5-6-2012

A Landscape of Conflict: An Archaeological Investigation of the New Hope Church Battlefield

Jason N. Brooks

Follow this and additional works at: http://scholarworks.gsu.edu/anthro_theses

Recommended Citation

This Thesis is brought to you for free and open access by the Department of Anthropology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Anthropology Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
A LANDSCAPE OF CONFLICT: AN ARCHAEOLOGICAL INVESTIGATION OF
THE NEW HOPE CHURCH BATTLEFIELD

by

Jason N. Brooks

Under the Direction of Dr. Jeffrey B. Glover

ABSTRACT

The Battle of New Hope Church was fought on May 25-26, 1864 as part of the Atlanta
Campaign of the American Civil War. This research utilizes historical records along with
archaeological fieldwork in order to better understand the battlefield landscape. In particular, I
seek to answer whether soldiers behaved in, perceived of, and constructed the battlefield
landscape based on a set of cultural norms imposed on them by the strict structure of the military.
This research offers insight into the construction of the battlefield landscape at New Hope
Church, how it is connected to related battlefield landscapes, and how it has been memorialized
as a landscape of conflict.

INDEX WORDS: Historical archaeology, Civil War, Landscape, Military strategy
A LANDSCAPE OF CONFLICT: AN ARCHAEOLOGICAL INVESTIGATION OF
THE NEW HOPE CHURCH BATTLEFIELD

by

Jason N. Brooks

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Arts
in the College of Arts and Sciences
Georgia State University
2012
A LANDSCAPE OF CONFLICT: AN ARCHAEOLOGICAL INVESTIGATION OF THE NEW HOPE CHURCH BATTLEFIELD

by

Jason N. Brooks

Committee Chair: Dr. Jeffrey B. Glover

Committee: Dr. Christopher Morehart
 Garrett Silliman

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
May 2012
DEDICATION

To my family for always loving and supporting me.
ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor Dr. Glover for taking the time to guide me through my fieldwork and academic studies with patience and understanding. I would also like to thank Dr. Morehart for serving on my committee and taking the time to provide me with further lessons in archaeological theory, without which I would not be in the position to complete this thesis project. Mr. Garrett Silliman provided his expertise in the field of battlefield archaeology and helped to guide my approach to this research. Collectively, my thesis committee helped to keep me focused on the research and motivated me to complete it. Each of them has brought something unique to the table and, as such, has helped me to expand my knowledge within the field of archaeology.

I would like to thank the Atlanta History Center for the opportunity to perform this research on their property. Thank you to Gordon Jones who was the point of contact with the Atlanta History Center throughout this project. I hope this research can provide the museum with a foundation for future interpretations of the New Hope Church battlefield. It is also important to thank Bo DuBose for allowing me the opportunity to view his collection of artifacts recovered from the research site. This was one of the most amazing collections that I have ever had the pleasure of viewing.

I would also like to thank Dr. Terry Powis for providing access to the necessary equipment and source materials, without which this project would have been exponentially more difficult to complete. I am grateful to Melissa Scharffenberg and Jennifer Weber who provided immense support during my transition into graduate school. You both have talked me down on several occasions when I thought that I might not make it in the program. I count myself very fortunate
to count you both as close friends.

A special thank you needs to be given to Emily Vanderpool who been an anchor for the past few semesters. You have given freely of your time to help on the project at every possible turn. Not only have you supported me academically, but you have also become one of my best friends. I look forward to sharing many excellent adventures with you in the future.

I also would like to thank Sarah Livengood, Les Brown, and Tony Fitzpatrick for coming out and donating their time to the project. Without your help, this project would not have gotten completed on time. Thank you for your hard work and effort.

Lastly, and most importantly, I would like to thank my family for putting up with my endless academic pursuits. You have all supported me and had faith in me through all the good times, and the bad. Without you I would be lost.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. v

LIST OF TABLES ... x

LIST OF FIGURES ... xi

1 INTRODUCTION ... 1
 1.1 Outline of Thesis ... 2

2 THEORETICAL APPROACH ... 5
 2.1 Battlefield Archaeology ... 5
 2.2 Landscape Archaeology ... 6
 2.2.1 Behavioral Cartography ... 7
 2.3 Battlefield Landscapes .. 9
 2.3.1 KOCOA ... 9
 2.3.2 Experiential Approach ... 10
 2.4 Theory of Proposed Research ... 11

