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Abstract 
 
 

In the present study, electrophysiological and behavioral effects of compromised Gama-

Aminobutyric Acid (GABAergic) transmission were investigated in adult Rhesus macaque 

monkeys (N=2).  GABAergic transmission was perturbed in the putamen by administration of a 

GABAA receptor antagonist, gabazine (10 and 500 µM), via a microdialysis-local field potential 

(MD-LFP) probe.  Resultant changes in striatal local field potentials (LFPs) were measured as an 

assay of synchrony.   

Gabazine perfusion evoked discrete large amplitude spikes in LFPs in all subjects, and 

the frequency and shape of individual spikes were concentration-dependent.  Pre-treatment with 

the GABAA receptor agonist, muscimol (100 µM) blocked the gabazine-induced events, 

confirming a role for GABAA receptors in the effects.  Behavioral manifestations of gabazine 

treatment were observed only at the maximum concentration.  Unusual facial movements 

suggested aberrant electrical activity was propagated from striatum to motor cortex, perhaps via 

reentrant circuits.  These results support a role for GABAergic transmission in segregation of 

striatal circuits. 

 
 
INDEX WORDS: local field potentials, microdialysis-local field potential probe, gabazine, 
  synchronized oscillatory discharge, Rhesus macaque
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Introduction 

 

Circuitry of the Basal Ganglia 

The Basal Ganglia (Bg) are subcortical structures known for their contributions to motor 

activity and movement disorders, including Parkinson’s and Huntington’s Diseases.  Major 

nuclei of the basal ganglia include input structures such as the striatum (putamen and caudate 

nucleus) and subthalamic nucleus (STN); output structures such as the internal segment of the 

globus pallidus (GPi) and the substantia nigra pars reticulata (SNr); and modulatory structures 

such as the external segment of the globus pallidus (GPe) and the substantia nigra pars compacta 

(SNc).  These nuclei play significant roles not only in motor functions, but also in limbic and 

cognitive functioning (Alexander et al., 1990).  Re-entrant circuits of various modalities connect 

cortex, Bg, and thalamus (Alexander et al., 1990).  Evidence suggests that these circuits are 

segregated, i.e. there is little anatomic overlap between functionally different loops, and little 

correlation between the electrophysiologic activities of neighboring neurons (Gatev et al., 2006; 

Guzman et al., 2003; Bergman and Deuschl, 2002; Plenz and Aertsen, 1996.) The specific aim of 

the present study was to investigate the role of neuronal transmission, primarily via the 

transmitter Gama-Aminobutyric Acid (GABA), in the segregation of these channels. Local field 

potentials, (LFPs) were the primary assay used to investigate the integrity of GABAergic 

transmission, which was manipulated via a GABA-A receptor antagonist and agonist, gabazine 

and muscimol, respectively. 
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The motor circuit is representative of the other pathways, in terms of anatomy and 

physiology (Alexander et al., 1986).  The circuit originates in the arcuate premotor area, motor 

cortex, and somatosensory cortex then projects in succession to the putamen,  

ventrolateral area of the GPi and caudolateral area of the SNr.  Subsequent signals to the 

ventralis lateralis pars oralis (VLo) and the ventralis lateralis pars medialis (VLm) of the 

thalamus are relayed back to relevant cortical areas (Alexander et al., 1986).      

 
Within each circuit there appear to be a so-called ‘direct’ and ‘indirect’ pathways 

traveling through the nuclei of the basal ganglia (Smith et al., 1998; Alexander et al., 1990). The 

direct pathway originates in the striatum and projects to the Bg output nuclei, GPi and SNr.  The 

indirect pathway is more circuitous, involving connections between striatum and GPe, GPe and 

STN, and between STN and GPi/SNr.  The direct and indirect pathways may counterbalance one 

another (Marsden and Obeso, 1994; Figure #1).    

 Evidence for Reentrant Circuits 

These circuits have been mapped both anatomically and electrophysiologically.  Early 

anatomical experiments used antereograde or retrograde tracing techniques, but more recent 

studies have employed herpes simplex I virus to label entire circuits via trans-synaptic retrograde 

transport of labeled viral particles (Middleton and Strick, 2000; Hoover and Strick, 1999; 

Jorritsma-Byham et al., 1994; Cassel, 1993).  For example, trans-synaptic labeling enabled 

Middleton and Strick (2000) to show the precise cortical origins and termination sites of motor 

cortico-basal ganglia-thalamo-cortical loops. 

 Electrophysiological studies with both single-unit and microstimulation approaches have 

also helped to delineate specific circuits and their function. For example  
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Fig 1:   

Direct and Indirect Pathways - The diagram presents an outline of the basic circuitry of 
the Basal Ganglia, in particular emphasizing the direct and indirect pathways.  The direct 
pathway, primarily mediated by the (dopaminergic) D1 receptor, creates an excitatory effect on 
movement, and is characterized by the path of striatum to the output nuclei (GPi/SNr) to 
thalamus to cortex. The more circuitous indirect pathway, primarily mediated by the D2 receptor, 
creates an inhibitory effect on movement, and is characterized by the path of striatum to the GPe 
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to the STN to the output nuclei, finally returning to thalamus and cortex.  (Source: Alexander et 
al., 1990) 

 

Middleton and Strick (2000) combined single-unit recording with viral tract tracing to 

explore visual-motor integration in monkey brain (Middleton and Strick, 2000).  The  

majority of neurons recorded during these experiments (working memory tasks) were in  

the middle third of the pallidum (rostro-caudal dimension).  Subsequent tract tracing from  

that specific region revealed a projection traveling to the SMA, which had been ascribed  

a role in guiding sequential movements that require working memory (Russo et al.,  

2002).  
 
 
Striatal Cellular Makeup 
 

The data reported here result from an investigation of LFPs in the striatum.  The striatum 

is the largest structure in the Bg and is composed essentially of the putamen and caudate nucleus.  

It is the main input structure, receiving significant afferent projections from virtually all parts of 

cortex (Parent et al., 1995; Gerfen, 1992).  Striatal circuitry is comprised of one major type of 

projection neuron, the medium spiny neuron (MSN), and at least four categories of interneurons 

(Kawaguchi et al., 1995).    

