
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

12-18-2013

A Classification Framework for Imbalanced Data
Piyaphol Phoungphol

Follow this and additional works at: http://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Phoungphol, Piyaphol, "A Classification Framework for Imbalanced Data" (2013). Computer Science Dissertations. Paper 78.

http://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.gsu.edu/cs_diss/78?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

A CLASSIFICATION FRAMEWORK FOR IMBALANCED DATA

by

PIYAPHOL PHOUNGPHOL

Under the Direction of Dr. Yanqing Zhang

ABSTRACT

As information technology advances, the demands for developing a reliable and highly

accurate predictive model from many domains are increasing. Traditional classification al-

gorithms can be limited in their performance on highly imbalanced data sets. In this dis-

sertation, we study two common problems when training data is imbalanced, and propose

effective algorithms to solve them.

Firstly, we investigate the problem in building a multi-class classification model from

imbalanced class distribution. We develop an effective technique to improve the performance

of the model by formulating the problem as a multi-class SVM with an objective to maximize

G-mean value. A ramp loss function is used to simplify and solve the problem. Experimental

results on multiple real-world datasets confirm that our new method can effectively solve the

multi-class classification problem when the datasets are highly imbalanced.

Secondly, we explore the problem in learning a global classification model from dis-

tributed data sources with privacy constraints. In this problem, not only data sources have

different class distributions but combining data into one central data is also prohibited. We

propose a privacy-preserving framework for building a global SVM from distributed data

sources. Our new framework avoid constructing a global kernel matrix by mapping non-

linear inputs to a linear feature space and then solve a distributed linear SVM from these

virtual points. Our method can solve both imbalance and privacy problems while achieving

the same level of accuracy as regular SVM.

Finally, we extend our framework to handle high-dimensional data by utilizing Gener-

alized Multiple Kernel Learning to select a sparse combination of features and kernels. This

new model produces a smaller set of features, but yields much higher accuracy.

INDEX WORDS: Imbalanced Data, Privacy, Distributed Learning, Multiple Kernel
Learning, Support Vector Machine, Feature Selection.

A CLASSIFICATION FRAMEWORK FOR IMBALANCED DATA

by

PIYAPHOL PHOUNGPHOL

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2013

Copyright by
Piyaphol Phoungphol

2013

A CLASSIFICATION FRAMEWORK FOR IMBALANCED DATA

by

PIYAPHOL PHOUNGPHOL

Committee Chair: Professor Yanqing Zhang

Committee: Professor Raj Sunderraman

Professor Robert Harrison

Professor Yichuan Zhao

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2013

iv

DEDICATION

To my beloved wife, Inthira, and my parents for their love, support, and encouragement

over the years.

v

ACKNOWLEDGEMENTS

This dissertation work would not have been possible without the support of many people.

First, I would like to thank my advisor, Dr. Yanqing Zhang for his help, guidance,

encouragement on my research. A special thank you to Dr. Raj Sunderraman for generous

help and advices throughout my time at Georgia State University. I also wish to thank my

committee members, Dr. Harrison and Dr. Zhao, for taking time to review my work and

give me creative comments to improve this dissertation.

I would like to acknowledge the continued financial support from the Computer Science

Department, the Molecular Basis of Disease (MBD) fellowship, and the Second Century

Initiative (2CI) fellowship at Georgia State University.

Last, I wish to express my gratitude to my parents and my wife for their understanding,

continued support throughout all these years of my education.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ABBREVIATIONS xi

PART 1 INTRODUCTION 1

1.1 Problem and Motivation . 1

1.1.1 Class Imbalance . 2

1.1.2 Multi-Source Imbalance . 5

1.2 Contributions . 6

1.3 Thesis Organizations . 7

PART 2 MULTI-CLASS CLASSIFICATION 8

2.1 Sampling-based Approaches . 8

2.1.1 Under-sampling . 9

2.1.2 Over-sampling . 9

2.2 Feature Selection . 9

2.3 Cost-Sensitive Learning . 10

2.4 One-Class SVM . 11

2.5 Ensemble Methods . 12

PART 3 RAMP KERNEL MACHINE 14

3.1 A New Objective Function . 14

3.2 Ramp Kernel Machine for Imbalanced Multi-class Data 16

3.3 ConCave-Convex Procedure (CCCP) 17

vii

3.4 Solving Ramp Kernel Machines . 18

3.5 Evaluations . 19

3.5.1 Dataset . 19

3.5.2 Parameters & Performance Metrics 20

3.5.3 Results . 21

3.5.4 Analysis of RKM Effectiveness . 25

PART 4 IMBALANCE DISTRIBUTED LEARNING 27

4.1 Distributed Learning . 27

4.2 Possible Solutions . 28

4.2.1 Linear Regression . 29

4.2.2 Decision Tree . 30

4.2.3 Naive Bayes classifier . 31

4.3 SVM . 32

PART 5 SECURE SUM PROTOCOL 35

5.1 Simple Secure Sum . 35

5.2 Secure Sum with Shamir’s Secret Sharing Scheme 37

5.2.1 Homomorphic Encryption . 38

5.2.2 A Decentralized Voting Protocol 38

5.3 Application of Shamir’s Secret Sharing to Distributed Data . . . 39

5.4 Privacy-Preserving K-means Over Distributed Data 40

PART 6 PRIVACY-PRESERVING DISTRIBUTED SVM . . . 42

6.1 SVM . 42

6.1.1 SVM in Dual Form . 43

6.2 Kernel Approximation . 44

6.2.1 Selecting Landmarks . 44

6.2.2 Kernel Decomposition . 45

viii

6.3 Cutting Plane . 46

6.4 Evaluations . 49

6.4.1 Datasets . 51

6.4.2 Compared with Traditional Classification Models 51

6.4.3 Compared with Other SVM-Based Approaches 52

6.4.4 Efficiency . 54

PART 7 DISTRIBUTED FEATURE SELECTION 58

7.1 Current feature selection . 58

7.1.1 Recursive Feature Elimination, SVM-RFE 58

7.1.2 RELIEF . 60

7.2 Generalized Multiple Kernel . 60

7.2.1 Multiple Kernel Learning . 60

7.2.2 Generalized Multiple Kernel . 62

7.3 Feature Selection with Generalized Multiple Kernel 63

7.4 GMKL over Distributed Privacy Framework 64

7.4.1 GMKL in Primal Form . 64

7.4.2 Squared Hinge Loss (L2) Function 65

7.5 Experiments . 66

7.6 UCI Datasets . 66

7.6.1 Performance Comparison . 67

PART 8 CONCLUSIONS & FUTURE WORK 70

8.1 Conclusions . 70

8.2 Future Work . 71

8.2.1 Privacy-Preserving Distributed Multi-class SVM 71

8.2.2 Semi-Supervised Learning . 72

REFERENCES . 73

ix

LIST OF TABLES

Table 1.1 An example of data sources with different class distributions . . . 5

Table 3.1 Multi-class Imbalanced Datasets from UCI 22

Table 3.2 Avg. G-mean Performance - Linear Kernel 23

Table 3.3 Avg. G-mean Performance - RBF Kernel 23

Table 3.4 Macro / Micro F-measure Performance 24

Table 3.5 Contraceptive: class errors from Linear Cost-SVM model 25

Table 3.6 Vertebral dataset class errors from Linear Cost-SVM model 25

Table 4.1 Horizontal Distributed Data . 27

Table 4.2 Vertical Distributed Data . 28

Table 6.1 Summary of datasets we used in the experiment. 51

Table 6.2 Performance comparison between Privacy Distributed SVM with tra-

ditional classifiers. 52

Table 6.3 Performance of different algorithm based on different distributions 54

Table 6.4 Efficiency of Privacy Distributed SVM and SVM-ADMM on Four-class

dataset. 55

Table 6.5 Efficiency of Privacy Distributed SVM and SVM-ADMM on Pima

dataset. 55

Table 7.1 Performance Comparison of SVM, L2-SVM, and DGMKL. 67

Table 7.2 UCI results with datasets at different number of desired features, Nd. 68

x

LIST OF FIGURES

Figure 1.1 SVM on imbalanced dataset is biased toward the major class. . . 3

Figure 3.1 Composition of Ramp Loss . 17

Figure 3.2 An example of ConCave-Convex Procedure 18

Figure 3.3 Contraceptive: Error distributions from Linear Cost-SVM 26

Figure 4.1 The structure of Cascade SVM 32

Figure 4.2 Model synchronization in peer-to-peer network. 34

Figure 5.1 Secure computation of a sum. 36

Figure 5.2 An illustration of Adi Shamir concept. 37

Figure 5.3 An example of the Shamir’s Secret Sharing in voting protocol. . . 39

Figure 5.4 An application of Shamir’s Secret Sharing horizontal distributed data

sources. 40

Figure 6.1 Components of privacy-preserving distributed SVM. 42

Figure 6.2 Four-class dataset is split into 3 groups by values of f1. 53

Figure 6.3 The number of iterations that ADMM uses in solving SVM for Four-

class dataset. 56

Figure 6.4 The number of iterations that ADMM uses in solving SVM for Pima

dataset. 57

Figure 7.1 A comparison of popular loss functions. 65

xi

LIST OF ABBREVIATIONS

• Acc - Accuracy

• Cost-SVM - Cost-Sensitive Multi-class Support Vector Machine

• DGMKL - Distributed Generalized Multiple Kernel Learning

• FP - False Positive

• FN - False Negative

• G-mean - Geometric mean

• GMKL - Generalized Multiple Kernel Learning

• KNN - K-Nearest Neighbor

• MC-SVM - Multi-class Support Vector Machine

• MKL - Multiple Kernel Learning

• PD-SVM Privacy-preserving Distributed Support Vector Machine

• RBF - Radial Basis Function

• RKM - Ramp Kernel Machine

• ROC - Receiver Operating Characteristic

• SVM - Support Vector Machine

• SVM-RFE - Support Vector Machine Recursive Feature Elimination

• TP - True Positive

• TN - True Negative

• UCI - University of California, Irvine

1

PART 1

INTRODUCTION

1.1 Problem and Motivation

Recently, huge developments in science and technology have enabled the growth and

availability of raw data to occur at an explosive rate. This has created an immerse oppor-

tunity for knowledge discovery and data engineering research to play an essential role in a

wide range of applications from daily life to national security, from enterprise information

processing to governmental decision-making support systems, from micro-scale data analysis

to macro-scale knowledge discovery. Techniques from data mining and machine learning are

able to process structured data to extract meaningful patterns. Data mining algorithms

learn by induction, so the data to be mined must be structured as a collection of examples

of the target concept to be learned. Each example, or instance, is described by a set of

attribute values, which typically are either numeric or categorical values.

From a set of structured examples of a target concept, a data mining algorithm can

extract useful patterns, typically in one of three ways: clustering, association rule, and

classification. Clustering and association rule mining are unsupervised learning processes,

because they don’t involve the prediction of values for a specific attribute. Clustering involves

partitioning the set of instances into groups such that examples in the same group are similar

to each other based on some measure of similarity. Association rule mining involves looking

for useful predictive patterns between any combinations of attributes in the data. This differs

from supervised learning in that potentially interesting associations between any attributes

or sets of attributes are sought. In supervised learning, one of the attributes, called the

class attribute or dependent attribute, is meant to be predicted based on the values for the

other attributes, called independent attributes. The process is called classification if the

class attribute is categorical and regression or numeric prediction if the class attribute is

2

numeric. This work specifically addresses the problem of classification.

In classification, the objective is to successfully predict the values for the nominal class

attribute (class label) of an example given the values for its independent attributes. Clas-

sically, success in this endeavor is measure by overall accuracy, the percentage of instances

for which the class label is correctly predicted. Classification algorithms, of which there are

many, were often designed in the spirit of achieving the maximum possible number of correct

class label predictions. In order to extrapolate reliable patterns from a dataset so that future

instances can be classified accurately, the information contained in the data must be valid.

Unfortunately, in real world classification applications, data is rarely perfect. A number of

issues can affect the quality of the data used to train a classifier, often leading to reduced

classification accuracy

1.1.1 Class Imbalance

In many real-world classification applications, such as software prediction, oil spill de-

tection from satellite images, detection of fraudulent online credit card, diagnosis of rare

diseases, training data might be imbalance [1–3] where the number of data in some classes

are extremely smaller than other classes. This is usually caused by the rarity of cases/events

or by limitations on data collection process such as high cost or privacy problems. For ex-

ample, biomedical data that derived from a rare disease and an abnormal condition, or some

data that often obtained via expensive experiments.

The fundamental issue with the imbalanced learning problem is the ability of imbalanced

data to significantly compromise the performance of most standard learning algorithms.

Most algorithms usually assume balanced class distributions or equal misclassification costs.

This problem will cause most standard machine learning algorithms to be biased toward the

majority class because they try to optimize overall accuracy, which is overwhelmed by ma-

jority classes and ignore minority class. Therefore, when presented with complex imbalanced

data sets, these algorithms fail to properly represent the distributive characteristics of the

data and result in unfavorable accuracies across the classes of the data.

3

��������	�

��

Figure (1.1) SVM on imbalanced dataset is biased toward the major class.

This problem has posed a significant drawback of the performance achieved by existing

classification system. In the biomedical field, this issue is particularly crucial since learn-

ing from these imbalanced data can help us discover useful knowledge to make important

decisions while it can also be extremely costly to misclassify these data.

An example of biased classifier between two imbalanced classes (RED & BLUE marks)

is shown in Fig. 1.1. SVM gives an biased separate line because it tries to minimize the

total of classification errors which is dominated by errors of the major class instances(RED).

Therefore, the SVM line is shifted away from the major class (RED) toward the minor class

(BLUE).

Data Noise Noisy data which often occurs with class imbalance data is another com-

mon data quality issue that tends to impair classification performance. Data noise occurs

when dependent attribute values are recorded erroneously. Unfortunately, most traditional

classifiers cannot handle noisy data efficiently and its classification accuracy depends vitally

on the quality of the training data. A few noisy data can seriously deteriorate the classifier’s

performance. Because most classifier try to minimize the total classification errors, but an

error of each data point can vary from 0 to +∞, therefore errors of a few bad or noisy points

can dominate or compromise the overall errors which result in classifier’s performance dete-

rioration. Accordingly, one way to improve the overall classification accuracy is to eliminate

the noise or bad data points from the training data.

4

Multi-class Class Imbalance In the typical binary class imbalance problem, one

class vastly outnumbers the other. However, real-world problems often require classification

between more than two classes. The multi-class classification problem is an extension of the

traditional binary class problem where a data set consists k classes instead of two. While

imbalance is said to exist in the binary class imbalance problem when one class severely

outnumbers the other class, extended to multiple classes the effects of imbalance are even

more problematic. That is, given k classes, there are multiple ways for class imbalance to

manifest itself in the data set. One typical way is there is one ”super majority” class which

contains most of the instances in the data set. Another typical example of class imbalance in

multi-class data sets is the result of a single minority class. In such instances k− 1 instances

each make up roughly 1/(k − 1) of the data set, and the ”minority” class makes up the

rest. The multi-class imbalance problem is therefore interesting for two important reasons.

First, most learning algorithms do not deal with the wide variety of challenges multi-class

imbalance presents. Secondly, a number of classifiers do not easily extend to the multi-class

domain.

