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on the delay (as well as capacity) of data collection, while the data transmission concurrency

(decided by R0-PCR) has more impacts on the delay of data aggregation, i.e., the guaran-

teed data receiving rate (R0) will dominate the delay increasing of data collection while the

carrier-sensing (interference) range (R0-PCR) will dominate the delay increasing of data ag-

gregation. From Figure 4.7(a)-(c), we can also see that DDA has similar delay performance

to E-PAS although DDA schedules data transmission in a distributed and asynchronous

manner. On average, the delay differences between DDA and E-PAS in Figure 4.7(a)-(c) are

around 3.1%, 3.2%, and 2.6% respectively, which are quite small.

The data aggregation delay of DDA and E-PAS in WSNs with different sizes is shown

in Figure 4.7(d)-(f). From Figure 4.7(d)-(f), we can see that the induced delay of DDA and

E-PAS increases when the network becomes larger. The reason is straightforward since more

sensor nodes imply heavier traffic load. From Figure 4.7(d)-(f), we can also see that the

delay difference between DDA and E-PAS is very small. Particularly, in Figure 4.7(d)-(f),

the average delay differences between DDA and E-PAS are about 6.1%, 4.4%, and 3.3%

respectively, which implies DDA has comparable delay performance as the best centralized

data aggregation algorithm.

4.8 Conclusion

Since WSNs in practice tend to be distributed asynchronous systems and most of the

existing works study the network capacity issues for centralized synchronized WSNs, we

investigate the achievable data collection capacity for distributed asynchronous WSNs in this

part. To avoid data transmission collisions/interferences, we derive an R0-Proper Carrier-

sensing Range (R0-PCR) under the generalized physical interference model. By taking R0-

PCR as its carrier-sensing range, any node can initiate a data transmission with a guaranteed

data receiving rate. Subsequently, based on the obtained R0-PCR, we propose a scalable

Distributed Data Collection (DDC) algorithm with fairness consideration for asynchronous

WSNs. Theoretical analysis of DDC surprisingly shows that its achievable data collection

capacity is also order-optimal as that of centralized synchronized algorithms. Moreover, we
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study how to apply R0-PCR to distributed data aggregation in asynchronous WSNs, and

propose a Distributed Data Aggregation (DDA) algorithm. By analysis, the delay bound

of DDA is present. To be more general, we investigate the delay and capacity of DDC and

DDA under the Poisson node distribution model. The analysis again shows that DDC is

order-optimal and scalable with respect to achievable data collection capacity. The extensive

simulation results demonstrate that DDC has comparable data collection capacity compared

with the most recently published centralized and synchronized data collection algorithm,

and DDC is scalable in WSNs with different network sizes and node densities. DDA also

has similar performance to the latest and best centralized data aggregation algorithm.

The future work can be conducted along the following directions: first, we would like

to apply the derived PCR to other issues in WSNs, e.g. broadcast scheduling, multicast

scheduling, etc, and propose efficient distributed solutions for these issues. Second, we study

the data collection and aggregation problems for randomly deployed WSNs in this part.

However, it is still an open problem to design an order-optimal data collection algorithm

in arbitrarily distributed WSNs. The reason is that the nodes may distribute according

to any model in arbitrary WSNs, and thus there are many challenges to design an order-

optimal data collection algorithm with accurate capacity analysis. Therefore, we will study

order-optimal distributed data collection and aggregation issues for arbitrarily distributed

WSNs. Finally, there is a trade-off between network capacity and lifetime. In this work, we

focus on designing a distributed data collection algorithm with the objective to maximize

the achievable capacity. In the future work, we would like to study how to implement an

order-optimal data collection algorithm and meanwhile maximize network lifetime.
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PART 5

CONTINUOUS DATA AGGREGATION AND CAPACITY IN

PROBABILISTIC WIRELESS SENSOR NETWORKS

5.1 Introduction

For completeness, we study the snapshot and continuous data aggregation problems for

probabilistic WSNs in this part. In data gathering WSNs, the problem of collecting the

aggregated value of one snapshot is called Snapshot Data Aggregation (SDA). The problem

of collecting the aggregated value of each snapshot of multiple continuous snapshots is called

Continuous Data Aggregation (CDA). For snapshot data aggregation and continuous data

aggregation, we use the ratio between the amount of data been aggregated and the time

used to transmit the aggregated values of these data to the sink, referred to as snapshot data

aggregation capacity and continuous data aggregation capacity respectively, to measure their

achievable network capacity1.

As discussed in Part 3, most of the existing works that study the network capacity issue

are based on the ideal Deterministic Network Model (DNM), where any pair of nodes in a

network is either connected or disconnected. If two nodes are connected, i.e. there is a deter-

ministic link between them, then a successful data transmission can be guaranteed as long

as there is no collision. Otherwise, if two nodes are disconnected, the direct communication

between them is assumed to be impossible. However, in real applications, this determinis-

tic network model assumption is too ideal and not practical due to the “transitional region

phenomenon” [74][75]. With the transitional region phenomenon, a large number of network

links (probably more than 90% [74]) become unreliable, named lossy links [74]. Even without

collisions, data transmission over a lossy link is successfully conducted with a certain proba-

1Without confusion, we use snapshot data aggregation/continuous data aggregation capacity and network
capacity interchangeably in the following of this part.
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bility, rather than being completely guaranteed. Therefore, a more practical network model

for WSNs is the Probabilistic Network Model (PNM) [74], in which data communication over

a link is successful with a certain probability rather than always being successful or always

fail.

As mentioned before, for the network capacity issues (including uni/multi/broad-cast,

data collection/aggregation capacities), most of the existing works are based on the ideal

DNM rather than the more practical PNM. This motivates us to study the achievable network

capacity of WSNs under the realistic probabilistic network model, i.e. for probabilistic WSNs.

Specifically, in this part, we investigate the achievable network capacities of snapshot data

aggregation and continuous data aggregation under the probabilistic network model. When

studying the snapshot data aggregation and continuous data aggregation capacities, we first

partition the network into cells and derive the lower and upper bounds of the number of

sensors within each cell (as in Part 3). Afterwards, we use two vectors to further partition

all the cells into different equivalent color classes (as the compatible transmission cell set in

Part 3). Based the equivalent color classes, we design a Cell-based Aggregation Scheduling

(CAS) algorithm for snapshot data aggregation, and a Level-based Aggregation Scheduling

(LAS) algorithm for continuous data aggregation. Furthermore, we prove that both CAS

and LAS are order-optimal by analyzing their achievable network capacities. Particularly,

the main contributions of this part are summarized as follows:

1. Inspired by the network partition method in [78], we first partition a WSN into cells and

use two vectors to further partition these cells into equivalent color classes. According

to the obtained cells and equivalent color classes, we design a two-phase Cell-based

Aggregation Scheduling (CAS) algorithm for the SDA problem in probabilistic WSNs.

In the first phase, all the non-local aggregation nodes transmit their data packets to the

local aggregation node in the same cell. In the second phase, all the local aggregation

nodes transmit the local aggregation values along the constructed data aggregation

tree to the sink. Theoretical analysis shows that the achievable capacities of CAS are

all Ω(po
√
en logn
2ω

·W ) in the worst case, in the average case, and in the best case, where
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po is the promising transmission threshold probability (Section 5.2), n is the number of

sensor nodes in the considering WSN, ω is a constant value, and W is the bandwidth

of the wireless channel. Moreover, we study the upper bound capacity of the SDA

problem, which is O(po
√
en logn
3

·W ). This implies that CAS has successfully achieved

order optimal capacities in all the cases.

2. We propose a Level-based Aggregation Scheduling (LAS) algorithm for the CDA prob-

lem in probabilistic WSNs. LAS gathers the aggregation values of continuous snapshots

by forming a data aggregation/transmission pipeline on the segments and scheduling

the cell-levels in a cell-level class concurrently. Theoretical analysis of LAS shows that

its achievable network capacity is


Ω(

√
epoN
13.4ω

√
n

logn
·W ), if N = O(

√
n
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in the best case, where N is the number of snapshots in a continuous data aggregation

task. We also investigate the upper bound capacity of the CDA problem, which is
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.
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This implies that LAS has already achieved optimal capacities in order in every case.

3. To be more general, we further theoretically analyze the capacity performance of CAS

and LAS under the Poisson point distribution model. The analysis show that CAS and

LAS can also achieve order optimal capacities under the Poisson distribution model.