The GABAergic MSNs are by far the largest cellular constituents of the striatum, with 

population estimates ranging from 75 to nearly 98 percent of the total number of striatal cells 

(Tepper et al., 2004; Kawaguchi et al., 1995).  MSNs project to two different targets (GPe and 

GPi/SNr) and express various neurotransmitter receptors.  MSNs are quiescent under basal 

conditions (Gatev et al., 2006; Guzman et al., 2003; Plenz and Aertsen, 1996).  Their activity is 
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strongly driven by cortical and thalamic glutamatergic inputs.  These neurons send (inhibitory) 

axon collaterals to neighboring neurons.   

 
The structure and function of certain populations of striatal interneurons have also been 

studied extensively.  One of the major interests of the present study was the mechanism by which 

MSNs are electrophysiologically segregated; it is in this area that GABAergic interneurons are 

thought to play a significant role.  Of the three primary classes of striatal inhibitory interneurons, 

the Fast-Spiking units (Fs) are the best characterized from a variety of parameters (Tepper et al., 

2004).  Structurally, they possess approximately similar dimensions to MSNs, e.g., cell somata 

spanning tens of micrometers.  Their relevant electrophysiologic profile includes the firing of 

brief action potentials and possession of large and rapidly peaking AHPs (Tepper et al., 2004; 

Kawaguchi et al., 1995).  Another notable characteristic sets these GABAergic neurons apart 

from other inhibitory influences in the striatum is their spontaneous activity (Mallet, 2005; 

Bracci, 2003).   

 
Other interneuron populations in the striatum are either lesser known or appear not to be 

relevant to the present study.  Nitric oxide synthetase/somatostatin-containing interneurons and 

calretinin-containing interneurons are both similar to Fs units in that they use GABA as their 

primary neurotransmitter, but neither is described as well in the literature.  Another group of 

interneurons, the cholinergic ‘Tonically Active Neurons’ (or TANs), may play a role in the 

detection of salient stimuli (Graybiel et al., 1995, Kawaguchi et al., 1995).     

 
A Lateral Inhibitory Network 

 A lateral inhibitory network, potentially producing a striatal center–surround mechanism 

(similar to that of the retina), has been postulated to play a role in the segregation of neuronal 
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populations or circuits within the Bg (Alexander et al., 1990; Groves, 1983).  This mechanism 

may operate on a number of levels, including the information paths flowing through the nuclei of 

the Bg and the level of individual nuclei (Alexander et al., 1990).  For example the indirect 

pathway may provide the inhibitory surround, while the direct pathway supplies the disinhibitory 

drive.  

 
The extensive local GABAergic axon collaterals of MSNs may be important sources of 

inhibition in the striatum (Bar-Gad and Bergman, 2001; Parent et al., 1995; Gerfen, 1992; 

Groves, 1983).  The major targets of these collaterals include other MSNs, and populations of 

interneurons, namely the Fs subtype (Mallet, 2005; Tepper et al., 2004; Bolam et al., 2000).  

Although far fewer in number, Fs interneurons may also provide inhibition to this network.  

Terminals from these neurons are anatomically placed to provide highly effective inhibitory 

post-synaptic potentials (IPSPs), and the strength of these IPSPs is stronger than that of MSN’s 

(Tepper et al., 2004; Jaeger et al., 1995).  Regardless of the source of inhibition, be it MSNs, Fs, 

or a combination, one important function of the inhibitory network is to maintain the segregation 

of the reentrant circuits described above (Guzman et al., 2003; Plenz and Aertesen, 1996).  .    

 
GABA Receptors 

 GABA, the primary neurotransmitter that maintains segregation, acts at either ionotropic 

GABAA receptors or, metabotropic GABAB receptors.  GABAA receptors mediate fast inhibitory 

transmission, while GABAB receptors mediate slow inhibitory transmission.  The most relevant 

receptors for our study were GABAA.  Thus to manipulate GABAergic transmission we used the 

competitive and selective GABAA receptor antagonist gabazine (Jones et al., 2001), and the 

selective GABAA receptor agonist, muscimol (Jones et al., 2001, 1998).   
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GABAA receptors, or subunits that comprise the receptors, are located throughout the 

basal ganglia, including the STN, both pallidal segments, and the striatum (Charara et al., 2005; 

Galvan et al., 2004; Smith et al., 2000).  Subunits of the GABA-A receptor (α1, β2/3 and 

γ2), have been shown on MSNs and on interneurons (Galvan et al., 2004; Fujiyama et al., 2000), 

often in the core of putative GABAergic synapses (Galvan et al., 2004; Fujiyama et al., 2000).       

 
Consequences of Circuit Desegregation  
 

Segregation of information in specific circuits appears critical to normal behavior (Joel 

and Weiner, 1994).  Damage to this circuitry, either by anatomical lesion or compromise of 

electrical signaling, may result in pathology.  In fact, precise location of an insult or interference 

may predict the type of resultant pathology (Middleton and Strick, 2000).   

  The emergence of synchronized oscillatory discharge (SOD) amongst neuronal 

populations that normally are electrophysiologically segregated may result in a greater 

correlation of firing patterns amongst these cells, resulting in a reduction of relevant signal 

quality (Joel and Weiner, 1994).  This type of phenomenon may play a role in such syndromes as 

Huntington’s Disease (HD) and Dystonia.  Reduced GABAergic transmission within the striatum 

may also be a factor in these disorders (Fredow and Loscher, 1990).  SOD can be studied via 

recording LFPs. 

 
Local Field Potentials   
 

The type of electrical activities that can be recorded with wires introduced into the brain 

depend on the physical dimensions of the electrodes.  Electrodes with a very small tip (on the 

order of a few microns) will be sensitive to focally generated activity, but will not be 

significantly influenced by electrical phenomena generated more than a few hundred 
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micrometers away from the electrode tip.  Such ‘micro’-electrodes can therefore be used to 

record the activities of individual neurons or fibers.  The physical dimensions of such electrodes 

determine their electrical characteristics – they tend to have a high impedance, and act 

effectively as a high-pass filter with a high cut-off frequency.  By contrast, electrodes with larger 

tip sizes record potentials generated by a much larger volume of tissue (up to several millimeters 

in size).  The physical characteristics of the electrode-tissue interface results in a low electrode 

impedance, and imparts filter characteristics on these electrodes that relatively favor the 

recording of lower frequencies.  Such electrodes are not sensitive to the activities of individual 

neurons.  Potentials recorded from such ‘macro’-electrodes are called ‘local field potentials’ 

(LFPs) and reflect the net sum of all electrical activities within the vicinity of the electrode.  