There are many research works that try to improve traditional techniques or develop

new algorithms to solve the class imbalance problem. However, most of those studies are

focused only on binary case or two classes and solutions for binary class problems are not

applicable directly to multi-class cases. One common solution is to decompose the multi-

class problems into a set of binary class problems, i.e., classifying each individual class versus

all the other classes. This enables users to learn binary class classifiers on each of the sub

problems which can then be combined into an ensemble in order to solve the multi-class

problem. However, the obvious drawbacks of this solution are: 1) to learn an identification

model for each class is expensive in training; 2) results of each class label assignment are

not comparable due to the decision can be made differently for different classes; and 3) one

class versus the other classes will worse the imbalanced distribution even more for the small

classes.

5

Table (1.1) An example of data sources with different class distributions

Source Proportion of class A Proportion of class B

S1 15% 85%

S2 80% 20%

S3 50% 50%

1.1.2 Multi-Source Imbalance

Recent advances in computing, technologies, storage methods, and scientific research

have resulted in many large scale and decentralized environments in which both data and

computation are distributed through several sources instead of being collected in a single

source. This has drawn a significant amount of interest from both academic and industry.

comparing patterns from different databases and understanding their relationships can be

extremely beneficial for applications such as bioinformatics, health informatics sensor net-

working, and business intelligence. In particular, important information such as pattern

trends and knowledge of decision rules buried in each individual database are very hard to

be discovered by only examining a single data set, whereas comparatively mining multiple

databases will enable users to discover interesting patterns across a set of data collections

that would not have been possible otherwise.

Although these data collected through multiple sources need to be used for classification

in order to achieve higher classification accuracy and robustness, unfortunately, they are

heterogeneous and have different distributions and underlying patterns among data sources.

One possible solution is to combine data from multiple sources together into a single location.

However, in real world application, data can often only be accessed from local database but

cannot be easily merged to any other databases directly due to many reasons such as client

privacy, large data sizes, power consumption limit, and different geographical locations of

data sources. Therefore, learning correlating information from multiple data sources has

become a crucial and challenging problem in data mining and knowledge discovery.

Several ensemble strategies such as weighted majority voting, bagging, boosting, and

6

random forests have been proposed for integration a predicting model from multiple sources.

However, none of these work considers or pays attention to the class distribution differences

among data sources. These differences do not have much effect on the performance of the

combined model if all data sources have the same or closely similar class distributions. On

the other hand, if data sources have extremely different class distributions, it can degrade

the performance of integration model. For example, if we try to create a combined learning

model from three data sources S1, S2, S3 to distinguish data in class A from class B. The

class distributions of each data source are shown in Table 1.1. It can clearly be seen that

the predicting model from S1 and S2 will be biased; S1 is leaning towards class A while

S2 is leaning towards class B. As a result, the combined model from S1, S2, and S3 using

traditional ensemble techniques will have a poor performance.

1.2 Contributions

Multi-class Imbalance Classification Model First, we re-formulate multi-class

SVM to optimize G-mean, which is one of most popular measure for multi-class imbalance

classification. We simply the proposed optimization problem with Ramp Loss function, and

then find an efficient method to solve it. In the experiments, our model provides much more

accurate results than traditional models.

Privacy-Preserving Distributed Classification Model Second, we present a so-

lution framework that overcomes the privacy constraint in constructing SVM from dis-

tributed data. Moreover, the proposed framework can handle the class imbalance among

data sources, and yields a comparable classification result to a standard model that trained

by combining all data in a single location.

Privacy-Preserving Distributed Feature Selection Last, we extend our privacy-

preserving distributed SVM model to handle high-dimensional data. The extended frame-

work applied Generalized Multiple Kernel Learning (GMKL) to select a sparse combination

7

of features and their kernel parameters. The final result proved that the new framework can

maintain or even improve accuracy of the original model while using a much smaller set of

features.

1.3 Thesis Organizations

The rest of this dissertation is organized as follows.

Chapter 2: Multi-class Classification We provide an extensive literature review

on applying binary classification tools to multi-class problem, and many popular methods

to solve this imbalanced multi-class problem. We also cover several effective metrics for

evaluating classification model on imbalanced data.

Chapter 3: Ramp Kernel Machines The detail of our Ramp Kernel Machines and

technique used to solve its optimization problem are presented in this chapter. Experiment

results on 10 real-world datasets to compare its performance with other solutions are also

discussed.

Chapter 4-5: Multiple Sources Learning We explore the current possible so-

lutions for the imbalance problem in multi-source learning. Furthermore, we describe the

secure sum protocol and its application on K-means clustering.

Chapter 6: Privacy-Preserving Distributed SVM We describe components and

techniques we use to build SVM from distributed data while still protecting data privacy.

Chapter 7: Distributed Feature Selection We explain details and problems in

applying GMKL to our distributed SVM framework in order to select features from high-

dimensional data.

Chapter 8: Conclusion & Future Work We summarize and discuss the possible

extensions or application of our framework to other problems.

8

PART 2

MULTI-CLASS CLASSIFICATION

In recent years, many researchers have studied the problem of imbalanced data classifi-

cation and tried to improve the performance of classification models. However, most of their

work is concentrated on binary classification problem. Only few studies have been extended

to multi-class scenario, which is more realistic and can be generalized to n-class classification

problem.

Adopting techniques that showed successful results for binary case to multi-class scenario

is not quite easy and straightforward. Some general ideas at data level such as feature

selection [4], sampling-based approach can easily apply to multi-class problem directly, while

it is difficult for many algorithm-specific techniques [5, 6]. We have grouped the related

work that shows promising results in improving multi-class imbalance classification into the

following categories.

2.1 Sampling-based Approaches

Sampling is a simplest strategy in dealing with class imbalance problem; by changing

original class frequencies at a preprocessing step to balance the class distribution of training

data. Thus, this approach requires no change to an original learning algorithm at all. It could

involve under-sampling, over-sampling, or both. The amount to sample in each class can be

chosen empirically [1] or in relation to its misclassification cost [7, 8]. The concern is that

under-sampling might remove some potentially valuable information, while over-sampling

could also lead to over-fitting. Therefore, many algorithms combine under-sampling and

over-sampling to gain advantages from both.

9

2.1.1 Under-sampling

Under-sampling changes the training sets by sampling a subset of major class and

repeating minor class instances. In order to avoid losing any useful information contained

in the ignored examples, clustering techniques are used in selecting a subset of training data

[9]. Liu [10] suggested a technique that is similar to the balanced Random Forest [11] called

EasyEnsemble by generating T balanced sub-problems. Then, the outputs of sub-problems

are combined together with AdaBoost.

2.1.2 Over-sampling

Over-sampling increases the number of the minority class instances by duplicating the

instances of the minority. Chawla [12], introduced a more complicated technique called

SMOTE which generates a synthetic examples rather than over-sampling with replacement.

The synthetic examples are created by joining any/all the line segments of the k minority

class nearest neighbors.

However, few experiments on sampling-based approach have been carried out with and

designed for multi-class cases. According to [8], sampling methods are only useful for binary

imbalance problems. They are not effective in dealing with multi-class imbalance prob-

lems and could even degrade classifiers performances when the number of classes is high or

imbalance is severe.

2.2 Feature Selection

The goal of feature selection in general is to select a subset of features that allows a

classifier to reach optimal performance. Feature selection is a key step for many machine

learning algorithms especially when the data is high dimensional such as microarray-based

classification data sets which often have tens of thousands of features, and text classification

data sets using just a bag of words feature set have orders of magnitude more features than

documents [13]. A number of researchers have conducted research on using feature selection

10

to combat the class imbalance problem [13] [14].

Feature selection metrics are commonly used to rank features independent of their con-

text with other features. It shows how effective of each individual feature in predicting the

class of each sample. Wasikowski developed a new feature selection metric, FAST [15],

specifically designed to handle small sample imbalanced data sets. FAST is based on the

area under the receiver operating characteristic (AUC) generated by moving the decision

boundary of a single feature classifier with thresholds placed using an even-bin distribution.

Cao [16] applied the stochastic algorithm Optimal Feature Weighting (OFW) and one-

vs-one SVM in searching for optimized features (the gene predictors) from imbalanced and

high-dimensional feature space of microarray data.

2.3 Cost-Sensitive Learning

In cost-sensitive learning, it considers the costs of misclassification data in one class to

another class, and then try to minimize total costs rather than total errors. A widely used

approach in applying cost-sensitive approach to SVM [17], is to assign a higher penalty error

for a minority class in the optimization problem.

To facilitate this approach, Zhou & Liu recommended a rescaling technique [8] in con-

verting a confusion matrix εij to class penalty factors for multi-class SVM model. The

weights of each classes wr will be rescaled simultaneously according to their misclassification

costs. Solving the relations in (2.1) will get relative optimal weights of imbalanced data.

Then, multi-class SVM will be trained using these optimized weight.

w1

w2
= ε1,2

ε2,1
, w1

w3
= ε1,3

ε3,1
, . . . , w1

wm
= ε1,m

εm,1

w2

w3
= ε2,3

ε3,2
, . . . , w2

wm
= ε2,m

εm,2

. . . , . . .

. . . , wm−1
wm

= εm−1,m

εm,m−1

(2.1)

In the case that a confusion matrix or misclassification costs are unknown, Sun [18]

applied Genetic Algorithm to search for optimized values, and then evaluate them with

11

multi-class AdaBoost algorithm, AdaBoost.M1 [19]. In each iteration, the algorithm will

update the weight of its base learners based on their class predictions and misclassification

cost of an incoming data. However, Sun’s approach is computational expensive and practical

only when a number of class is small. Landgrebe [20] suggested a pairwise analysis which

investigates the interactions between each pair of classes, instead of random searching. The

pairwise approach optimizes misclassification costs by a greedy-search that maximizes an

approximate multi-class ROC and ignores neglectable interactions, resulting in a fast and

scalable algorithm.

2.4 One-Class SVM

Unlike standard SVM, one-class SVM only recognizes examples from one class rather

than differentiating all examples. It is useful when examples from the target classes are rare

or difficult to obtain. One-class SVM [21] maps data into feature space and then try to

use a hypersphere (ball) to describe data by putting most of the data into the hypersphere.

This can be formulated into an optimization problem in (2.2) where the ball should be as

small as possible, at the same time, include positive training data as much as possible. The

classification is based on the predetermined threshold, ν ∈ [0, 1], which indicates whether to

include the instance to the target class or not. When ν is small, more data will be put into

the ball. On the other hand, when ν is larger, the size of the ball will be squeezed.

min
R

R2 +
1

n ν

n∑
i=1

ξi

s.t. ∀i | φ(xi)− c |2 ≥ R2 + ξi ; ξi ≥ 0 (2.2)

Raskutti [22] demonstrated the optimality of one-class SVMs over two-class ones in

certain important imbalanced-data domains, including genomic data. In particular, they

showed that one-class learning is particularly useful when used on extremely unbalanced

data sets composed of a high dimensional noisy feature space.

12

In order to apply one-class SVM to multi-class problem, multiple models of one-class

SVM will be trained together. Hao & Lin [23] formulated multiple one-class SVM models

as one large optimization problem to minimize the total errors, while [24, 25] used multiple

one-class SVM models with One-vs-One strategy and iteratively adjusted the threshold of

each models to maximize the total accuracy.

The main challenging problem is selecting proper thresholds for each class: setting a

high threshold value would make an inclusion more difficult, so positive examples are more

likely to be misclassified. Yet, setting the value too low would allow more examples from

non-target classes in the target class region.

2.5 Ensemble Methods

Ensemble methods intelligently combine the predictions of a number of classifiers and

make one prediction for a sample based on multiple classifiers. For imbalanced datasets,

where any single classifier is likely not to generalize well to the data, it is possible to achieve

substantial improvements in performance by using many individual classifiers together. The

individual classifiers in an ensemble are trained using randomly selected subsets of the full

data set. As long as each subset is sufficiently different from the others, each classifier will

realize a different model, and an ensemble may give a better overall view of the learning task.

Research on ensemble methods has mainly focused on two different techniques: bagging and

boosting.

Bagging was initially developed by Breiman [26]. In a bagging ensemble, each individual

classifier is trained using a different bootstrap of the data set. A bootstrap from a data set

of N samples is a randomly drawn subset of N samples with replacement. The replacement

allows samples to be drawn repeatedly. The most popular bagging ensemble is the random

forest [27]. The random forest uses decision trees as the individual classifier. Before train-

ing the individual decision trees on their bootstraps, a random feature selection algorithm

removes all but a small number of the features to increase the speed of training and the

disparity between models. Because the random forest tries to maximize the accuracy of its

13

predictions, it suffers from the class imbalance problem.

Boosting was introduced by Schapire [28] as a way to train a series of classifiers on the

most difficult samples to predict. The first classifier in a boosting scheme is trained using

a bootstrap of the data. Then, test that classifier on the whole data set and determine

which samples were correctly predicted and which were incorrectly predicted. Boosting

Classifier iteratively improves the classifiers’ performance for imbalanced data sets by either

updating misclassification cost [29] or changing the distribution ratio [6, 30] of each class.

Some recent studies [18, 31] extended this approach to multi-class imbalance problem and

achieved promising results.

14

PART 3

RAMP KERNEL MACHINE

In this chapter, we will explain details of our proposed solution, Ramp Kernel Machine

(RKM), to solve the multi-class imbalanced classification problem. Our algorithm is based

on Crammer & Singer multi-class formulation [32] discussed in Part 2. However, in our case,

we did not try to optimize the total classification error because the total error or accuracy

tends to be dominated by the major class or bad data points when a training data is noisy

and imbalanced. Thus, we modified the objective function to maximize a metric that is more

effective for imbalanced data than the total accuracy.

3.1 A New Objective Function

Among popular matrices used for imbalanced classification, we decided to choose the

geometric mean or G-mean as a part of our objective function because it is one of the most

popular measures and easier to calculate than F -measure and multi-class AUC. Thus,

in classifying m class problem from n training samples x1, x2, ..., xn where xi is a point in

feature space Rd with label y1, y2, ..., yn ∈ {1, . . . ,m}, The new optimization problem which

maximizes margin between classes and G-mean can be re-defined as (3.1) where W is a

m×d matrix and Wr, the rth row of W , is a coefficient vector of class r, C is a regularization

parameter and ξi is an error in predicting point i.

max
W

C
m∏
r=1

m
√
Accr −

1

2
‖W‖2 (3.1)

s.t. ∀i, ∀r 6= yi, Wyi · xi −Wr · xi + ξi ≥ 1

∀i, ξi ≥ 0

15

The predicted label of test data x is a class having the highest similarity score which can be

calculate from (3.2) where Wr, the rth row of W , is a coefficient vector of class r.

f(x) = arg max
r∈Y

Wr · x (3.2)

As m is constant, the objective function in (3.1) can be rewritten as a minimization problem

as (3.3)

min
W

1

2
‖W‖2 − C ′

m∏
r=1

Accr (3.3)

The objective function in (3.3) should yield the best perfect model for multi-class im-

balanced classification as it is directly derived from G-mean. However, in practice, it is quite

computational expensive to find a solution of the optimized problem when the objective

function is not continuous, non-linear, and non-convex function. Only few methods such as

a genetic algorithm [33], a particle swarm optimization [34] are able to solve this problem.

In order to make the problem easier to solve, we decide to modify the objective in (3.3)

by using an average of all accuracies instead of a geometric mean of all accuracies in G-mean.

