide by two. Because to be honest, I 

basically guessed and then when back 

and checked. 

Reflection, Awareness 
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APPENDIX K 

 

Data Collection Schedule 

Monday Tuesday Wednesday Thursday Friday 
January 7 
Semester 

begins 

January 8 
Explain Study 

Issue Consent & 

Background Info. 

January 9 
 

January 10 
Collect Consent 

& Background 

Info. Form 

January 11 
Note Taking & 

Coding 

Background Info. 

 
January 14 January 15 

Classroom 

Observation 

January 16 
Note Taking & 

Coding 

January 17 
Classroom 

Observation 

 

January 18 
Tanya Interview1 

January 21 
Note Taking & 

Coding 

January 22 
Snow Day 

* 
Memo writing 

 

January 23 
Memo writing 

Coding 

January 24 
Classroom 

Observation 

January 25 
Note Taking  

Coding 

January 28 
Cindy 

Interview1 
Coding 

January 29 
Classroom 

Observation 
Note Taking  

January 30 
Mark Interview1 

Coding 

January 31 
Classroom 

Observation 
Note Taking 

 

February 1 
Memo writing 

Coding 

February 4 
Review the 

Literature 

February 5 
Mandy Interview1 

Classroom 
Observation 

February 6  
Note Taking 

Mark Interview2 
Artifact Coding 

February 7 
Classroom 

Observation 
Coding 

 

February 8  

Cindy Interview2 
Coding 

February 11 
Memo Writing 

February 12 
Classroom 

Observation  
Tanya Interview2 

February 13 
Mandy 

Interview2 
Coding 

February 14 
Classroom 

Observation 
Cindy Interview3 

 

February 15  
Coding 
Notes 

February 18 
Review the 

Literature 

February 19 
Classroom 

Observation 
Artifact Coding 

February 20 
Classroom 

Observation 
Coding 

 

February 21 
Classroom 

Observation 

February 22 
Review the 

Literature 

February 25 
Review the 

Literature 

February 26 
Classroom 

Observation 

February 27 
Coding 

Memo Writing 

February 28 
Test 

Classroom 

Observation 

 

 

February 29 
Coding/Memo 

writing 
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March 10 
Cindy 

Video-taped 

Interview 3 

March 11 
Cindy 

Retrospective 
Interview 4 
Classroom 

Observation 

March 12 
Tanya 

Video-taped  
Interview 3 

Coding 

March 13 
Tanya 

Retrospective 
Interview4 
Classroom 

Observation 

 

March 14 
Coding 
Sorting 

March 17 
Coding 
Sorting 

March 18 
Mandy Video-taped 

Interview3 
Classroom 

Observation 

March 19 
Mandy 

Follow-up 
Interview5 

March 20 
Mark 

Video-taped 
Interview 3 
Classroom 

Observation 

March 21 
Mark 

Follow-up 
Interview4 

Sorting /Coding 
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