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APPLICATIONS OF LINEAR ALGEBRA TO INFORMATION RETRIEVAL

by

JHANSI LAKSHMI VASIREDDY

Under the Direction of Dr. Frank J. Hall

ABSTRACT

Some of the theory of nonnegative matrices is first presented. The Perron-Frobenius

theorem is highlighted. Some of the important linear algebraic methods of information

retrieval are surveyed. Latent Semantic Indexing (LSI), which uses the singular value de-

composition is discussed. The Hyper-Text Induced Topic Search (HITS) algorithm is next

considered; here the power method for finding dominant eigenvectors is employed. Through

the use of a theorem by Sinkohrn and Knopp, a modified HITS method is developed. Lastly,

the PageRank algorithm is discussed. Numerical examples and MATLAB programs are also

provided.
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1. Introduction and Preliminaries

We first look at the definitions of some basic terminology from matrix theory. The

symbols Mm,n(R) and Mn(R) represent the set of all m × n and n × n real matrices, re-

spectively. A square matrix D = [dij] is called a diagonal matrix if dij = 0 whenever i 6= j.

We can denote a diagonal matrix D ∈ Mn(R) by D = diag(d11, · · · , dnn) = diag(x), where

x = (d11, · · · , dnn)T is an n × 1 column vector. The matrix I = diag(1, · · · , 1), where

I ∈ Mn(R), is called an n × n identity matrix. A matrix is called a row stochastic matrix if

the sum of the elements of each of the rows is equal to 1. A matrix is doubly stochastic if all

row and column sums are equal to 1. Let A be an n × n matrix and x be an n × 1 column

vector (also denoted as x ∈ Rn). Then, the scalar λ is called an eigenvalue of the matrix

A if it satisfies the equation Ax = λx, for some x 6= 0 (i.e, the scalar λ is a solution to the

equation det(λI −A) = 0), and the nonzero vector x is called an eigenvecor associated with

the eigenvalue λ. The set of all λ ∈ C that are eigenvalues of the matrix A ∈ Mn(R) is called

the spectrum of A and is denoted by σ(A). The spectral radius of A is max{|λ| : λ ∈ σ(A)},

and is denoted by ρ(A). An eigenvalue having the maximum magnitude is called a dominant

eigenvalue. An eigenvector corresponding to a dominant eigenvalue is called a dominant

eigenvector. The algebraic multiplicity of an eigenvalue is defined as the multiplicity of the

corresponding root of the characteristic polynomial. The geometric multiplicity of an eigen-

value is the number of linearly independent eigenvectors corresponding to that eigenvalue.

A matrix A ∈ Mn(R) is real symmetric if AT = A. An n × n real symmetric matrix A is

said to be positive semi-definite if xTAx ≥ 0, for all x ∈ Rn. For a positive semi-definite

matrix A, each eigenvalue λ ≥ 0.

A matrix A ∈ Mn(R) is said to be reducible if n ≥ 2, and there is a permutation matrix

P ∈ Mn(R), and some integer r with 1 ≤ r ≤ n − 1, such that

P T AP =

[
B C
0 D

]
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where B ∈ Mr(R), D ∈ Mn−r(R), C ∈ Mr,n−r(R), and 0 ∈ Mn−r,r(R) is a zero matrix.

A matrix A ∈ Mn(R) is said to be irreducible if it is not reducible.

The directed graph of A ∈ Mn(R), denoted by Γ(A), is the directed graph on n nodes

P1, P2, · · · , Pn such that there is a directed arc in Γ(A) from Pi to Pj if aij 6= 0.

A matrix A ∈ Mn(R) is said to be partly decomposable if n = 1 and A = 0, or, n ≥ 2

and there are permutation matrices P, Q ∈ Mn(R) and some integer r with 1 ≤ r ≤ n − 1,

such that

PAQ =

[
B C
0 D

]

where B ∈ Mr(R), D ∈ Mn−r(R), C ∈ Mr,n−r(R), and 0 ∈ Mn−r,r(R) is a zero matrix.

A matrix A ∈ Mn(R) is said to be fully indecomposable if it is not partly decomposable.

In Chapter 2 of this thesis we will first present some of the theory of nonnegative

matrices. The Perron-Frobenius theorem for nonnegative, irreducible matrices is highlighted.

We then survey some of the important linear algebraic methods of information retrieval.

In Chapter 3 we discuss Latent Semantic Indexing (LSI), which uses the singular value

decomposition. The Hyper-Text Induced Topic Search (HITS) algorithm is considered in

Chapter 4; here the power method for finding dominant eigenvectors is employed. Through

the use of a theorem by Sinkhorn and Knopp, a modified HITS method is developed. The

PageRank algorithm is explained in Chapter 5. Numerical examples and MATLAB programs

are also provided.
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2. Nonnegative Matrices

In this chapter we survey some of the theory of nonnegative matrices. First, we give

a few results on matrices in Mn(R). Through the use of the Jordan canonical form, the

following foundational result about convergent matrices can be established, see, [HJ06], page

138.

Theorem 2.1 Let A ∈ Mn(R). Then lim
m→∞

Am = 0 if and only if ρ(A) < 1.

As a consequence, we have the following.

Theorem 2.2 Let ‖ · ‖ be a matrix norm on Mn(R). Then lim
m→∞

‖Am‖
1

m = ρ(A).

Proof: If σ(A) = {λ1, · · · , λn}, then σ(Am) = {λm
1 , · · · , λm

n }.

So, [ρ(A)]m = (max
1≤i≤n

|λi|)
m = ρ(Am) ≤ ‖Am‖

and so ρ(A) ≤ ‖Am‖
1

m for all m. (1)

Take ε > 0 and let Ã = 1
ρ(A)+ε

A. Then, σ(Ã) = { 1
ρ(A)+ε

λ1, · · · , 1
ρ(A)+ε

λn}.

Hence, ρ(Ã) = ρ(A)
ρ(A)+ε

< 1.

So, by Theorem 2.1, lim
m→∞

(Ã)m = 0.

Then ‖(Ã)m‖ → 0 for any matrix norm, since all vector norms on the n2- dimensional vector

space Mn(R) are equivalent.

So, there exists N such that if m ≥ N, then ‖(Ã)m‖ ≤ 1

or 1
[ρ(A)+ε]m

‖Am‖ ≤ 1

or ‖Am‖ ≤ [ρ(A) + ε]m

or ‖Am‖
1

m ≤ ρ(A) + ε

or ‖Am‖
1

m − ρ(A) ≤ ε.

With (1) we then have

|‖Am‖
1

m − ρ(A)| ≤ ε for m ≥ N.

Thus the result holds.
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Theorem 2.3 Let A, B ∈ Mn(R). If |A| ≤ B, then ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Proof: First, |Am| ≤ |A|m for all m.

Also, |A| ≤ B ⇒ |A|m ≤ Bm.

So, |Am| ≤ |A|m ≤ Bm.

Hence, ‖ |Am| ‖
1

m

F ≤ ‖ |A|m ‖
1

m

F ≤ ‖Bm‖
1

m

F , (where ‖A‖F = (

n∑

i,j=1

a2
ij)

1

2 ).