4. We also conduct extensive simulations to validate the performances of CAS and LAS

in probabilistic WSNs. Evaluation results indicate that CAS and LAS can improve

the SDA and CDA capacities, as well as network lifetime, of probabilistic WSNs sig-

nificantly, compared with the latest SDA and CDA methods for deterministic WSNs,

respectively.

The rest of this part is organized as follows: In Section 5.2, we give the PNM and make

some assumptions. In Section 5.3, we discuss the network partition method, which is cru-

cial for the following data aggregation scheduling algorithms. The Cell-based Aggregation

Scheduling (CAS) algorithm for SDA is proposed and analyzed in Section 5.4. In Section

5.5, we design the Level-based Aggregation Scheduling (LAS) algorithm for CDA, and we

also derive the achievable capacity of LAS theoretically. To make our work more general,

we also analyze the capacity performance of CAS and LAS under the non-i.i.d. node distri-

bution model in Section 5.6, which turns out to be order optimal either. In Section 5.7, the

simulations are conducted to validate the performances of CAS and LAS, and we conclude

this part and point out possible future research directions in Section 5.8.

5.2 Network Model

We employ the network model defined in Part 3 as follows. We consider a probabilistic

WSN consisting of n sensors, denoted by s1, s2, · · · , sn respectively, and one sink deployed

in a square area with size A = cn (i.e., the node density of this WSN is 1
c
), where c is a

constant. All the sensor nodes know their location information. Furthermore, we assume all

the sensors are independent and identically distributed (i.i.d.) and without of generality, the
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sink is located at the top-right corner of the square2. During each time interval, every sensor

produces a data packet of B bits, and multiple data packets of the same snapshot can also

be aggregated to a single data packet of B bits. All the transmissions are conducted over

a common wireless channel with bandwidth W bits/second, i.e. the data transmission rate

between any pair of nodes is at mostW . We further assume the network time is synchronized

and slotted into time slots of length to = B/W seconds3.

During the data transmission process, all the sensors work with a fixed power P . There-

fore, when sensor si transmits a packet to sensor sj, the Signal-to-Interference-plus-Noise

Ratio (SINR) associated with si at sj is defined as

Λ(si, sj) = SINR(si, sj) =
P · ∥si − sj∥−α

N0 +
∑
k ̸=i

P · ∥sk − sj∥−α , (5.1)

where, ∥si − sj∥ is the Euclidean distance between si and sj, α is the path-loss exponent

and usually α ∈ [3, 5], N0 is a constant representing the background noise, and sk is another

concurrent sender other than si. To simplify the analysis, under the DNM, people usually

assume that sj can receive the data packet from si successfully if Λ(si, sj) is greater than a

predefined value. However, in real applications, due to the existence of many lossy links, a

successful data transmission between two nodes can be conducted with a probability instead

of a fixed predetermined value. Therefore, a more practical and accurate method to depict

WSNs is by a Probabilistic Network Model (PNM), where each link is associated with a

success probability which indicates the probability that a successful data transmission can be

conducted over this link. According to the empirical literatures [75], we define the success

probability associated with si and sj as

Pr(si, sj) = (1− η1 · e−η2·Λ(si,sj))η3 , (5.2)

2Note that it is easier to extend to the situation that the sink is located at anywhere else in the WSN,
and we partition the WSN into four quadrants (taking the sink as the origin) and consider each quadrant
individually.

3This assumption is reasonable since recent works, e.g. [81], showed that network-wide synchronization
(at least at the millisecond level) is achievable.



130

where η1, η2, and η3 > 1 are positive constants. Clearly, to successfully transmit a data packet

to sj, the expected number of transmission times of si satisfies a geometric distribution with

parameter Pr(si, sj), i.e. the expected number of time slots used to successfully transmit a

data packet from si to sj is 1/Pr(si, sj).

Actually, the successful probability of each link should not be too low, since a low

successful probability implies many retransmission times and too much energy consumption

until a successful transmission. Thus, similar as in Part 3, we define a promising transmission

threshold probability po. Then, for any pair of nodes si and sj, the data transmission between

them can be initialized only if Pr(si, sj) ≥ po. Now, for any qualified data transmission node

pair, the expected number of transmission times to successfully transmit a data packet is at

most 1/po. Therefore, similar as in Part 3, we define a normalized time slot tn = to/po for

convenience.

In the studied data aggregation problem, multiple data packets can be aggregated into

one by applying a data aggregation function, e.g. MAX, MIN, SUM, etc. Formally, similar

as in Part 4, we can define the SDA problem as follows. Let X and Y bet two subsets of

V = {s0, s1, s2, · · · , sn}, where s0 is the sink node, and X ∩ Y = ∅. The data of the nodes

in X is said to be aggregated to the nodes in Y in a time slot if all the nodes in X can

transmit their local aggregation data to the nodes in Y concurrently and interference-freely

during that time slot. In this aggregation process, we call X a transmitter set. Then, the

SDA problem can be defined as to seek a SDA schedule which consists of a sequence of

transmitter sets X1, X2, · · · , XM , such that

1. ∀1 ≤ i ̸= j ≤M,Xi ∩Xj = ∅;

2.
∪M

i=1Xi = V \ {s0}, where M is the latency of this SDA schedule;

3. Data can be aggregated from Xi to V \
∪i

j=1 Xj during time slot i for i = 1, 2, · · · ,M .

Based on the SDA problem, the definition of the CDA problem can be defined to seek an

aggregation schedule for multiple continuous snapshots, with each snapshot corresponds to

a schedule similar as in the SDA problem. Note that, the schedule for multiple snapshots in
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the CDA problem may have some time overlap, i.e. the data aggregation in CDA may be

pipelined.

According to the defined PNM, SDA problem, and CDA problem, we further formally

define the data aggregation capacity as the ratio between the amount of data been aggregated

and the time used to transmit the aggregated values of these data to the sink, i.e. SDA

capacity is defined as nB/Γ, where Γ is the time used to transmit the aggregated value of

a snapshot to the sink; to gather the aggregated value of each snapshot of N continuous

snapshots (gathering N aggregated values to the sink, finally), the CDA capacity is defined

as NnB/Γ, where now Γ is the time used to transmit the N aggregated values to the sink.

5.3 Network Partition

In this section, we partition a WSN into cells and equivalent color classes by the similar

method used in Part 3.

5.3.1 Cell-Based Network Partition

Since we assume a WSN is deployed in a square area with A = cn, we partition this

square into small square cells with side length l =
√
ce log n by horizontal and vertical lines

starting at the left-bottom-most point. Moreover, we use m =
√

n/e log n to denote the

number of cells in each row/column. For convenience, we also assign each cell a pair of

coordinates (i, j) (1 ≤ i, j ≤ m), where i and j indicate this cell is located at the i-th column

and the j-th row respectively from the left-bottom-most point. Further, we use ci,j to denote

the cell with coordinates (i, j). According to the communication mode of data aggregation

and considering the fact that the sink is located at the top-right corner, we define four possible

data transmission modes for the sensors in each cell, namely inside transmission mode,

upward transmission mode, rightward transmission mode, and up-rightward transmission

mode. Under the insider transmission mode, a node in ci,j transmits its data packet to

another node also in ci,j. Under the upward (rightward/up-rightward) transmission mode,
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cell ci,j transmits its data packets to cell ci,j+1 (ci+1,j/ci+1,j+1)
4.

For cell ci,j, let the random variable Xi,j denote the number of sensors in it. Then, the

expected number of sensors within ci,j (1 ≤ i, j ≤ m), i.e. E[Xi,j], can be determined by

Lemma 5.3.1.

Lemma 5.3.1 E[Xi,j] = e log n.

Proof: Since all the sensors are i.i.d., the number of sensors within a cell satisfies the

binomial distribution with parameters (n, l
2

A
). Thus, E[Xi,j] = n · l2

A
= e log n. 2

Subsequently, we can obtain the upper and lower bounds of the number of sensors within

cell ci,j (1 ≤ i, j ≤ m) as shown in Lemma 5.3.2 and Lemma 5.3.3, respectively. The proof

techniques of Lemma 5.3.2 and Lemma 5.3.3 are similar as that in the proof of Lemma 3.3.2

and Lemma 3.3.3.

Lemma 5.3.2 For any cell ci,j (1 ≤ i, j ≤ m), Pr(ci,j contains 6.7 log n sensors or more) =

Pr(Xi,j ≥ 6.7 log n) ≤ 1
n2 . Then, it is almost sure that ci,j contains no more than 6.7 log n

sensors.