3 METHODOLOGY .. 13
 3.1 Historical Documents ... 13
 3.1.1 Moving Past the Historical Record ... 14
 3.2 New Hope Church Project ... 15
 3.2.1 Survey Areas .. 18
 3.2.2 Metal Detecting ... 19
 3.2.3 Metal Detecting Results ... 21
 3.2.4 Magnetometry .. 21
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.5</td>
<td>Magnetometry Results</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Excavation</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Geographic Information Systems (GIS)</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Mapping and GIS at The New Hope Church Site</td>
</tr>
<tr>
<td>4</td>
<td>HISTORICAL BACKGROUND</td>
</tr>
<tr>
<td>4.1</td>
<td>The Atlanta Campaign</td>
</tr>
<tr>
<td>4.2</td>
<td>Battle of New Hope Church</td>
</tr>
<tr>
<td>4.3</td>
<td>Life After the Civil War</td>
</tr>
<tr>
<td>4.4</td>
<td>Today’s New Hope</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
</tr>
<tr>
<td>5</td>
<td>ARTIFACT AND FEATURE TYPES</td>
</tr>
<tr>
<td>5.1</td>
<td>Entrenchments</td>
</tr>
<tr>
<td>5.2</td>
<td>Metal Artifacts</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Nails</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Ammunition</td>
</tr>
<tr>
<td>5.3</td>
<td>Materials Collected by DuBose Family</td>
</tr>
<tr>
<td>6</td>
<td>ANALYSIS</td>
</tr>
<tr>
<td>6.1</td>
<td>Landscape Analysis</td>
</tr>
<tr>
<td>6.2</td>
<td>Artifact Analysis</td>
</tr>
<tr>
<td>7</td>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
</tr>
<tr>
<td>7.1</td>
<td>Recommendations</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
</tr>
<tr>
<td>Appendix A: Artifact Distribution Maps</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 5.1 Presumed primary function of nails based on the pennyweight system 63
Table B.1: Artifact Database .. 93
LIST OF FIGURES

Figure 1.1 Location of New Hope Church site ... 2

Figure 3.1 Survey Areas .. 17

Figure 3.2 Survey Area 1 .. 18

Figure 3.3 Survey Area 2 .. 19

Figure 3.4 Survey Area 3 .. 19

Figure 3.5 Magnetometer survey areas .. 24

Figure 3.6 Magnetometer results, Survey Area 1 .. 26

Figure 3.7 Magnetometer results, Survey Area 2 .. 27

Figure 3.8 Magnetometer results, Survey Area 3 .. 28

Figure 3.9 Magnetometer results, behind Trench 3 .. 29

Figure 3.10 Magnetometer results, Rifle Pits 3 and 4. .. 30

Figure 3.11 Excavation Unit location .. 32

Figure 3.12 Excavation Unit, Level 1 ... 33

Figure 3.13 Excavation Unit, Level 2 ... 33

Figure 3.14 Excavation Unit, Level 3 ... 33

Figure 3.15 Elevation of New Hope Church site .. 37

Figure 3.16 TIN of New Hope Church site .. 38

Figure 4.1 Hierarchy of the Military Division of the Mississippi 40

Figure 4.2 Hierarchy of the Army of Tennessee ... 40

Figure 4.3 Period map of Atlanta ... 41

Figure 4.4 Period map of Atlanta Campaign ... 43
Figure A.4 Artifact distribution in Rifle Pit 1

65
1 INTRODUCTION

This thesis examines the Civil War battle of New Hope Church, which took place near Dallas, Georgia (Figure 1.1). Although extensive research has been done on many facets of the Civil War, little attention has been paid to the battle that took place at New Hope Church. This research will add to our understanding of how troops might have perceived, transformed, and interacted with the landscape, as well as how they may have behaved during this time of conflict. My investigation of the site between December 2011 and February 2012 includes an analysis of the battlefield landscape along with geophysical prospecting and excavations.

The battlefield landscape offers a unique opportunity to examine behaviors, conceptions, and construction techniques during a time of great distress. The purpose of the present study is multi-faceted. First, it seeks to identify the reasons that the soldiers chose to occupy the site. To accomplish this it is necessary to perceive the landscape from the same perspective as those that originally occupied the site, which is attempted through the use the military terrain analysis principles of Key terrain, Observation, Cover and concealment, Obstacles, and Avenues of approach (KOCOA). My use of KOCOA principles is also intended as a means of testing the effectiveness of the principles. Second, the study seeks to identify the relationship between the New Hope Church site and the various other portions of the New Hope Church battlefield. In order to understand this section of the battlefield, it must be placed into its proper context within the entire battlefield system. Lastly, an attempt is made to discern any patterning in the artifact assemblage that might point to specific actions or behaviors that took place during the period of occupation. Each of these aims will add to the understanding of the events that took place during the few days that the site was occupied in the spring of 1864.
1.1 Outline of Thesis

I begin with a discussion of the theoretical approaches commonly utilized in landscape and battlefield archaeology. In particular, behavioral cartography and terrain analysis, through the use of KOCOA principles, helped me to conceptualize my research questions and their interpretation based on the data obtained from the New Hope Church site. These theoretical
approaches address the ways in which soldiers perceived and modified the landscape, as well as how the portion of the battlefield found at the New Hope Church site relates to the overall New Hope Church battlefield and the entire Dallas Line.

In Chapter 3 I discuss the methodology utilized during the New Hope Church project. The chapter begins with a discussion of historical documents and their use within historical archaeology. I then outline the methods utilized during the project, such as metal detection, magnetometry, excavation, and total station survey.

I next describe the historical background of New Hope based upon historical documents and research. In this chapter I examine the events of the Atlanta Campaign leading up to the battle of New Hope Church. I also give an in-depth description of the battle of New Hope Church itself. My attention then turns to the rebuilding process that took place in the years immediately following the battle in order to understand the impact that the battle had on the community. The chapter concludes with a discussion of the town of New Hope in the present and the continued connection between residents and the battlefield.