The modified objective function will be reformulated as:

min
W

1

2
‖W‖2 − C

m

m∑
r=1

Accr (3.4)

Let ` be 0-1 loss function; `i is equal to 0 when a predicting label of i is correct, and equal to 1

when a predicting label of i is invalid. Thus, the accuracy of class r, Accr =
∑n

i|yi=r(1−`i)/Nr

where Nr is the total number of data in class r. If we define δi,r as a 0-1 membership function

of point i to a class r; δi,r is equal to 1 when yi = r, and 0 otherwise. Then, the accuracy of

16

class r will be Accr =
∑n

i=1 δi,r(1− `i)/Nr. We can rewrite (3.4) as (3.5) .

min
W

1

2
‖W‖2 − C

m

m∑
r=1

n∑
i=1

δi,r(1− `i)
Nr

≈ min
W

1

2
‖W‖2 +

n∑
i=1

(
C ′

Nyi

) `i

≈ min
W

1

2
‖W‖2 +

n∑
i=1

Cyi`i (3.5)

We can notice from (3.5) that the new objective is very close to the standard objective

function, but the main differences are 1.) a regularization parameter of each point is weighted

inversely by the number of data in the same class, C ′/Nyi That is similar to a concept in

cost sensitive learning. 2.) an error/loss of each point `i is 0-1 or step function. Although

the problem (3.5) is less complex than (3.3) and can be solved as Mixed Integer Quadratic

Programming (MIQP) by popular solvers, the solving process is still very computationally-

expensive. In the next section, we will find an alternative way to simplify (3.5) and solve it

efficiently.

3.2 Ramp Kernel Machine for Imbalanced Multi-class Data

Many studies tried to solve SVM with 0-1 loss function by replacing it with other smooth

functions such as sigmoid function [35] [36], logistic function [37], polynomial function [36]

, and hyperbolic tangent function [38]. These functions, while yielding accurate result, still

suffer from being computationally-expensive when solved as an optimization problem due

to its non-convex nature. Alternatively, a truncated hinge loss or ramp loss function which

is a non-smooth but continuous function has been proved to be accurate and efficient for

SVM problem [39–41]. Due to its efficiency and simplicity, we decide to use the ramp loss

to simulate 0-1 loss function in (3.5).

The ramp loss or truncated hinge loss will be in range [0,1] when error ξ is less than a

constant ramp parameter, z and will be equal to 1 when ξ is greater than z. An example of

ramp loss function is shown in Fig 3.1(a). It is obvious that the ramp loss: R(ξ) is equal to

17

�

������

�

�

(a) Ramp Loss

�

������

�

�

(b) Hinge Loss

�

�������

�

�

(c) Hz : max(0, ξ − z)

Figure (3.1) Composition of Ramp Loss

the original hinge loss: ξ in Fig 3.1(b) minus a truncated part: Hz in Fig 3.1(c).

R(ξ) = ξ −Hz(ξ) (3.6)

When we replace `i in (3.5) with R(ξi), the objective function will be:

min
W

1

2
‖W‖2 +

n∑
i=1

Cyiξi −
n∑
i=1

CyiHz(ξi) (3.7)

Although the objective function in (3.7) is non-convex, Karush-Kuhn-Tucker conditions re-

main necessary (but not sufficient) optimality conditions. In the next section, we will intro-

duce an efficient method to solve it.

3.3 ConCave-Convex Procedure (CCCP)

Due to the non-convex nature of objective function in (3.7), solving this problem is

not easy and straightforward as normal convex optimization problem. We used the popular

algorithm called ConCave-Convex Procedure (CCCP) [42] to solve our non-convex objective

function. CCCP was first introduced by Yuille & Rangarajan to solve any non-convex opti-

mized problems. According to CCCP, any objective functions, f(x) can be decomposed into

the sum of a convex function and a concave function: f(x) = fvex(x) + fcave(x). CCCP will

18

Figure (3.2) An example of ConCave-Convex Procedure

solve non-convex optimized problem iteratively by approximating the concave part from its

tangent ∂fcave/∂x and a current solution of convex function, xt, until a result is convergent.

f tcave(x) =
∂fcave
∂x

· xt

xt+1 = arg min
x

fvex(x) + f tcave(x) (3.8)

A graphical illustration of CCCP is showed in Fig 3.2. Assumed that we want to

minimize the function in Fig 3.2 (left): E(~x). We first decompose it into Fig 3.2 (right):

a convex part (top curve) E1(~x) minus a convex term (bottom curve) E2(~x).The algorithm

proceeds by matching points on the two terms which have the same tangents. For an input

x0, we calculate the gradient ∇E2(~x0) and find the point x1 such that ∇E1(~x1) = ∇E2(~x0)

Next, we determine the point x2 such that ∇E1(~x2) = ∇E2(~x1), and repeat. Finally, the

algorithm rapidly converges to the solution at ~x = 5.0.

3.4 Solving Ramp Kernel Machines

In order to apply CCCP to our objective functions (3.7), we first decompose the objective

function into convex and concave parts in (3.9).

19

min
W

1

2
‖W‖2 +

n∑
i=1

Cyiξi︸ ︷︷ ︸
convex

−
n∑
i=1

CyiHS(ξi)︸ ︷︷ ︸
concave

(3.9)

The tangent of concave parts will be:

∂f tcave
ξi

=

 0 if ξti ≤ z

−Cyi if ξti > z
(3.10)

Thus, in each iteration, CCCP will solve the optimized problem in the form of:

min
W

1

2
‖W‖2 +

n∑
i | ξti≤z

Cyiξi (3.11)

s.t. ∀i, ∀r 6= yi, Wyi · xi −Wr · xi + ξi ≥ 1

∀i, ξi ≥ 0

The problem (3.11) can easily be reformulated into dual form using the same technique

used by Crammer & Singer [32]. Therefore, the complete step in solving Ramp Kernel

Machine is shown in Alg 1. Points having one or more of non-zero αi,r will be support vector

points of the model.

Interestingly, the Ramp Kernel Machine in Alg. 1 looks complex and requires to solve

an optimization problem multiple times until its solution is converged. In fact, the successive

optimizations only refine existing support vectors from the previous iteration. Therefore, it

will be much faster because their solutions have roughly the same group of support vectors.

3.5 Evaluations

3.5.1 Dataset

In order to evaluate the performance of our proposed solution, Ramp Kernel Machine

(RKM), we have compared it against other popular multi-class SVM classifiers; Crammer

20

Algorithm 1 Ramp Kernel Machine

1: find ratios of each class: ratior
2: calculate Cr for each class:

Cr = C/ratior
3: initialize α
4: repeat
5: compute ξi = 1+

maxmr 6=yi
∑n

j=1 αj,rK(xi, xj)−
∑n

i=1 αj,yiK(xi, xj)

6: minα
1
2

∑n
i=1

∑n
i=1K(xi, xj)−

∑n
i=1 αi,yi

s.t.

αi,r ≤
{
Cyi if r = yi and ξi ≤ z
0 otherwise

7: until α converges
8: f(x) = arg maxr∈Y

∑n
i=1 αi,rK(xi, x)

& Singer multi-class SVM (MC-SVM) [32] and cost-sensitive multi-class SVM (Cost-SVM).

The experiments use 10 real-world imbalanced datasets from multiple domains including

Thyroid Disease, Yeast, Contraceptive Method, Vertebral Column, Heart Disease, and Pima

Diabetes datasets. These datasets are publicly available from the UCI repository [43] and

their characteristics are summarized in Table 3.1. The binary-class Pima Diabetes dataset

is selected to show that our ramp kernel machine is a general n-class classifier which is

applicable to 2-class problem as well. For each dataset, we calculated class ratios, and then

marked its smallest rmin and largest rmax class ratios by asterisk (?). The imbalance of the

datasets are indicated by the high ratio between the number of instances of the majority

class and the minority class; rmax/rmin.

3.5.2 Parameters & Performance Metrics

In the experiments, we implemented all three algorithms in Java and used Gurobi Op-

timizer [44] to solve the optimization problems. We experimented with two types of kernels:

linear and non-linear (Radial Basis Function, RBF) kernels. Parameters: cost (C), and

RBF Gamma (γ) of each algorithm are tuned using grid search with 5-fold cross validation

21

to maximize G-mean where C ∈ [2−2, 2−1, . . . , 215], γ ∈ [2−6, 2−5, . . . , 25]. Then, Ramp-cut

(z) parameter of RKM is selected by grid search over a range [0.1, 0.2, . . . , 2.0] while keeping

the values of C and γ parameters the same as in Cost-SVM algorithm.

For each dataset, we ran 40 trials; in each trial, eighty percent of data are randomly

selected as training data while the rest are used as test data. Then, a G-mean value of a

model is calculated from the accuracies of each class. The average G-mean for linear and

RBF kernels are shown in Table 3.2 and Table 3.3 respectively. In addition to G-mean, we

investigated the micro and macro-averaging F-measure of the model in Table 3.4.

3.5.3 Results

Table 3.2 and Table 3.4 clearly show that in linear kernel, the ramp kernel machine

yields better classification results than cost-sensitive model and original multi-class SVM,

with respect to both G-mean and F-measure. Indeed, the performance improvements of

RKM are significant when comparing with MC-SVM & Cost-SVM on datasets with low

average G-mean value such as Yeast, Contraceptive Method, Heart Disease; despite the fact

that those datasets have very high imbalance ratio (Yeast = 92.60, Heart Disease-Switzerland

= 9.60, Heart Disease-Cleveland = 12.62).

In the RBF kernel, the ramp kernel machine generally achieves the best performance

among three algorithms; it has the highest G-mean and F-measure in all datasets except

the lower F-measure in Yeast and Heart Disease (Switzerland) datasets. Nevertheless, it

is relevant to point out that parameters used in the experiments are selected to maximize

G-mean value, not F-measure. The improvements of RKM are less significant than linear

kernel case, possibly due to the higher-dimensional feature space and non-linear nature of

RBF kernel.

22

Table (3.1) Multi-class Imbalanced Datasets from UCI

Datasets # Instances # Attributes # Classes Class Ratios, r
Imbalance Ratio

rmax/rmin

Thyroid Disease 3772 21 3 0.025?, 0.050, 0.925? 37.51

Yeast 1484 8 10 0.312?, 0.289, 0.164, 0.110, 0.034 92.60

0.030, 0.024, 0.020, 0.014, 0.003?

Contraceptive Method 1473 9 3 0.427?, 0.226?, 0.347 1.89

Vertebral Column 310 5 3 0.193?, 0.484?, 0.323 2.50

Heart Disease (Switzerland) 123 13 5 0.076, 0.381?, 0.276, 0.219, 0.048? 9.60

Heart Disease (Cleveland) 303 13 5 0.541?, 0.182, 0.119, 0.115, 0.043? 12.62

Pima Diabetes 768 8 2 0.651?, 0.349? 1.87

Glass Indentification 214 9 6 0.327, 0.079, 0.355?, 0.061, 0.136, 0.042? 8.44

Page Blocks 5473 10 5 0.898?, 0.060, 0.005?, 0.016, 0.021 175.46

Wine Quality (Red) 1599 10 6 0.006?, 0.033, 0.426?, 0.399, 0.125, 0.011 68.1

? indicates the smallest class ratio rmin and largest class ratio rmax of each dataset.

23

Table (3.2) Avg. G-mean Performance - Linear Kernel

Datasets MC-SVM Cost-SVM RKM

Thyroid Disease 0.945 0.991 0.996
Yeast 0.382 0.513 0.576
Contraceptive Method 0.303 0.327 0.513
Vertebral Column 0.776 0.835 0.847
Heart Disease (Switzerland) 0.304 0.553 0.586
Heart Disease (Cleveland) 0.367 0.454 0.481
Pima Diabetes 0.492 0.703 0.735
Glass Indentification 0.782 0.789 0.848
Page Blocks 0.924 0.978 0.982
Wine Quality (Red) 0.509 0.520 0.659
∗ the bold number means RKM has better performance than the other two classifiers.

Table (3.3) Avg. G-mean Performance - RBF Kernel

Datasets MC-SVM Cost-SVM RKM

Thyroid Disease 0.961 0.968 0.986
Yeast 0.908 0.912 0.937
Contraceptive Method 0.735 0.743 0.786
Vertebral Column 0.931 0.933 0.967
Heart Disease (Switzerland) 0.897 0.912 0.920
Heart Disease (Cleveland) 0.899 0.905 0.932
Pima Diabetes 0.913 0.938 0.951
Glass Indentification 0.926 0.934 0.979
Page Blocks 0.933 0.951 0.966
Wine Quality (Red) 0.805 0.898 0.930
∗ the bold number means RKM has better performance than the other two classifiers.

24

Table (3.4) Macro / Micro F-measure Performance

Datasets
Linear Kernel RBF Kernel

MC-SVM Cost-SVM RKM MC-SVM Cost-SVM RKM

Thyroid Disease 0.886 / 0.903 0.923 / 0.930 0.943 / 0.949 0.970 / 0.974 0.971 / 0.975 0.993 / 0.994

Yeast 0.465 / 0.476 0.507 / 0.541 0.531 / 0.572 0.963 / 0.967 0.969 / 0.972 0.964 / 0.969

Contraceptive Method 0.369 / 0.417 0.380 / 0.464 0.402 / 0.493 0.761 / 0.766 0.772 / 0.778 0.811 / 0.819

Vertebral Column 0.786 / 0.801 0.813 / 0.825 0.814 / 0.827 0.960 / 0.962 0.977 / 0.980 0.983 / 0.984

Heart Disease (Switzerland) 0.685 / 0.706 0.673 / 0.724 0.721 / 0.768 0.948 / 0.956 0.984 / 0.987 0.961 / 0.969

Heart Disease (Cleveland) 0.587 / 0.672 0.616 / 0.690 0.642 / 0.694 0.954 / 0.959 0.965 / 0.971 0.973 / 0.978

Pima Diabetes 0.577 / 0.605 0.671 / 0.686 0.679 / 0.694 0.956 / 0.958 0.972 / 0.972 0.975 / 0.975

Glass Indentification 0.666 / 0.672 0.794 / 0.823 0.841 / 0.861 0.934 / 0.936 0.964 / 0.966 0.989 / 0.992

Page Blocks 0.735 / 0.738 0.776 / 0.804 0.843 / 0.871 0.895 / 0.897 0.967 / 0.971 0.990 / 0.991

Wine Quality (Red) 0.246 / 0.248 0.298 / 0.404 0.439 / 0.527 0.550 / 0.557 0.907 / 0.912 0.930 / 0.934

1 the first number is macro-averaging F-measure and the second number is micro-averaging F-measure.

2 the bold number means RKM has better performance than the other two classifiers.

25

Table (3.5) Contraceptive: class errors from Linear Cost-SVM model

Classes Average of Scaled Error Variance of Scaled Error

No-use 1.24 3.20

Long-term 16.99 48.62

Short-term 5.74 18.38

Table (3.6) Vertebral dataset class errors from Linear Cost-SVM model

Classes Average of Scaled Error Variance of Scaled Error

Disk Hernia 1.38 1.84

Spondylolisthesis 1.00 1.12

Normal 1.53 1.02

3.5.4 Analysis of RKM Effectiveness

We have studied the effectiveness of using ramp-loss in imbalanced data classification.

Why does the ramp kernel machine yields much better result than the cost-sensitive multi-

class SVM on some datasets, such as Contraceptive, and Yeast, but shows only slight effects

on some datasets such as Vertebral Column, and Thyroid Disease ? We provided more de-

tailed analysis by examining the distributions of classification errors, ξ from the cost-sensitive

multi-class SVM model on two different datasets: one that shows dramatic improvement

with RKM (Contraceptive Method dataset) and the other with only marginally improve-

ment (Vertebral Column dataset). In the following, we will identify why our RKM yields

significantly better result on Contraceptive Method dataset.