LFPs are low-frequency potentials, and are influenced by synaptic potentials, synchronized 

neuronal spiking, and changes in glial membrane potentials (Goldberg et al., 2004, Logothetis, 

2003).    

In light of our concern with segregation of striatal circuitry, perhaps the most essential 

attribute of LFPs is that fluctuations in the local field potential may indicate the degree of 

synchronization between neuronal populations.  Boraud and colleagues state that currents must 

be synchronized in time and space in order to influence the LFP significantly (Boraud et al., 

2005).  LFPs are thought to be ‘population windows’ of sorts on various aspects of neuronal 

behavior, and as such are valuable assays. However, the majority of studies conducted to date 

have been carried out within the cortex, not the Bg.  The relative lack of knowledge on Bg LFPs 

was significant motivation in the development of the present protocol. 

In order to investigate the nature of GABAergic control of LFPs in the striatum of the Bg, 

the present study employed a microdialysis-local field potential (MD-LFP) probe.  This probe 
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enables LFP recording with simultaneous microdialysis sampling.  Combinations of LFP 

recording and pharmacological sampling in the same spatial - temporal frame have not been 

possible before, mainly due to the fact that traditional dialysis sampling involved the use of a 

cannula; when both microelectrodes and cannulae were placed in proximity, an untenable signal 

to noise ratio resulted (Obrenovitch et al., 1994).  This circumstance led to the development of 

microdialysis probes that contained recording electrodes.  Originally, their design included only 

a single, silver chloride wire to record LFPs (Obrenovitch et al., 1994).  This improvement still 

left much to be desired in terms of immunity to electrical noise and ability to show neuronal 

circuit events as truly local phenomena (Darbin et al., 2006; Obrenovitch et al., 1994).  This 

situation changed significantly with the addition of a second recording electrode to the probe, 

and a consequent differential grounding setup.  Signal to noise ratios were much improved, 

enabling localization of LFP activity (Darbin et al., 2006).  The general hypothesis, of the 

present study, that segregation between striatal channels is actively maintained by GABAergic 

mechanisms, along with the timely development of the bipolar MD-LFP probe, led to the 

specific aim of this work:  to investigate the contribution of GABAergic mechanisms to the 

maintenance of segregation of electrical activity in the striatum, as assessed via recording of 

LFPs.   
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Materials and Methods 

 
 
Rationale/Overview 
 
 
 To explore the role of GABAergic inhibition in the maintenance of segregation of 

activity of neighboring striatal MSNs, we recorded changes in striatal LFPs evoked by local 

application of GABAergic drugs via reverse microdialysis. Pharmacological manipulations and 

electrical recordings were made via a combined microdialysis LFP recording, MD-LFP probe.  

 Two monkeys were used.  Surgical procedures were performed to attach a recording 

chamber to the animal’s skull allowing continued access to the brain throughout 

experimentation.  Once the animals recovered from surgery, electrophysiological mapping 

established anatomical boundaries of the striatum.   Resultant maps were used to place the MD-

LFP probe in the target area of the motor striatum, i.e., the putamen.   After accurate probe 

placement and an equilibration period, the microdialysis tubing of the MD-LFP probe was used 

to infuse a GABAergic agonist (muscimol) or an antagonist (gabazine) into the putamen.  

Before, during, and after the drug application, LFPs were recorded.   

 

Specific Research Design 
 
Animals 
 
 Two female Rhesus monkeys (Macaca mulatta) were used in this study, each weighing 

approximately 5 kg.  Animals were housed individually in standard primate cages (Primate 

Products, Miami, Fl), and had ad libitum access to food and water.  Before experimental 
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procedures began, animals were trained to accept contact and handling by the experimenters.  

They were also trained to sit in a primate chair for extended periods.   

 All experimental protocols were performed in accordance with the NIH Guide for the 

Care and Use of Laboratory Animals (Anonymous, 1996), and the PHS Policy on Humane Care 

and Use of Laboratory Animals (amended 2002).  The Animal Care and Use Committee at 

Emory University approved all protocols.  

 

Surgical Procedure 

 In order to place a stainless steel recording chamber (inner diameter 16 mm) on the 

animal’s skull, surgery was conducted under general isoflurane inhalation anesthesia (1-3%) and 

aseptic conditions.  Before setting the chamber, a small circular section of bone was removed 

with a trephine.  The recording chamber allows for chronic access to the brain.  In order to access 

the motor striatum (putamen) the chamber was fixed to the skull stereotactically at an angle of 

50° from vertical in the coronal plane guided by the following anatomical coordinates, (A=12 

mm, L=10 mm, D = 5 mm).  The recording chamber and a head-stabilizing bolt were attached to 

the skull with dental acrylic.   

 

MD-LFP Set-up 

 The MD-LFP probe was constructed of microdialysis tubing and fine electrical wires to 

enable multiple functions (Figure #2).  First a specific length of semi-permeable membrane 

(Hollow Fiber Bundles; molecular weight cutoff: 13,000 Da; Spectra/Por RC; Spectrum 

Laboratories, Inc., Los Angeles, CA), was cut and closed at one end with an epoxy glue.  Then 

the inlet and outlet tubing of the dialysis probe (length 15 cm, i.d. = 40 µm; o.d. = 103 µm; 
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Polymicro Technologies, Phoenix, AZ) were added.  The inlet tube was placed within 100 µm of 

the glue cap, extending 2 mm beyond the end of the outlet tube.  Following placement of the 

tubing, two 20 cm segments of ultra- thin wires (Nichrome/Formvar, bare diameter: 0.0020”, 

coated diameter: 0.0026”, A-M Systems, Inc.), were placed in the probe.  Insulation was 

carefully removed from one end of the wires, and the ends were soldered to a connector (D-Sub 

Crimp Contacts – Jameco, USA).  The probe end of the wires was de-insulated to a length of 100 

µm.  The impedances of the wires were matched to lie within a 100 – 200 KΩ range.  