In Chapters 5 and 6, I describe and analyze the artifacts recovered during fieldwork, as well as the landscape of the site. These artifacts were entered into a database to facilitate organization and proper analysis. The information obtained utilizing the various methods described above was then used to analyze the artifacts. I attempt to discern any patterning that may be indicative of the behaviors or activities that took place on the New Hope Church site and whether or not these behaviors or activities conform to those expected to be displayed by individuals operating under strict military norms. I also examine the landscape to determine if indeed the modified landscape conforms to the tenets of military training. An attempt is also made to place the New Hope Church site within the overall battlefield system.
The thesis concludes with a synthesis of the information presented throughout the document. I also provide further research directions that could be undertaken in any subsequent projects focused on the New Hope Church site. Finally, I provide recommendations for the treatment and maintenance of the site.
2 THEORETICAL APPROACH

For this research it is necessary to understand the various theoretical approaches employed in both landscape and battlefield archaeology. In particular, I draw on behavioral cartography and terrain analysis. This chapter discusses each of these approaches and how they help frame the current research.

2.1 Battlefield Archaeology

Recent archaeological studies of American battlefields, such as those performed at the sites of Mine Creek, Kansas (Lees 1994), Cieneguilla, New Mexico (Johnson 2009), and Evansport, Virginia (Balicki 2009), have focused on the identification of human behavioral patterns. Studying these patterns archaeologically is problematic due to the difficulty associated with controlling for post-deposition activities, such as relic hunting, which may have influenced the archaeological record (Smith 1994:15). Smith (1994:15) argues that military sites were created by activities taking place in a rigidly structured cultural system operating under strict rules, which should allow archaeologists to observe variations between idealized behaviors and actual behaviors within these settings. Battlefields, which are distinguished from other military sites by the temporary nature of their habitation, provide ideal locations to undertake these types of studies.

Little Big Horn is the most widely cited study of this type (Scott et al. 1989). Archaeologists at Little Big Horn attempted to define a post-Civil War battlefield pattern. They hypothesized that the archaeological pattern resulted from individuals whose behavior was constrained by the “norms, values, sanctions, and statuses” (Scott and Fox 1991:93) of a wartime environment. The rigid hierarchy of military groups ideally structures the behaviors within
standing armies (Scott et al. 1989:146). Therefore, the contextual relationship between artifacts and features in the archaeological record should demonstrate predictable “battlefield behavior” (Scott et al. 1989:146).

Fox (1993) applied a stability/disintegration model to material culture obtained from Little Big Horn. This model is based on the assumption that military tactics govern behavior during a battle and are, therefore, predictable (Fox 1993:39). He argues that the will to fight sustains participants. If this will is lost, unity will disintegrate and defeat will become much more likely (Fox 1993:39-40).

Dyer (1985:135) suggests that having a tactical plan reduces uncertainties on the field of battle, but such plans are never a reliable guide to success. Uncertainties on a battlefield, such as the landscape or the nature of enemy fire, lead to variations in behavior. The leadership must struggle against uncertainty to maintain the order paramount to success (Fox 1993:46).

Fox (1993) discusses two types of disintegration: collective indiscipline and combat shock. Collective indiscipline results in disintegration when soldiers simply refuse to fight. Combat shock is brought on by the shock of an enemy attack, which causes soldiers to flee in panic and disorder or, if that is not an option, to consign themselves to death (Fox 1993:49). Through the analysis of artifact patterning at the site, it was determined that combat shock was what occurred during the Battle of Little Big Horn (Fox 1993:49).

2.2 Landscape Archaeology

In their attempts to explain past perceptions of landscape, archaeologists have taken different theoretical routes that can be employed in the study of battlefields. Universally, people seek to explain their landscapes, which have been defined in numerous ways. One of the most
widely cited definitions comes from Crumley (1994:6), where she defines landscape as “the material manifestation of the relation between humans and the environment.” Whittlesey (1998:23) further defines landscapes as being “cognitively constituted, representing material symbols of thought and the social order.” Traditional archaeological studies focused on landscapes consider places and space as dynamic participants in past behavior, not just as a setting for human activity or as an artifact resulting from human activity, but also as a force in shaping the behaviors and identities of their occupants (Branton 2009:51). The current project differs from traditional studies in that the battlefield landscape did not play a role in shaping the identities or behaviors of its occupants. Instead, the identities and behaviors of the occupants were shaped by the strict military structure, which constrained the ways in these people would have interacted with the landscape. In this case, the landscape is seen as an “artifact” of the military occupation.

2.2.1 Behavioral Cartography

Behavioral cartographers, such as Zedeño and Whittlesey, utilize a theoretically pluralistic approach to archaeological landscapes. These scholars incorporate concepts from both processualism and post-processualism. Also utilized are tools from the behavioral archaeology toolkit (Hollenback 2010:189).

Zedeño (2000:106) suggests that there are two ways to describe and explain a landscape: (1) a space-bound approach, which delimits an arbitrary space and then focuses on what is inside that space and (2) a place-bound approach, which focuses on one specific object and describes its relations with other objects. She stresses the place-bound notion and states “place is what defines people’s relations to each other and the material world—the proverbial widening of
horizons starts at one place and extends from there” (Zedeño 2000:106; emphasis added).