We took a closer look at these two datasets; Contraceptive and Vertebral. Table 3.5

and 3.6 show the average classification errors and variances within each class for Contra-

ceptive Method and Vertebral Column datasets, respectively. The errors of each class are

appropriately scaled by the inverse of class ratio. In table 3.6, we observe that the average

and variance errors of each class in Vertebral Column dataset are relatively close to each

other. Contrast this with Contraceptive Method dataset, in which the averages and vari-

ances of errors within each class are remarkably varied. In addition, we also plotted the

26

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

P
ro

b
ab

il
it

y

Error, �

No-use Long-term Short-term

Figure (3.3) Contraceptive: Error distributions from Linear Cost-SVM

error distributions from Contraceptive Method dataset in Fig 3.3 for better clarity. The er-

rors distributions of each class are significantly different from each other; however, the main

problem seems to lie with the variance of errors in the second class, long-term. Fig. 3.3

clearly shows that the ”long-term” class is extremely noisy compared to other classes within

the same dataset. Undoubtedly, these results help us gain better understanding of why using

the summation of all errors on imbalanced and noisy dataset such as Contraceptive Method

dataset, will deteriorate the performance of classifier, despite the fact that those errors are

already scaled in the cost-sensitive multi-class SVM. Our ramp kernel machine solves this

problem by removing these noisy data points from the objective function, thus yielding a

higher accuracy.

27

PART 4

IMBALANCE DISTRIBUTED LEARNING

4.1 Distributed Learning

Mining data from multiple data sources leads to a more reliable and higher performance

model than using only local data. In this chapter, we try to solve another aspect of im-

balance data that happens in learning distributed predictive model from distributed data

environment.

Suppose that the data of interest are distributed over the data sources S1, S2, . . . , SJ ,

where each data source Sj contains only a fragment of the whole data. Two common types

of data fragmentation are horizontal and vertical. In a vertical distributed data, each data

fragment contains only a subset of data tuples. On the other hand, in a horizontal distributed

data, each data fragment contains only subset of data tuples. Table 4.2 and Table4.1 show

the different between the vertical and horizontal data partition of employee data with 6

features; employee ID, first name, last name, site , position, and salary.

In this dissertation, we limit the scope of our study by assuming that multiple data

sources are horizontal distributed. We try to build a global decision model to improve the

classification accuracy and decision reliability without revealing any information outside the

location data is stored. Below are the real-world examples of this requirement.

Table (4.1) Horizontal Distributed Data

Employee ID First name Last name Site Position Salary

S1

S2

...

SJ

28

Table (4.2) Vertical Distributed Data

Employee ID First name Last name Site Position Salary

S1 S2 S3 SJ

Example 1 (Distributed medical databases). Suppose that Sj are patient data records

stored at a hospital j. Each xjn here contains patient descriptors (e.g., age, sex or blood

pressure), and yjn is a particular diagnosis (e.g., the patient is diabetic or not). The objective

is to automatically diagnose (classify) a patient arriving at hospital j with descriptor x, using

all available data; S1, S2, . . . , SJ rather than Sj alone. However, a nonchalant exchange of

database entries (xjn, yjn) can pose a privacy risk for the information exchanged. Moreover,

a large percentage of medical information may require exchanging high resolution images.

Thus, communicating and processing large amounts of high-dimensional medical data at a

fusion center may be computationally prohibitive.

Example 2 (Collaborative data mining). Consider two different government agencies,

a local agency A and a nation-wide agency B, with corresponding databases SA and SB.

Both agencies are willing to collaborate in order to classify jointly possible security threats.

However, lower clearance level requirements at agency A prevents agency B from granting

agency A open access to SB. Furthermore, even if an agreement granting temporary access to

agency A were possible, databases SA and SB are confined to their current physical locations

due to security policies.

4.2 Possible Solutions

Numerous efforts have been devoted recently to solve the privacy-preserving problem

on learning from distributed data, we have categorized them into 3 group based on their

classification methods.

29

4.2.1 Linear Regression

Linear regression is an approach to model the relationship between a dependent variable

Y and one or more explanatory variables denoted X. The usual linear regression model for

n data point with m features is

Y = Xβ + ε (4.1)

where

X =


1 x11 · · · x1m
...

...
. . .

...

1 xn1 · · · xnm

 Y =


y1
...

yn

 (4.2)

and

β =


β0
...

βm

 ε =


ε1
...

εn

 (4.3)

The least squares estimate for β can be computed by

β̂ = (XTX)−1XTy (4.4)

Karr [45] have shown that we can solve the linear regression model securely by computing

XTX and XTy locally at each data sources, then use a secure sum protocol that we will

discuss more detail in the next chapter, to combine the global XTX and XTy. From these

values, they can compute the value of β̂.

However, this solution assumed that the class of data is linearly dependent on other

features. The model might yield a poor performance on some datasets that have non-linear

relationship between class other features.

30

4.2.2 Decision Tree

Decision tree is one of the most popular classification model due to its easy interpretation

of the model. The steps in building decision tree are shown in Algorithm 2;

Algorithm 2 Decision Tree

1: Calculate split score of every attribute using the data set, S
2: Split the set S into subsets using the best attribute
3: Make a decision tree node containing that attribute
4: Recurse on the subsets using remaining attributes

where the popular split score is Gini index and Information gain. Gini index, used in

CART decision tree, can be computed by summing the probability of each item being chosen

times the probability of a mistake in categorizing that item. It reaches its minimum (zero)

when all cases in the node fall into a single target category. Thus, the Gini index for a data

set S contains examples from J classes is

Gini(S) = 1−
J∑
j=1

p2j (4.5)

where where pj is the relative frequency of class j in S. Information gain is a split score

used in ID3 and C4.5 decision tree. It measures the change in information entropy from a

prior state to a state that an attribute is given. The information entropy can be computed

by

H(S) = −
J∑
j=1

pj log pj (4.6)

Then the Information gain of splitting an attribute A into {a1, a2, . . . , am} is

IG(S,A) = H(S)−
∑
a inA

| SA=a |
| S |

H(SA=a) (4.7)

From equation (4.5) and (4.7), we will notice that both Gini index and Information

gain can be computed privately from distributed data sources by using secure sum protocol.

31

Therefore, we are able to construct a decision tree from distributed data source while still

maintaining data privacy by using a traditional approach in Algorithm 2. The only difference

is we have to split score from all data sources, instead of using only local data.

4.2.3 Naive Bayes classifier

A naive Bayes classifier is a simple probabilistic classifier based on applying Bayes the-

orem with strong (naive) independence assumptions. Mathematically, Bayes’ theorem gives

the relationship between the probabilities of A and B, P (A) and P (B), and the conditional

probabilities of A given B and B given A, P (A | B) and P (B | A). In its most common

form, it is:

P (A | B) =
P (B | A) ∗ P (A)

P (B)
(4.8)

To predict a data point x from its feature f1, f2, . . . , fm, it will be assign to a class, c,

that has a maximum probability P (y = c |f1, f2, . . . , fm)

Predict(f1, f2, . . . , fm) = arg max
c

P (y = c |f1, f2, . . . , fm) (4.9)

= arg max
c

P (f1, f2, . . . , fm |y = c)

P (f1, f2, . . . , fm)
P (y = c)

In practice, from equation (4.9), there is interest only in the numerator of that fraction,

because the denominator, P (f1, f2, . . . , fm) is effectively constant. The numerator is equiv-

alent to the joint probability model. If we assume ”naive” conditional that each feature is

independence. The we can write Naive Bayes classifier as

Predict(f1, f2, . . . , fm) = arg max
c

P (f1, f2, . . . , fm |y = c) P (y = c) (4.10)

≈ P (f1|y = c) ∗ P (f2|y = c) ∗ . . . P (fm|y = c) ∗ P (y = c)

= P (y = c) ΠmP (fm|y = c)

32

Again, as in a distributed linear regression and decision tree, all probabilities can be

computed privately via secure sum protocol. Thus, a global Naive Bayes classifier can be

constructed in a same way as traditional algorithm with the computed probabilities.

4.3 SVM

Although, many other classifiers such as linear regression, decision tree, and naive Bayes

classifier can solve our imbalance and privacy problem in learning from distributed data, in

our study, we are still interest in implementing Support Vector Machine (SVM) for dis-

tributed data sources because SVM usually gives a better performance than other models.

The explanations are SVM has a good generalization for unseen data and also capability to

learn a non-linear relationship between the data and the target variable. In this section, we

review three possible implementations of SVM for distributed data.

S1 S2 S3 S4

SV1 SV2 SV3 SV4

SV5 SV6

SV8 feedback

Figure (4.1) The structure of Cascade SVM

Cascade SVM Cascade SVM, is introduced by Graf [46] in attempt to speed up SVM

for large-scaled dataset. In Cascade SVM, data sources will build their local SVM models,

then they combine their local models by using only support vector points. The combining

process continues, from a leaf node (data sources) to the root of the tree, and repeat until

33

the global optimum is reached. The structure of Cascade SVM is shown in Fig. 4.1.

Although, Cascade SVM and its variations [47, 48] show positive results in learning from

multiple sources, it assumes that distributions of data sources are not significantly different

from each other. This assumption might not be true in real-world. In addition, we have

shown in our primary experiment that the difference distributions of data sources can lead

to poor result of the global classifier.

Encryption-Based Algorithms The second approach we found is based on encryp-

tion algorithm. Yu [49] proposed the method to securely compute a global kernel matrix

from multiple sources. Kernel functions can be written in dot product form; for example,

Polynomial kernel = (xi ·xj + 1)p and RBF kernel = exp(− |xi−xj |
2

g
) = exp(−xi·xi−2xi·xj+xj ·xj

g
)

The key idea is to use a secure set intersection cardinality [50] to securely compute the

dot products. To use the secure set intersection cardinality, we revise the representation of a

binary feature vector into an ordered set such that the elements of the set are the indexes of

”1” in the original vector. For example, suppose vector x1 = (1, 0, 1, 1, 0, 0, 0, 1, 0, 1) and x2 =

(0, 0, 0, 1, 0, 0, 0, 1, 1, 0) in 10-dimensional space.. Then, they will write x′1 = (1, 3, 4, 8, 10)

and x′2 = (4, 8, 9) respectively. Now the dot product of two vectors becomes equivalent to

the size of the set intersection between the two sets. That is, x1 · x2 = |x′1 ∩ x′2| = 2

Next, to securely compute the size of the intersection set, |x′1 ∩ x′2| between two par-

ties A and B, both parties must encrypt their sets with their own private keys EA and

EB respectively using the commutative one-way hash function. Then, they exchange the

encrypted values and encrypt them again with their keys. Now, both parties will receive

EA(EB(S2)) and EB(EA(S1)). Due to the commutative property of the one-way hash func-

tion, EA(EB(x1)) = EB(EA(x2)) only when x1 = x2. Thus, it is possible to compute the

number of equivalent elements without decrypting the sets.

Even though, this algorithm can solve the privacy and imbalance among multiple

sources, it requires each data source to encrypt and send its data to other data sources.

This approach does not scale well for high dimensional data, or when data size increases.

34

(a) Broadcast local parameters to its
neighbors

(b) Receive parameters from neigh-
bors and update node’s parameters

Figure (4.2) Model synchronization in peer-to-peer network.

Moreover, it need to parse the global kernel matrix, K that has a size of n ∗ n among all

data sources, where n is the total number or data.

ADMM Another research work that is closely related to our problem is ”Consensus-

based SVM” in peer-to-peer network. Forero [51] proposed a synchronization method of

parameters of SVM in a node with other nodes in a network. In this scheme, each node

alternately broadcast its SVM’s parameters to its neighbors, and then use values received

from its neighbors to update its local parameters. Finally, all nodes will agree on the same

set of parameters that will be the global model.

In a linear model, this approach should definitely solve our problem for privacy and

imbalance data among multiple sources. However, in non-linear pattern, there are still open

questions in capturing non-linear pattern among data sources and concerns in exchanging

support vectors.

From all existing research work we found, none of them can solve the privacy and

imbalance problem in building SVM from multiple data sources effectively. We will review

the secure sum framework in chapter 5 and introduce our privacy-preserving distributed

SVM that can solve both privacy and imbalance effectively, in chapter 6.

35

PART 5

SECURE SUM PROTOCOL

Secure sum is often given as a simple example of secure multiparty computation [52].

We include it here because of its applicability to data mining, and because it demonstrates

the difficulty and subtlety involved in making and proving a protocol secure.

5.1 Simple Secure Sum

Distributed data mining algorithms frequently calculate the sum of values from individ-

ual sites. Assuming three or more parties and no collusion, the following method securely

computes such a sum.

Assume that the value v =
∑s

l=1 vl to be computed is known to lie in the range [0 . . . n].

One site is designated the master site, numbered 1. The remaining sites are numbered

2 . . . s. Site 1 generates a random number R, uniformly chosen from [0 . . . n]. Site 1 adds this

to its local value v1, and sends the sum R + v1modn to site 2. Since the value R is chosen

uniformly from [1 . . . n], the number R + v1modn is also distributed uniformly across this

region, so site 2 learns nothing about the actual value of v1.

For the remaining sites l = 2 . . . s− 1, the algorithm is as follows. Site l receives

V = R +
l−1∑
j=1

vj mod n (5.1)

Since this value is uniformly distributed across [1 . . . n], i learns nothing. Site i then

computes

36

5 -1

4

R = 3

2

5+3

8-1

7+4

11+2
Sum = 13-3

Figure (5.1) Secure computation of a sum.

R +
l∑

j=1

vj mod n = (vj + V) mod n (5.2)

and passes it to site l + 1.

Site s performs the above step, and sends the result to site 1. Site 1, knowing R,

can subtract R to get the actual result. Note that site 1 can also determine
∑s

l=2 vl by

subtracting v1. This is possible from the global result regardless of how it is computed, so

site 1 has not learned anything from the computation. Figure 5.1 depicts how this method

operates.

This method faces an obvious problem if sites collude. Sites l − 1 and l + 1 can

compare the values they send/receive to determine the exact value for vl. The method can

be extended to work for an honest majority. Each site divides vl into shares. The sum for

each share is computed individually. However, the path used is permuted for each share,

such that no site has the same neighbor twice. To compute vl, the neighbors of l from each

iteration would have to collude. Varying the number of shares varies the number of dishonest

(colluding) parties required to violate security.

37

5.2 Secure Sum with Shamir’s Secret Sharing Scheme

To avoid collusion among multiple sites, we will use secure sum protocol that is based on

Shamir’s Secret Sharing Scheme. Shamir’s Secret Sharing is an algorithm in cryptography.

It is a form of secret sharing, where a secret D is divided into n unique parts: D1, D2, . . . ,

Dn such that it needs a knowledge of at least k, scheme threshold, pieces to reconstruct the

original secret D.

Figure 5.2 shows the essential idea of Adi Shamir’s threshold scheme. An infinite num-

ber of possible polynomial functions of degree 2 can be drawn through points; A and B.

Therefore, three points: (A, B, C) are required to define a unique polynomial of degree 2.

Following the same idea, 2 points are sufficient to define a line, 3 points are sufficient to

define a parabola, 4 points to define a cubic curve and so forth. That is, it takes k points

to define a polynomial of degree k − 1. Suppose we want to use a (k, n) threshold scheme

to share our secret S, we can assign the coefficient a0 = S, choose random k− 1 coefficients;

a1, · · · , ak−1 to define polynomial function: f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ ak−1x
k−1,

and then generate n points from this function. Given any subset of k of these n points, we

can compute the coefficients of the polynomial using interpolation and the secret will be the

constant term a0.