But, ‖ |Am|‖
1

m

F = ‖Am‖
1

m

F . Hence,

lim
m→∞

‖Am‖
1

m

F ≤ lim
m→∞

‖ |A|m ‖
1

m

F ≤ lim
m→∞

‖Bm‖
1

m

F .

The result follows from Theorem 2.2.

Corollary 2.4 Let A, B ∈ Mn(R). If 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B).

Proof: If 0 ≤ A ≤ B, then |A| ≤ B.

The result follows from Theorem 2.3.

Theorem 2.5 If A ∈ Mn(R) and A ≥ 0, then ρ(A) is an eigenvalue of A and there is a

nonnegative vector x ≥ 0,x 6= 0, such that Ax = ρ(A)x.

Proof: For any ε > 0, define A(ε) ≡ [aij + ε] > 0. Denote by x(ε) the Perron vector

(see [HJ06], page 497) of A(ε), so that x(ε) > 0 and
∑n

i=1 x(ε)i = 1. Since the set of

vectors x(ε) : ε > 0 is contained in the compact set x : x ∈ Rn, ‖x‖1 ≤ 1, there is a monotone

decreasing sequence ε1, ε2, · · · with lim
k→∞

εk = 0 such that lim
k→∞

x(εk) ≡ x exists. Since x(εk) >

0 for all k = 1, 2, · · · , it must be that x = lim
k→∞

x(εk) ≥ 0;x = 0 is impossible because

n∑

i=1

xi = lim
k→∞

n∑

i=1

x(εk)i = 1

By Corollary 2.4 , ρ(A(εk)) ≥ ρ(A(εk+1)) ≥ · · · ≥ ρ(A) for all k = 1, 2, · · · , so the sequence

of real numbers ρ(A(εk))k=1,2,··· is a monotone decreasing sequence. Thus, ρ ≡ lim
k→∞

ρ(A(εk))

exists and ρ ≥ ρ(A). But from the fact that

Ax = lim
k→∞

A(εk)x(εk) = lim
k→∞

ρ(A(εk))x(εk) = lim
k→∞

ρ(Aεk)) lim
k→∞

x(εk) = ρx

and the fact that x 6= 0, we deduce that ρ is an eigenvalue of A. But then ρ ≥ ρ(A), so it

must be that ρ = ρ(A).
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The matrices generated by the information retrieval methods such as HITS are nonnegative.

Thus, for such matrices, Theorem 2.5 guarantees that there are nonnegative eigenvectors

associated with the eigenvalue ρ(A).

For nonnegative irreducible matrices we have the celebrated Perron-Frobenius theorem. For

a proof, see chapter 8 in [HJ06].

Theorem 2.6 Let A ∈ Mn(R) and suppose that A is irreducible and nonnegative. Then

(a) ρ(A) > 0;

(b) ρ(A) is an eigenvalue of A;

(c) There is a positive vector x such that Ax = ρ(A)x; and

(d) ρ(A) is an algebraically (and hence geometrically) simple eigenvalue of A.

In particular, for the nonnegative PageRank Google matrices (see chapter 5), irreducibility

is imposed and the Perron-Frobenius theorem is applicable.
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3. Latent Semantic Indexing

The main goal of information retrieval is to retrieve the documents from a given docu-

ment database that are most relevant to a given user query. When we try to literally match

the user query word-by-word we run into the problems of synonymy and polysemy. Syn-

onymy refers to the concept of multiple words having the same meaning. Polysemy refers

to the concept of the same word having multiple meanings. For example, the word “bark”

both refers to a tree bark and a dog’s bark. Sometimes when the user query may not contain

all the terms, it is necessary to understand the underlying concept or meaning of the user

query. Also some documents that are relevant to the user query may not contain the exact

terms specified in the user’s query.

The techniques of Linear Algebra are used for simple lexical matching and also for

sophisticated matching techniques such as LSI (Latent Semantic Indexing). The following

illustrates how we can do a simple lexical matching using Linear Algebra [L06].

Suppose there are are m terms and n documents in a document database. The common

terms such as prepositions, articles etc., are stripped away from each document. The m terms

are the set of the remaining terms in all the documents. The term-by-document matrix A is

of size m×n and is formed by considering the terms as rows and the documents as columns.

The (i, j) entry of the matrix A is 1 if the term i is present in the document j, 0 otherwise.

An m× 1 query vector q is formed by considering the terms which interest the user. The ith

entry of q is 1 if the user is interested in term i, 0 otherwise.

Let the vector y = ATq. The ith entry of the vector y represents the number of query

terms present in the document i. Thus we can find the documents that have the most number

of query terms using this method.

As mentioned above, by doing an exact query match we face the problems of synonymy,

polysemy and other problems. If we consider how closely each of the document vectors is

related to the query vector, we can overcome some of the problems associated with exact
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matching of the query. The cosine of the angle between a document vector and the query

vector gives a measure of how closely they are related.

We now represent the entries of the term-by-document matrix A by relative frequencies.

The matrix P is formed by scaling each column of A so that all the column vectors are unit

vectors (using the 2-norm). The columns of the database matrix P are determined by setting

pj =
1

‖aj‖
aj j = 1, 2, · · · · · · .

The query vector q is also scaled so that it becomes a unit vector. If we set y = P T q, then

yi = pi
T q = cos θi, where θi is the angle between the unit vectors q and pi. The closer to 1

that cos θi is, the better the match of the query vector and the ith document.

LSI also calculates the cosine of the angle between the document vector and the query

vector. LSI computes the cosine of the angle in the reduced rank document vector space. It

uses Singular Value Decomposition [L06] to reduce the rank of the document vector space.

A detailed description of LSI along with an example can be found in [DDF90] and [BDO95].

LSI emphasizes on identifying the implicit higher order structure in the association

of terms with documents [BDO95]. The high computational cost of LSI restricts it to a

relatively smaller number of documents, say around few hundred thousand. It cannot be

applied to huge document databases such as the World Wide Web. As mentioned above, the

simple lexical retrieval methods restrict the scope of the search. They also can be inaccurate

due to the problems of synonymy and polysemy. LSI helps to overcome these problems. It

also helps to identify related documents which may not contain the actual search term.

LSI assumes that there is some underlying latent semantic structure in the data. Singu-

lar Value Decomposition allows the arrangement of the document space to reflect the major

associative patterns in the data, and to ignore the smaller, less important influences. As

a result, terms that did not actually appear in a document may still end up close to the

document, if that is consistent with the major patterns of associations in the data. The

position in the space then serves as the new kind of semantic indexing, and the retrieval

proceeds by using the terms in a query to identify a point in the space, and documents in
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the neighborhood are returned to the user. The following theorems describe the Singular

Value Decomposition.

Singular Value Decomposition

Theorem 3.1. If A ∈ Mm,n(R) has rank r, then it can factored in the form

A = UΣV T

where U is an m×m orthogonal matrix, V is an n× n orthogonal matrix, and Σ = [σi,j] is

an m× n matrix whose off-diagonal entries are all 0, and

σ11 ≥ σ22 ≥ · · · ≥ σrr > σr+1,r+1 = · · · = σqq = 0,

where q = min{m, n}.

Note:

1) The numbers σ11, σ22, · · · , σrr are the positive square roots of the positive eigenvalues of

ATA and thus are unique. These numbers are called the singular values of A.