(Impedance matching improves common mode rejection in the bipolar recording set-up. 

Common mode rejection refers to the ability of the probe to reject signals common to both wires.  

This characteristic improves the signal to noise ratio of the activity that the probe records.)  The 

wires were then added to the probe next to the tubing, in such a way as to ensure the wire tips are 

2.5 mm from each other. 

 The entire probe was then inserted into a sleeve of tubing (polyimide) so that a 3 mm 

segment of both wire tips and inlet/outlet tubing extended out of the sleeve.  Ten-millimeter 

sections of stainless steel tubing (Small Parts, Miami Lakes, FL) were glued to the proximal ends 

of the inlet/outlet tubing of the probe for connections to a microliter pump.  The wires and tubing 

(stainless steel and polyimide) were then secured in a small plastic holder, which added 

structural support (CMA, Solna, Sweden).   

 The system was perfused with aCSF (composition in mM: 147.0 Na+, 4.0 K+, 1.0 Mg2+, 

1.2 Ca2+ and 153.2 Cl-; CMA, Slona, Sweden), delivered at a rate of 2 µl/min from gas-tight 

syringes, which were driven by a microliter syringe pump (CMA120; CMA, Solna, Sweden).  

The pump simultaneously drove two syringes, which were connected to the inlet tubing of the  

 



  

 

 13 
 

 

Figure 2: 

  A schematic representation of the MD-LFP device indicating the following: 
(a) inlet tube, (b) outlet tube, (c) semi-permeable membrane, (d) polyimide tubing, 
(e) first wire-electrode, (f) second wire-electrode, (g) glue plug, (h) glue in 
polyimide tubing ‘sleeve’. Source: Darbin, O et al., 2006  
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probe via a liquid switch (CMA110; CMA, Solna, Sweden), which allowed switching between 

infusion solutions without the introduction of air bubbles.   

 

Sampling Routine 

 
 Before the MD-LFP probe was used it was flushed overnight to ensure that the system 

was properly primed.  Thirty minutes before the start of the experiment the system was perfused 

with a solution of artificial cerebrospinal fluid (aCSF) composed of a composition similar to that 

described in the previous section. After this perfusion period the probe was placed in the brain 

via a microdrive and delivered to a relevant target based on mapping data.  Once the probe was 

located correctly, extracellular fluid was allowed to stabilize for a period of sixty minutes (Figure 

#3).  Following stabilization, baseline striatal LFPs were recorded for twenty minutes as a 

control set of data for all experimental groups. There were five experimental groups or series of 

injections in this study.  They were organized by the following parameters.  Group 1 was a 

control group, in which LFPs were recorded at baseline without drug injection. Three 

experimental groups  (#’s 2, 3 and 4) were recorded in the presence of gabazine (0.1, 10 or 500 

µM respectively), introduced to the medium perfusing the microdialysis system starting 40 

minutes after the beginning of the recording, i.e., T = 0, and lasting for a period of 20 minutes.  

The last experimental group (#5), consisted of perfusion with muscimol alone (100 µM) at T = 

20 minutes, for a 20 minute period, immediately followed by a 20 minute perfusion with a 

solution containing both muscimol (100 µM) and gabazine (10 µM).  In all groups, except group 

#1, LFP recording continued for 120 minutes after switching back to regular aCSF.     
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Figure 3: 
 

Schematic representation of the protocol used in this study. First, the MD-LFP probe was 
perfused overnight using distilled water. Then, the device was inserted into the brain area of 
interest and a one hour equilibration period was implemented to allow the tissue to recover from 
the penetration. After this period, the recording session was started and this defined the T0 of the 
experiment. Control group (group 1) was recorded for 3 hours without drug injection. Three 
groups (2,3,4) were treated by infusion of gabazine (0.1, 10 or 500 µM respectively) 40 min after 
the beginning of the recording for a period of 20 min. The last group (5) was treated at 20 
minutes with muscimol (100 µM) alone for 20 min followed by a 20 min period of perfusion 
with a mixed solution of muscimol (100 µM) and gabazine (10 µM). 
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Electrophysiological Recording 
 

Two types of electrophysiological signals were recorded:  single-unit spiking activity was 

used to delineate the boundaries of the striatum, and LFPs were used to ascertain the degree of 

synchronous activity amongst neuronal populations within the striatum.  The striatum was 

mapped using microelectrodes (FHC, Bowdoinham, ME) with an impedance value range of 0.5 – 

1 MΩ and standard single-unit recording methods.  A microdrive (MO-95B, Narishige, Tokyo, 

Japan) was used to lower the single microelectrode through the various regions of the brain en-

route to the putamen.  To avoid damage to the microelectrode tip, we used a guide tube to insert 

the electrodes past the dura mater.  The spiking activity was amplified (DAM-80 amplifier, WPI, 

Sarasota, Fl), filtered 400 – 10,000 Hz, Krohn-Hite, Brockton, MA), and visualized with a digital 

oscilloscope (DL 1540, Yokogawa, Tokyo, Japan).  The signals were also made audible with an 

audio amplifier.  LFP signals were recorded with an EEG amplifier (Model 8-16 Amplifier, 

Grass) and low-pass filtered at a range of 0.5 - 75 Hz.  LFP recording wires were interfaced with 

the EEG amplifier via an impedance adaptor (Model HZP High Impedance Probe, Grass, West 

Warwick, RI).   