A

B

C

Figure (5.2) An illustration of Adi Shamir concept.

38

5.2.1 Homomorphic Encryption

Shamir’s Secret Sharing Scheme has an important property such that we can com-

bine secrets from multiple sites without the need to explicitly reveal or decrypt secrets.

This property is called homomorphic additive property. An encryption function satisfies

homomorphic additive property when a summation of two values separately and then en-

crypting the result yields the same final value as first encrypting two values separately and

then summing the results. For example, if H be an homomorphic encryption that supports

addition. Let C1 be a ciphertext of secret S1: C1 = H(S1), and C2 be a ciphertext of se-

cret S2: C2 = H(S2). Then, the summation of both ciphertexts will be the ciphertext of

summation of both secrets ⇒ C1 + C2 = H(S1 + S2).

5.2.2 A Decentralized Voting Protocol

The popular example of using Shamir’s Secret Sharing in secure sum protocol is a

decentralized voting protocol. Suppose a community wants to perform an election, but they

want to ensure that the vote-counters won’t lie about the results. Each member of the

community can put his vote into a form that can be split into pieces, then submit each piece

to a different vote-counter. The pieces are designed so that the vote-counters can’t predict

how altering a piece of a vote will affect the whole vote; thus, vote-counters are discouraged

from tampering with their pieces. When all votes have been received, the vote-counters

combine all the pieces together, which allows them to reverse the alteration process and to

recover the aggregate election results.

In detail, suppose we have an election with n voters who will submit votes, and k

authorities who will count the votes.

1. Each voter computes the k shares of his vote via Shamir’s Secret Sharing with scheme

threshold = k; each one for each authority.

2. The voter sends shares to each authority.

39

voter 1 voter 2 voter n

authority 1

authority 2

authority k

p1(x1)

p1(x2)

p1(xk)

p2(x1)

p2(x2)

p2(xk)

pn(x1)

pn(x2)

pn(xk)

. . .

. . .

. . .

. . .

. . .

. . .

A1

A2

Ak

points from polynomial
function

total
election result

authority sum
(row sum)

Figure (5.3) An example of the Shamir’s Secret Sharing in voting protocol.

3. Each authority collects the values that he receives and compute the sum Ak of all the

values he’s received. Since each authority only gets one value from each voter, he can’t

discover any voter’s decision. Moreover, he can’t predict how altering the submissions

will affect the vote.

4. When all Ak are combined together, we can determine the aggregate election result.

5.3 Application of Shamir’s Secret Sharing to Distributed Data

In this section, we describe a framework based on Shamir’s Secret Sharing to find

summation of data from horizontal distributed data. Only the one dimensional case is

shown; an extension to multiple dimensions is straight forward. The scenario is same as a

decentralized voting system in the previous section. In this case, we select k sites from n

data sources as share combiners (authority).

1. Each data source computes the k shares of his value. Then, send each share to share

combiners.

2. Each share combiner collects shares from all data sources, Then compute their sum-

mation.

3. Each share combiner sends their summation result to the master site.

40

5

2 -1 4

partial sum

-1 2

partial sum partial sum

master site

data sources

k share combiners

Figure (5.4) An application of Shamir’s Secret Sharing horizontal distributed data sources.

4. The master site reconstruct the global summation from intermediate results from

share combiners.

5.4 Privacy-Preserving K-means Over Distributed Data

k-means clustering is popular for data mining technique to aims to partition n observa-

tions into k clusters in which each observation belongs to the cluster with the nearest mean.

This results in a partitioning of the data space into Voronoi cells.

Given a set of observations (x1, x2, . . . , xn), where each observation is a d-dimensional

real vector, k-means clustering aims to partition the n observations into k sets (k ≤ n)

S = S1, S2, . . . , Sk so as to minimize the within-cluster sum of squares (WCSS):

arg min
S

k∑
i=1

∑
xj∈Si

|| xj − µi || 2 (5.3)

where µi is the mean of points in Si. The most common algorithm called Lloyd’s algorithm,

41

uses an iterative refinement technique. The algorithm proceeds by alternating between two

steps:

• Assignment step: Assign each observation to the nearest cluster.

• Update step: Calculate the new means to be the centroids of the observations in the

new clusters.

The algorithm converges when the assignments no longer change. We can see that the

challenging part in learning privacy-preserving k-means over distributed data is to securely

compute means of cluster centroids from all data sources. This procedure can be accom-

plished by the mentioned secure sum framework.

Algorithm 3 Privacy-Preserving K-means

Input: Initial centroids µi
1: while not converged do
2: data source:
3: assign observation xi to the nearest cluster µ.
4: compute local summation for each cluster including:
5: the number of points, d- dimension vector.
6:

7: compute cluster summations via secure sum protocol
8:

9: master site:
10: reconstruct the number of points and d- dimension vector summations.
11: compute a new centroid µ from global summation.
12: end while

42

PART 6

PRIVACY-PRESERVING DISTRIBUTED SVM

The main diagram of our privacy-preserving SVM for distributed data sources is shown

in Figure 6.1. In this chapter, we will describe each component in our framework starting

from briefly reviewing the standard SVM.

S1 S2 S3 SJ

Secure Sum Protocol

Landmark Points

Approximate Kernel

Linear SVM

Privacy Aware Non -linear SVM

Data Sources: S1, S2, S3, …, SJ

Figure (6.1) Components of privacy-preserving distributed SVM.

6.1 SVM

Support vector machines, SVM, is a state-of-the-art classification method introduced by

Vapnik[53]. It is widely used in many fields due to its high accuracy and ability to deal with

high-dimensional data. Given a training dataset D of n samples; S = {(xi, yi)|i = 1...n}

, where xi ∈ Rp is a sample with p features and yi ∈ {−1, 1} is a class label of xi, SVM

constructs a hyperplane: ω · x − b = 0 to separate samples from two classes. The optimal

hyperplane will maximize the margin of separation while minimizing the classification errors.

This can be formulated as an optimization problem in equation (6.1).

43

min
ω,ξi,b

1

2
‖ω‖2 + C

n∑
i=1

ξi (6.1)

s.t.∀i, yi(ω · xi + b) ≥ 1− ξi, ξi > 0

6.1.1 SVM in Dual Form

In the case that data cannot be separated linearly by a hyperplane, SVM can perform

non-linear classification by mapping data from the original inputs into high-dimensional

spaces x ⇒ ϕ(x) assuming that classes can be separated by a hyperplane. However, it

is very hard to explicitly define the right mapping function due to its high dimensions.

Fortunately, SVM problem in equation(6.1) can be written in a dual form in equation (6.2):

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈ϕ(xi), ϕ(xj)〉 −
n∑
i=1

αi (6.2)

s.t.
n∑
i=1

yiαi = 0 and ∀i, 0 ≤ αi ≤ C

In this form, only the dot products between pairs of inputs: ϕ(xi) · ϕ(xj) are required.

It is much easier to define a function k(xi, xj) = ϕ(xi) ·ϕ(xj) and calculate their dot product

in high dimensional space. This function is called kernel function, and the commonly used

kernel function is RBF and polynomial kernel. Therefore, the dual objective function can

be written as equation (6.3):

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj)−
n∑
i=1

αi (6.3)

For a single data source, with a given kernel function, we are able to calculate a kernel

matrix K for each pair of data. Whereas, this is not possible for multiple data sources in

which xi and xj are in different locations and sharing values of xi and xj is prohibited.

44

6.2 Kernel Approximation

While it is not possible to directly calculate kernel values k(xi, xj) for any xi and xj

which are in different sources, these values can be approximated via Nyström low-rank

approximation[29]. Nyström method randomly pick l global landmark points: L1, L2,

. . . , Ll from all data sources, then infer the value of implicitly from the relations of xi

and xj with these landmarks. Let Ri and Rj be a 1 × ` vector that contains kernel val-

ues between xi and xi to l landmarks respectively: Ri = [k(xi, L1), k(xi, L2), ..., k(xi, Ll)],

Rj = [k(xj, L1), k(xj, L2), ..., k(xj, Ll)], and A be `× ` kernel matrix between any pairs of l

landmarks, the k(xi, xj) can be approximated by equation(6.4) as:

k(xi, xj) = Ri A
−1 RT

j (6.4)

There are two main disadvantages of using the standard Nyström approximation. First,

landmarks are sampled from the original data. Therefore, sending these points to other

data sources would violate the privacy constraint. A new strategy has to be developed in

selecting landmarks that does not reveal any sensitive data. Second, approximating all pairs

of (xi, xj) that are located at different locations requires a lot of commutation among data

sources, which does not scale well when the number of data or data sources is large. We will

show in section 2.4 how these unnecessary communications can be avoided.

6.2.1 Selecting Landmarks

As the quality of Nyström approximation highly depends on landmarks, many sampling

schemes [54–57] were proposed to select the best landmarks. One of the simple strategies

that match our criteria for multiple data sources problem is to use centers of clusters as

landmarks. This method does not reveal individual data among data sources, it also provides

a low approximation error bound[55].

To get landmarks or global clusters, we need to apply clustering method that maintains

data privacy. In this work, we use a simple secure sum protocol [58] for calculating global

45

k-mean clusters, where k = l is from all data sources. Although the secure sum protocol

can maintain data privacy, it might be vulnerable if multiple data sources collude. Data

source Si−1 and Si+1 can determine the exact value from Si by comparing the values they

send/receive. There are many complicated privacy-aware clustering algorithms which can

solve this problem [59–61].

6.2.2 Kernel Decomposition

In this section, we show that we can perform decomposition of a kernel matrix, K

directly in the form of K = FF T , so that we can avoid kernel computation of all pairs of

(xi, xj) at different locations. The idea behind kernel decomposition is to try changing the

problem in dual form (6.3) back to the primal form (6.1). If a kernel matrix of n samples can

be decomposed into FF T , where F is n× ` matrix, then F can be treated as virtual inputs

for a linear SVM model by mapping X from the original data space into ` dimensional space,

and then equation (6.4) can be rewritten in a general form as:

K = R A−1RT (6.5)

Here ”A” is a ` × ` symmetric and positive semi-definite matrix; thus eigen-

decomposition of A can be expressed as A = UΛUT where U and Λ are eigenvectors and

eigenvalues of A respectively. If we replace A in equation(6.5), then:

K = R (U Λ UT)−1 RT (6.6)

= R (UT Λ−1 U) RT

If we want to decompose K into K = FF T form, it is obvious that F can be approxi-

mated as:

F = R U Λ−1/2 (6.7)

46

From (6.7), it is interesting to note that it is not necessary to calculate any k(xi, xj) val-

ues across data sources at all. Only the kernel value between each data point and landmarks

needs to be calculated, which can then be mapped on the eigenvector of landmarks. The

process of converting non-linear space into linear one by approximation and decomposition

techniques is described by Algorithm 4. With all data converted into virtual data, the global

classification model can be constructed by using distributed linear classification that will be

discussed in the next section.

Algorithm 4 Convert Non-linear to Linear Space

Input:
1: X : training data in multiple sources.
2: ` : the number of landmarks.
3: k : kernel function.
4:

5: L← global cluster center(X,n cluster = `)
6: R← k(X,L)
7: A← k(L,L)
8: UΛUT ← SV D(A)
9: F ← R UΛ−1/2

10: return F

6.3 Cutting Plane

After converting all data from non-linear pattern into virtual points in the linear model,

we need to learn a linear SVM from multiple data sources in a way that data privacy is

protected because anyone who knows landmarks can still convert virtual points back to

the original data. Among the recently proposed methods to solve SVM, cutting − plane

technique that was introduced by Franc Vojtech and Sonnenburg Soeren[62] is a good match

to our requirements. This approach can not only solve a linear SVM from large-scale data

efficiently, but also can be easily applied to a scenario of multiple data sources in which data

protection is required.

Traditionally, training SVM from a large dataset via equation(6.1) is a rather difficult

task because the size of the equation expands with a dataset: it has n slack variables ξi and

47

2n constraints. To address this, the cutting − plane technique eliminates all slack variables

by replacing them with a single variable L, which is a summation of all ξi. However, this

results in 2n constraints: the combinations of all constraints in equation(6.1), no matter

whether points will be correctly classified or not. For a point i, ci = 0 if this point is

correctly classified, and ci = 1 when it is misclassified, and then the new problem will be in

form of:

min
w,b,R

1

2
‖w‖2 + C L (6.8)

s.t. ∀c ∈ {0, 1}n
n∑
i=1

yici(w · xi + b) ≥
n∑
i=1

ci − L

In practice, the equation (6.8) can easily be solved with a few subsets of 2n constraints;

starting by removing all constraints, and then iteratively adding the most violated constraint

back. Within a few iterations, normally 10-100 iterations, the optimal solution can converge.

This process can be formally defined in Algorithm 5.

We can notice that the cutting − plane technique works welly for our distributed data

sources. First, our virtual data points derived from the low-rank approximation technique,

which has few features, can be solved effectively in a few iterations, regardless of the size

of a dataset. The quadratic optimization problem will always be in a small scale with 10-

200 variables and 10-200 constraints. Second, in each iteration, data sources only need to

compute two parameters for a given value of w, in line 12 of Algorithm 5. This step does

not reveal any individual data and can be accomplished by using a secured sum protocol.

Linear Search Franc has proposed the an optimized cutting plane algorithm(OCA)

to improve the convergence rate of the cutting − plane algorithm by ensuring that a new

constraint added in each iteration will lead to the lower objective. Originally, Algorithm

5 will use the new w derived from line #17 to create a new constraint in line #16. On

the other hand, OCA will keep the value of w before and after line #17 as wb and wa

48

Algorithm 5 Distributed Cutting-Plane to Solve Linear SVM

Input:
1: fi, yi : virtual inputs and labels, i = 1, . . . , n.
2: Sj : data sources, j = 1, . . . J
3: ε : tolerance
4:

5: w = ~0; Ω = ∅
6: repeat
7: // distributed
8: for all Sj do
9: for i ∈ Sj do
10:

ci =

{
1 if yi(w · fi) < 1
0 otherwise

11: end for
12: mj ←

∑
i∈Sj

ci , aj ←
∑
i∈Sj

ciyifi

13: end for
14:

15: // centralized
16: Ω← Ω ∪ {w ·

∑
j=1...J

aj ≥
∑

j=1...J

mj − L}

17: {w, b, L} ← arg minw,b,L≥0
1
2
‖w‖2 + C L

18:

s.t. ∀ Ω

19: until |a · w −m− L| < nε
20: return {w, b}

respectively. Then, it will search for the optimal w in a (wa − wb) direction that has the

minimum objective value. The new constraint created from this w will guarantee that the

iterations will decrease.

Generally, we can define w as w ← wb +k(wa−wb) where k ≥ 0. The objective of value

w can be written as equation (6.9) where ci equals 1 when point i is misclassified by w and

0 otherwise. Cutting− plane searches for the optimal point by investigating ∂ obj(w)/∂k in

49

equation (6.10) when it changes from negative to positive.

obj(w) =
1

2
‖(wb + k(wa − wb)‖2 (6.9)

+ C

n∑
i=1

ciyifi · (1− (wb + k(wa − wb)))

∂ obj(w)

∂k
= k ‖wa − wb‖2 + wb · (wa − wb) (6.10)

− C

n∑
i=1

ciyifi · (wa − wb)

However, adopting the original OCA technique in our scenario is not straightforward

because it performs an extensive search by checking all possible k’s corresponding to in-

dividual data points. This process requires sharing data information among data sources.