Proof: Since Xi,j is a binomial random variable with parameters (n, l
2

A
) as shown in

Lemma 5.3.1, by applying the Chernoff bound and for any ξ > 0, we have

Pr(Xi,j ≥ 6.7 log n) ≤ min
ξ>0

E[exp(ξXi,j)]

exp(6.7ξ log n)
(5.3)

= min
ξ>0

(1 + (eξ − 1) · e log n/n)n

exp(6.7ξ log n)
(5.4)

≤ min
ξ>0

exp((eξ − 1) · e log n)
exp(6.7ξ log n)

(5.5)

= min
ξ>0

exp((eξ+1 − e− 6.7ξ) · log n). (5.6)

4For convenience, we use a cell and the sensors within this cell interchangeable in the following of this
part.
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Particularly, let ξ = ln 6.7− 1. We have

Pr(Xi,j ≥ 6.7 log n) ≤ exp(−2 log n) (5.7)

≤ exp(−2 lnn) (5.8)

=
1

n2
. (5.9)

Since
∑
n>0

1
n2 is bounded by the result of the Basel problem, Pr(χi,j ≤ 6.7 log n) ∼ 1

according to the Borel-Cantelli Lemma, i.e. it is almost sure that Xi.j ≤ 6.7 log n. 2

Lemma 5.3.3 For any cell ci,j (1 ≤ i, j ≤ m), Pr(ci,j contains 1
2e
log n sensors or fewer) =

Pr(Xi,j ≤ 1
2e
log n) ≤ 1

n2 . Then, it is almost sure that ci,j contains no fewer than 1
2e
log n

sensors.

Proof: Similar to the proof of Lemma 5.3.2, applying the Chernoff bound and for any

ξ < 0, we have

Pr(Xi,j ≤
1

2e
log n) ≤ min

ξ<0
exp((eξ+1 − e− 1

2e
ξ) · log n). (5.10)

Let ξ = ln 1
2e
− 1, we have

Pr(Xi,j ≤
1

2e
log n) (5.11)

≤ 1

n2
. (5.12)

Thus, by the Borel-Cantelli Lemma, Pr(χi,j ≥ 1
2e
log n) ∼ 1, i.e. it is almost sure that ci,j

contains no fewer than 1
2e
log n sensors. 2

From Lemma 5.3.1, we know that the average number of sensors within a cell is e log n.

From Lemma 5.3.2 and Lemma 5.3.3, we know that the probabilities that a cell contains

more than 6.7 log n sensors or fewer than 1
2e
log n sensors are zero for large n. Therefore, it is

reasonable for us to use 6.7 log n and 1
2e
log n as the upper and lower bounds as the number

of sensors within a cell, respectively. In the following discussion, we assume a cell contains
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e log n sensors in the average case, 6.7 log n sensors in the worst case, and 1
2e
log n sensors

in the best case.

5.3.2 Equivalent Color Class

After partitioning the WSN into cells, we further partition all the cells into disjoint

cell sets, named equivalent color classes, by two vectors. For each equivalent color class, we

assign it a color (actually assign this color to all the cells within this equivalent color class),

denoted by a natural number. The two vectors we use to partition the cells are X⃗ = (ω, 0)

and Y⃗ = (0, ω), where ω ∈ N+ is a constant positive integer. Based on X⃗ and Y⃗ , we define

the equivalent color class containing ci,j as {cx,y|(x, y) = (i, j) + a · X⃗ + b · Y⃗ , x ∈ [1,m], y ∈

[1,m], a ∈ Z, b ∈ Z}. Within an equivalent color class, if cell ci,j has the smallest distance to

the left-bottom-most point, ci,j is called the pivot cell of this class. Further, the equivalent

color class having ci,j as the pivot cell is denoted by Ci,j.

Based on the equivalent color class partition method, it is straightforward to obtain the

following lemma.

Lemma 5.3.4 The cells of a WSN can be partitioned into ω2 equivalent color classes.

Let Λ(Ci,j) = min{Λ(su, sv)|su is any sensor in any cell of Ci,j, sv is the destination node

of su under any transmission mode}. Then, we have the following lemma. Lemma 5.3.5 can

be proven by similar techniques in Lemma 3.3.4.

Lemma 5.3.5 Let R = ωl. If all the cells not in Ci,j keep silent and all the cells within

Ci,j conduct data transmissions concurrently and successfully5, then Λ(Ci,j) ≥ P ·d−α

N0+P ·ϖ·R−α ,

where d ≤ 2
√
2l is the distance between a communication pair and ϖ ≈ 8 · (3α + 2.847) is a

positive constant.

Based on Lemma 5.3.5, we can determine the value of ω to make all the cells within

each equivalent color class conduct transmissions concurrently and successfully as shown in

5Here, “successfully” means all the data transmissions conducted are promising transmissions under any
transmission mode.
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Theorem 5.3.1. Theorem 5.3.1 can be proven by similar techniques in Lemma 3.3.5 and

Theorem 3.3.1.

Theorem 5.3.1 If we properly set ω = Θ(d+Θ(1)
l

) and all the other cells not in Ci,j keep

silent, then all the cells in Ci,j (1 ≤ i, j ≤ ω) can conduct data transmissions under any

communication mode concurrently and successfully.

Based on Theorem 5.3.1, we assign an appropriate value for ω, i.e. Θ(d+Θ(1)
l

), in the fol-

lowing discussion, which implies that all the cells in equivalent color class Ci,j (1 ≤ i, j ≤ m)

can conduct data transmissions under any communication mode concurrently and success-

fully.

5.4 Snapshot Data Aggregation

In this section, we consider the snapshot data aggregation problem, propose a Cell-based

Aggregation Scheduling (CAS) algorithm for snapshot data aggregation, and analyze the

achievable network capacity of CAS. Furthermore, we also derive the upper bound network

capacity of the snapshot data aggregation problem, which shows our proposed CAS is order-

optimal.

5.4.1 Cell-Based Snapshot Data Aggregation

As proven in Section 5.3.1, each cell ci,j (1 ≤ i, j ≤ m) contains e log n, 6.7 log n,

and 1
2e
log n sensors in the average case, the worst case, and the best case, respectively.

Therefore, we define a super time slot, denoted by ts, for convenience, where ts = e log n · tn,

ts = 6.7 log n · tn, and ts =
1
2e
log n · tn in the average case, the worst case, and the best case,

respectively. Thus, within a super time slot, all the sensors within a cell can be assigned

one normalized time slot to transmit its data. Then, we design a two-phase snapshot data

aggregation algorithm, named Cell-based Aggregation Scheduling (CAS), as follows.

Intra-Cell Scheduling Phase. In this phase, we schedule the data aggregation op-

erations within each cell. First, for cell ci,j (1 ≤ i, j ≤ m), we choose one sensor from this
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Figure 5.1 Data aggregation tree.

cell as the local aggregation node of this cell, denoted by Ai,j. As shown in Figure 5.1, the

black node within each cell is the local aggregation node of that cell. Subsequently, with-

in each cell ci,j (1 ≤ i, j ≤ m), all the non-local aggregation nodes transmit their data to

Ai,j under the inside transmission mode according to a sequential order, e.g. sensors with

smaller ID transmit first. Finally, Ai,j (1 ≤ i, j ≤ m) aggregates all the data it received

and its own data to form a new aggregated data packet to transmit in the second phase. In

Section 5.3.2, we have partitioned all the cells into ω2 equivalent color classes and assigned

each Cx,y (1 ≤ x, y ≤ ω) a color x + (y − 1)ω. Moreover, all the cells within an equivalent

color class can conduct data transmissions under any transmission mode concurrently and

successfully according to Theorem 5.3.1. Thus, to schedule all the cells to finish the intra-cell

scheduling phase, we can schedule each equivalent color class for one super time slot, with

Cx,y scheduled in the (x+ (y − 1)ω)-th super time slot.

After the first phase, all the local aggregation nodes need to transmit the local aggregat-

ed values to the sink to obtain the final aggregation value of the whole snapshot (note that

data can also be aggregated during the transmission process). To finish the data aggregation

task in the second phase, we construct a data aggregation tree, denoted by T , rooted at the
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sink to connect all the local aggregation nodes according to the similar rules as in Part 3 to

construct a data collection tree:

• For Ai,j (1 ≤ i, j ≤ m − 1), it transmits its data to Ai+1,j+1 under the up-rightward

transmission mode, i.e. connect Ai,j with Ai+1,j+1 as its parent node;

• ForAm,j (1 ≤ j ≤ m−1), it transmits its data toAm,j+1 under the upward transmission

mode, i.e. connect Am,j with Am,j+1 as its parent node;

• For Ai,m (1 ≤ i ≤ m − 1), it transmits its data to Ai+1,m under the rightward trans-

mission mode, i.e. connect Ai,m with Ai+1,m as its parent node.