2) The columns of V are eigenvectors of ATA and the columns of U are eigenvectors of AAT .

3) The factorization A = UΣV T is known as the singular value decomposition (SVD) of A.

4) Partitioning U = [u1, · · · ,um] and V = [v1, · · · ,vn] into columns, we can expand A =

UΣV T and then represent A by an outer product expansion

A = σ11u1v1
T + σ22u2v2

T + · · · + σrrurvr
T .

Theorem 3.2. Let A ∈ Mm,n(R), r = rank(A), A = UΣV T be the singular value decom-

position of A, and Mk denote the set of all matrices in Mm,n(R) with rank k or less, where

0 < k < r. Further, let the m × n matrix Ak = UkΣkV
T
k , where Uk is the m × k matrix

whose columns are the first k columns of U , Vk is the n × k matrix whose columns are the
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first k columns of V , and Σk is the k × k diagonal matrix whose diagonal entries are the k

largest singular values of A. Then,

‖A − Ak‖F =
√

σ2
k+1 + · · · + σ2

r = min
S∈Mk

‖A − S‖F .

The proofs of Theorem 3.1 and Theorem 3.2 can be found in [L06], Chapter 6. We

point out that the matrix Ak in Theorem 3.2 is the following rank k approximation of the

rank r matrix A:

Ak = σ11u1v1
T + σ22u2v2

T + · · · + σkkukvk
T .

This is obtained by truncating the last r−k terms from the outer expansion of A. There are

many applications of the singular value decomposition, including digital image processing

and principal component analysis. We next consider the application to information retrieval.

Initially the term-by-document matrix A is constructed. The matrix A is factored into

the product of three matrices U , V , and Σ using SVD. We find that Theorem 3.1 ensures

that any term-by-document matrix A has a SVD decomposition. The SVD derives the latent

semantic structure model from the three factor matrices U, Σ, V . These matrices reflect a

breakdown of the original relationships into linearly independent vectors or factor values.

Then the matrix Ak is formed by using the k largest singular values as described in Theorem

3.2.

The use of k largest singular values approximates the original term-by-document matrix

A by Ak. The truncated matrix Ak is supposed to capture most of the underlying structure

in the association of terms and documents, and also removes the noise or variability. The

smaller associative patterns in the data do not reflect the underlying semantic structure.

These are eliminated by reducing the dimension of the original document vector space.

Terms that occur in similar documents will be near each other in the k-dimensional space

even if they never co-occur in the same document. Some documents which do not share any

words with a user’s query may be near it in k-space.
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For example, consider the words physician, doctor, treatment and waste-water. The

terms physician and doctor are synonyms, treatment is a related concept to doctors, while

waste-water is an unrelated concept to doctors. The words physician and doctor will oc-

cur with many of the same words such as health, disease, medicine, prescription, hospital,

diagnosis etc. Hence these two words will have the similar representation in the document

space. Thus, when we search for the phrase “doctor treatment”, the documents that use the

synonym physician will also be retrieved even though they may not contain the word doctor.

The documents related to treatment, diseases etc., will also have a great overlap with the

documents related to doctor. Hence, the corresponding document vectors will have a smaller

angle with the query vector. However, documents that are related to waste-water treatment

will have lesser overlap with the documents related to doctors. The reduction of dimension

of the document space will reduce the interference from these lesser related concepts.

The query vector q̃ in the reduced k-space is computed in the following way:

q̃ = qTUkΣ
−1
k .

The vector q is the vector of words in the user’s query. The sum of the k-dimensional term

vectors is reflected by the qTUk term in the above equation, and the right multiplication by

Σ−1
k differentially weights the separate dimensions. Thus, the query vector is located at the

weighted sum of its constituent term vectors. The query vector q̃ can then be compared

to all the document vectors. In order to be compared with the query vector q̃, we need to

compute the document vectors too in the reduced k-space. The jth column of Ak is given

by Akej, where the vector ej is the jth column of n × n identity matrix. The jthdocument

vector d̃j in the reduced k-space is computed in the following way:

d̃j = (Akej)
T UkΣ

−1
k

for j = 1, · · · , n, which can be easily simplified to ej
T Vk.
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The cosine of the angle between the query vetor q̃ and the document vector d̃j gives

the measure of how closely they are related. The cosines are computed by

cos θj =
d̃j

T
q̃

‖d̃j‖2 ‖q̃‖2

for j = 1, · · · , n.

Example

The MATLAB program in this example orders the given documents according to their

relevance to the query vector. The program takes the term-by-document matrix and the

query vector as the input. The output is a list of cos θ values for the list of documents. The

list of documents followed by the query is given below.

D1: http://www.medicinenet.com/script/main/hp.asp

Description: MedicineNet provides reliable doctor produced health and medical information.

Learn about diseases and conditions, symptoms and signs, procedures and tests, medications.

Terms: diseases, tests, symptoms

D2: http://www.ihmspt.com

Description: Provides physical therapy, rehabilitation services and workplace solutions.

Terms: therapy, workplace

D3: http://health.allrefer.com

Description: Medical encyclopedia with information about medical topics, surgeries, symp-

toms for diseases, tests and examinations, diet and nutrition, injuries and wounds, poisons

and overdoses.

Terms: encyclopedia, symptoms, diseases, medical

D4: http://www.wrongdiagnosis.com/crtop/aboutus.htm

Description: One of the worlds leading providers of online medical health information. An
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independent, objective source of factual, mainstream health information for both consumers

and health professionals. Provides a free health-information service to help people under-

stand their health better, offering crucial and factual health information that is otherwise

difficult to find. The objective of the site is to encourage consumers to be informed and

interested in managing their health, and to know what questions to ask their doctors to help

ensure they are getting the best healthcare possible.

Terms: free, information, professionals

D5: http://northsidepediatrics.com/pages.meta

Description: A group of Board Certified Pediatricians committed to providing the highest

quality of comprehensive care to infants, children and adolescents of the greater Atlanta

area.

Terms: infants, children, Atlanta, pediatrician

D6: http://www.keepkidshealthy.com/welcome/welcome.html

Description: Pediatrician’s guide to your children’s health and safety. We supplement the

information that you receive from your child’s physician, with a special emphasis on better

health through preventive care.

Terms: children, pediatrician, safety, preventive

The query is “information on children’s diseases”. The query terms are: information,

children, disease.