Binford’s (1982) *The Archaeology of Place* is one of the earliest applications of a place-bound approach and suggests in order to understand the organization of cultural systems, it is first necessary to understand the relationships among places that were used differently during the operation of those past systems. Although Binford’s functional and systemic emphasis sets his place-bound notion apart from social landscape studies (Whittlesey 1998:19), his notion that places are not only external, passive, and fixed resource locations, but that they are also produced by humans, is considered important to behavioral cartography (Zedeño 2000:106).

In Zedeño’s (2006) description, places are a material culture category termed landmarks. These landmarks are places where interactions and activities took place, and may include features of the natural landscape, such as rock formations and water holes, or man-made features, such as buildings, trenches, and trails (Zedeño 2000:106). Zedeño (2000:108) lays out two components of studying these landmarks: “(a) identifying a place’s formal properties and performance characteristics in order to evaluate its potential for arranging people to carry out activities there and (b) reconstructing the sequences of interactions and activities that transformed a place into a landmark.” These components are essential in understanding the landscape as a whole.

Within behavioral cartography, landscapes are said to have three dimensions: the formal, relational, and historical (Whittlesey 1998:23; Zedeño 2000:107; Hollenback 2010:189). For Zedeño (2000) the formal dimension includes the physical characteristics of the landscape, but Whittlesey (1998) also includes modifications made by humans in this dimension. Both authors see the relational dimension as the way that various landscape elements are linked to one another through the interactions of people within them (Hollenback 2010 190-191). The historical
dimension consists of the sequential links that result from transformative processes brought on
by either humans or the environment (Whittlesey 1998:25; Zedeño 2000:107). By examining all
three of these dimensions it is possible to understand why a site was first chosen, how that site
related to other sites in the system, and how those sites were then transformed through time,
which is what I do in this thesis.

2.3 Battlefield Landscapes

Battlefield landscapes are most often approached from the standpoint of terrain analysis.
In order to analyze the landscape in this manner, the battlefield surveyor must first learn to view
the terrain in the same way the soldiers would have done at the time of occupation (Lowe
2000:7). A common tool in this type of analysis is the application of KOCOA. Another
approach to the study of battlefield landscapes includes the examination of how soldiers’
experiences within the landscape led to their perceptions of that landscape.

2.3.1 KOCOA

Battlefields are a relatively new field of inquiry within archaeology. As such,
archaeologists have not yet developed a conceptual inventory for their study (Bleed and Scott
2011:47). However, there already exists a ready made set of approaches that are applicable to
archaeological analyses of battlefield. These approaches were developed by army theoreticians
to prepare for and conduct military operations (Bleed and Scott 2011:48). One of the methods
used by military strategists is a set of principles, known as KOCOA.

Key terrain is a location, such as high ground, that would give the controlling force an
advantage over their opponents. The acquisition of these key terrain features is a main objective
of battle (Lowe 2000:7). The ability to observe enemy forces, while being protected against them, gives battle participants an advantage. In addition to being able to spot any attempts at attack by the enemy force, having a clear field of vision would allow for an unobstructed field of fire. Cover and concealment are features of the landscape, natural or modified, that serve as a way to protect oneself from enemy fire. Obstacles are any natural or manmade features that may prevent, or delay the movements of a military force. Often, commanders would anchor their flanks on one of these features in order to minimize the possibility of their flanks being turned (Lowe 2000:7). Avenues of approach are those manmade or natural features that will allow one force to reach another or as a path to retreat from an area. The transportation networks present in an area often define these avenues (Lowe 2000:7).

These types of studies have their origins in a systems approach to studying the landscape. “Instead of attempting to understand the meaning built into the environment, it is an attempt to decipher the meaning given to a landscape and the events that transpired on that landscape” (Scott and McFeaters 2011:115). Each point on the landscape would have been linked to one another by the function that it served.

2.3.2 Experiential Approach

Another approach to examining the battlefield landscape has been used by Ross Wilson (2011) in his study of the First World War. His approach is decidedly more post-processual in nature in that he examines how soldiers in the trenches would have experienced their surroundings and how they came to understand those hostile landscapes (Wilson 2011:3). According to Wilson (2008), one significant way that soldiers came to understand themselves and their environment was through witnessing moments of death and violence. These
experiences would have led to the creation of a space of death in which “soldiers imagined, observed, and constructed a landscape of fear, through a lingering threat of death, their own violent actions and the scenes of devastation along the front line” (Wilson 2008: 158). The space of death is considered to be a place of transformation in that the experience of death, fear, loss of self, and conformity to a new reality would have resulted in a radical shift of an individual’s understanding and behavior (Wilson 2011:5).

A basic tenet of anthropology is that human behavior is constrained by the norms, values, morals, and sanctions of society (Scott and McFeaters 2011:116). In a military setting the actions and perceptions of the war landscape for the soldiers would have been constrained by the military hierarchy (Wilson 2011:5). In relation to this hierarchy, which acted to continue the war, the individual soldier should be seen as an agent (Wilson 2011:7). Just as there were soldiers that would conform to the orders passed down from commanding officers, there would also have been those soldiers that rejected those orders in one way or another (Wilson 2011:7).