Instead, we propose to do a linear search with a constant step-size, λ. The search will start

from wb and try wb+λ(wa−wb), wb+2λ(wa−wb), . . . , until the value of ∂obj(w)/∂k changes

from negative to positive. If the derivative at wb is equal or greater than 0, that means wb

is the optimal solution for the problem. This simple search will avoid sharing data among

data sources while still speeding up the process. Our linear search for private distributed

data sources are defined in Algorithm 6.

6.4 Evaluations

Our privacy-preserving distributed SVM (PD−SVM) was validated and evaluated by

real data. In this section, we show experimental results for evaluating the performance and

efficiency of our PD-SVM compared with other alternative approaches. Our experiments

were conducted by simulating multiple data sources in MATLAB. All compared algorithms

are based on MATLAB’s Statistics Toolbox or pure MATLAB implementations (no mex

files).

50

Algorithm 6 Linear Search for Distributed Data Sources

Input:
1: fi, yi : virtual inputs and labels, i = 1, . . . , n.
2: Sj : data sources, j = 1, . . . J
3: wb : w before line#17 of Alg 5
4: wa : w after line#17 of Alg 5
5: λ : search’s step size
6:

7: D ← wa − wb; k ← 0
8: while true do
9: w ← wb + k D
10: // distributed
11: for all Sj do
12: for i ∈ Sj do
13:

ci =

{
1 if yi(w · fi) < 1
0 otherwise

14: end for
15: aj ←

∑
i∈Sj

ciyifi

16: end for
17:

18: // centralized

19:
∂obj(w)
∂k

← k ‖D‖2 + wb · D − C D ·
∑

j=1...J

aj

20: if ∂obj(w)/∂k ≥ 0 then
21: break
22: end if
23: k ← k + λ
24: end while
25: return w

51

6.4.1 Datasets

The test was performed on multiple real-world datasets from LIBSVM repository[63] ,

which are collected from multiple domains. The details of these datasets are summarized in

Table 6.1.

Table (6.1) Summary of datasets we used in the experiment.

Dataset # of Features Size
Australian 14 690

Breast-cancer 10 683
Pima Diabetes 8 768

German 24 1000
Heart 13 270

Ionosphere 34 351
Liver-disorders 6 345

Splice 60 3175

6.4.2 Compared with Traditional Classification Models

First, we compared our PD−SVM with traditional classification models such as Naive

Bayes classifier, Decision tree, linear SVM and SVM with Gaussian kernel (SVM-RBF). It

is noted that these traditional models need to combine data from multiple sources during

training while our PD-SVM is trained in distributed manner to maintain data privacy. For

PD-SVM, we randomly split data into 4 equal groups to simulate multiple data sources and

limit the number of landmarks to 15% and 25% of training data in a single source. For

example in Australian dataset, the number of landmark for 15% case equals to 0.15*690/4 ∼

25 points. We ran the experiments on each dataset using 5-fold cross validation and compute

the averaged class accuracies. Table 6.2 shows the comparison result from the classifiers.

From the first experiment, it can be seen that our framework yields the same level of

accuracy when comparing with traditional classification models. Noticeably, PD − SVM

performed better than Naive Bayes classification and decision tree for most of the time. Our

model has a better accuracy because using landmark points is equivalent to applying feature

extraction for improving the models.

52

Table (6.2) Performance comparison between Privacy Distributed SVM with traditional clas-
sifiers.

Dataset
Naive Bayes Decision Linear SVM PD − SVM PD − SVM

Classifier Tree SVM RBF RBF,15 % RBF,25 %
Australian 79.85 85.65 85.51 86.38 85.01 85.46

Breast cancer 96.19 95.46 96.98 97.21 96.88 97.01
Pima Diabetes 75.91 71.22 77.10 77.60 76.84 77.32

German 72.40 72.20 76.58 76.30 75.40 75.50
Heart 84.80 77.78 83.83 84.07 82.85 83.48

Ionosphere 82.05 89.74 88.27 94.80 89.31 92.19
Liver disorders 56.23 68.70 68.68 73.04 71.65 71.97

Splice 84.20 92.90 79.97 87.70 82.36 83.02

6.4.3 Compared with Other SVM-Based Approaches

In the second part of the experiment, we would like to point out that our PD-SVM does

not make any assumptions about the distribution of data in data sources at all. In contrast,

most distributed classification model usually assume that the distributed data from different

sources have close or similar distributions. This assumption may not be valid in the real

world.

Accuracy In this part, we use ”Four-class” dataset from LIBSVM repository. Dataset

is preprocessed and transformed to two-class problem, as shown in Figure 6.2. We select

this dataset because it has only 2 features; f1 and f2, so we can easily plot and visualize its

distribution. We split this dataset equally into 3 data sources by 2 scenarios.

- First case: all data are randomly split to all data sources. In this case all data sources

will have roughly the same distribution.

- Second case: data are split equally into three segments based on the value of the first

feature: f1: the three ranges are [-1, -0.307692], (-0.307692, 0.285714], (0.285714, 1].

Groups of data are three vertical segments separating by the dotted lines in Figure 6.2.

We compared our privacy distributed SVM, PD-SVM with:

53

−1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

f 1

f
2

Figure (6.2) Four-class dataset is split into 3 groups by values of f1.

- SVM Ensemble [64], which is a simple approach to solve privacy problem among mul-

tiple data sources. Each data source will train its local model separately and the final

predictions of testing data will be based on major voting from all local models.

- Consensus-based SVM [65], which also uses landmark point to handle non-linear pat-

tern. However, it solves the global linear SVM by constructing local models in each

data source and iteratively adjust local models until all models agree the same set of pa-

rameters. The synchronized process is usually implemented by ADMM technique[66],

which adds parameters’ deviation as a penalty to the objective function of local model.

Table 6.3 shows the performance of all three classifiers in both cases. It is clearly

shown that all classifiers perform well when data is randomly split among three sources. On

the other hand, when data is split by values of feature f1, SVM Ensemble performs poorly

compared to our PD-SVM and SVM-ADMM. The simple explanation is because Ensemble

SVM uses only local information in predicting an unseen data. This unseen data might come

54

Table (6.3) Performance of different algorithm based on different distributions

Four-Class SVM Ensemble PD-SVM SVM-ADMM
Random Distribution 99.16 99.90 99.46
Split by feature f1 84.48 99.94 99.69

from a dataset that have a totally different distribution.

In this test, it can be seen that our framework, PD-SVM and SVM-ADMM have the

same level of performance in term of accuracy. In the next part, we will compare the efficiency

of our PD-SVM with that of SVM-ADMM.

6.4.4 Efficiency

Both PD-SVM and SVM-ADMM use landmark points to handle non-linear pattern. The

main difference between these two approaches is the method used in solving SVM. PD-SVM

uses cutting − plane technique to solve global SVM by collecting cutting information from

all data sources, while SVM-ADMM builds the local models and iteratively synchronizes its

parameters. To compare the PD-SVM and SVM-ADMM, we simulated multiple data sources

scenarios using both approaches in MATLAB, and measured the time that both algorithms

take to solve SVM. The implementation and parameters used for ADMM is based on Boyd’s

example[66]. In all tests, data is split into multiple groups by two ways as shown in the

previous section: 1.) random assignment and 2.) Splitting based on features to simulate

different distributions among data sources. In the Pima dataset which has 8 features, we

tested both algorithms on 8 dataset that is split equally by feature f1, f2, f3, f4, . . . , and f8.

Then, the average and standard deviation of time as well as iteration in solving SVM are

recorded.

We tested ”Four-Class” and Pima dataset by simulating 5, 10 and 20 data sources,

the time used by PD-SVM and SVM-ADMM for both datasets are shown in Table6.4 and

Table6.5, respectively.

55

Table (6.4) Efficiency of Privacy Distributed SVM and SVM-ADMM on Four-class dataset.

PD-SVM SVM-ADMM
of sources 5 10 20 5 10 20

Same µ = 0.094 µ = 0.089 µ = 0.087 µ = 2.72 µ = 0.73 µ = 2.59
Distribution σ = 0.005 σ = 0.008 σ = 0.007 σ = 0.02 σ = 0.05 σ = 0.75

Different µ = 0.093 µ = 0.089 µ = 0.084 µ = 3.39 µ = 1.96 µ = 7.37
Distribution σ = 0.007 σ = 0.008 σ = 0.008 σ = 0.60 σ = 0.43 σ = 2.68

Table (6.5) Efficiency of Privacy Distributed SVM and SVM-ADMM on Pima dataset.

PD-SVM SVM-ADMM
of sources 5 10 20 5 10 20

Same µ = 0.092 µ = 0.088 µ = 0.067 µ = 8.04 µ = 18.91 µ = 7.38
Distribution σ = 0.006 σ = 0.006 σ = 0.007 σ = 2.13 σ = 1.18 σ = 0.50

Different µ = 0.091 µ = 0.090 µ = 0.066 µ = 9.73 µ = 18.09 µ = 7.62
Distribution σ = 0.008 σ = 0.008 σ = 0.008 σ = 3.97 σ = 2.69 σ = 2.21

From the result of ”Four-class” dataset in Table 6.4 and Pima dataset in Table 6.5, it

is clearly shown that the speed of PD-SVM is much faster and more consistent than SVM-

ADMM in all cases. Second, the time PD-SVM takes to solve SVM by, which is based on

Cutting-plane technique, does not depend on the number of data sources or the distribution

of data among sources. The averages time and standard deviations of all cases are very close.

On the other hand, the time for solving SVM by ADMM varies and its standard deviation is

much higher. Theoretically, the larger number of data sources, the faster ADMM can solve

the quadratic optimization problem because each data source will have smaller number of

data. However, the larger number of data sources tends to increase the deviation of parameter

in each data source. The box plots in Figure 6.3 and Figure 6.4 show the number iterations

that ADMM uses for ”Four-class” and Pima datasets respectively. In both datasets, the

number of iterations and their variances increase when the number of data sources increases.

In addition, it will take longer time for ADMM to solve SVM especially when the split data

have different distributions.

56

Balance−5 Imbalance−5 Balance−10 Imbalance−10 Balance−20 Imbalance−20

0
20

0
40

0
60

0
80

0
10

00

Balance
Imbalance

Figure (6.3) The number of iterations that ADMM uses in solving SVM for Four-class
dataset.

57

Balance−5 Imbalance−5 Balance−10 Imbalance−10 Balance−20 Imbalance−20

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Balance
Imbalance

Figure (6.4) The number of iterations that ADMM uses in solving SVM for Pima dataset.

58

PART 7

DISTRIBUTED FEATURE SELECTION

Selecting important features with kernel classification methods is a challenging prob-

lem. With linear problems, however, several efficient feature selection methods exist. These

include penalization methods, such as the lasso, elastic net and L1-SVM and logistic regres-

sion, subset methods, such as all subsets, forward and backward elimination, and filtering

methods such as correlation and t-test filtering. These types of feature selection techniques

also have analogous versions for kernel methods. Filtering methods and subset methods,

especially the popular Recursive Feature Elimination which removes features in a backwards

stepwise manner, are the most commonly used methods. In addition, several penalization

methods exist for the linear SVM, and some also that can be adapted for kernel SVMs.

Many of these methods, however, are computationally intensive and only applicable to the

support vector machine.

Instead, we extend our distributed privacy SVM for kernel feature selection by inte-

grating a recent advance in feature selection for kernel classification, Generalized Multiple

Kernel (GMK) over our privacy distributed framework. GMK aims to extract significant

features by finding an optimal sparse set of feature weights in conjunction with estimation

of the optimal kernel parameters from a combination of multiple kernels. Weights within

kernels are the key to our problem formulation and have been proposed in several feature

selection techniques

7.1 Current feature selection

7.1.1 Recursive Feature Elimination, SVM-RFE

Support Vector Machines Recursive Feature Elimination(SVMRFE) is used in microar-

ray data analysis, particularly for disease gene finding. It eliminates redundant genes and

59

yields better and more compact gene subsets. The features are eliminated according to a

criterion related to their support to the discrimination function, and the SVM is re-trained

at each step. SVM-RFE uses the weight magnitude as the ranking criterion. It has four

steps.

Algorithm 7 SVM-RFE

1: Train an SVM on the training set;
2: Order features using the weights of the resulting classifier;
3: Eliminate features with the smallest weight
4: Repeat the process with the training set restricted to the remaining features.

However, the original SVM-RFE is designed to select features for the linear model.

Applying to the non-linear or kernel case is not straightforward. The method of eliminating

features on the basis of the smallest change in cost function while assumed that there is no

change in α’s.

J =
1

2
αTY TKY α− αT1 (7.1)

To compute the change in cost function caused by removing feature i, one leaves the

αs unchanged and re-computes matrix K. Let K(−i) be a kernel matrix when the feature

i has been removed. The resulting ranking coefficient can be computed by (7.2). The

feature corresponding to the smallest difference DJ(i)shall be removed. The procedure can

be iterated to carry out Recursive Feature Elimination.

DJ =
1

2
αTY TKY α− 1

2
αTY TK(−1)Y α (7.2)

60

7.1.2 RELIEF

RELIEF is one of the most feature selection algorithm used in binary classification

that requires only linear time in the number of given features and training instances, and

is noise-tolerant and robust to feature interactions. Considering a data set with n instances

of p features, belonging to two known classes, all features are first scaled to the interval [0

1] (binary data should remain as 0 and 1). The algorithm will be repeated m times. Start

with a p-long weight vector (W) of zeros.

At each iteration, take the feature vector (X) belonging to one random instance, and

the feature vectors of the instance closest to X (by Euclidean distance) from each class. The

closest same-class instance is called ′hit′, and the closest different-class instance is called

′miss′. Update the weight vector such that

Wi = Wi − (xi − hiti)2 + (xi −missi)2 (7.3)

Thus the weight of any given feature decreases if it differs from that feature in nearby

instances of the same class more than nearby instances of the other class, and increases

in the reverse case. After m iterations, divide each element of the weight vector by m.

This becomes the relevance vector. Features are selected if their relevance is greater than a

threshold.

7.2 Generalized Multiple Kernel

7.2.1 Multiple Kernel Learning

In non-lines, or kernel classification, there are several kernel functions successfully used

in the literature, such as the linear kernel, the polynomial kernel, and the gaussian kernel:

61

Linear kernel : k(xi, xj) = xTi xj (7.4)

Polynomial kernel : k(xi, xj) = (xTi xj + c)q where candq ∈ N (7.5)

Gaussian kernel : k(xi, xj) = e−
‖xi−xj‖

2

σ2 where σ ∈ N+ (7.6)

Selecting the kernel function k(·, ·) and its parameters (e.g., q or s) is an is an important

issue in training. Generally, a cross-validation procedure is used to choose the best perform-

ing kernel function among a set of kernel functions on a separate validation set different

from the training set. In recent years, multiple kernel learning (MKL) methods have been

proposed, where we use multiple kernels instead of selecting one specific kernel function and

its corresponding parameters:

k(xi, xj) = F({km(xi, xj)}Pm=1) (7.7)

where the combination function, F : RP ⇒ R can be a linear or nonlinear function

that combines individual kernel functions, k1, k2, . . . , km. Most of the MKL algorithms

usually simply by using a linear combination function F , and then try to find an optimal

weights(d) of predefined kernels.