 
Histology  
 
 At the end of these experiments the animals received an overdose of pentobarbital 

(100mg/kg) and were then perfused transcardially with cold oxygenated Ringer solution, 

followed by a mixture of 4% paraformaldehyde and 0.1% glutaraldehyde in phosphate buffer 

(0.1 M, pH 7.4).  The brain was blocked, frozen, and sectioned in the parasagittal plane in 50 µm 

sections.  Sections were stained via cresyl violet.  Recording sites were reconstructed based on 

gliosis patterns and prior electrophysiological mapping data.   
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Data Analysis 
 
 We observed that gabazine induced rhythmically recurring spike-waves in the striatal 

LFP record.  To generate numerical descriptors of the frequency and duration of  

these events, we analyzed the data with custom-designed algorithms in Matlab (Mathworks, 

Natick MA).  First the numerical signal was re-sampled to 241 Hz and  

filtered in the band 0.5-35 Hz.  The new signal was then segmented in adjacent 10-second 

windows.  Each individual window was visually analyzed in order to exclude windows  

with artifacts, to identify the beginning and ending of individual gabazine-induced synchronized 

events, and to calculate the duration of the gabazine-induced changes (if any).  The number of 

spike-wave events (Figure #8) and their duration (Figure #9) were estimated over 5 minute 

periods.  These data are displayed in the median and 25th – 75th percentile format, via and inter-

group comparisons were carried out with non-parametric tests as the data did not follow a normal 

distribution (Glantz, 1997).   
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Results 

 
Effects of Gabazine Infusion 
 

GABAergic inhibition was blocked with various concentrations of the GABAA-receptor 

antagonist gabazine.  LFPs recorded from the MD-LFP system were monitored during drug 

exposure.  Gabazine exposure resulted in the emergence of recurring large-amplitude LFP 

fluctuation.  Experiments with various concentrations of gabazine demonstrated a dose-

dependent relationship, such that increasing concentrations of gabazine correlated with an 

increasing frequency and amplitude of the spike-wave events (Figure #4).  A dose-dependent 

relationship was also observed with regard to complexity in shape of the evoked events.  From 

here on these phenomena will be termed synchronized events (SEs).  When local areas of the 

putamen were perfused with concentrations of 10 or 500 µM of antagonist, individual SEs 

demonstrated a dose-dependent relationship not only regarding amplitude and frequency, but 

also in terms of complexity of waveform shape (Figures #4 & #5).  At both concentration values, 

SEs increased in amplitude to an extent approaching 3 orders of magnitude.  Regarding 

complexity of shape, at the 10 µM concentration SEs had the shape of a spindle or spike. In 

contrast, at the 500 µM value, SEs were more complex, (Figure #4b and Figure #5), and were 

characterized by several spikes during a shift in the baseline potential.  One possible reason for 

increased complexity maybe wider spread of antagonist at higher concentration, and a 

consequential increase in the number of receptors/cells affected or entrained at small, but slightly 

varying time frames.    
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A 
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Figure 4: 

Representative samples of synchronized events (SEs) with spike or spike/wave shapes 
recorded in the striatum of the awake monkey after local application of GABAA antagonist 
gabazine using MD-LFP device. (A) Traces recorded after infusion of gabazine at 10 µM. The 
lower part represents a magnified view of one particular SE (*); (B) Traces recorded after 
infusion gabazine at 500 µM. The lower part represents a magnified view of one particular SE 
(*). Increase in gabazine concentration results in an increase in number of spikes and in 
complexity of their shapes. 
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Figure 5: 

 Representative sample of sustained synchronized events (SSEs) recorded in the striatum of an 
awake monkey after local application of the GABAA antagonist gabazine at a concentration of 
500 µM using reverse microdialysis.  Portions of the figure labeled B-D refer to the sections in 
subplot A marked with an asterisk. 
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In addition to more complex patterns, we also observed more sustained periods of 

synchronization on both the individual SE level (labeled SSE in Figure #5 and Table I), and in 

terms of synchronized behavior enduring on a population level (Figures #5, #8, & #9) during 

infusion of the higher concentration of gabazine (500 µM).  On the individual SE level, 

paroxysmal activity began immediately after an SE began, and consisted of several seconds of 

high frequency activity at lower amplitude than the preceding SE (Figure #5).   

 The number of SEs increased overall in a dose-dependent manner (Figure #6).  No SEs 

were seen in the control protocols of the experiments; nor were SEs detected during the 

injections of 0.1 µM concentration of gabazine.  However, at the 10 µM and 500 µM 

concentrations of antagonist a significant dose-dependent relationship in SE increase was 

observed.  Specifically, the number of SEs observed during the recording sessions increased 

193.5% from 10 µM to 500 µM (Figure #6). The timing by which SEs occurred was affected 

both on a global and individual scale by the concentration of drug perfused.  At the 10 µM 

dosage the number of SEs that occurred within 5-minute increments increased to a peak level of 

60 SEs ten minutes after gabazine administration commenced.  This maximum was followed by 

a gradual decline during the rest of the experiment (Figure #7).  At a concentration of 500 µM, 

the maximum value of SEs that occurred per 5-minute increment continued to increase 

approximately 60 minutes after the start of the antagonist perfusion to a value of 110 SEs.  This 

frequency did not decline over the remainder of the experiment.  

 SE duration also increased on an individual waveform level, depending on the gabazine 

concentration in the perfusion medium (Figure #8).  With 10 µM gabazine, individual SEs 

increased in duration less than 10 minutes after commencement of gabazine infusion and 

culminated in a maximum value of 700 ms at approximately t = 70 minutes.  Once attained, this  
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Table I:  Dose-dependence of gabazine effects.   
  

The data are presented in termsof the number of experiments in which SEs, SSEs 
 or behavioral changes were seen.  

Condition 
Incidence  

of SEs 

Incidence  

of SSEs 

Incidence 

for partial 

seizure 

Control 0/4 0/4 0/4 

Gabazine 0.1 µµµµM 0/6 0/6 0/6 

Gabazine 10 µµµµM 7/7 0/7 0/7 

Gabazine  500 µµµµM 5/5 4/5 2/5 
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Figure 6: 

Dose effect of striatal gabazine administration on number of SEs evoked locally.   
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Figure 7:  

Time course of SEs occurrence evoked locally by striatal gabazine infusion. (○) after 
infusion of gabazine 10 µM; (●) after infusion of gabazine 500 µM.  Data are median and 25th-
75th percentiles (*: p<0.05). 
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Figure 8:  
 

Time course of the duration of SEs evoked locally by striatal gabazine infusion. (○) after 
infusion of gabazine 10 µM; (●) after infusion of gabazine 500 µM.  Data are median and 25th-
75th percentiles (*: p<0.05). 
 