12



The term-by-document matrix is given below:

No. T erm D1 D2 D3 D4 D5 D6
T 1 adolescent 0 0 0 0 1 0
T 2 Atlanta 0 0 0 0 1 0
T 3 children 0 0 0 0 1 1
T 4 condition 1 0 0 0 0 0
T 5 consumers 0 0 0 1 0 0
T 6 dictionary 1 0 0 0 0 0
T 7 diet 0 0 1 0 0 0
T 8 disease 1 0 1 0 0 0
T 9 encyclopedia 0 0 1 0 0 0
T 10 examination 0 0 1 0 0 0
T 11 free 0 0 0 1 0 0
T 12 infant 0 0 0 0 1 0
T 13 information 1 0 1 1 0 0
T 14 injuries 0 0 1 0 0 0
T 15 medical 1 0 1 1 0 0
T 16 medications 1 0 0 0 0 0
T 17 medicine 1 0 0 0 0 0
T 18 nutrition 0 0 1 0 0 0
T 19 overdose 0 0 1 0 0 0
T 20 pediatrician 0 0 0 0 1 1
T 21 poisons 0 0 1 0 0 0
T 22 preventive 0 0 0 0 0 1
T 23 procedure 1 0 0 0 0 0
T 24 professional 0 0 0 1 0 0
T 25 promotion 0 1 0 0 0 0
T 26 providers 0 1 0 0 0 0
T 27 safety 0 0 0 0 0 1
T 28 surgery 0 0 1 0 0 0
T 29 symptom 1 0 1 0 0 0
T 30 terms 1 0 0 0 0 0
T 31 tests 1 0 1 0 0 0
T 32 therapy 0 1 0 0 0 0
T 33 workplace 0 1 0 0 0 0
T 34 wounds 0 0 1 0 0 0

The query vector is: [ 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]T
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The MATLAB program is:

% The dimensions of the term-by-document matrix

m = 35; % The number of rows of term-by-document matrix

n = 6; % The number of columns of term-by-document matrix

k = 4; % The number of dimensions we would choose after SVD has been computed.

% We would also compute the cosine values for k = 2, k = 3.

% tdmatrix holds the term-by-matrix

[U,Sigma,V] = svd(tdmatrix); % Compute the SVD of the tdmatrix

Uk = zeros(m, k);

Sigmak = zeros(k, k);

Vk = zeros(n, k);

for i = 1 : k

Uk(:, i) =U(:, i);

end

for i = 1 : k

for j = 1 : k

Sigmak(i, j) = Sigma(i, j);

end

end

for i = 1 : k

Vk(:, i) = V(:, i);

end

Sigmakinv = zeros(k, k);

for i = 1 : k

Sigmakinv(i, i) = 1/(Sigmak(i, i));

end

% queryvec holds the query vector.
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queryvectrans = queryvec’;

% The query vector in the k-space is stored in queryvecktrans

queryvecktrans = (queryvectrans) * (Uk) * (Sigmakinv);

% Finding the document co-ordinates in the k-space

% Computing the cosines between the query vector and document vectors

cosinematrix = zeros(n, 1);

normquery = norm(queryvecktrans, 2);

for i = 1 : n

dotproduct = 0;

for j = 1 : k

dotproduct = dotproduct + (queryvecktrans(1, j) * Vk(i, j));

end

normdoc = norm(Vk(i, :), 2);

% The computation of cosines for each of the document vector

cosinematrix(i, 1) = dotproduct/(normquery * normdoc);

end

%End of the program

As noted above, the document vector space is approximated by the k-space. The order

of relevance for the documents, for various test queries, is compared for different values of k

and the best approximation is chosen.

In this example, we find the order of relevance for the documents D1 to D6 for the

values of k = 2, 3, 4.
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For k = 2:

The cos θ values for the documents D1 to D6 are: 0.8316,−0.0575, 0.5391, 0.9716,−0.0575, 0.0575.

Hence the order of the documents according to their relevance is:

D4, D1, D3, D6, D2, D5.

For k = 3:

The cos θ values for the documents D1 to D6 are: 0.6312,−0.4098, 0.4091, 0.7374, 0.6512, 0.6512.

Hence the order of the documents according to their relevance is:

D4, D5, D6, D1, D3, D2.

For k = 4:

The cos θ values for the documents D1 to D6 are: 0.6086,−0.1985, 0.4058, 0.2029, 0.6510, 0.6510.

Hence the order of the documents according to their relevance is:

D5, D6, D1, D3, D4, D2.

The documents D5 and D6 which refer to children’s diseases are the most relevant

for the query “information on children’s diseases”. Hence, when k = 4, we find that the

documents are most appropriately ordered according to their releavnce to the user’s query.

Thus, we get the best approximation of the document vector space when k = 4.

In [BDJ99], a new vector space model that is different from LSI but is based on SVD

is described. In this model too a term-by-document matrix A and a query vector q are

constructed. Then, as in LSI, the matrix A is factored into the matrices, U, Σ, V using SVD.

Also, as in LSI, the matrix Ak is formed by using the k largest singular values as described

in Theorem 3.2. But unlike LSI, this model compares the query vector q directly to the

columns of Ak. The cosines of the angles between the query vector q and approximate

document vectors are computed by

cos θj =
(Akej)

T q

‖Akej‖2 ‖q‖2
=

(UkΣkV
T
k ej)

Tq

‖UkΣkV T
k ej‖2 ‖q‖2

=
ej

TVkΣk(U
T
k q)

‖ΣkV T
k ej‖2 ‖q‖2
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for j = 1, · · · , n. If we define the vector sj = ΣkV
T
k ej, the formula reduces to

cos θj =
sj

T (UT
k q)

‖sj‖2 ‖q‖2
, j = 1, · · · , n.

The cosines can be computed without explicitly forming the matrix Ak. The norms

‖sj‖2 are computed once for each term-by-document matrix and subsequently used for all

queries.
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4. Hyper-text Induced Topic Search

HITS (Hypertext Induced Topic Search) was developed by Jon Kleinberg [K99] in 1997.

The HITS algorithm exploits the information embedded in the link structure of the pages

in the World Wide Web (WWW). This algorithm is intended to determine the relevancy of

the web pages returned by a user’s search query.

The World Wide Web (WWW) is a huge growing collection of hyper-linked documents.

When users search the WWW for a common topic there are thousands of documents which

contain the search term. The challenge of the web search engines is to present to the users the

most relevant documents out of these thousands of documents. The earlier search engines

did not exploit the information embedded in the link structure and relied mainly on the

textual content of the web pages. Henceforth, such search engines are referred to as simple

text-based search engines.

The simple text-based search engines first extract all the documents that contain the

search term. They then rank the documents based on the textual content of the web pages.

They use factors such as how many times the search term appears in the web page, if the

search term appears in the headings, or in the bold text etc., to rank the web pages as more

relevant. But this approach has certain drawbacks. Some relevant or authoritative pages

may not contain the search term at all. Some of the relevant pages may not contain the

search term in such a way as to make them rank higher. For example, for a search term like

“computer manufacturers” the true authoritative pages like www.ibm.com, www.apple.com,

etc., may not be ranked higher by a text-based search engine as the search term might not

appear in their home pages. In some cases, the authoritative pages might not have the search

term on their home pages.

There is a lot of information embedded in the hyper-linked structure of the web. The

hyper-linked structure of the web inherently has the human judgment as to which pages are

more important. If a page j contains a link to page i then it is an inherent endorsement that

page j gives to page i. If we consider only the number of in links to determine the relevance
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of a page then it might result in universally popular pages like www.yahoo.com as ranking

highly in terms of relevance.

Kleinberg [K99] suggests the HITS algorithm which exploits the link structure of the

WWW and helps to overcome the above disadvantages of simple text-based searches. Ini-

tially, the documents are ranked by running a pure simple text-based search. Then the top

few web pages, say around 200, are picked from this search. This set is referred to as the root

set. The root set might not have the authoritative pages but there exists a high probability

that these pages might point to the authoritative pages. The root set is expanded to include

the pages that are either pointed by them or point to them. This expanded set is referred

to as the base set.