An example data aggregation tree is shown in Figure 5.1. For Ai,j, we define the level

of Ai,j in T , denoted by hi,j, as the number of hops from Ai,j to the root of T (i.e. the sink).

Clearly, T has m − 1 levels. Furthermore, we denote the set of all the local aggregation

nodes with the same level k (1 ≤ k ≤ m − 1) as Lk, i.e. Lk = {Ai,j|hi,j = k}. For the

local aggregation nodes in Lk (1 ≤ k ≤ m− 1), suppose they come from Ck equivalent color

classes. Then, we gather the final aggregation value of a snapshot as shown in the second

phase.

Inter-Cell Scheduling Phase. In this phase, we schedule local aggregation nodes

level by level, staring from the (m − 1)-th level. For every local aggregation node in Lk,

after it receives the aggregation values from its children local aggregation nodes in Lk+1, it

aggregates the received values with its own data to form a new data packet. Subsequently, it

transmits the new obtained data packet to its parent local aggregation node in Lk−1 during

its available time slots. Since the local aggregation nodes in Lk (1 ≤ k ≤ m− 1) come from

Ck equivalent color classes, they can be scheduled by Ck normalized time slots.

At the end of the second phase, the sink will receive partial aggregated values of a

snapshot. Consequently, the sink can obtain the final aggregation value of a snapshot by

doing some aggregation calculations.
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5.4.2 Capacity Analysis of CAS

In this subsection, we analyze the achievable network capacity of CAS in the worst case,

the average case and the best case, respectively. Subsequently, we study the upper bound

capacity of the snapshot data aggregation problem, which implies the achievable capacities

of CAS in all the cases are order-optimal.

Lemma 5.4.1 For snapshot data aggregation, the number of normalized time slots used by

CAS is at most 6.7ω2 log n+ (2ω− 1)(m− 1) in the worst case, eω2 log n+ (2ω− 1)(m− 1)

in the average case, and 1
2e
ω2 log n+ (2ω − 1)(m− 1) in the best case, respectively.

Proof: First, it is straightforward that in the first phase of CAS, the number of super

time slots used is ω2. According to the definition of a super time slot tu, it follows that the

number of normalized time slots used by CAS in the first phase is 6.7ω2 log n in the worst

case, eω2 log n in the average case, and 1
2e
ω2 log n in the best case.

In the second phase of CAS, the local aggregation nodes in T are scheduled level by

level, and level Lk will cost Ck normalized time slots. In Lk = {Am−k,j|m − k ≤ j ≤

k} ∪ {Aj,m−k|m− k ≤ j ≤ k}, both {Am−k,j|m− k ≤ j ≤ k} and {Aj,m−k|m− k ≤ j ≤ k}

come from at most ω equivalent color classes. Am−k,m−k can be from only one equivalent

color class, which implies Ck ≤ 2ω − 1. Furthermore, T has m− 1 levels, which implies the

second phase of CAS can be done with at most (2ω − 1)(m − 1) normalized time slots. In

summary, Lemma 5.4.1 holds. 2

Based on Lemma 5.4.1, we can obtain the achievable network capacities of CAS in

different cases as shown in Theorem 5.4.1.

Theorem 5.4.1 For snapshot data aggregation, the achievable network capacity of CAS is

Ω(
pon

6.7ω2 log n+ 2ω
√
n/e log n

·W ) = Ω(
po
√
en log n

2ω
·W )
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in the worst case,

Ω(
pon

eω2 log n+ 2ω
√

n/e log n
·W ) = Ω(

po
√
en log n

2ω
·W )

in the average case, and

Ω(
pon

1
2e
ω2 log n+ 2ω

√
n/e log n

·W ) = Ω(
po
√
en log n

2ω
·W )

in the average case.

Proof: In the worst case, the achievable network capacity of CSA is

nB

(6.7ω2 log n+ (2ω − 1)(m− 1)) · tn
(5.13)

≥ ponB

(6.7ω2 log n+ 2ωm)to
(5.14)

= Ω(
pon

6.7ω2 log n+ 2ω
√

n/e log n
·W ) (5.15)

= Ω(
po
√
en log n

2ω
·W ). (5.16)

Similarly, the achievable capacities of CAS in the average case and best case can be obtained.

2

Now, we study the upper bound capacity of the snapshot data aggregation problem as

shown in Theorem 5.4.2, which is an inherent property of snapshot data aggregation.

Theorem 5.4.2 The upper bound capacity of the snapshot data aggregation problem is at

most O(po
√
en logn
3

·W ), which implies that CAS has successfully achieved order optimal ca-

pacities in every case.

Proof: First, to aggregate the data produced at cells ci,1 (1 ≤ i ≤ m) and c1,j (1 ≤ j ≤

m), we need at least 1
2e
log n normalized time slots no matter what scheduling algorithm we

use. Second, since it is easy to know that for anyAi,j ∈ Lk (i = k or j = k) whose parent node

is Ai+1,j+1, both Λ(Ai+1,j,Ai+1,j+1) and Λ(Ai+2,j,Ai+1,j+1) are no less than Λ(Ai,j,Ai+1,j+1)
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at Ai+1,j+1, as well as Λ(Ai,j+1,Ai+1,j+1) and Λ(Ai,j+2,Ai+1,j+1). It follows that Ck ≥ 3 for

every 1 ≤ k ≤ m− 1. This further implies that we need at least 3(m− 1) normalized time

slots to transmit the aggregated values at Ai,1 (1 ≤ i ≤ m) and A1,j (1 ≤ j ≤ m) to the

sink. In summary, the number of normalized time slots used to obtain the final aggregation

value of a snapshot is at least 1
2e
log n + 3(m − 1), which implies the upper bound capacity

of the snapshot data aggregation problem is at most

nB

( 1
2e
log n+ 3(m− 1)) · tn

(5.17)

=
pon

1
2e
log n+ 3(

√
n/e log n− 1)

·W (5.18)

= O(
po
√
en log n

3
·W ). (5.19)

Since the achievable capacities of CAS in every case areO(po
√
en logn
2ω

·W ), CAS has successfully

achieved order optimal capacities. 2

5.5 Continuous Data Aggregation

To address the continuous data aggregation problem, we design a Level-based Aggrega-

tion Scheduling (LAS) algorithm in this section. Firstly, LAS partitions the data aggregation

tree T (constructed in Section 5.4.1) into segments (as the segments in Part 3) and cell-level

classes. Subsequently, LAS forms a data aggregation pipeline on the segments by scheduling

the data aggregations of a level class concurrently. Furthermore, we also analyze the achiev-

able capacities of LAS in every case, as well as the upper bound capacity of the continuous

data aggregation problem, which implies that LAS has successfully achieved order-optimal

capacities.

5.5.1 Level-based Aggregation Scheduling

In Section 5.4.1, we partition the local aggregation nodes Ai,j (1 ≤ i, j ≤ m) on T

into k levels, denoted by Lk (1 ≤ k ≤ m − 1). Since Ai,j corresponds to cell ci,j (Ai,j
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is the local aggregation node of ci,j), we also define a cell-level Lc
k as Lc

k = {ci,j|hi,j = k}

(1 ≤ k ≤ m−1). Then, to form a data aggregation pipeline, we partition the m−1 cell-levels

into
⌈
m−1
ω

⌉
segments with segment Sι = {Lc

k|m − (ι − 1) · ω − 1 ≥ k ≥ max{1,m − ι · ω}}

(1 ≤ ι ≤
⌈
m−1
ω

⌉
). For instance, the data aggregation tree corresponding to the WSN

shown in Figure 3.2 has 7 cell-levels, e.g. Lc
4 = {c4,4, c4,5, c4,6, c4,7, c4,8, c5,4, c6,4, c7,4, c8,4} and

Lc
2 = {c6,6, c6,7, c6,8, c7,6, c8,6} as shown in Figure 5.2. If ω = 3, these cell-levels can be

partitioned into three segments with S1 = {Lc
7,Lc

6,Lc
5}, S2 = {Lc

4,Lc
3,Lc

2}, and S3 = {Lc
1}

as shown in Figure 5.2(a), respectively. Furthermore, we also partition cell-levels into ω

cell-level classes, with each cell-level class defined by Lg = {Lc
k|k%ω = g} (1 ≤ g ≤ ω). For

instance, the network shown in Figure 5.2(a) has three cell-level classes: L1 = {Lc
7,Lc

4,Lc
1},

L2 = {Lc
5,Lc

2}, and L0 = {Lc
6,Lc

3}. Based on the definitions of segments and cell-level

classes, it is clear that (i) each segment has ω cell-levels (only S⌈(m−1)/ω⌉ may have fewer

cell-levels); (ii) all the cell-levels within any segment belong to different cell-level classes,

i.e. each segment contains exactly one cell-level from each of the ω cell-level classes; (iii)

according to the definitions of equivalent color classes and cell-level classes, the cells within

a cell-level class come from at most 2ω − 1 equivalent color classes. Now, to collect the

aggregation value of each of N continuous snapshots, we are ready to propose our Level-

based Aggregation Scheduling (LAS) algorithm. We explain the idea of LAS in a hierarchical

way, from a coarse granularity to a subtle granularity, as follows.