 

 

 



  

 

 26 
 

maximal value began to decline soon after and continued for the remainder of the experiment.  

With 500 µM gabazine, individual SE durations increased at a faster rate, and reached a maximal 

value between 700 – 800 ms and maintained this plateau for the remainder of the experiment.  

The greatest duration of individual SEs was not significantly different between lowest and 

highest concentrations of antagonist, however a plateau was only maintained in the case of the 

500 µM value.   

Behavioral manifestations were observed only when the highest concentration of 

antagonist was used.  The behavior occurred in two sessions of gabazine infusion, and included 

subtle facial movements characterized by eye blinking, chewing, and grinding of the teeth.  In 

one experiment, excessive salivation was also observed.  These behavioral manifestations were 

never observed during infusions with the lower concentration values of antagonist, i.e., 0.1 and 

10 µM.  See Table I for a summary of experiments involving various concentrations of gabazine 

only.   

 
Experiments with Co-administration of Muscimol and Gabazine:   
 

These experiments examined interactions between muscimol and gabazine in the 

modulation of LFP events.  Muscimol was perfused starting 20 minutes before gabazine 100 µM, 

and continued for the duration of the gabazine exposure.  Under these conditions, effects of 

gabazine on striatal LFP quality and quantity were blocked  

(Figure #9 and Table II).
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Figure 9:  

Effect of pre-infusion of muscimol (100 µM) on SEs number elicited  
by striatal infusion of GABAA antagonist gabazine (10 µM). 
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Table II:  Effect of muscimol on gabazine evoked LFP events  

Pre- and co-treatment Conditions 
Incidence 

for SE 

None Gabazine 10 µµµµM 7/7 

Muscimol 100 µµµµM Gabazine 10µµµµM 0/6 
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Discussion 
 
 

The present data set reveals a gradient of effects that correlates with levels of inhibition 

in a striatal/putamen locus.  Up to a specific plateau, the higher the concentration of gabazine, 

the larger in magnitude and more complex in nature the effects observed on the LFP.  A role for 

GABAA receptors in these gabazine effects is supported by pretreatment with muscimol, which 

blocked gabazine effects.  Overall, these data support a role for GABA in the maintenance of 

segregation of striatal circuitry, as well as the idea that the integrity of information within striatal 

channels is ensured in part via lateral inhibitory transmission (Wichmann & DeLong, 2003; 

Gerfen, 1992).  

Specifically, we observed that the frequency of SEs increased in a dose-dependent 

manner during gabazine infusion, and that SEs were significantly larger in amplitude than the 

background LFP waveforms.  Other parameters that were at least in part concentration-

dependent included the time-course of events and the complexity of the shape of evoked SEs.  

Certain “uneventful” periods were also significant.  For example, the lack of SEs in the LFP 

background during perfusions of the lowest concentration of gabazine is noteworthy.  Finally, 

behavioral manifestations were observed only in the few conditions using the highest 

concentration of antagonist.   

Generally, the data support the hypothesis that strong inhibitory transmission is necessary 

to prevent the emergence of abnormal oscillations in the LFP.  GABAA receptors are widely 

distributed in the striatum, located on both MSNs and Fs units (Smith et al., 2001); and therefore, 

antagonism of the GABAA receptor should interfere with most GABAergic transmission (in 

addition to communication mediated by the GABAB receptor).  Not surprisingly then, our results 
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are consistent with the view that in the alert, resting macaque, GABAergic inhibition is normally 

present and largely mediated by GABAA receptors.   

Upon diffusion of drug an adequate distance into striatal tissue - consequently binding a 

sufficient number of GABAA receptors - a requisite number of striatal cells and synapses 

terminating on them were disinhibited, allowing for the emergence of the large amplitude LFP 

events.  As alluded to in the introduction, currents must be synchronized in time and space in 

order to significantly influence the LFP (Boraud et al., 2005; Buzsaki, 2004).  In theory then, 

SEs in the LFP reflect a sufficient level of synchronization occurring amongst synapse or neuron 

populations.   

The lack of synchronized events at the lowest concentration of gabazine is noteworthy.  

This result suggests that there exists a continuum of disinhibition; at low concentrations SEs 

were not evoked (Faingold et al., 1998; Meldrum & Wilkins, 1984) whereas at higher 

concentrations SEs became more complex in shape and occurred more frequently.  Above this 

threshold the complexity in shape and the frequency of occurrence of SEs were concentration 

dependent.  The primary limiting factors on the antagonist’s effect were most likely its 

extracellular concentration and its distance perfused from the probe (Hoistad et al., 2002). 

Essentially then, changes in SE frequency of occurrence and complexity of shape were a 

function of both of these parameters, although there may have been other more subtle undetected 

factors.  The shape of LFP events and their concentration dependent complexity are attributable 

to the varying quantity of electrically excitable elements contributing to the LFP and to the 

changing qualitative nature of their contributions.  
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Co-administration of Gabazine and Muscimol    
 

 Gabazine failed to induce LFP events in the presence of muscimol.  The rationale 

behind the co-administration experiments was to increase confidence in gabazine’s locus of 

action and to establish that the perturbations seen in the LFP were primarily due to antagonism of 

the GABAA receptor.  Given muscimol’s less selective nature than gabazine (Jones et al., 2001), 

muscimol may block a diversity of -A- receptor subunit combinations, including those that 

gabazine exhibits greatest affinity toward.  Our results support gabazine’s profile in the literature 

as potent competitive inhibitor of the GABAA receptor (Lindquist et al., 2005).   

Although not likely, an ‘order-effect’ could have influenced the present results.   Namely, 

if a set of experiments had been carried out in which gabazine was applied first, the subsequent 

administration of muscimol may or may not have inhibited all evoked SEs.  Muscimol is 

described as a potent agonist (Frolund et al., 2002) with consequent intrinsic ability to out-

compete the natural agonist.  Furthermore, according to Jones and colleagues (Jones et al., 2001 

and 1998) muscimol, and agonists like it, may create an ‘induced-fit’ rearrangement of their 

receptor’s subunits that requires a significant energy outlay for this new configuration to occur. 