A graph N is constructed from this base set. Each web page is considered as a vertex

or a node. If page i has a link to page j then a corresponding directed edge is drawn from

node i to node j. As mentioned above if a page j contains a link to page i then it is an

inherent endorsement that page j gives to page i. Pages which have many endorsements

are deemed to be more popular or more authoritative. But again as mentioned above, some

pages are universally popular and will have many in links with respect to many queries, but

these universally popular pages may not be most relevant to a “particular” user query. The

authoritative pages should not only have many in links, but there should be a considerable

overlap in the sets of pages that point to them. There are “hub pages” which point to many

authority pages. Kleinberg [K99] suggests that the philosophy of the HITS algorithm is that

“good authorities are pointed to by good hubs and good hubs point to good authorities”.

This cyclicality is resolved and the relevancy of the web pages is determined in the

following way:

Each page is assigned both a hub score and an authority score. The higher the authority

score of a page, the more relevant it is.

Let ai be the authority score of page i and hi be the hub score of page i.

The adjacency matrix L of the graph N is defined as follows:
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Lij = 1, if there exists an edge from node i to node j, 0 otherwise.

The authority score of page i is the sum of the hub scores of all pages that point to

page i. Letting Pj → Pi indicate that there exists a link from page j to page i, we have for

all i = 1, . . . , n that

ai =
∑

j:Pj→Pi

hj,

or

ai = (row i of LT )hk−1

so that

ak = LT hk−1, (1)

for all k, where ak (hk) denotes the authority (hub) vector at the kth stage.

Similarly, for hub scores, we have for all i = 1, . . . , n that

hi =
∑

j:Pi→Pj

aj

or

hi = (row i of L)ak

so that

hk = Lak, (2)

and correspondingly

hk−1 = Lak−1 (3)

for all k.

Substitute (1) into (2):

hk = LLT hk−1. (4)

Substitute (3) into (1):

ak = LT Lak−1. (5)
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The matrix LTL determines the authority scores, and hence it is called the authority

matrix. The matrix LLT is called the hub matrix. The equations (4) and (5) can be used

to implement the power method for computing the limiting HITS vectors, a and h, [LM05].

The power method [M00] is explained below.

Power Method

For a diagonalizable marix A ∈ Mn(R) with distinct eigenvalues λ1, λ2, · · · , λk, there

exist matrices G1, G2, · · · , Gk such that

A = λ1G1 + λ2G2 + · · · · · · + λkGk, (6)

where the Gi’s have the following properties:

• Gi is the projector onto N(A − λiI) along R(A − λiI).

• GiGj = 0 whenever i 6= j.

• G1 + G2 + · · · + Gk = I .

The expansion of matrix A in equation (6) is known as the spectral decomposition of

A, and the Gi’s are called the spectral projectors associated with A.

A function on the above diagonalizable matrix A can be written as

f(A) =

k∑

i=1

f(λi)Gi. (7)

Consider a diagonalizable matrix A with eigenvalues

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λk|.

Consider the function f(z) = (z/λ1)
n. From equation (7), we have

(
A

λ1

)n

= f(A) = f(λ1)G1 + f(λ2)G2 + · · · + f(λk)Gk.
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Hence, (
A

λ1

)n

= G1 +

(
λ2

λ1

)n

G2 + · · · +

(
λk

λ1

)n

Gk → G1.

as n → ∞. Thus, (Anx0/λ
n
1 ) → G1x0 ∈ N(A − λ1I) for all x0.

So if G1x0 6= 0, or equivalently, x0 /∈ R(A − λ1I), then Anx0/λ
n
1 converges to an

eigenvector associated wih λ1 (or equivalently, to a dominant eigenvector of A). Thus, Anx0

converges to the dominant eigenvector of A, as λn
1 is only a scaling factor.

Let m(Anx0) be a normalizing scalar derived from Anx0. Suppose m(Anx0/λ
n
1 ) → γ .

Since (An/λn
1 ) → G1, we have

Anx0

m(Anx0)
=

(An/λn
1 )x0

m(Anx0/λn
1 )

→
G1x0

γ

as n → ∞. G1x0

γ
= x is an eigenvector associated with λ1 or the dominant eigenvector of

matrix A.

Rather than successively powering A, the sequence Anx0/m(Anx0) is more efficiently

generated by starting with x0 /∈ R(A − λ1I) and setting

yn = Axn, νn = m(yn), xn+1 =
yn

νn

, n = 0, 1, 2, · · ·

Then xn → x. And, if m(v) is the first maximal component of v, then νn → λ1, the

dominant eigenvalue of A.

HITS Convergence

The equations (4) and (5) can be used to apply the power method to compute the HITS

vectors a and h. To find the HITS authority vector we can set the following equations:

yn = LTLan, νn = m(yn), an+1 =
yn

νn

, n = 0, 1, 2, · · ·

We can set the initial vector a0 to random values and normalize it (can use any norm

such as the 1-norm) and generate the above sequence (using the same norm for m(yn)). The

authority vector a results from the convergence of the above sequence. Once we get the

authority vector we can use the equation h = La to compute the hub vector.
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Or, conversely, we can generate the sequence of hub vectors using a random normalized

initial hub vector and use the equation a = LTh to compute the authority vector.

The matrices LT L and LLT are symmetric, positive semidefinite, and nonnegative.

Hence, their distinct eigenvalues λ1, λ2, · · · , λk are real and non-negative with

λ1 > λ2 > · · · > λk ≥ 0.

This ensures that HITS with normalization always converges. This inequality λ1 > λ2

is true in all cases and hence it is not possible to have multiple dominant eigenvalues on

the spectral circle. However, λ1 can be a repeated root of the characteristic polynomial, in

which case the dominant eigenspace can be multi-dimensional. In such a case, the different

initial vectors produce different limiting authority or hub vectors. The article [LM05] has

an example that shows how different limiting authority and hub vectors can be produced by

using different initial vectors.

If the matrices LTL and LLT are irreducible then the Perron-Frobenius Theorem en-

sures that there exists a unique dominant eigenvector. But HITS does not impose irreducibil-

ity on LT L and LLT . Hence, the HITS algorithm can converge to non-unique solutions.

The power method also requires that the initial vector a0 /∈ R(LT L − λ1I). We

randomly generate the initial vector and hence there is a high probability that this condition

holds in practice [LM05].

Example

The following MATLAB program computes the authority vector for a given adjacency

matrix, L. It takes the initial vector as input.

% Input the initial vector X.

X = [1; 1; 1; 1; 1; 1]

limitval = 0.0001; numiter = 500;

% Input the matrix L.

23



L = [
0 1 0 1 0 0 ;
1 0 0 1 0 0 ;
0 1 0 1 0 0 ;
0 0 1 0 1 1 ;
0 0 1 0 0 0 ;
0 0 1 0 0 0 ;

]

B = L′ * L;

% Normalizing X

tempnm = norm(X, 1);

tempc = 1/tempnm;

X = tempc * X;

%Initializing XPREV

XPREV = X;

count = 0;

% While Loop

while ( count < numiter)

count = count +1 ;

X = B * X ;

% Normalizing X

nm = norm(X, 1);

c = 1/nm;

X = c * X;

diff = X − XPREV;

nm2 = norm(diff, 2);

if (nm2 < limitval)

break;

end

XPREV = X;
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end; % End of while loop

The above program generates the following authority vector in 20 iterations.

a = [ 1.3639e − 012, 0.0001, 0.4999, 0.0001, 0.2500, 0.2500 ]

This vector represents the authority ratings for the above example.