2.4 Theory of Proposed Research

The goal of my research at New Hope Church is two fold. First, I examine the battlefield landscape as a system of interrelated points. In doing this I determine the performance characteristics of the section I have access to and then explain how this section was related to the overall battlefield landscape. I base my examination on the KOCOA principles to determine whether union forces that occupied the study site followed these principles.

Secondly, I am interested in the behaviors of the troops and their perceptions of the battlefield landscape. I investigate how troops were organized on the landscape, whether or not they were conforming to military tactics, and what activities, other than conflict based, were they
engaging in while occupying this place. A further goal of this research is attempting to understand how the participant’s perceptions of the landscape influenced their behavior, and the memories formed during this violent event. I utilize both the archaeological and historical records in the pursuit of the above questions, as both provide vital information.

Both of the above research goals are necessary in understanding the events that transpired at New Hope Church. It is my hope that by combining the two goals that I will be able to provide a more holistic view of the events that took place at New Hope Church both during and after the battle. In addition, I hope to uncover potential future research needs.
3 METHODOLOGY

During the course of the current investigation of New Hope Church, various methods were utilized including historical text analysis, metal detection, magnetometer survey, site mapping, and excavation. I used Geographic Information Systems (GIS) applications to aid with the integration of these various datasets and with their analysis. I relied heavily on the *Official Records of the Union and Confederate Armies*, in order to research the events that led up to, occurred during, and followed the battle of New Hope Church. Metal detection and magnetometer surveys provide minimally invasive techniques that help mitigate the damage to the site while still allowing me to obtain information concerning the occupation of the site. Site mapping allows for the data obtained during the metal detection and magnetometer surveys to be analyzed in a more holistic manner. Each of these methods assists in the analysis of the New Hope Church site.

3.1 Historical Documents

Historical documents provide the archaeologist with information on the individuals or groups that once occupied the site that could not be gained through archaeological methods alone. They provide information about the people that occupied a particular site and assist in our understanding of the socio-cultural context of the occupation in question. Documents allow for an understanding of the social meanings of the material culture (Wilkie 2006:16) and can provide rich contextual data that allow for a more nuanced understanding of past events. Often, however, there is a contradiction between the documents and the excavated material (Deetz 1996:18). It is
in these situations that historical archaeology is essential if we are to understand what happened in the past.

It bears mentioning that, even though historical documents can provide great benefits to the archaeologist, they also have drawbacks that the researcher must be aware of. The first of these is that not everyone in the past had the ability to read and write (Deetz 1996:10). The second issue with using the historical record in archaeological investigations stems from the fact that everyday routines were not usually recorded in the historical record: “simple people doing simple things, the normal, everyday routine of life and how these people thought about it, are not the kinds of things anyone thought worthy of noting” (Deetz 1996:11). It is for these reasons that there is a need for archaeologists to move past just simply reconstructing the events that are recorded in the historical record.

3.1.1 Moving Past the Historical Record

Historical archaeologists often have the benefit of being able to look to the historical records for information regarding their chosen research topic. However, it is important to note that not all uses of the historical record are beneficial to the discipline. For example, using archaeological data to simply describe the events recorded within the documentation of past events or to use that record as the sole means for analyzing artifacts has the potential of leading historical archaeology down the path toward becoming nothing more than a “handmaiden to history” (Orser 2002:168). In order for historical archaeology to remain a viable field outside of history, it is necessary to move past using the historical record in the manner described above and instead use it to gain information that is more amenable to understanding processes that are central to anthropology.
The descriptive information found in the historical record provides archaeologists with an initial framework for research, such as locations of sites or expected artifact types. However, the documentation could also contain information regarding past social, economic, and temporal aspects of a culture. In addition to the cultural system, information regarding the individual’s social status, perceptions, memories, and other clues that may lead to the formation of an identity or place in a society could also be present. Simultaneous access to both sets of data concerning conditions in the past allows for the study of behavioral processes involved in human perception (Deagan 1982:153), as well as the recovery and understanding of past economic organization and social processes that are related to that organization (Deagan 1988:8).

Unfortunately, documentation related to the Battle of New Hope Church was difficult to locate. I was able to obtain a copy of the *Official Records of the Union and Confederate Armies*, from the Georgia State University (GSU) Library. These were pivotal in determining the events that took place during the Atlanta Campaign and, more specifically, at New Hope Church. In addition to these records, I was also able to locate period newspapers, through the GSU, Cobb County, and Paulding County Libraries, which provided information concerning the aftermath of the battle. Further research into possible documentation related to the site is needed.

3.2 New Hope Church Project

The New Hope Church project was first initiated through conversations with Garrett Silliman, a local archaeologist who specializes in Civil War archaeology. The project provided the opportunity to both research an event that took place in my own community and to perform this research in an area that had not received much archaeological attention. After these conversations, the Atlanta History Center, which owns the property where the site is located,
granted permission to perform the archaeological investigation.

Several archaeological methods were used in order to complete the research goals. One of these was the use of a magnetometer to determine possible locations of human activity on the site. Although the magnetometer survey was performed in the later stages of the project, it was the guiding factor in placing the survey areas on site.