Conversely, antagonists such as gabazine create less involved interactions with their relevant 

receptors and, consequently, their action is less expensive from an energetic standpoint.  This 

rationale suggests that perfusion of muscimol secondarily to gabazine would have induced 

limited reversal of the effects evoked herein by the antagonist, primarily because the cost of 

energetic outlay is favorable toward the mechanism of gabazine.  Our findings, while not proving 

a specific locus of action, do support the assertion that antagonism of the GABAA receptor 

generated the emergence of synchronized events.   
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Results in Light of Physiological Concerns  
 
 As mentioned in the introduction, a lateral inhibitory network has been suggested to exist 

within the striatum (Groves, 1983).  The emergence of SEs in our experiments indicates that at 

least partial, if not significant breakdown of the local inhibitory network occurred.  However, 

cortical motor programs were in all likelihood not disrupted (with certain possible exceptions, 

see below), as the animals by and large were resting during the protocols.  The development of 

SEs, does indicate that significant synchronization developed in the local vicinity of the probe, 

primarily caused by the disturbance of GABAergic transmission.    

The potential substrate of this network as described in the introduction, is most likely 

MSNs, Fs interneurons or some combination of these populations.  Do these cell populations also 

contribute to the phenomena observed in the LFP record?  MSNs comprise the overwhelming 

majority of striatal cells (Tepper et al., 2004), thus by sheer number alone they almost certainly 

contributed to the LFP.  Furthermore, since the LFP is a function of a variety of electrical 

activity, MSN oscillations in membrane potential may have contributed significantly to the 

events observed in the LFP record.  MSN are known to oscillate from a so-called down state 

(least likely to fire) to an up-state (a membrane potential only a few millivolts away from spiking 

threshold) (Wilson and Kawaguchi, 1996).  Since currents must be synchronized in order to 

significantly affect the LFP (Boraud et al., 2005), our data may reflect the synchronous 

oscillations of many MSNs from hyperpolarized states to near threshold.  However, MSNs were 

almost certainly not the only contributors to the LFP.  Fs interneurons possess certain 

characteristics that distinguish them from other striatal populations and make them ideal LFP 

contributors.  These characteristics include an ability to fire spontaneously, significant 

glutamatergic cortical input, and considerable connections to other Fs cells via gap-junctions 
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(Mallet et al., 2005; Tepper et al., 2004; Moore & Grace, 2002).  Electrotonic coupling via gap-

junctions may have played a role in synchronizing the output of Fs cells.   

 
Behavioral Issues 
  

 During two experiments with the highest concentration of gabazine, the animals 

manifested behavioral changes.  Although few in number, the fact that oral/facial movements did 

arise suggests a few interesting possibilities.  One, as described above, significant breakdown of 

an inhibitory network probably occurred allowing for the emergence of synchronized events.  

This synchrony was almost certainly propagated to relevant areas of cortex and most likely by 

electrical means, not by diffusion of drug (Hoistad, 2002).  The direction of propagation from the 

striatum could have been either antero- or retrograde.  The substrate involved in the retrograde 

case would be the circuitry that connects cortex with striatum; if anterograde in nature, the direct 

pathway described in the introduction would be the relevant path (Figure #1).   

 

LFPs Revisited  

Regarding more global issues and questions related to the LFP, since this potential is 

known to propagate over significant distances, on the order of millimeters (Goldberg et al., 

2004), it seems fair to ask, ‘do the SEs in the field potential propagate further in the LFP than the 

actual spread of the antagonist?’  If the LFP is more than just a manifestation of varied electrical 

activity within the neuropil, if it is actually a signal capable of causing effects (Bullock, 1997), is 

there any indication of this in the raw data?   

In effect, what has been partly carried out in this protocol is to shut down a substantial 

proportion of the brain’s inhibitory mechanism, within a small locus.  The resultant lack of 
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balance as manifested by the large amplitude oscillations in the LFP, should in theory, evoke 

some sort of homeostatic response from the brain.  Since proper brain functioning requires a 

balance of excitation and inhibition (Moulder et al., 2006), one could expect to see evidence of 

increased GABAergic transmission – metabolic, electrical, and histological – in areas outside of 

the sphere of influence of the antagonist.  For example increases in GABAergic vesicular 

trafficking and likelihood of release might be detectable (Moulder et al., 2006).   

The question arises then, is there any evidence in the LFP of a homeostatic response 

occurring?  In other words, are there any subtle manifestations in the LFP reflecting the brain’s 

attempt to compensate for the disturbance in GABAergic transmission?  The most fruitful place 

to look for this answer maybe in sections of the LFP record that take place near the end of the 

obvious effect of the antagonist.  The rationale for looking in this area of the record simply being 

that the peak effect of the antagonist may mask any other more subtle compensatory activity.  

Future experiments could also look to sample, via microdialysis, other relevant brain areas 

outside of the area that is influenced by the MD-LFP probe.   

Regarding other subtle aspects of the LFP record, it was evident that at the median 

concentration of antagonist (10 µM) SE’s evoked were simpler in shape than those emerging at 

the higher concentration.  Interestingly, only the SE’s of more complex shape were associated 

with behavioral changes.  Obviously, change in shape of the LFP is not the salient cause of the 

behavior manifestations observed, however, the biological substrate that underlies these changes 

may be of interest.  Are the majority of dose-dependent effects seen in this protocol due solely to 

greater concentrations of antagonist in the local environment and/or greater distance of diffusion 

of the antagonist from the probe? Or are there other factors that operate here as well? Although 

beyond the scope of this work, additional factors possibly include the increased influence of 
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glutamatergic and dopaminergic transmissions subsequent to the elimination of GABAergic 

activity.   

Further interesting questions regarding the LFP record include: ‘why does the sustained 

and complex paroxysmal behavior illustrated in figure #5 develop?”  Is this, too, primarily a 

function of extracellular drug concentration and perfusion distance from the probe?  

Unfortunately, the nature and implications of these ‘seizure-like’ events remain a mystery.  

Finally, the maximum duration of individual SE’s did not change significantly between the 

median and 500 µM concentrations.  Why?  Given the significant difference in concentration 

between the median and highest value, does this result represent some type of plateau that cannot 

be surpassed without an orders of magnitude increase in concentration of drug and a resultant 

greater perfusion distance?   