The hub ratings h are calculated by using the equation h = La.

The hub ratings for the above example are given in the vector

h = [ 0.0002, 0.0001, 0.0002, 0.9999, 0.4999, 0.4999 ].

The list of the web pages in the order of authority rating scores (highest to lowest) is:

3, (5, 6), (2, 4), 1.

The list of the web pages in the order of hub rating scores (highest to lowest) is:

4, (5, 6), (1, 3), 2.

Modified HITS

Definitions

If A is an n × n matrix and σ is a permutation of {1, · · · , n}, then the sequence of

elements a1,σ(1), · · · , an,σ(n) is called the diagonal of A corresponding to σ. If σ is the identity,

the diagonal is called the main diagonal.

If A is a nonnegative square matrix, A is said to have total support if A 6= 0 and if

every positive element of A lies on a positive diagonal.

A nonnegative matrix that contains a positive diagonal is said to have support.

R. Sinkhorn and P. Knopp [SK67] prove the following theorem.

Theorem 4.1 Let A be a nonnegative n × n matrix. A necessary and sufficient condition

that there exists a doubly stochastic matrix B of the form D1AD2 where D1 and D2 are

diagonal matrices with positive main diagonals is that A has total support. If B exists then
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it is unique. Also D1 and D2 are unique up to a scalar multiple if and only if A is fully

indecomposable.

A necessary and sufficient condition that the iterative process of alternately normalizing

the rows and columns of A will converge to a doubly stochastic limit is that A has support.

If A has total support, this limit is the described matrix D1AD2. If A has support which is

not total, this limit cannot be of the form D1AD2.

As pointed out in [K06], the SK algorithm is perhaps the simplest method for finding a

doubly stochastic scaling of a nonnegative matrix, A. It does this by generating a sequence of

matrices whose rows and columns are normalized alternately. The algorithm can be thought

of in terms of matrices

A0 = A = D0AE0, A1 = D1AE1, A2 = D2AE2, · · ·

whose limit is the doubly stochastic matrix we are looking for, or in terms of pairs of diagonal

matrices

(D0, E0), (D1, E1), (D2, E2), · · ·

whose limit gives the desired scaling of A.

Not surprisingly, the simplicity of the method has led to its repeated discovery. It is

claimed to have been first used in the 1930’s for calculating traffic flow [B67] and appeared in

1937 as a method for predicting telephone traffic distribution [K37]. In the numerical analysis

community it is most usually named after Sinkhorn and Knopp, who proved convergence

results for the method in the 1960’s [SK67], but it is also known by other names, such as

the RAS method [B70] and the Bregman’s balancing method [LS81].

Perhaps the simplest representation of the method is given in [KK96]. Let D(x) =

diag(x) and suppose that P = D(r)AD(c) is doubly stochastic. The vector e is a vector

where all elements are equal to 1. Manipulation of the identities Pe = e and P Te = e gives

c = D(AT r)−1e, r = D(Ac)−1e,
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which suggests the fixed point iteration

ck+1 = D(AT rk)
−1e, rk+1 = D(Ack+1)−1e.

One can show that this iteration is precisely the SK algorithm when r0 = e. Note that

this can be achieved by repeatedly issuing the commands

c = 1./(A′ ∗ r), r = 1./(A ∗ c)

in MATLAB.

The following example illustrates the application of SK-algorithm to obtain a doubly

stochastic matrix. Let

A =




1 2 1
3 1 2
2 5 1



 .

The initial vector r is set to [1 1 1]. By repeated application (in this case, only 3 iterations

are needed) of the above MATLAB commands, convergence of the r and c vectors has been

obtained:

r = [1.5049 0.8872 0.8265]

c = [0.1718 0.1245 0.2436]

Then D(r)AD(c) =




0.2586 0.3749 0.3665
0.4574 0.1105 0.4322
0.2840 0.5147 0.2013


 is the doubly stochastic matrix.

In [K06], a simple heuristic for application of the SK algorithm to the page ranking

problem is presented. As in the case of HITS, two measures indicating a hub score and an

authority score for each page are given by the SK algorithm. Consider the matrix L which

represents the in links and out links of each web page as in the case of HITS. If we think

in terms of traffic flowing around the network represented by L, then we need to balance

the flow through each node. That is we need to obtain a doubly stochastic scaling of L. If

node i in the unweighted graph draws traffic in disproportionately then this will have to be

compensated for by ri being relatively small. If a node has a tendency to emit traffic then
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ci will need to be relatively small. The stronger authorities will have a higher tendency to

draw the traffic in and stronger hubs will have a higher tendency to emit the traffic out.

The reciprocal of each of the entries in r gives the authority score of the corresponding node.

Similarly the reciprocal of each of the entries in c gives the hub score of the corresponding

node.

If we consider the matrix A in the above example to represent in links and out links

of a network then the ordering of the authorities is:

3, 2, 1.

The ordering of the hubs is:

2, 1, 3.
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5. PageRank

As mentioned in [LM05], the PageRank concept was developed by Larry Page and Sergy

Brin in 1998. PageRank is central to the software for their popular search engine Google.

PageRank is also a link analysis model like HITS, but it avoids some of the weaknesses of

HITS.

In the search engine Google, many activities pertaining to search and ranking of re-

trieved pages are performed prior to query time. Initially the web pages in the World Wide

Web (WWW) are retrieved by the robot crawlers. All the pages in the WWW are not

retrieved by robot crawlers. It is possible to retrieve the pages from only a small portion of

the WWW due to the enormous size of the WWW. An inverted file is constructed from the

pages returned from the robot crawlers. The inverted file contains the list of all the possible

terms occurring in the WWW. Each term is followed by the page(s) in which it occurs. The

PageRank values are calculated and stored for each indexed web page. The PageRank value

indicates how important or how popular a particular web page is in relation to the other web

pages. When a user enters a search term the relevant pages are retrieved from the indexed

file and they are ranked according to their PageRank values.

The central idea behind the PageRank is that “Important pages refer to other Impor-

tant pages”. As in the case of the HITS algorithm, if a web page contains a hyper-link to

another page then it indicates that it endorses or recommends the page to which it links to.

A page with more in links is more “important” than a page with fewer in links. However, the

status of the recommending page also needs to be considered. An “endorsement” (indicated

in the form of an in link) from a page having a greater number of in links has a higher value

than a page with fewer in links. However if a page has many out links then it indicates

that it is quite “generous” in giving endorsements. Hence, an “endorsement” from a page

having more out links is of a lower value than a page with fewer out links. These ideas are

encapsulated in the following equations.
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Let n be the total number of web pages whose PageRank values need to be computed.