Segment-Granularity Scheduling. Since a WSN has been partitioned into segments,

a data aggregation/tranmission pipeline on these segments can be formed if we take each

segment as a unit. Suppose for segment Sι (1 ≤ ι ≤
⌈
m−1
ω

⌉
), the number of normalized time

slots used to transmit the aggregation values of a snapshot to the subsequent segment (to

the sink for S⌈(m−1)/ω⌉) is t
n
ι and define tp = max{tnι |1 ≤ ι ≤

⌈
m−1
ω

⌉
}. Then, to gather the N

aggregation values of N continuous snapshots, a data aggregation/tansmission pipeline can

be formed on these
⌈
m−1
ω

⌉
segments, with each segment working for tp normalized time slots

to transmit the aggregation values for each snapshot. Particularly, for segment Sι, after it

transmits the aggregation values of the j-th snapshot to segment Sι+1 in tp normalized time
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(a) Segment partition. In this example, we as-
sume ω = 3, which implies this network can be
partitioned into 3 segments: S1 = {Lc

7,Lc
6,Lc

5},
S2 = {Lc

4,Lc
3,Lc

2}, and S3 = {Lc
1}

(b) Segment-granularity and cell-
granularity scheduling.

Figure 5.2 Level-based aggregation scheduling.

slots (which also implies that Sι has already received the aggregation values of the (j+1)-th

snapshot from segment Sι−1), it starts to aggregate and transmit values for the (j + 1)-th

snapshot. For instance, the data aggregation pipeline formed on the three segments in Figure

5.2(a) is shown in Figure 5.2(b).

Level-Granularity Scheduling. Within each segment, LAS schedules data ag-

gregation and transmission cell-level class by cell-level class, i.e. level by level. Tak-

ing the data aggregation/transmission process of the j-th snapshot in segment S1 =

{Lc
m−1,Lc

m−2, · · · ,Lc
m−ω} as an example, LAS first schedules Lc

m−1 to transmit the aggrega-

tion values of the j-th snapshot to Lc
m−2. Subsequently, after Lc

m−2 receives the aggregation

values of the j-th snapshot from Lc
m−1, it aggregates the received values with its own data

and transmits the new obtained aggregation values to the subsequent cell-level. This process

is repeated until Lc
m−ω transmits the aggregation values of the j-th snapshot to next segment.

Since every segment does the same scheduling and the cell-levels have been partitioned into

cell-level classes, the level-granularity scheduling is equivalent to schedule cell-level classes
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repeatedly according to the order L(m−1)%ω,L(m−2)%ω, · · · ,L(m−ω)%ω. Furthermore, since the

cells within any cell-level class come from at most 2ω − 1 equivalent color classes as men-

tioned before, a cell-level class can be scheduled within 2ω−1 super time slots. For the data

aggregation pipeline shown in Figure 5.2(b), the cells in L1 = {Lc
7,Lc

4,Lc
1} will be scheduled

simultaneously to transmit data equivalent color class by equivalent color class to the cells

in L0 = {Lc
6,Lc

3}. Similarly, the data flow will be transmitted from cells in L0 = {Lc
6,Lc

3} to

cells in L2 = {Lc
5,Lc

2}, and then from L2 to L1.

Cell-Granularity Scheduling. Within each cell-level Lc
k (1 ≤ k ≤ m − 1), we have

2k+1 cells which come from at most 2ω− 1 equivalent color classes as explained in Lemma

5.4.1. This further implies all the cells in Lc
k can be scheduled in 2ω − 1 super time slots.

For cell ci,j, during its available super time slot, it does similar operations as in CAS, i.e.

all the non-local aggregation nodes transmit their data to Ai,j, and then Ai,j transmits the

aggregation value of cell ci,j to its parent node in T . For instance, in cell-level Lc
7 shown

in Figure 5.2(b), all the cells come from 5 equivalent color classes: {c1,1, c4,1, c7,1, c1,4, c1,7},

{c2,1, c5,1, c8,1}, {c3,1, c6,1}, {c1,2, c1,5, c1,8}, and {c1,3, c1,6}. These equivalent color classes of

each cell-level will be scheduled one by one. For all the cells in each equivalent color class,

they will be scheduled simultaneously as in CAS.

5.5.2 Capacity Analysis of LAS

Lemma 5.5.1 In LAS, tp ≤ 6.7ω(2ω − 1) log n in the worst case; tp ≤ eω(2ω − 1) log n in

the average case; tp ≤ 1
2e
ω(2ω − 1) log n in the best case.

Proof: As proven in Lemma 5.4.1, the cells within each cell-level come from at most

2ω − 1 equivalent color classes, which implies a cell-level can be scheduled in 2ω − 1 super

time slots, i.e. 6.7(2ω − 1) log n normalized time slots in the worst case. Furthermore, each

segment contains at most ω cell-levels, which implies that tp ≤ 6.7ω(2ω − 1) log n in the

worst case. By similar reasons, Lemma 5.5.1 also holds in the average case and the best

case. 2

Based on Lemma 5.5.1, we can obtain the achievable network capacities of LAS in every
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case as shown in Theorem 5.5.1.

Theorem 5.5.1 To gather the aggregation value of each of N continuous snapshots, the

achievable capacity of LAS is


Ω(

√
epoN
13.4ω

√
n

logn
·W ), if N = O(

√
n

logn
)

Ω( po
13.4ω2

n
logn
·W ), if N = Ω(

√
n

logn
)

in the worst case, 
Ω( poN

2
√
eω

√
n

logn
·W ), if N = O(

√
n

logn
)

Ω( po
2eω2

n
logn
·W ), if N = Ω(

√
n

logn
)

in the average case, and


Ω( e

√
epoN
ω

√
n

logn
·W ), if N = O(

√
n

logn
)

Ω( epo
ω2

n
logn
·W ), if N = Ω(

√
n

logn
)

in the best case.

Proof: From Lemma 5.5.1, tp ≤ 6.7ω(2ω− 1) log n in the worst case, which implies that

it takes at most
⌈
m
ω

⌉
·6.7ω(2ω−1) log n normalized time slots to gather the aggregation values

of the first snapshot by the sink. After that, according to the pipeline scheduling of LAS,

the sink will receive the aggregation values of a subsequent snapshot every 6.7ω(2ω−1) log n

normalized time slots, until the aggregation values of all the N continuous snapshots have

been gathered by the sink. Therefore, LAS uses at most

⌈m
ω

⌉
· 6.7ω(2ω − 1) log n+ (N − 1) · 6.7ω(2ω − 1) log n (5.20)

= O(13.4ω
√
n log n/e+ 13.4ω2N log n) (5.21)

normalized time slots to gather all the aggregation values of N continuous snapshots. It
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follows that the achievable capacity of LAS in the worst case is

nNB

O(13.4ω
√
n log n/e+ 13.4ω2N log n) · tn

(5.22)

=
ponN

O(13.4ω
√
n log n/e+ 13.4ω2N log n)

·W (5.23)

=


Ω(

√
epoN
13.4ω

√
n

logn
·W ), if N = O(

√
n

logn
)

Ω( po
13.4ω2

n
logn
·W ), if N = Ω(

√
n

logn
)

. (5.24)

By a similar method, we can obtain the achievable capacities of LAS in the average case

and in the best case. 2

Now, we study the upper bound capacity of the continuous data aggregation problem

as shown in Theorem 5.5.2, which implies that LAS has already successfully achieved order

optimal capacities in every case.