 
Relevance to Human Pathology 
 

 Major insights into the behavior of individual neurons have been gained from 

electrophysiological experiments.  Most progress has been achieved by single-unit recording.  

Single-unit recording offers valuable insights into neuronal behavior, especially regarding the 

firing rate of units.  Firing rates, however, do not give a comprehensive picture of relevant 

neuronal behavior; emergent oscillation patterns in population activity are also germane.  As 

such, researchers have begun to look at the patterns of the electrical activities of single neurons, 

or populations of cells, as well as LFP fluctuations (Kuhn et al., 2005).  They have found that 

certain frequency bands of synchronized, oscillatory activity can be deemed either antikinetic or 

prokinetic (Brown, 2003).  For example, Williams and colleagues found 11 – 30 Hz synchronous 

oscillations in the LFP between STN and GPi, and these nuclei and cortex, in Parkinsonian (PD) 
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patients undergoing Deep Brain Stimulation (DBS) (Williams et al., 2002).  Furthermore, Brown 

broadly defines the frequency bands below 40 Hz as essentially antikinetic.   

 Our results show fluctuations in the LFP that have maximal frequency values of less than 

1 Hz at both the median and greatest concentration of the antagonist. These frequency values 

would probably not be classified as antikinetic (or prokinetic), and so the question remains 

whether there are any correlations between our results and non–contrived pathological realities, 

i.e., movement disorders.  Some evidence is reported for impaired GABAergic transmission in 

the progression of various diseases.  Two primary examples are Huntington’s Disease and some 

forms of Dystonia.  Fredow and Loscher (1990) observed that the symptoms of a dystonic strain 

of hamsters could be ameliorated or worsened if given drugs that enhanced or impaired 

GABAergic transmission respectively (Fredow and Loscher, 1990).  While Crossman and 

colleagues found that by impairing GABAergic transmission from the medial putamen to the 

lateral globus pallidus (via bicuculline) a chorea type symptomology emerged in monkeys.  They 

reasoned that since there is an impairment in GABAergic signaling from the striatum to the 

globus pallidus in humans suffering from Huntington’s Disease (HD) that compromised 

GABAergic transmission may play at least some part in HD (Crossman et al., 1988). 

Variability in Results and Possible Confounds 
 
 Two female Rhesus monkeys were tested in this protocol.  Due in part to the low number 

of subjects, significant variability was encountered.  Relevant inter-animal differences may 

include differences in the animal’s metabolism, differences in brain architecture and dimensions, 

and differences in cellular population censuses, e.g., neuronal versus glial ratios.  Regarding 

inter-penetration differences, the primary source of variation was differences in location of the 
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MD-LFP probe within the putamen from one injection to another.  Other sources include 

experimenter error regarding timing of perfusions and concentrations values of the 

pharmacological agents.  Furthermore, there was some inevitable variation in the construction of 

one MD-LFP probe and another.  One unavoidable limitation of this protocol, namely the fact 

that only two animals were used, was due to ethical and, in part, economic issues associated with 

nonhuman primate research.  For these reasons multiple observations were carried out in each of 

these animals, rather than other animal model protocols, e.g., rodent paradigms, in which single 

observations are carried out in multiple animals.   

The number of spikes evoked at various antagonist concentrations showed significant 

variability especially at the concentration value of 10 µM.  In general there appeared to be more 

variability at the median concentration value throughout all of the various parameters, e.g., total 

spikes evoked, spike number per 5 minutes and individual spike number.  If this interpretation is 

true, the reason may have to do with a failure to reach a minimum level of 

disinhibition/excitation (alluded to above) at all, or consistently at the 10 µM value.  In the 

experiments conducted regarding spike number per 5 minutes, there appears to be significant 

variation in the data at both concentrations values, although the greatest periods of difference 

manifest at different time periods in the overall experiments, namely, late in the experiment for 

the maximal concentration value, and early to middle periods for the median value.  Reasons 

why may include variance in the length of activity of the antagonist at the 500 µM concentration 

and, as above, lack of threshold levels of excitation/disinhibition achieved at the median value.  

In the data collected regarding individual spike durations, the greatest variability appeared to 

occur again at the median concentration value and also, in the middle period of the experiment.  

This occurrence may also be attributed to lack of sufficient antagonism of the GABAA receptor.   
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Summary and Conclusions 
 
 The data reported here indicate that perfusion of the GABAA antagonist gabazine at 10 

and 500 µM concentrations by reverse microdialysis evokes discrete, large – amplitude spikes in 

the LFP, which we have termed synchronized events (SEs).  These results suggest that the rate of 

occurrence and the complexity of shape of individual events are dependent on the concentration 

of gabazine.  Behavioral manifestations were seen in only two series of injections using the 

maximal concentration of antagonist.  Pre-administration with the GABAA receptor muscimol 

prevented the development of all coarse and subtle manifestations of the gabazine induced LFP 

events.   

  The data supported our hypothesis that in order for pathological oscillatory behavior 

amongst neuronal populations not to emerge, strong inhibitory transmission is necessary.  Upon 

sufficient breakdown of GABAergic transmission, synchrony may develop. Thus the hypothesis 

that GABAergic mechanisms play a significant role in maintaining the segregation of striatal 

circuitry is supported by our results.  In other words, strong, lateral inhibition within striatum 

may play a role in prevention of unwanted movements from occurring.   

 Possible directions to proceed experimentally with the MD-LFP probe include the use of 

glutamatergic or dopaminergic antagonists and complementary single unit recording in the same 

locus as the probe.  One particularly promising location would be the output nuclei of the Bg.  

Here the production, and potential propagation, of SEs to cortex could be further investigated.  

Recording of cortical EEG to more effectively validate the emergence and spread of 

synchronized oscillatory activity would strengthen the significance of any potential results.   

This work may be relevant to the study of human pathologies in part associated with 

impaired GABAergic transmission.  Consequent imbalance in excitation and inhibition resulting 
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from pathological GABAA receptor signaling may be conducive to the emergence of certain 

motor disorders.  Huntington’s Disease and some forms of Dystonia may be pertinent examples. 
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