Let ri be the PageRank value of the ith web page. Then ri is defined as:

ri =
∑

k∈Bi

rk

mk

(1)

where Bi = {indices of all pages pointing to page i}, and mk = (number of out links from

page k). This equation is computed iteratively. Each of the n pages are assigned an initial

PageRank of 1
n
. Let rj

i denote the PageRank of page i at the jth iteration. That is, r0
i = 1

n
.

The PageRank is then successively computed by

rj
i =

∑

k∈Bi

rj−1
k

mk

j = 1, 2, 3 · · · (2)

Let the vector π
T contain the PageRank values of the n pages successively. We define

π
T
j = (rj

1, r
j
2, · · · , rj

n). We then define a matrix P such that

P (i, j) = 1
mi

if page i links to page j, 0 otherwise, where

mi = number of out links from page i.

The PageRank defined in the equation (2) can be calculated by iteratively computing the

equation

π
T
j = π

T
j−1P. (3)

The PageRank vector π
T arising from equation (3) can be computed by using the

Power Method described in Chapter 4. To find the PageRank vector π
T we set the following

equations:

ym = P T
πm, νm = m(ym), πm+1 =

ym

νm

, m = 0, 1, 2, · · ·

This sequence converges to the right-hand dominant eigenvector of P T . Taking the

transpose of the above set of equations results in the following set of equations:

yT
m = π

T
mP, νm = m(ym), π

T
m+1 =

yT
m

νm

, m = 0, 1, 2, · · ·
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We set the initial vector π
T
0 = { 1

n
, 1

n
, · · · , 1

n
} where n is the number of indexed web

pages. π
T
0 is in a normalized form (according to 1-norm). The above sequence is generated

(using 1-norm for m(ym)). The PageRank vector π
T results from the convergence of the

above sequence.

According to the Power Method the following conditions need to be satisfied for the

sequence to converge.

1. |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λk| where λ1, λ2, · · · , λk are the distinct eigenvalues of

the matrix P. That is there should be only one eigenvalue on the dominant spectral circle.

2. π
T
0 /∈ R(P T − λ1I), where λ1 is the dominant eigenvalue. This condition is usually

satisfied.

But, even if these conditions are satisfied, the dominant eigenvalue might have its geometric

multiplicity greater than 1 and hence the sequence might not converge to a unique dominant

eigenvector as in the case of HITS algorithm. The following sections explain the conditions

under which the sequence converges to a unique dominant eigenvector. Most often, the

matrix P must be adjusted in order to achieve this. Adjustments to the matrix P are also

done to customize the rankings and adjust the convergence rate.

Markov Model and Stochastic Matrix P

The “raw” matrix P is nonnegative with row sums equal to one or zero. Zero row sums

correspond to pages that have no out links. These pages are also referred to as “dangling

nodes”. If a user reaches a dangling node, then he cannot follow any out link to get to

another page. In such a case Google assumes that the user tends to randomly jump to

a new page by entering its URL on the command line. Google refers to this tendency as

“teleportation”. Google also assumes that each URL on WWW has an equal likelihood of

being selected. Hence each zero row is replaced by eT

n
where n is the number of web pages

and also the order of P . After this adjustment the resultant matrix is referred to as P . The

matrix P is a row stochastic matrix where the sum of the elements of each row is exactly
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one. Replacing the matrix P by the matrix P in equation (3) results in:

π
T
j = π

T
j−1P. (4)

The PageRank iteration in the equation (4) represents the evolution of a Markov chain on

the hyper-link structure of the WWW.

A Markov chain [M00], page 687 is a stochastic process (a set of random variables

{Xt}
∞
t=0 in which each Xt has the same range {S1, S2, · · · , Sn}, called the state space) that

satisfies the Markov property

P (Xt+1 = Sj |Xt = Sit , Xt−1 = Sit−1
, · · · , X0 = Si0) = P (Xt+1 = Sj|Xt = Sit) t = 0, 1, 2, · · ·

Thus the Markov property asserts that the state of the chain at the next time period depends

only on the current state and not the past history of the chain. If the time is considered

discretely rather than continuously, then the Markov chain is called discrete Markov chain.

The state space can be finite or infinite.

Every Markov chain defines a square row stochastic matrix. The value qij(t) = P (Xt =

Sj|Xt−1 = Si) is the probability of being in state Sj at time t given that the chain is in state

Si at time t− 1, or qij(t) is called the transition probability of moving from Si to Sj at time

t. The matrix of transition probabilities Q(t) = [qij(t)], where Q(t) ∈ Mn(R), is called a

transition matrix and the probabilities {qij(t)}, 0 < i < n − 1, 0 < j < n − 1 are called

transition probabilities. If the transition probabilities do not vary with time then the chain

is said to be stationary and the transition matrix will be the constant stochastic matrix

Q = [qij], where Q ∈ Mn(R). Conversely, every stochastic matrix Q ∈ Mn(R) defines an

n-state Markov chain because the entries qij ∈ Q define a set of transition probabilities,

which can be interpreted as a stationary Markov chain on n states.

A probability distribution vector is defined to be a nonnegative vector qT = (q1, q2, · · · , qn)

such that
∑

k qk = 1. For an n-state Markov chain, the kth step probability distribution vec-

tor is defined to be

qT(k) = (q1(k), q2(k), · · · , qn(k)), k = 1, 2, · · · , qj(k) = P (Xk = Sj).
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That is qj(k) is the probability of being in the jth state after the kth step, but before the

(k + 1)st step. The initial distribution vector is

qT(0) = (q1(0), q2(0), · · · , qn(0)), qj(0) = P (X0 = Sj)

is the probability that the chain starts in Sj.

The hyper-link structure of the WWW consists of pages (or nodes) and the links among

the pages (or nodes). The probability of moving from page i to page j is equal to 1
mi

, where

mi is the number of out links from page i. This assumes that the user is equally likely to

move to each of the pages linked by page i. The n pages can be considered as n states and

pij is the probability of moving from state (page) i to state (page) j. We find that P is a

transition probability matrix. It contains probabilities of moving between different states

(pages) in one click.

The kth step probability distribution vector is denoted by pT(k) = (p1(k), p2(k), · · · , pn(k)).

The ith component of pT(k) denotes the probability that the user is at page i after the kth

step, or after k clicks. Starting with pT(1) = pT(0)P and multiplying by P at each step, it

is easy to see iteratively that the kth step distribution vector is given by pT(k) = pT(0)P k.

The ith component of the limiting distribution vector, limk→∞ pT(k), indicates the long-run

probability that the user is at page i. If the limit limk→∞ pT(k) exists, then it converges to

the left-hand dominant eigenvector (probability distribution vector) of P [M00], page 690.

That is limk→∞ pT(k) = π
T . It should be noted that whether this limit converges or not, the

left-hand dominant eigenvector π
T corresponding to the dominant eigenvalue ρ(1) indicates

the long-run fraction of time that the Markov chain spends in different states. Hence the ith

PageRank value, π
T
i , indicates the long-run fraction of the time spent at the ith page by a

user clicking the links eternally.