J =
1

2
αTY T (

∑
m

dmkm(·, ·)) Y α− αT1 (7.8)

MKL is non-convex problem; however, the problem will be convex when the value of

dm or α is fixed. Thus, generally, the optimal solution must be derived by alternately

optimized sub-problem while fixed the value of dm and α. Among many proposed methods

to solve MKL problems, SimpleMKL is one of the most popular method that speeds up the

optimization process by applying Reduced Gradient.

62

7.2.2 Generalized Multiple Kernel

Instead of using a simple linear combination as other approaches, Varma formulate the

MKL in a general form as (7.9)

min
w,b,d

1

2
wTw +

∑
i

`(yi, 1− f(xi)) + r(d) (7.9)

s.t. d ≥ 0

where both the regularizer r and the kernel can be any general differentiable functions

of d with continuous derivative and ` could be one of various loss functions such as ` =

C max(0, 1 − yi f(xi)) The primal equation in (7.9) can be reformulated as a nested two

step optimization in (7.10): the outer loop, the kernel is learnt by optimizing over d while,

in the inner loop, the kernel is held fixed and the SVM parameters are learnt.

min
d

T (d) s.t. d ≥ 0 (7.10)

where T (d) =
1

2
wTw +

∑
i

`(yi, 1− f(xi)) + r(d)

If we are to utilize gradient descent in the outer loop, ∇d T can be computed from the

dual form of SVM as in (7.11). Thus, in order to take a gradient step, all we need to do

is obtain α∗ which can be obtained by any SVM optimization package. The step size sn

is chosen based on the Armijo rule to guarantee convergence and the projection step, for

the constraints d ≥ 0, is as simple as d ← max(0, d).The final algorithm Generalized MKL

(GMKL) is shown in Alg 8

∇d T =
∂

∂d
1
Tα − 1

2
αTY KdY α + r(d)

=
∂r

∂d
− 1

2
α∗
∂K

∂d
α∗ (7.11)

63

Algorithm 8 Generalized MKL

1: n ← 0
2: Initialize d0 randomly.
3: repeat
4: K ← k(dn)
5: Use an SVM solver to solve the single kernel problem with kernel K anα∗

6: dn+1
k ← dnk − sn(∂r

∂d
− 1

2
α∗ ∂K

∂d
α∗)

7: Project dn + 1 onto the feasible set if any constraints are violated.
8: until converged

7.3 Feature Selection with Generalized Multiple Kernel

In order to apply GMKL to feature selection, we can write a kernel, K, as a combination

of potential functions. For example, the combination of polynomial kernel of m features is

(c +
∑

m dmx
m
i x

m
j)q and gaussian kernel is e−

∑
m dm(xmi −x

m
j)2

σ2 = Πm e−
(xmi −x

m
j)2

σ2 . To promote

the sparsity of features and non-linear dimensionality reduction, 1 − norm regularization

with r(d) =
∑

m dm is normally be used for learning sparse solutions. Thus, the value of

∂r
∂dm

equals to 1 and ∂K
∂dm

can be computed by

Polynomial kernel:

∂K

∂dm
=

∂

∂dm
(c+

∑
m

dmx
m
i x

m
j)q

= q(c+
∑
m

dmx
m
i x

m
j)(q−1)xmi x

m
j (7.12)

Gaussian kernel:

∂K

∂dm
=

∂

∂dm
Πm e−

(xmi −x
m
j)2

σ2

= −
(xmi − xmj)2

σ2
Πm e−

(xmi −x
m
j)2

σ2 (7.13)

Varma [67] has compared GMKL formulation with various strategies for feature selection

such as Boosting [68], OWL-QN [69], Sparse-SVM [70], LP-SVM [71]. In his experiments, it

64

is shown that products of kernels generally give more sparse features and better performance

than traditional MKL and leading wrapper and filter feature selection methods in various

feature selection problems.

7.4 GMKL over Distributed Privacy Framework

From the GMKL algorithm in (8), we notice that solving SVM from multiple data

sources is straightforward by applying our distributed privacy framework, however, updating

the values of dn+1
k are not possible because the values of α∗ is not available. The value of α∗

can only be computed by solving SVM in dual form, but in our case, we cannot solve SVM

in dual form due to the privacy constraint. Therefore, the only option in applying GMKL

over distributed privacy environment is to solve GMKL in the primal form.

7.4.1 GMKL in Primal Form

In contrast to the standard non-linear SVM that has the decision function: y(x) =∑
i αiyik(x, xi) + b, our privacy SVM is based on only L landmark points. Its decision

function will be in form of y(x) =
∑

l βlk(x, xl) + b′ where β is a weight of landmarks that

can computed by wUΛ−1/2. If we write w = βU−1Λ1/2 = βUTΛ1/2, then wTw = βTKLβ

where KL is a kernel matrix between all L landmark points. The GMKL formulation for our

privacy SVM can be written as

min
β,b′,d

1

2
βTKLβ +

∑
i

`(yi, 1−
∑
l

βlk(x, xl) + b′) + r(d)

s.t. d ≥ 0 (7.14)

Then we can compute ∇d T by

65

∇d T =
∂

∂d

(1

2
βTKLβ +

∑
i

`(yi, 1− βTK(xi, L) + b′) + r(d)
)

=
1

2
βT
∂KL

∂d
β +

∑
i

∂

∂d
`(yi, 1− βTK(xi, L) + b′) + 1 (7.15)

From (7.15), we notice that we cannot compute ∇d T when ` is a hinge-loss function

because it is not continuous when ξi = 0. In addition, using a subgradient method will be

slow and impractical in our case.

7.4.2 Squared Hinge Loss (L2) Function

Because the hinge loss (L1) is not continuous at ξi = 0, we have to replace it with

alternative loss functions that are continuous. Figure 7.1 shows a comparison of popular loss

functions. We decide to use Squared Hinge Loss(L2) `2(x) = max(0, ξ)2 as a loss function

for our feature selection method.

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

3

margin

lo
ss

 0−1
 Hinge
 Logistic
 Squared hinge

Figure (7.1) A comparison of popular loss functions.

Thus, the value of ∂
∂d
`(xi) will be

66

∂

∂d
`(xi) =


0, if ξi ≤ 0.

−2 ξiyiβ
T ∂K(xi,L)

∂d
if ξi > 0.

(7.16)

where ξi = 1 − yiβTK(xi, L) + b′. We can summarized the GMKL for Distributed Privacy

Framework in Algorithm 9

Algorithm 9 Generalized MKL over Distributed Privacy Framework

1: n ← 0
2: Initialize d0 randomly.
3: repeat
4: K ← k(dn)
5: Use privacy SVM framework to solve a L2-SVM with kernel K and β∗

6: Compute ∇d T for L2 loss by Equation (7.15) and (7.16)
7: dn+1

k ← dnk − sn∇d T
8: Project dn + 1 onto the feasible set if any constraints are violated.
9: until converged

7.5 Experiments

In this section we evaluate our generalized kernel learning over distributed privacy frame-

work (DGMKL) by comparing it to the original GMKL and other popular approaches on

various feature selection problems.

7.6 UCI Datasets

Similar to [67], we used 5 benchmark datasets from UCI, including Ionosphere, Parkin-

sons, Musk, Sonar, and Wpbc. The summary of these datasets are shown in Table 7.1. In

the experiments, all models are trained by gaussian or RBF kernel. DGMKL computed the

combined kernel of m features by k(xi, xj) = Πm e−dm(xim−xjm)2 . The accuracy of all

classifiers is determined by 20 trails of 5-fold cross validation. To generate results for feature

selection, we fixed the high value of parameter C in order to minimize classification error.

67

Table (7.1) Performance Comparison of SVM, L2-SVM, and DGMKL.

Dataset # of instances # features SVM L2-SVM DGMKL (#features used)
Ionosphere 351 34 94.80 95.14 96.18 (17.7)
Parkinsons 195 22 93.80 93.79 95.00 (9.5)

Musk 476 166 92.12 91.76 97.15 (76.6)
Sonar 208 60 88.70 88.46 92.86 (23.2)
Wpbc 194 33 79.45 78.91 83.47 (15.9)

Then, we learned optimal feature weights d using random 70 percent of datasets as training

data. Last, we selected only the top ranked features from d and retrain the model using the

standard 5-cross validation. In DGMKL case, a dataset with n instances is random split

equally into 3 data sources and we limit the number of centroids for kernel approximation,

k to 15 percent of data in each source; thus k = d0.15 ∗ (n/3)e.

We first compared the performance of DGMKL to standard SVM and squared hinge-loss

SVM (L2 SVM) in Table 7.1. DGMKL achieves higher accuracy than SVM and L2-SVM in

all cases. Moreover, it uses only a small number of features compared to SVM and L2-SVM

that are trained by using all available features. For example, in Wpbc dataset, DGMKL can

improve SVM and L2-SVM by 5% while using only 15 features (less than a half of available

33 features).

7.6.1 Performance Comparison

In this part, we compared DGMKL with other approaches of feature selection, including

RELIEF (filter-method), SVM RFE (wrapper-method), and the original GMKL. Table 7.2

shows comparison results of all four algorithm at different desired numbers of features, Nd.

WhenNd is less than the number of features selected by the algorithms (Ns), the classification

accuracy is determined using the top ranked Nd features. On the other hand, when Nd > Ns,

the table entry is left blank as the classification accuracy either plateaus or decreases as

suboptimal features are added. In such a situation, it is better to choose only Ns features

and maintain accuracy.

In most cases, GMKL and DGMKL with products of kernels performs much better and

68

Table (7.2) UCI results with datasets at different number of desired features, Nd.

Ionosphere (34):
Nd RELIEF SVM RFE GMKL DGMKL
5 90.33 84.82 94.01 93.20
10 93.05 90.09 94.96 95.33
15 94.53 92.45 95.79 96.08
20 94.60 93.30 - -
25 94.98 94.74 - -

Parkinsons (22):
Nd RELIEF SVM RFE GMKL DGMKL
3 88.64 86.77 87.90 92.48
7 91.97 90.00 96.17 94.35
11 92.92 92.95 97.05 -
15 94.28 93.05 - -

Musk (166):
Nd RELIEF SVM RFE GMKL DGMKL
10 72.79 78.29 83.55 83.86
20 76.78 84.05 92.00 91.48
30 76.99 86.19 94.11 94.90
40 82.30 90.01 95.00 96.44
60 87.27 91.47 95.56 97.03
80 88.72 91.40 - -

Sonar (60):
Nd RELIEF SVM RFE GMKL DGMKL
5 81.54 65.77 87.81 82.64
10 83.82 66.51 90.96 86.22
15 82.42 74.42 91.58 92.71
20 86.65 75.45 92.00 92.28
25 88.02 79.32 - -

Wpbc (33):
Nd RELIEF SVM RFE GMKL DGMKL
5 76.60 76.37 81.05 76.28
10 79.25 76.29 86.08 82.47
15 77.99 77.02 85.64 83.20
20 77.86 76.88 - -
25 77.42 77.22 - -

69

reliable than a traditional filter approach, RELIEF, and a wrapper method, SVM RFE at

the same number of test feature, Nd. These differences can be as much as 10% for a fixed

small number of features. This significant improvement is originated from the inaccurate of

traditional models. RELIEF is simple approach, but it does not take classification method in

consideration. Thus, its results will be poor in some datasets compared to other algorithms,

as shown in Mush dataset. SVM RFE uses a greedy approach in eliminating one or more

features at a time. This will definitely lead to suboptimal solution. On the other hand,

GMKL and DGMKL integrate kernels/features’ weights into the optimization objective,

thus the solution will be optimal, and the models can achieve a higher accuracy at a low

number of features.

From Table 7.2 , DGMKL generally yields comparable performance to GMKL in most

cases. We notice a slightly lower accuracy in a few cases due to an inaccurate of kernel

approximation. Moreover, DGMKL has a higher accuracy than GMKL in some cases because

of the nature of squared hinge-loss.

70

PART 8

CONCLUSIONS & FUTURE WORK

8.1 Conclusions

In this dissertation, we address two common problems encountered when applying clas-

sification model to imbalanced dataset. Then we proposed the effective frameworks to solve

these two problems.

We start by investigating the problem of multi-class imbalanced data classification.

Our goal is to find a new technique that is more accurate and efficient for learning from

imbalanced data. We explored different measures of prediction accuracy for the classifier,

formalized a new objective function, and provided a new multi-class SVM algorithm for

multi-class imbalance data with the aim to maximize the estimated G-mean. We utilized

new techniques in optimization to keep our solution easy and efficient to solve. The proposed

solution applied both ramp loss function and weighted cost method to the multi-class SVM.

From the experiments on many real-world datasets from various domains, our ramp

loss multi-class SVM shows better performance than the original multi-class SVM, and cost-

sensitive multi-class SVM. We believe that the solution proposed in our research may be a

promising step in the battle against multi-class imbalanced data classification. The ability

to classify data more accurately can help us discover even more useful knowledge in many

domains.

Next, we extend our work by considering the problem in learning a global classification

model from imbalanced distributed data sources with privacy constraints. We propose a

privacy-preserving framework for building a global SVM from distributed data sources. Our

new framework avoids constructing a global kernel matrix by decomposition the approximate

kernel matrix. This results in the elimination of dependencies among data sources and non-

linear inputs can be virtually mapped to a linear feature space. The global classification

71

model is constructed and optimized by cutting-plane technique. Our distributed learning

framework yields better classification accuracy when compared with traditional methods,

such as Naive Bayes classifier and decision tree, and possesses the same level of accuracy

as traditional SVM. Moreover, it does not make any assumptions about the distribution of

data at all, which works better than many other methods which assume that distributed

data have similar or close distributions.

Last, in order to handle high-dimensional data, we apply the concepts of multiple ker-

nels and feature selection to our framework. The idea is to assign weight to all features

and select an optimized sparse combination of features and their weights. The distributed

optimization problem must be solved in the primal form due to the privacy constraint. From

the experiments on many standard datasets, our final model produces much smaller set of

features, but yields much higher accuracy as the standard approach.

8.2 Future Work

Our work contribution is an initial step in solving imbalanced data classification prob-

lem. There are many possible paths to improve and extend our distributed learning algorithm

further. The obvious examples include the following:

8.2.1 Privacy-Preserving Distributed Multi-class SVM

Our distributed learning framework investigates only the simplest case that a dataset

contains only two classes. It will be more interesting and practical to extend our framework

to support multi-class imbalance data. Many multi-class SVM approaches such as Crammer

& Singer [32], one-to-one, one-to-many, can be easily integrate with our framework. In

addition, Franc and Sonnenburg [62] have showed in their research that the cutting-plane

technique can be easily extended to multi-class SVM to solve distributed linear SVM.

72

8.2.2 Semi-Supervised Learning

Classification is a supervised learning that the labels or classes of all data points are

known. In real-world applications, we might have a lot more data, but we know the label

of only few instances. Building a classification model from this dataset is called ”semi-

supervised learning”. It is possible to extend our work that includes distributed kernel matrix

approximation and secure sum protocol among data sources, to learn a model from this type

of dataset. Liu [72] has shown an interesting method in applying kernel approximation to

build a local semi-supervised model. We believe that combining his technique with our secure

distributed learning framework will result in a secure distributed semi-supervised model.

73

REFERENCES

[1] N. V. Chawla and N. Japkowicz, “Editorial: Special Issue on Learning from Imbalanced

Data Sets,” SIGKDD Explorations, 2004.