Theorem 5.5.2 The upper bound capacity of the continuous data aggregation problem to

collect the aggregation values of N continuous snapshots is


O(2e

√
epoN
3

√
n

logn
·W ), if N = O(

√
n

logn
)

O(2epo
9

n
logn
·W ), if N = Ω(

√
n

logn
)

.

Proof: As proven in Theorem 5.4.2, the local aggregation nodes (cells) of each level

(cell-level) come from at least 3 equivalent color classes, which implies that it takes at least

3 super time slots to schedule a cell-level. Furthermore, because of the same reason, the

cell-levels can be partitioned into segments with each segment contains at least 3 levels.

Therefore, tp ≥ 9
2e
log n. Then, the number of normalized time slots used to gather the

aggregation values of N continuous snapshots is at least

⌈m
3

⌉
· 9
2e

log n+ (N − 1) · 9
2e

log n (5.25)

= Ω(
3

2e

√
n log n

e
+

9N

2e
log n). (5.26)
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Thus, the upper bound capacity of the continuous data aggregation problem is

nNB

Ω( 3
2e

√
n logn

e
+ 9N

2e
log n) · tn

(5.27)

=
ponN

Ω( 3
2e

√
n logn

e
+ 9N

2e
log n)

·W (5.28)

=


O(2e

√
epoN
3

√
n

logn
·W ), if N = O(

√
n

logn
)

O(2epo
9

n
logn
·W ), if N = Ω(

√
n

logn
)

, (5.29)

which implies that the achievable capacities of LAS in every case are order optimal according

to Theorem 5.5.1. 2

5.6 Discussion: Capacity of CAS and LAS under Non-I.I.D. Models

Assuming the network is distributed according to an i.i.d. model is convenient for algo-

rithm design and analyzing the achievable data aggregation capacity of proposed algorithms.

However, this assumption may not hold in some situations. Therefore, in this section, we

analyze the capacity performance of CAS and LAS under non-i.i.d. models. Specifically,

we consider that all the sensor nodes are deployed according to a stationary Poisson point

process in this section.

Similar as in Section 5.2, we assume n sensor nodes deployed in a square area of size

A = cn according to a stationary Poisson point process with parameter λp. Subsequently,

by the same network partition method in Section 5.3.1, we partition the network into cells

with side length l =
√
ce log n. Then, for cell ci,j, the expected number of sensor nodes in
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ci,j is

E[Xi,j] =
+∞∑
k=1

Pr(Xi,j = k) · k (5.30)

=
+∞∑
k=1

(λpl
2)k

k!
exp(−λpl

2) · k (5.31)

= λpl
2 (5.32)

= ceλp log n. (5.33)

According to E[Xi,j], we can prove the following conclusions by similar techniques in

Lemma 5.3.2 and Lemma 5.3.3.

Lemma 5.6.1 For any cell ci,j and a constant value a = argmin
ξ>0

ceξ+1λp−ceλp+2

ξ
, Pr(ci,j con-

tains a log n sensors or more) = Pr(Xi,j ≥ a log n) ≤ 1
n2 , which implies it is almost sure that

ci,j contains no more than a log n sensor nodes.

Proof Sketch: Based on E[Xi,j] and applying the Chernoff bound and for any ξ > 0, we

have

Pr(Xi,j ≥ a log n) = Pr(eξXi,j ≥ eξ·a logn) (5.34)

≤ min
ξ>0

E[eξXi,j ]

eξ·a logn
(5.35)

= min
ξ>0

eceλp logn·(eξ−1)

eξ·a logn
(5.36)

= min
ξ>0

e(ce
ξ+1λp−ceλp−ξa) logn (5.37)

= e−2 logn (5.38)

≤ e−2 lnn (5.39)

=
1

n2
. (5.40)

Since
∑
n>0

1
n2 is bounded, Pr(χi,j ≤ 6.7 log n) ∼ 1 according to the Borel-Cantelli Lemma,

i.e. it is almost sure that Xi.j ≤ 6.7 log n. 2
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From Lemma 5.6.1, we know that the number of sensor nodes within a cell is upper

bounded by a log n with probability 1, where a = argmin
ξ>0

ceξ+1λp−ceλp+2

ξ
. Similarly, we can

also derive the lower bound of the number of sensor nodes within a cell as follows.

Lemma 5.6.2 For any cell ci,j and a constant value b = argmax
ξ<0

ceξ+1λp−ceλp+2

ξ
, Pr(ci,j con-

tains b log n sensors or less) = Pr(Xi,j ≤ b log n) ≤ 1
n2 , which implies it is almost sure that

ci,j contains no less than b log n sensor nodes.

From Lemma 5.6.2, we can see that the lower bound of the number of sensor nodes

within a cell is b log n, where b = argmax
ξ<0

ceξ+1λp−ceλp+2

ξ
. Based on Lemma 5.6.1 and Lemma

5.6.2, we can obtain the capacity bounds of CAS and LAS, which are both order optimal,

under the distribution model where all the nodes are deployed according to a Poisson point

process as follows.

Theorem 5.6.1 Under the Poisson point process distribution model, the achievable network

capacity of CAS is Ω( pon

logn+2ω
√

n/e logn
·W ) = Ω(po

√
en logn
2ω

) in the best case, average case, and

worst case, which is order optimal.

Theorem 5.6.2 Under the Poisson point process distribution model, the achievable network

capacity of LAS to gather the aggregation values of N continuous snapshots is


Ω(poN

ϑ

√
n

logn
·W ), if N = O(

√
n

logn
);

Ω( po
ϑω

n
logn
·W ), if N = Ω(

√
n

logn
).

, (5.41)

where

ϑ =


2aω = 2ω argmin

ξ>0

ceξ+1λp−ceλp+2

ξ
, in the worst case;

2ceλpω, in the average case;

2bω = 2ω argmax
ξ<0

ceξ+1λp−ceλp+2

ξ
, in the best case.

(5.42)

and the achievable capacity is order optimal in all the cases.
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5.7 Simulations

In this section, we validate the effectiveness of CAS and LAS via simulations. The

simulations are conducted on a home-made simulator, which is implemented by VC++.

Basically, the simulator consists of several modules involving the network generation module,

the network time/synchronization control module, the network topology control module, the

protocol module, etc. In all the simulations, we consider a WSN with one sink and all

the sensors randomly distributed in a square area. The network time is slotted, and each

time slot is normalized to one. All the nodes transmit data with a fixed power, denoted by

P . Furthermore, all the sensors work on a common wireless channel with bandwidth also

normalized to one. During each snapshot, every sensor node produces a packet with size

one. The aggregation functions are assumed to be perfect data aggregation functions, i.e.

the aggregation value of multiple data packets from the same snapshot is expressed using a

packet of size one. Moreover, we define the node density of a WSN as ρ, i.e. on average,

there are ρ sensors within a unit area. Throughout this section, we set ρ = 5.0 as default,

which implies the WSNs with different sizes have different numbers of sensors. For other

important system parameters, we set α = 3.0, η1 = 0.25, η2 = 10.0, η3 = 10.0, P/N0 = 10.0,

and N = 100. Furthermore, each group of simulations is repeated 100 times and the results

are the average values.

Since there are no existing works studying the SDA or CDA problems for probabilistic

WSNs, we compare our proposed algorithms with the most recently published data aggrega-

tion algorithms for deterministic WSNs. Specifically, we compare our SDA algorithm CAS

with DPr-S proposed in [36], Clu-DDAS proposed in [65], E-PAS proposed in [7], and DAS

proposed in [63]. DPr-S is an SDA algorithm under the protocol interference model, which is

a simplified interference model for ease of analysis, for deterministic WSNs [36]. Clu-DDAS

is an energy-efficient algorithm for minimum-latency data aggregation scheduling under the

protocol interference model for WSNs [65]. E-PAS is an SDA algorithm with the best known

delay performance under the unit disk graph model, which is also analyzed under the protocol
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interference model [7]. DAS is a distributed data aggregation algorithm, which is designed

under the unit disk graph model and protocol interference model for WSNs [63]. For our

CDA algorithm LAS, we only compare it with DPr-C [36], which is the pipelined version

of DPr-S. This is because most existing works are dedicated for the SDA problem, and it

is nontrivial to extend Clu-DDAS, E-PAS, and DAS to their pipelined versions. According

to [36], when gathering the aggregation values of continuous snapshots, DPr-C also forms a

data aggregation/transmission pipeline in three phases. In contrast, the data aggregation/-

transmission pipeline in LAS is formed based on segments and scheduled based on cell-level

classes and equivalent color classes, which has only one phase.