Due to the commonly sparse nature of artifact deposition on battlefield sites, as well as the metallic nature of these artifacts, metal detecting was chosen as the optimal survey method at the site. The metal detector survey was performed in each of the survey areas and in the vicinity of the trenches and rifle pits located on the site (see Figure 3.1). The excavation of artifacts during the survey adhered to the standards set forth by the work done at the Little Big Horn site (see below). I determined that an excavation unit would be placed in any location where the metal detector survey revealed a possible large concentration of artifacts. Upon completion of the survey, mapping of the site became necessary in order to record the locations of the survey areas, artifact locations, excavation units, and various man-made and natural landscape features. This was accomplished with the use of a total station, which will be discussed below.

The project began in December 2011 and continued until February 2012 with work being done 2-3 days per week during this time. I conducted the fieldwork at the site with assistance from various volunteers from Georgia State University. Although the work on site was done within a span of 16-22 days, we completed many tasks. These tasks included magnetometer testing, the recovery of 60 artifacts located by metal detectors, the excavation of a 1.5 x 1.5 meter unit, and the mapping of the site. The results of each task are discussed below.
Figure 3.1: Survey Areas
3.2.1 Survey Areas

I placed three 8 x 8 m survey areas (Figure 3.1) at the New Hope Church site based on the potential of each location to yield information relating to the occupation of the site during the battle. Survey Area 1 (Figure 3.2) was placed to the east of Trench 1, in an attempt to prove that activity likely did not take place in front of the trench line. Survey Area 2 (Figure 3.3) was located to the west of Trench 1 in hopes that it would yield data indicating that the area was used as a campsite. Finally, Survey Area 3 (Figure 3.4) was located to the west of Trench 2 with the same purpose described for Survey Area 2.

Figure 3.2: Survey Area 1; located east of Trench 1
3.2.2 Metal Detecting

Metal detectors are, perhaps, best known by archaeologists as the tool of choice for relic hunters (Connor and Scott 1998:76; Scott and McFeaters 2011:106). Because of this association the metal detector has been somewhat slow to emerge as a tool in archaeology (Sterling and Slaughter 2000:307). However, thanks in large part to the research done at Little Big Horn (Scott et al. 1989), the use of metal detectors has become common among battlefield archaeologists.
Methods of metal detecting, ideally, involve the use of operators, recovery teams, and recording crews. The operators walk in-line sweeping the ground over a 2 m range while keeping the coil as close to the ground-surface as possible and place a pin flag at each hit. It is important to note that the use of fiberglass, as opposed to metal, pin flags is favorable during metal detection surveys for obvious reasons. The recovery team follows the operators and excavates the areas marked by the pin flags. After the artifact has been excavated, the recording crew assigns field specimen numbers, record artifact proveniences, and backfill the holes once complete (Scott et al. 1989). This is the model followed throughout the work at New Hope Church using White’s Classic 4 detectors. Because results of metal detection survey can vary with operator skill, conditions, and detector type, another operator, Garrett Silliman, performed follow-up investigations on the site using a Nautilus DCM-IIB detector. The results of the follow-up investigations did not reveal any other metallic artifacts.

The benefits of using metal detectors are numerous. The fact that the vast majority of artifacts associated with battlefields are metallic makes the metal detector an indispensible tool. It should be noted that most battlefield artifacts of interest to relic collectors, such as bullets, are non-ferrous. However, for the current project at New Hope Church, discrimination between non-ferrous and ferrous metals was not important due to the ability of either type of artifact to yield pertinent data.

The operation of metal detectors is also fairly quick and easy to learn (Connor and Scott 1998:80). In fact, I was able to participate in a metal detecting certificate course, offered by New South Associates, Kennesaw State University, and the Georgia Historic Preservation Division, in October 2011. Through this course I learned the proper way to operate the metal detectors and
the differences between machines. When compared to shovel testing, metal detecting can be much more cost effective and less intrusive (Conner and Scott 1998:83).

3.2.3 Metal Detecting Results

The metal detecting survey at New Hope Church was performed in all three areas outlined earlier in this chapter. In addition to these areas, metal detection was utilized in each of the trenches and rifle pits located on the property (see Figure 3.1). Each hit was marked with a pin flag, excavated, and mapped with a total station.

In total, 58 artifacts were found using metal detection. Of the 58 total artifacts, two were found in Survey Area One, 43 were found in survey area two, 12 were found in Survey Area 3, and 1 was found in the vicinity of a rifle pit located southwest of the survey areas (see Appendix A). It should be noted that the abundance of artifacts found in the northwest corner of Survey Area 2 led to an excavation unit being placed in that location.

3.2.4 Magnetometry

Another geophysical tool that can be utilized on battlefield sites is the magnetometer. Magnetometer surveys are among the most effective tools used in archaeology due to the fact that many potential archaeological objects have distinct magnetic properties that can be detected by the specific anomalies they create (Smekalova et al. 2008:6; Kvamme 2003:441; Walker 2009).

