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Figure 16: Log cumulative production versus log empirical probability. The data and
their empirical probabilities are plotted with circles. The likelihood maximizing power law
distribution is in red, the exponential in blue, and the log-normal in green. The data are
the 5% tail.
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The qualitative evidence provided by the graphs can be made quantitative by
implementing a likelihood-ratio type test, as recommended by ?. The test compares
the predicted likelihoods of two competing distributions, favoring the distribution

that is more likely. In particular, the test is computed as

R = Z [In py (2;) — Inpa()] (26)

where pi(z) and po(z) are the probabilities predicted by two distributions[”] The
authors go on to show that R is normally distributed and give formulas for
calculating p-values. I compare the likelihoods computed under the assumption of
power law to those under the assumption of exponential and log-normal. These
results are presented in table It is readily apparent that the power law
distribution has much more explanatory power than the competing distributions

across both samples and for both oil and natural gas.

Table 30: Likelihood ratio tests of competing distributions

PL-Exponential PL-Log-normal

Gas

95% sample 18560.26 15585.86
(0.000) (0.000)

Endogenous Threshold 2819.377 1441.832
(0.000) (0.000)

Oil

95% sample 30499.41 32302.33
(0.000) (0.000)

Endogenous Threshold 13827.24 14751.59
(0.000) (0.000)

Notes: Likelihood ratios computed as power law log likelihood-competing distribu-
tion log likelihood. Positive numbers indicate the power law distribution is the better
fit. P-values for significant differences in likelihoods are in parentheses.

24These predicted values are obtained after estimating parameters for the competing distributions
via maximum likelihood
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Conclusion

This chapter presents strong evidence for power law tails in the distribution of
cumulative oil and natural gas production. Leases productivities span many orders
of magnitude, log-log graphs of cumulative production demonstrate a striking linear
relationship, and quantitative robustness tests indicate the power law distribution
to be a good approximation. Of course, given the infinite number of distributions to
select from, it is possible to find one that better fits the data. Yet the power
distribution illustrates key features in the data (its heavy tails) and does so
parsimoniously. I have also shown that a power law distribution fits the data in the
tails much better than more commonly used distributions such as exponential and
log-normal.

The power law result is significant for both management and regulation,
particularly in the case of oil production. By overseeing just 1 % of leases,
regulators can monitor nearly 83 % of cumulative production. Similarly for
production companies, their profitability is determined not by the vast majority of
the leases operated, but by their most productive 1 %. How this distribution should
affect managerial decisions is an exciting avenue for further research.

Finally, it is natural to ask what is causing the data to be power law distributed.
Power law distributions have been found to result from a broad away of processes,
including, optimization problems with a particular set of constraints, random walks,
Yule processes, combinations of exponential distributions, and phase
transitions—and this is still a very active area of research. A likely explanation is
that scaling is common in nature, and therefore the scaling distribution is as well.
Indeed we see it in the distribution of galaxies, supernovas, severity of flooding and

earthquakes, and, apparently, in the productivity of oil an natural gas leases.



Chapter VI

CONCLUSION

In this dissertation, I have examined data in Texas and Oklahoma, looking for
evidence of common pool externalities, which distort production incentives away
from the social optimum. To identify the common pool externality, I compare areas
where ownership is secure-where leases are operated by a single manager—to areas
where in situ resource ownership is insecure—areas where there are many competing
operators. I find that secure property rights enhance cumulative oil recovery. This
result cannot be explained with present economic models that assume the stock of
recoverable reserves is fixed. For empirical applications, it is necessary to model the
stock of reserves as endogenous to the slope of the extraction profile. Using two very
different empirical techniques, I also uncover evidence of distorted production
profiles that can explain the difference in cumulative recovery. Both regression
discontinuity and the spatial model indicate that lease owners with insecure rights
to the resource in situ extract at a higher rate conditional on the age of the well.
Finally, I demonstrate the the results are economically important. The average well
is important from a managerial and regulatory perspective, and so enhancing
recovery at the average well by solving the common pool externality is economically