5.7.1 Performance of CAS

The achievable capacities of CAS, DPr-S, Clu-DDAS, E-PAS, and DAS in WSNs with

different sizes (e.g. 100× 100, 200× 200, and 300× 300) and different promising transmis-

sion threshold probabilities po are shown in Figure 5.3 and Figure 5.4. From Figure 5.3,

we can see that with the increase of the network size, the achievable capacities of CAS,

DPr-S, Clu-DDAS, E-PAS, and DAS also increase. This is because of the benefit brought

by data aggregation. In large WSNs, more cells can conduct data aggregation operations

concurrently, which implies within a time slot, more data can be aggregated. It results in

increasing the data aggregation capacity. This is also validated by Theorem 5.4.1.

From Figure 5.4, we can also see that with the increase of po, the achievable capacities of

CAS, DPr-S, Clu-DDAS, E-PAS, and DAS increase at first. However, after some threshold

po, the achievable capacities of CAS, DPr-S, Clu-DDAS, E-PAS, and DAS decrease with

the increase of po. For instance, in the WSN with size 200 × 200 shown in Figure 5.4(b),

when po increases from 0.6 to 0.85, the achievable capacity of CAS increases. After that, the

capacity of CAS decreases with the increase of po. This is because first, when po increases,

the expected number of time slots to successfully transmit a data packet, i.e. tn, decreases,

which implies that the total number of time slots used to gather the aggregation values

of a snapshot decreases. It follows that the capacities of CAS, DPr-S, Clu-DDAS, E-PAS,
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(c) SDA capacity (po = 0.9).

Figure 5.3 SDA capacity vs. network size (the node density ρ = 5.0).
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(b) SDA capacity in a WSN of size 200× 200.
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(c) SDA capacity in a WSN of size 300× 300.

Figure 5.4 SDA capacity vs. po (the node density ρ = 5.0).
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and DAS increase. Second, since a large po implies high-quality data communication, i.e.

on the other hand, less cells can conduct aggregation operations concurrently. Thus, the

network capacities of CAS, DPr-S, Clu-DDAS, E-PAS, and DAS decrease after exceeding

some threshold. Note that in the WSN shown in Figure 5.4(b), for the cases of po = 0.65

and po = 0.95, although CAS achieves a similar capacity, they have quite different meanings.

Since a small po implies more retransmission times to successfully transmit a data packet,

CAS consumes more energy for the case po = 0.65 although it has similar network capacity

as in the case po = 0.95.

Finally, as shown in Figure 5.3 and Figure 5.4, CAS always achieves a larger network

capacity than DPr-S, Clu-DDAS, E-PAS, and DAS. This is because of the network partition

methods and the equivalent color class-based scheduling scheme of CAS. By scheduling all

the cells in an equivalent color class, CAS achieves complete concurrency. On the other hand,

in DPr-S, Clu-DDAS, E-PAS, and DAS, either the data aggregation tree is not balanced, or

the wireless channel is under-utilized, i.e. full concurrency cannot be achieved. Therefore,

low SDA capacity is induced. On average, CAS achieves 67.2% more capacity than that of

DPr-S, 82.46% more capacity than that of Clu-DDAS, 47.38% more capacity than that of

E-PAS, and 89.65% more capacity than that of DAS.

5.7.2 Performance of LAS

To gather the aggregation values ofN = 100 continuous snapshots, the achievable capac-

ities of LAS and DPr-C in WSNs with different sizes and promising transmission threshold

probabilities are shown in Figure 5.5 and Figure 5.6, respectively. It shows in Figure 5.5

that the achievable capacities of LAS and DPr-C increase with the increase of the network

size. This is because first, as mentioned before, large WSNs imply more cells can conduct

aggregation operations concurrently. Second, the formed data aggregation pipelines in LAS

and DPr-C perform better in large WSNs, since large WSNs can be partitioned into more

segments, which are more suitable to form a pipeline to achieve higher concurrency.

From Figure 5.6, we can also see that due to the same reasons as discussed in the previous
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(b) CDA capacity (po = 0.75).
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(c) CDA capacity (po = 0.9).

Figure 5.5 CDA capacity vs. network size (the node density ρ = 5.0).



155

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
18
20
22
24
26
28
30
32
34
36
38
40
42
44

po

C
D

A
 C

ap
ac

ity  LAS
 DPr-C
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(b) CDA capacity in a WSN of size 200× 200.
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(c) CDA capacity in a WSN of size 300× 300.

Figure 5.6 CDA capacity vs. po (the node density ρ = 5.0).
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subsection, with the increase of po, the achievable capacities of LAS and DPr-C have similar

increase and decrease trends as that of CAS and DPr-S. Furthermore, comparing Figure

5.6(a) with Figure 5.5, it is interesting to see that in some specific cases (e.g. in a WSN

with size 100 × 100, when po = 0.95), the capacities of LAS and DPr-C are smaller than

the capacities of CAS and DPr-S, respectively. This is because that the benefit of the data

aggregation pipelines formed in CAS and DPr-S is not significant in small WSNs, where a

pipeline is hard to form. This further validates that pipeline is more suitable for large scale

WSNs.

Similar to CAS, LAS achieves complete concurrency since it schedules all the cell-

levels within a cell-level class concurrently and all the cells within an equivalent color class

concurrently. This turns out that LAS always achieves a higher network capacity than DPr-

C as shown in Figure 5.5 and Figure 5.6. Particularly, LAS achieves 87.62% more capacity

than that of DPr-C on average.

5.7.3 Network Lifetime Evaluation for CAS and LAS

In this subsection, we evaluate the network lifetime performance of data aggregation

WSNs working with CAS/LAS. From the descriptions of CAS and LAS, we know that CAS

and LAS have the same energy-efficiency performance, i.e. they consume the same amount

of energy to gather the aggregation values of N snapshots, although LAS is much faster

than CAS due to its formed data aggregation pipeline. Therefore, we consider CAS and

LAS together when we evaluate their network lifetime performance. Similarly, DPr-S and

DPr-C can be considered together.

When deploy a WSN, we assume each sensor node has 1000 units of energy and the

sink node has unlimited energy supply. Transmitting a data packet consumes 1 unit of

energy and receiving a data packet consumes 0.5 units of energy. We further assume the

energy consumption of data aggregation processing is negligible compared with that of data

transmission and reception. The network lifetime is defined as the duration from the initial

network deployment to the time when the first node exhausts its energy. We let each algo-
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(a) Network lifetime of a WSN of size 100× 100.
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(b) Network lifetime of a WSN of size 200× 200.
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(c) Network lifetime of a WSN of size 300× 300.

Figure 5.7 Network lifetime vs. po (the node density ρ = 5.0).



158

rithm continuously gather the aggregation values of snapshots until the network lifetime is

ended.

Under the aforementioned assumptions, the impacts of the threshold probability po

on the network lifetimes of CAS/LAS, DPr-S/DPr-C, Clu-DDAS, E-PAS, and DAS are

shown in Figure 5.7. From Figure 5.7, we can find that the network lifetimes of all the

algorithms are prolonged when po increases. The reason directly come from the fact that

large po corresponding to more reliable links implies fewer number of transmission failures

and retransmissions. This further implies that the energy of each node can be utilized more

effectively to extend network lifetime. By comparing Figure 5.7(a), (b), and (c), we can

see that network size has little impact on network lifetime. This is because we fix the node

density to be ρ = 5.0 and all the nodes are independent and identically distributed, which

implies the expected number of neighbors/children of the inner-nodes in an aggregation tree

remains unchanged no matter what the size of a network is. Therefore, the traffic load

of each single node in WSNs with different sizes keeps unchanged. From Figure 5.7, we

can also see that Clu-DDAS has the best network lifetime performance. This is because

Clu-DDAS constructs an energy-efficient cluster-based data aggregation tree. CAS/LAS

achieves longer network lifetime than DPr-S/DPr-C, E-PAS, and DAS. This is because first,

the data aggregation tree in CAS/LAS is balanced, while the data aggregation trees in E-PAS

and DAS are imbalanced which may induce skew energy consumptions decreasing network

lifetime; second, the routing structure of CAS/LAS is similar to a shortest path routing tree,

while DPr-S/DPr-C first gathers data vertically and then horizontally which may induce

unnecessary energy consumption.