When performing a magnetometer survey, based on the work of Smekalova and colleagues (2008) a coordinate system should be setup on the site where the survey is to take place. This survey area usually ranges from 20 m to 40 m in width and as long as necessary in
order to cover the intended survey area with lines marked off every meter. The measurements are then taken by walking along the lines. The data retrieved from the survey is stored in the magnetometer and is downloaded to a computer for analysis.

Magnetometers can be beneficial when attempting to locate an area associated with behaviors that resulted in high temperatures, such as cooking or pottery production. Firing sediments above the Curie point, c. 600°C, can cause intensification of the magnetic field, which can then be detected using a magnetometer (Kvamme 2003:441; Walker 2009). This intensification makes it easier to locate these types of features or sites using the magnetometer. In addition to thermal features, the removal of topsoil while digging trenches causes a lowering of the magnetic field that can be detected by magnetometers (Kvamme 2003:441; Walker 2009). Many types of buried masonry work, such as those found at fort sites, can also be found using a magnetometer (Smekalova et al. 2008:10; Walker 2009).

Buildings, fences, power lines, or even modern metal objects found on the surface can cause noise, or false signals (Smekalova et al. 2008:14). Another drawback was found during a survey of Towson Battlefield, a medieval battlefield dated to A.D. 1461, in Northern England (Sutherland and Schmidt 2003:15). Here they found that modern anomalies would mask potential medieval artifacts and magnetometer surveys were not feasible. For a Civil War site, like that of New Hope Church, where troops were possibly preparing meals by fire, the benefits of magnetometer use should outweigh the potential drawbacks.

Due to the benefits discussed above, it was determined that a magnetometer survey would be well suited for the project at New Hope Church. The survey was performed in the three survey areas discussed above, as well as the area directly behind Trench 3 and in Rifle Pits 3 and Four (Figure 3.5). Due to some unforeseen issues, the magnetometer survey was performed after
the metal detecting. This did not prove to be an issue in that the survey did not produce any results that would have altered the methods used during the project.

3.2.5 Magnetometry Results

The results of the magnetometer survey were not unexpected. Although the survey was performed after the metal detecting, the results did not reveal anything that differed from the results obtained during the metal detecting survey of the site. In the graphic outputs (see Figure 3.5) the red color indicates a high magnetic field, the blue color indicates a low magnetic field, and the other shades indicate values located along this scale from low to high. The results obtained in Survey Area 1 seem to indicate a square feature, located on the north end, which was not accounted for during the metal detection survey (Figure 3.6). This is likely an indication that this feature is not composed of metal. Further excavations in this area, using traditional archaeological methods, would be recommended in any future projects undertaken on the site, the extent of which is discussed in the final chapter.
Figure 3.5: Locations of magnetometer survey
There are three anomalies present in the magnetometer results from Survey Area 2, two located in the northeast corner and one located in the west side of the area (Figure 3.7). The two anomalies in the northeast corner are likely related to the excavation unit that was placed in this location. This relationship to the excavation unit is predicated on the fact that the anomalies correspond with the location of the two large dirt mounds produced in the process of screening the soil from the excavation unit. Aside from this anomaly, the results of the magnetometer survey correspond with those obtained during the metal detecting survey.

One large anomaly is indicated in the magnetometer results obtained from Survey Area 3 (Figure 3.8). This anomaly is located in the southeast corner of the area. The metal detection survey performed in this location revealed a large modern trash pit in this location. Due to this trash pit further excavation in this location was abandoned. The magnetometer results confirm the effectiveness of the metal detection survey in this area.

An additional survey was performed behind Trench 3, located in the eastern portion of the site. Also surveyed was an area in the vicinity of Rifle Pits 3 and 4. The results obtained behind Trench 3 indicate an anomaly in the northern portion of the area surveyed (Figure 3.9). Metal detection performed in this area did not yield any results. There was a large fallen tree in this area, so this anomaly could have been related to that (Smekalova et al. 2008).

The results obtained from the survey in front of the trench revealed one anomaly in the western portion of the area surveyed (Figure 3.10). This anomaly corresponds with a rifle pit present in that location. The metal detection in this area did not produce any material remains.
Figure 3.6: Magnetometer results from Survey Area 1
Figure 3.7: Magnetometer results from Survey Area 2.
Figure 3.8: Magnetometer results from Survey Area 3.
Figure 3.9: Magnetometer results in area behind Trench 3.

Legend
- Rifle Pit 2
- Trench 3
Figure 3.10: Magnetometer results in area to the front of Trench 3.
3.2.6 Excavation

Due to the high number of metal detector hits in the northeast corner of Survey Area 2, I decided to place a 1.5 x 1.5 meter unit in this location (Figure 3.11). Due to the slope of the ground, the first level of the unit was excavated to 20 centimeters from an arbitrary datum (Figure 3.12). The following levels were excavated in 10 cm increments. During the excavation process it was determined that the vast majority of the artifacts were located in the north end of the unit. Due to this, prior to beginning the third level, the unit was reduced to a 1.5 x 0.5 meter unit, to focus our energies on the northern portion of the unit.
Figure 3.11: Map displaying the location of the excavation unit within Survey Area 2
Figure 3.12: Excavation Unit, Level 1 (facing west)

Figure 3.13: Excavation Unit, Level 2 (facing west)

Figure 3.14: Excavation Unit, Level 3 (facing west)
3.2.7 Geographic Information Systems (GIS)