[2] G. M. Weiss, “Mining with rarity: a unifying framework,” SIGKDD Explor. Newsl., pp.

7–19, 2004.

[3] N. Japkowicz and R. Holte, “Workshop report: AAAI-2000 workshop on learning from

imbalanced data sets,” AI Magazine, vol. 22, pp. 127–136, 2001.

[4] M. Wasikowski and X.-W. Chen, “Combating the small sample class imbalance prob-

lem using feature selection,” Knowledge and Data Engineering, IEEE Transactions on,

vol. 22, pp. 1388 –1400, 2010.

[5] X. wen Chen, B. Gerlach, and D. Casasent, “Pruning support vectors for imbalanced

data classification,” in Neural Networks, 2005. IJCNN ’05. Proceedings. 2005 IEEE

International Joint Conference on, vol. 3, 2005, pp. 1883 – 1888.

[6] Y. Tang, Y.-Q. Zhang, N. Chawla, and S. Krasser, “SVMs modeling for highly im-

balanced classification,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, vol. 39, pp. 281 –288, 2009.

[7] C. Elkan, “Magical thinking in data mining: Lessons from CoIL challenge 2000,” in In

Knowledge Discovery and Data Mining, 2001, pp. 426–431.

[8] Z.-H. Zhou and X.-Y. Liu, “On multi-class cost-sensitive learning,” Computational In-

telligence, vol. 26, pp. 232–257, Jul. 2010.

[9] W. Prachuabsupakij and N. Soonthornphisaj, “Clustering and combined sampling ap-

proaches for multi-class imbalanced data classification,” in Advances in Information

Technology and Industry Applications, 2012, pp. 717–724.

74

[10] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-imbalance

learning,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions

on, pp. 539 –550, 2009.

[11] C. Chen, A. Liaw, and L. Breiman, “Using Random Forest to Learn Imbalanced Data,”

Statistics Technical Reports, 2004.

[12] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: Synthetic

minority over-sampling technique,” Journal of Artificial Intelligence Research, pp. 321–

357, 2002.

[13] G. Forman, I. Guyon, and A. Elisseeff, “An extensive empirical study of feature selection

metrics for text classification,” Journal of Machine Learning Research, pp. 1289–1305,

2003.

[14] Z. Zheng, “Feature selection for text categorization on imbalanced data,” ACM

SIGKDD Explorations Newsletter, vol. 6, p. 2004, 2004.

[15] M. Wasikowski and X. wen Chen, “Combating the small sample class imbalance problem

using feature selection,” Knowledge and Data Engineering, IEEE Transactions on, pp.

1388 –1400, 2010.

[16] K.-A. L. Cao, A. Bonnet, and S. Gadat, “Multiclass classification and gene selection

with a stochastic algorithm,” Computational Statistics and Data Analysis, pp. 3601 –

3615, 2009.

[17] F. R. Bach, D. Heckerman, and E. Horvitz, “Considering cost asymmetry in learning

classifiers,” J. Mach. Learn. Res., pp. 1713–1741, 2006.

[18] Y. Sun, M. Kamel, and Y. Wang, “Boosting for learning multiple classes with imbal-

anced class distribution,” in Data Mining, 2006. ICDM ’06. Sixth International Con-

ference on, 2006, pp. 592 –602.

75

[19] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning

and an application to boosting,” in Proceedings of the Second European Conference on

Computational Learning Theory, 1995, pp. 23–37.

[20] T. C. Landgrebe and R. P. Duin, “Approximating the multiclass roc by pairwise anal-

ysis,” Pattern Recognition Letters, pp. 1747 – 1758, 2007.

[21] Y. Chen, X. S. Zhou, and T. Huang, “One-class svm for learning in image retrieval,”

in Image Processing, 2001. Proceedings. 2001 International Conference on, 2001, pp. 34

–37.

[22] B. Raskutti and A. Kowalczyk, “Extreme re-balancing for svms: a case study,” SIGKDD

Explorations, pp. 60–69, 2004.

[23] P.-Y. Hao and Y.-H. Lin, “A new multi-class support vector machine with multi-sphere

in the feature space,” in Proceedings of the 20th international conference on Indus-

trial, engineering, and other applications of applied intelligent systems, ser. IEA/AIE’07,

2007, pp. 756–765.

[24] M. Tohmé and R. Lengellé, “Maximum margin one class support vector machines for

multiclass problems,” Pattern Recognition Letters, 2011.

[25] X.-Y. Yang, J. Liu, M.-Q. Zhang, and K. Niu, “A new multi-class SVM algorithm based

on one-class SVM,” in Proceedings of the 7th international conference on Computational

Science, Part III: ICCS 2007, ser. ICCS ’07, 2007, pp. 677–684.

[26] L. Breiman, “Stacked regressions,” Machine Learning, pp. 49–64, 1996.

[27] L. B. Statistics and L. Breiman, “Random forests,” in Machine Learning, 2001, pp.

5–32.

[28] R. E. Schapire, “The strength of weak learnability,” in Machine Learning, 1990.

76

[29] Y. Sun, M. S. Kamel, A. K. C. Wong, and Y. Wang, “Cost-sensitive boosting for

classification of imbalanced data,” Pattern Recognition, pp. 3358–3378, 2007.

[30] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smoteboost: improving

prediction of the minority class in boosting,” in In Proceedings of the Principles of

Knowledge Discovery in Databases, PKDD-2003, 2003, pp. 107–119.

[31] P. Jeatrakul and K. W. Wong, “Enhancing classification performance of multi-class

imbalanced data using the oaa-db algorithm,” in Neural Networks (IJCNN), The 2012

International Joint Conference on, 2012, pp. 1 –8.

[32] K. Crammer, Y. Singer, N. Cristianini, J. Shawe-taylor, and B. Williamson, “On the

algorithmic implementation of multiclass kernel-based vector machines,” Journal of Ma-

chine Learning Research, vol. 2, p. 2001, 2001.

[33] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc., 1989.

[34] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural Networks, 1995.

Proceedings., IEEE International Conference on, 1995, pp. 1942–1948 vol.4.

[35] M. Ratnagiri, L. Rabiner, and B.-H. Juang, “Multi-class classification using a new

sigmoid loss function for minimum classification error (MCE),” in Machine Learning

and Applications (ICMLA), 2010 Ninth International Conference on, 2010, pp. 84 –89.

[36] F. Perez-Cruz, A. Navia-Vazquez, A. Figueiras-Vidal, and A. Artes-Rodriguez, “Em-

pirical risk minimization for support vector classifiers,” Neural Networks, IEEE Trans-

actions on, vol. 14, pp. 296 – 303, 2003.

[37] Y. Liu and X. Shen, “Multicategory Ψ-Learning,” Journal of the American Statistical

Association, pp. 500–509, 2006.

[38] F. Perez-Cruz, A. Navia-Vazquez, P. Alarcon-Diana, and A. Artes-Rodriguez, “Support

vector classifier with hyperbolic tangent penalty function,” in Acoustics, Speech, and

77

Signal Processing, 2000. ICASSP ’00. Proceedings. 2000 IEEE International Conference

on, 2000, pp. 3458 –3461.

[39] R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Trading convexity for scalability,” in

ICML ’06: Proceedings of the 23rd international conference on Machine learning, 2006,

pp. 201–208.

[40] Y. Wu and Y. Liu, “Robust truncated-hinge-loss support vector machines,” JASA, 2007.

[41] P. Phoungphol, Y. Zhang, and Y. Zhao, “Multiclass svm with ramp loss for imbal-

anced data classification,” in Proceedings of The 2012 IEEE International Conference

on Granular Computing GrC 2012, 2012.

[42] A. Yuille, A. Rangarajan, and A. L. Yuille, “The concave-convex procedure (CCCP),”

in Advances in Neural Information Processing Systems 14, 2002.

[43] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010. [Online].

Available: http://archive.ics.uci.edu/ml

[44] Gurobi Optimization, Inc., “Gurobi optimizer reference manual,” 2012. [Online].

Available: http://www.gurobi.com

[45] A. F. Karr, X. Lin, A. P. Sanil, and J. P. Reiter, “Secure regression on distributed

databases,” J. Computational and Graphical Statist, vol. 14, pp. 263–279, 2004.

[46] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik, “Parallel Support

Vector Machines: The Cascade SVM,” in Advances in Neural Information Processing

Systems 17. MIT Press, 2005, pp. 521–528.

[47] J. pei Zhang, Z.-W. Li, and J. Yang, “A parallel svm training algorithm on large-scale

classification problems,” in Machine Learning and Cybernetics, 2005. Proceedings of

2005 International Conference on, vol. 3, 2005, pp. 1637–1641.

http://archive.ics.uci.edu/ml
http://www.gurobi.com

78

[48] S. Lodi, R. Ñanculef, and C. Sartori, “Single-pass distributed learning of multi-class

svms using core-sets,” in SDM, 2010, pp. 257–268.

[49] H. Yu, X. Jiang, and J. Vaidya, “Privacy-preserving svm using nonlinear kernels on

horizontally partitioned data,” in Proceedings of the 2006 ACM Symposium on Applied

Computing, 2006, pp. 603–610.

[50] J. Vaidya and C. Clifton, “Secure set intersection cardinality with application to asso-

ciation rule mining,” J. Comput. Secur., vol. 13, pp. 593–622, 2005.

[51] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based distributed support

vector machines,” J. Mach. Learn. Res., vol. 11, pp. 1663–1707, 2010.

[52] A. C. Yao, A. C. Yao, A. C. Yao, and A. C. Yao, “Protocols for secure computations,” in

Foundations of Computer Science, 1982. SFCS ’08. 23rd Annual Symposium on, 1982,

pp. 160–164.

[53] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3,

pp. 273–297, 1995.

[54] P. Drineas and M. W. Mahoney, “On the nystrom method for approximating a gram

matrix for improved kernel-based learning,” Journal of Machine Learning Research,

vol. 6, pp. 2153–2175, 2005.

[55] K. Zhang, I. W. Tsang, and J. T. Kwok, “Improved nystrom low rank approximation

and error analysis,” pp. 1232–1239, 2008.

[56] S. Kumar, M. Mohri, and A. Talwalkar, “Sampling methods for the nystrom method,”

J. Mach. Learn. Res., vol. 13, pp. 981–1006, 2012.

[57] H. Harbrecht, M. Peters, and R. Schneider, “On the low-rank approximation by the

pivoted cholesky decomposition,” Applied Numerical Mathematics, vol. 62, no. 4, pp.

428–440, 2012.

79

[58] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools for privacy

preserving distributed data mining,” SIGKDD Explor. Newsl., vol. 4, no. 2, pp. 28–34,

2002.

[59] F. Meskine and S. N. Bahloul, “Privacy preserving k-means clustering: A survey re-

search,” International Arab Journal of Information Technology, vol. 9, no. 2, pp. 194–

200, 2012.

[60] Y. Teng-Kai, D. T. Lee, C. Shih-Ming, and J. Zhan, “Multi-party k-means clustering

with privacy consideration,” in Parallel and Distributed Processing with Applications

(ISPA), 2010 International Symposium on, 2010, pp. 200–207.

[61] J. Sakuma and S. Kobayashi, “Large-scale k-means clustering with user-centric privacy-

preservation,” Knowledge and Information Systems, vol. 25, no. 2, pp. 253–279, 2010.

[62] V. Franc and S. Sonnenburg, “Optimized cutting plane algorithm for large-scale risk

minimization,” Journal of Machine Learning Research, vol. 10, pp. 2157–2192, 2009.

[63] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM

Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011.

[64] H. C. Kim, S. Pang, H. M. Je, D. Kim, and S. Y. Bang, “Support vector machine

ensemble with bagging,” Pattern Recogniton with Support Vector Machines, Proceedings,

vol. 2388, pp. 397–407, 2002.

[65] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based distributed support

vector machines,” Journal of Machine Learning Research, vol. 11, pp. 1663–1707, 2010.

[66] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and

statistical learning via the alternating direction method of multipliers,” Found. Trends

Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

80

[67] M. Varma and B. R. Babu, “More generality in efficient multiple kernel learning,” in

Proceedings of the 26th Annual International Conference on Machine Learning, ser.

ICML ’09, 2009, pp. 1065–1072.

[68] J. Bi, T. Zhang, and K. P. Bennett, “Column-generation boosting methods for mixture

of kernels,” in Proceedings of the Tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ser. KDD ’04, 2004, pp. 521–526.

[69] G. Andrew and J. Gao, “Scalable training of l1-regularized log-linear models,” in Pro-

ceedings of the 24th International Conference on Machine Learning, ser. ICML ’07,

2007, pp. 33–40.

[70] A. B. Chan, N. Vasconcelos, and G. R. G. Lanckriet, “Direct convex relaxations of

sparse svm,” in Proceedings of the 24th International Conference on Machine Learning,

ser. ICML ’07, 2007, pp. 145–153.

[71] G. M. Fung and O. L. Mangasarian, “A feature selection newton method for support

vector machine classification,” Comput. Optim. Appl., vol. 28, pp. 185–202, 2004.

[72] W. Liu, J. Wang, and S.-F. Chang, “Robust and scalable graph-based semisupervised

learning,” Proceedings of the IEEE, vol. 100, pp. 2624–2638, 2012.

	Georgia State University
	ScholarWorks @ Georgia State University
	12-18-2013

	A Classification Framework for Imbalanced Data
	Piyaphol Phoungphol
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Problem and Motivation
	Class Imbalance
	Multi-Source Imbalance

	Contributions
	Thesis Organizations

	MULTI-CLASS CLASSIFICATION
	Sampling-based Approaches
	Under-sampling
	Over-sampling

	Feature Selection
	Cost-Sensitive Learning
	One-Class SVM
	Ensemble Methods

	RAMP KERNEL MACHINE
	A New Objective Function
	Ramp Kernel Machine for Imbalanced Multi-class Data
	ConCave-Convex Procedure (CCCP)
	Solving Ramp Kernel Machines
	Evaluations
	Dataset
	Parameters & Performance Metrics
	Results
	Analysis of RKM Effectiveness

	IMBALANCE DISTRIBUTED LEARNING
	Distributed Learning
	Possible Solutions
	Linear Regression
	Decision Tree
	Naive Bayes classifier

	SVM

	SECURE SUM PROTOCOL
	Simple Secure Sum
	Secure Sum with Shamir's Secret Sharing Scheme
	Homomorphic Encryption
	A Decentralized Voting Protocol

	Application of Shamir's Secret Sharing to Distributed Data
	Privacy-Preserving K-means Over Distributed Data

	PRIVACY-PRESERVING DISTRIBUTED SVM
	SVM
	SVM in Dual Form

	Kernel Approximation
	Selecting Landmarks
	Kernel Decomposition

	Cutting Plane
	Evaluations
	Datasets
	Compared with Traditional Classification Models
	Compared with Other SVM-Based Approaches
	Efficiency

	DISTRIBUTED FEATURE SELECTION
	Current feature selection
	 Recursive Feature Elimination, SVM-RFE
	RELIEF

	Generalized Multiple Kernel
	Multiple Kernel Learning
	Generalized Multiple Kernel

	Feature Selection with Generalized Multiple Kernel
	GMKL over Distributed Privacy Framework
	GMKL in Primal Form
	Squared Hinge Loss (L2) Function

	Experiments
	UCI Datasets
	Performance Comparison

	CONCLUSIONS & FUTURE WORK
	Conclusions
	Future Work
	Privacy-Preserving Distributed Multi-class SVM
	Semi-Supervised Learning

	REFERENCES