PageRank Convergence and the Google matrix P

An irreducible Markov chain is one in which every state is eventually reachable from

every other state. That is, there exists a path from node i to node j for all i, j, i 6= j.
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Reducible chains contain states in which the chain eventually gets trapped. If the underlying

Markov chain is reducible then the matrix P is also reducible. By reordering the columns

and rows of the transition matrix P , it can be reduced to the following form:

P =
S1 S2

S1 T11 T12

S2 0 T22

Once a state in S2 has been reached the chain never reaches the states in S1. For example:

Let a page i have two in links, one from page j and one from page k. Let page i have only

one out link to page j. Let page j have only one in link from page i and one out link to page

i. If we reach pages i or j, then we get trapped within these two pages as there are no out

links to other pages.

As the matrix P is row stochastic, ρ(P ) = 1, see Lemma 8.1.21 in [HJ06]. According

to the Perron-Frobenius theorem, if the matrix P is nonnegative and irreducible, then ρ(P )

is an algebraically (and hence geometrically) simple eigenvalue of P . Hence the dominant

eigenvector corresponding to the dominant eigenvalue ρ(P ) is unique. Also according to this

theorem this eigenvector is positive.

A nonnegative matrix is said to be primitive if it is irreducible and has only one

eigenvalue on the dominant spectral circle. Hence, if the matrix P is primitive then it has

a unique dominant eigenvector. Also in this case, the limit limk→∞ pT(k) converges to this

unique dominant eigenvector.

The matrix P is most likely reducible due to the underlying link structure of the

WWW. Hence, Google imposes irreducibility on the matrix P by making every state directly

reachable from every other state. Google founders reasoned that when a user gets trapped

in a set of pages (states) he will exhibit “teleportation” tendency by entering a random URL

on the command line and come out of the set of trapped pages (states). Each URL has

equal probability of being selected. Hence they added a perturbation matrix E = eeT

n
to P

to form

P = αP + (1 − α)E, (5)
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where α is a scalar between 0 and 1. The matrix P is an irreducible matrix (in fact, a

positive matrix) and is used in the equation (4) to compute the PageRank vector. As the

matrix P is positive, it is also primitive, see Theorem 8.5.2 [HJ06]. Hence P has a unique

dominant eigenvector. This results in a PageRank vector that is unique and positive.

Later Google modified its assumption that each URL has equal probability of being

selected by adding a new perturbation matrix E = evT . The vector vT is a positive vector

and it enables non-uniform probabilities for teleporting to particular pages. This also allows

Google to tweak vT so that the PageRank values are modified according to commercial con-

siderations. The irreducible, nonnegative, stochastic matrix P is referred to as the “Google

matrix” and its stationary distribution π
T is referred to as the real PageRank vector.

Implementation of PageRank

In the implementation of Google, PageRank is just one part of the ranking system.

PageRank is combined with other scores to give an overall ranking. PageRank scores of

all the documents in the indexed portion of the WWW are calculated before any query is

entered. When the user enters the search term, the documents containing the search term

are retrieved. This subset of the documents is called the relevancy set. The relevancy set

is then sorted according to the PageRank scores combined with the other scores of each

document in the set.

The computation of PageRank is a very costly and time-consuming effort as it involves

finding the dominant eigenvector of an irreducible, stochastic matrix P whose size is on the

order of billions. After specifying a value for α and setting π
T
0 = eT

n
, the following equation:

π
T
k+1 = π

T
k (αP + (1 − α)evT) = απ

T
k P + (1 − α)vT (6)

is iterated until the desired degree of convergence is attained.

Let the spectrum of P be σ(P ) = {1, µ2, · · · , µn} and the spectrum of P be σ(P ) =

{1, λ2, · · · , λn}. Then λk = αµk for k = 2, 3, · · · , n [M00], page 502, regardless of the vector

vT. The Power Method dictates that the rate of convergence of equation (6) depends on
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the rate at which λk
2 → 0. That is, the rate of convergence depends on the rate at which

(αµ2)
k → 0. Due to the structure of the WWW the value of µ2 tends to be quite close

to 1 . Hence the rate of convergence depends on how fast αk → 0. The smaller the value

of α, the faster the rate of convergence. But if the value of α is small then the hyper-link

structure of the web is represented less truly in the computation of PageRank. These factors

are considered when the value of α is tuned.

Each of the elements of the PageRank vector is between 0 and 1. The PageRank values

need to be of very high accuracy in order to distinguish between the PageRank values of

billions of pages of WWW. Also PageRank values might be densely packed in some sections

of the PageRank vector. This requires an accuracy of the order of 10−12. But comparisons

are made only among a subset of the elements of the PageRank vector. The elements of this

subset might not be very highly densely packed, so an accuracy of 10−9 is sufficient.

Example

The following MATLAB program computes the PageRank vector for a given “raw”

matrix P1. The dangling nodes must be taken care of by replacing the rows representing

them with the vector eT

n
. The initial vector is set to be eT

n
.

% Input the initial vector pi.

pi = [1/6; 1/6; 1/6; 1/6; 1/6; 1/6];

pitrans =pi’;

limitval = 0.0001; numiter = 500;

% Input the stochastic matrix P1.

P1 = [
0 1/3 1/3 0 0 1/3 ;
0 0 1/2 0 1/2 0 ;
0 0 0 1/2 1/2 0 ;
1 0 0 0 0 0 ;

1/6 1/6 1/6 1/6 1/6 1/6 ;
0 0 1/2 0 1/2 0 ;

]
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% Construction of perturbation matrix

alpha = 0.85;

e = [1; 1; 1; 1; 1; 1];

n = 6;

E = ( e ∗ e’ )/ n;

P2 = alpha ∗ P1 +(1− alpha)∗ E ;

% Initializing piPREVtrans

piPREVtrans = pitrans;

count =0;

% While Loop

while ( count < numiter)

count = count +1 ;

pitrans = pitrans ∗ P2 ;

diff = pitrans − piPREVtrans;

nm2 = norm(diff, 2);

if (nm2 < limitval)

break;

end

piPREVtrans = pitrans;

end; % End of while loop

The above program generates the following PageRank vector in 6 iterations. π
T = [

0.18348, 0.10983, 0.20793, 0.14580, 0.24390, 0.10983 ]. The list of the web pages in the order

of PageRank scores (highest to lowest) is:

5, 3, 1, 4, (2, 6).
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Strengths and Weaknesses of PageRank

PageRank is a query independent measure. At run-time, the PageRank values need

not be calculated as in the case of HITS. They just need to be looked up and hence the user

experiences less wait time for the results of his search. The PageRank algorithm is quite

spam-resistant unlike HITS. PageRank values are not derived from a local neighborhood

graph as in the case of HITS. The PageRank values will increase only when they have in

links from the other important pages. It is possible to add mutual links among a set of pages

and try to increase the PageRank. By doing so PageRank increases slightly but the increase

is inconsequential. The PageRank algorithm has the provision of “personalization” which

enables Google to push the PageRank’s value of a page up or down.

PageRank score is an importance score but not a relevance score as in the case of HITS.

Initially, the relevant set is determined by extracting the pages that contain the search term.

If these pages are sorted purely according to the PageRank values then it might be possible

that some off-topic pages might be ranked higher. Some globally important pages with higher

PageRank values can be part of the relevant set if they contain the search term. But these

pages might be less authoritative on the particular topic. These pages get ranked higher

than the authoritative but less globally important pages. Hence the PageRank might not be

a true relevance measure.
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