GIS has many uses on battlefield sites. Among other things, it can be used to help reconstruct the movements of troops during the battle and to determine the positions of artillery units based on artifact location. Little Big Horn has been the most high profile project of this type to date. The aim of the project was to determine battlefield patterns and GIS was utilized to assist in the project (Scott et al. 1989). In projects such as this one, the process is to determine both gross patterning and dynamic patterning. Gross patterning involves the archaeological identification of combatant positions and how they correlate to the historical record in hopes of providing meaningful, but static, perceptions of battle events (Scott et al. 1989:147). Dynamic patterning takes this a step further by attempting to place these static battle events in chronological order, which involves the use of firearm identification methods to determine the locations of individuals as they moved across the battlefield (Scott et al. 1989:148).

GIS is extremely useful in this process by recording the artifact positions, using a total station, and downloading them to a program such as ArcGIS. This allows the researcher to create a map of the battlefield with the precise locations of each artifact and these artifacts can have a time attribute. This map could then be used to visually demonstrate the flow of the battle.

GIS can also help determine the origins of artillery fire through viewshed analyses. Because we know the governing conditions for the deposition of artillery shells, which was based on direct artillery fire, the origin of the shell can be established quickly and simply (Carlson-Drexler 2009:64). The first step in determining these locations is to obtain a digital elevation model (DEM), which is a form of raster data (Carlson-Drexler 2009:64). By examining each cell in the raster the software determines the locations from which the artifact can be seen and provides possible locations for battery positions on the battlefield.
There are a few drawbacks to using this method. One of these is that some forms of artillery would have exploded prior to hitting the ground causing shrapnel to be thrown in several directions. Due to this, the fragment may be found in an area that is not visible from the point of origin. Another drawback to viewshed analyses is that artificial or natural events could have altered the topography of the battlefield. Areas that were higher in elevation at the time of the battle may have been cut down in order to construct a building or roadway. Along with this, the software does not take into account the vegetation that may have been present during the battle that could have obstructed various locations.

3.2.8 Mapping and GIS at The New Hope Church Site

At the New Hope Church site, I mapped the locations of survey areas, trenches, rifle pits, and artifacts. In addition, topographic information was also gathered during the project. All of this information was gathered through the use of a Leica model TS02 total station. The mapping of the site required two individuals, one to operate the total station and one to hold the prism.

Points taken by the total station were stored in a handheld unit utilizing Survey Pro software. The data that was recorded in this process consisted of the coordinates (in UTMs using WGS 84 as the datum), the elevation, and attributes of each point (e.g., trench, topo, artifact, rifle pit, and survey area). This data was then exported as a .csv file capable of being opened by Microsoft Excel. Once the file was converted to an Excel file, it was imported into ArcMap 10. Here, a layer was created from the XY data located in the Excel file. The various points were then displayed based on their attributes.

Data representing the elevation of the site, using contour lines, was obtained through the Paulding County GIS Office (Figure 3.15). However, these data were unable to be manipulated
using ArcMap software. Therefore, a Triangular Irregular Network (TIN) layer was created utilizing the topographic points taken at the site during the mapping phase of the project. A map displaying the TIN, along with the modified landscape features located on the site, can be seen in Figure 3.16. I also located Shuttle Radar Topography Mission (SRTM) data, but its resolution was not suitable for the project area.

Each of the methods described above were successfully applied to the investigation of the New Hope Church site. The data obtained from these methods were useful in the analysis process. However, in order to get a more holistic picture of the events that occurred at the site it is necessary to discuss the historical background of the site.
Figure 3.15: Map displaying the elevation on the New Hope Church site
Figure 3.16: Elevation utilizing TIN showing the locations of trenches and rifle pits
4 HISTORICAL BACKGROUND

The Battle of New Hope Church took place near Dallas, Georgia, located in present day Paulding County (see Figure 1.1). The battle was fought as part of the Atlanta Campaign of the American Civil War. Unlike the battle of Pickett’s Mill, which took place just a few miles away from New Hope Church, very little attention has been given to this minor military engagement. In discussing the historical background of the site, it becomes necessary to discuss the events leading up to the battle that occurred during the Atlanta Campaign. Understanding these events will allow for the events occurring at New Hope Church to be integrated into the overall campaign.

4.1 The Atlanta Campaign

The Atlanta Campaign was fought from May to September of 1864 between the various armies that comprised the Union Army’s Military Division of the Mississippi (Figure 4.1), led by General William T. Sherman, and the Confederate’s Army of Tennessee (Figure 4.2), led by General Joseph E. Johnston. Sherman had been given orders to break-up the Confederate army, to prevent Johnston from sending reinforcement troops to Virginia, and to get as far into the enemy’s country as possible, inflicting as much damage as possible (Kennedy 1998:326). Because Atlanta had four rail lines radiating out to numerous southern cities, it was the Confederacy’s main industrial, logistical, and administrative base (Casteel 1992:69; Figure 4.3). If Sherman’s forces could capture the city, the Confederacy would be cut in two and the supply lines would be severed (Casteel 1992:72-73). However, there was a long road to travel before this objective could be realized (Figure 4.4).