We also examine the impact of node density ρ on network lifetime for CAS/LAS, DPr-

S/DPr-C, Clu-DDAS, E-PAS, and DAS as shown in Figure 5.8. From Figure 5.8, we can see

that the achievable network lifetime of all the algorithms decreases when ρ increases. This

is because that large ρ induces more potential workload to the inner nodes of an aggregation

tree. Therefore, each inner node consumes more energy to receive local aggregation values

of its children and thus the network lifetime may be decreased. From Figure 5.8, we can
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(c) Network lifetime (po = 0.9).

Figure 5.8 Network lifetime vs. node density ρ (the network size is 200× 200).
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also see that all the algorithms perform better in WSNs with large threshold value po and

CAS/LAS has longer network lifetime than DPr-S/DPr-C, E-PAS, and DAS. The reasons

are the same as the aforementioned ones.

5.8 Conclusion

Considering that there are no existing works studying the data aggregation problem

in probabilistic WSNs, we investigate the SDA and CDA problems under the PNM in this

work. First, we partition a WSN into cells and equivalent color classes. Then, based on the

partitioned cells and equivalent color classes, we propose a data aggregation algorithm for the

SDA problem, named Cell-based Aggregation Scheduling (CAS). The theoretical analysis of

CAS shows that its achievable network capacities are all Ω(po
√
en logn
2ω

·W ) in the worst case,

in the average case, and in the best case. Moreover, we study the upper bound capacity of

the SDA problem, which is O(po
√
en logn
3

·W ). This implies that CAS has successfully achieved

order optimal capacities in all the cases. For the CDA problem, we propose a Level-based

Aggregation Scheduling (LAS) algorithm. LAS achieves full concurrency by forming a data

aggregation/transmission pipeline and scheduling all the cell-levels within a cell-level class

simultaneously. The theoretical analysis of LAS and the CDA problem shows that LAS also

successfully achieves order optimal capacities in all the cases. To be more general, we analyze

the capacity performance of CAS and LAS under the non-i.i.d. node distribution model, e.g.

poisson point distribution model. It shows that CAS and LAS can achieve order optimal

capacities. The extensive simulation results further validate the effectiveness of CAS and

LAS.

The future work may involve the following directions. First, we will extend CAS and

LAS to more non-i.i.d. node distribution models and theoretically analyze their perfor-

mances. Second, to obtain more accurate and tighter SDA and CDA capacity bounds,

we may find some better stochastic functions to characterize the properties of lossy links.

Third, since large-scale WSNs as well as other large-scale wireless networks are more likely

to be distributed systems, we will design corresponding distributed and asynchronous SDA
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and CDA algorithms with order optimal capacity bounds. Finally, we would like to design

energy-efficient SDA and CDA algorithms which can also achieve order optimal capacities.
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PART 6

CONCLUSIONS

In this dissertation, we study the data collection and aggregation problems, as well as

their achievable network capacities, for WSNs.

First, we investigate the continuous data collection problem for dual-radio multi-channel

WSNs under the protocol interference model. We propose a multi-path scheduling algorith-

m for snapshot data collection in single-radio multi-channel WSNs and derive its network

capacity, which is a tighter lower bound compared with the previously best result. We sub-

sequently propose a novel CDC method for dual-radio multi-channel WSNs. It significantly

speeds up the data collection process, and achieves a capacity of nW
12M⌈(3.63ρ2+c3ρ+c4)/H⌉ when

∆e ≤ 12 or nW
M∆e⌈(3.63ρ2+c3ρ+c4)/H⌉ when ∆e > 12, where n is the number of the sensors, M is

a constant value and usually M ≪ n, ∆e is the maximum number of the leaf nodes having

a same parent in the data collection tree, W is the channel bandwidth, H is the number of

available orthogonal channels, ρ is the ratio of the interference radius over the transmission

radius, c3 =
8π√
3
+π+2, and c4 =

8π√
3
+2π+6. Extensive simulation results indicate that the

proposed algorithms improve network capacity significantly compared with existing works.

Second, considering that for most existing works studying the network capacity issue,

their designs and analysis are based on the deterministic network model, where any pair

of nodes in a network is either “connected” or “disconnected”. However, in real application

environments, this deterministic network model assumption is too ideal and not practical due

to the existence of the “transitional region phenomenon”. Actually, a more practical network

model for wireless networks is the probabilistic network model, where a transmission over a

link is conducted successfully with a probability instead of being determined. Unfortunately,

few of the existing works study the data collection capacity issue for wireless networks under

the practical probabilistic network model until now. To remedy this gap, we investigate
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the achievable snapshot/continuous data collection capacity for wireless networks under the

probabilistic network model. For snapshot data collection, we propose a novel Cell-based

Path Scheduling (CPS) algorithm which achieves capacity of Ω( 1
5ω lnn

·W ) in the sense of the

worst case and order-optimal capacity in the sense of expectation, where n is the number

of sensor nodes, ω is a constant, and W is the data transmitting rate. For continuous data

collection, we propose a Zone-based Pipeline Scheduling (ZPS) algorithm. ZPS significantly

speeds up the continuous data collection process by forming a data transmission pipeline,

and achieves a capacity gain of N
√
n√

logn lnn
or n

logn lnn
times better than the optimal capacity

of the snapshot data collection scenario in order in the sense of the worst case, where N is

the number of snapshots in a continuous data collection task. The simulation results also

validate that the proposed algorithms significantly improve network capacity compared with

the existing works.

Third, most of the existing works studying the data collection capacity issue have an

ideal assumption that the network time is synchronized explicitly or implicitly. Such an

assumption is mainly for centralized synchronous wireless networks. However, wireless net-

works are more likely to be distributed asynchronous systems. Thus, we investigate the

achievable data collection capacity of realistic distributed asynchronous WSNs. Our main

contributions include five aspects. Firstly, to avoid data transmission interference, we derive

an R0-Proper Carrier-sensing Range (R0-PCR) under the generalized physical interference

model, where R0 is the satisfied threshold of data receiving rate. Taking R0-PCR as its

carrier-sensing range, any sensor node can initiate a data transmission with a guaranteed

data receiving rate. Secondly, based on R0-PCR, we propose a Distributed Data Collec-

tion (DDC) algorithm with fairness consideration. Theoretical analysis of DDC surprisingly

shows that its achievable network capacity is order-optimal and independent of network size.

Thus, DDC is scalable. Thirdly, we discuss how to apply R0-PCR to the distributed data

aggregation problem, and propose a Distributed Data Aggregation (DDA) algorithm. The

delay performance of DDA is also analyzed. Fourthly, to be more general, we study the delay

and capacity of DDC and DDA under the Poisson node distribution model. The analysis
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demonstrates that DDC is also scalable and order-optimal under the Poisson distribution

model. Finally, we conduct extensive simulations to validate the performance of DDC and

DDA.

Fourth, we study the Snapshot Data Aggregation (SDA) problem, the Continuous Data

Aggregation (CDA) problem, and their achievable capacities for probabilistic WSNs under

both the independent and identically node distribution (i.i.d.) model and the Poisson point

distribution model in this dissertation. First, we partition a network into cells and use two

vectors to further partition these cells into equivalent color classes. Subsequently, based

on the partitioned cells and equivalent color classes, we propose a Cell-based Aggregation

Scheduling (CAS) algorithm for the SDA problem in probabilistic WSNs. Theoretical anal-

ysis of CAS and the upper bound capacity of the SDA problem show that the achievable

capacities of CAS are all order optimal in the worst case, the average case, and the best

case. For the CDA problem in probabilistic WSNs, we propose a Level-based Aggregation

Scheduling (LAS) algorithm. LAS gathers the aggregation values of continuous snapshots

by forming a data aggregation/transmission pipeline on the segments and scheduling all the

cell-levels in a cell-level class concurrently. By theoretical analysis of LAS and the upper

bound capacity of the CDA problem, we prove that LAS also successfully achieves order

optimal capacities in all the cases. The extensive simulation results further validate the

effectiveness of CAS and LAS. Specifically, compared with the most recently published algo-

rithm, CAS achieves 67.95% more capacity than that of DPr-S on average, and LAS achieves

90.45% more capacity than that of DPr-C on average.
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