important.
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Appendix A

APPENDIX TO CHAPTER III

Federal Regulation

Federal regulations, being identical for both Texas and Oklahoma, cannot be the
sole contributor to differences in production evident at the border. Federal
regulations can, however, magnify or diminish the effects of existing state-level
policy differences previously mentioned. In this section, I give an overview of
important federal regulation of oil and natural gas production, which, excluding
production on federal lands, is implemented mostly through the federal tax code

through credits and deductions.

e ENHANCED OIL RECOVERY CREDIT. This tax credit has been a target
for repeal in the 2012 fiscal year (FY2012). The tax credit is worth 15% of
allowable costs related to secondary injection and is only available in years
where oil price is “low” (it has not been effective in recent years). The credit

was first introduced in 1990 and was worth 10% of allowable costs.

e CREDIT FOR OIL AND GAS FROM MARGINAL WELLS. The credit is
designed to keep high-cost wells in production even when prices are low and
has been targeted for repeal in FY2012. Marginal wells are defined as wells
that produce less than 15 bbls of oil (or oil equivalent) per day. This credit

came into effect as part of American Jobs Creation Act of 2005.

112



113

EXPENSING OF INTANGIBLE DRILLING COSTS. Costs of drilling such
as land clearing, surveying, wages, drilling mud, chemicals, cement, etc., can
be expensed. This is at present only available to independent oil producers.
Major integrated oil companies (i.e, vertically integrated companies) can only
expense 30 % of drilling costs over a 60 month period (rather than expensing
it in the same year). This was first introduced in 1916, and is a target for
repeal in FY2012. Without expensing, drilling costs would be capitalized into
the well, and expensed over the lifetime of the well (standard capital
depreciation allowance). Taking it all in one year does much to make the well
profitable. This measure was eliminated for large companies in 1970s. It does
not take too much imagination to see how this measure could exacerbate

common pool externalities in Texas.

TERTIARY INJECTANTS DEDUCTION. Tertiary injectants (injectants
used in enhanced recovery operations distinct from secondary flooding) can be
fully deducted in the current tax year. This deduction has been targeted for

repeal in FY2012.

PASSIVE LOSS EXCEPTION FOR WORKING INTERESTS IN OIL
PROPERTIES. Although not a large item in terms of revenue, the exception
permits deduction of losses in oil and gas projects against other income

earned. It is targeted for repeal in FY2012.

PERCENTAGE DEPLETION ALLOWANCE. Independent companies are
allowed a 15 % deduction from gross income for depletion of the deposit. This
allowance was repealed for major oil companies in 1975. It was first

introduced in 1926 and has been targeted for repeal in FY2012.

MANUFACTURING TAX DEDUCTION. The oil and gas industry is

classified as being in the manufacturing sector according to 2005 US Jobs
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Creation Act. Companies are allowed a 9 % deduction from net income with a

cap given according to employment.

e AMORTIZATION OF GEOLOGICAL AND GEOPHYSICAL PERIOD. This
measure concerns costs associated with exploration: Independent oil and gas
companies take geological /geophysical expenses in the same year, while major
oil companies must amortize the expenses over 7 years (which is less

beneficial). This measure is a target for repeal in FY2012.

e SECTION 29 PRODUCTION TAX CREDIT FOR NON-CONVENTIONAL
OIL. Originally part of the windfall profits tax, this credit was retained after
the repeal of the windfall profits tax. The credit allows a $3 (indexed in 1979
dollars, $6.80 today) credit per barrel of oil equivalent production. This credit

is especially beneficial for the production of coal-bed methane.

e 1980 WINDFALL PROFITS TAX. A higher tax rate goes into effect when

price climbs above a threshold; the tax was repealed in 1988.

e CERCLA. A $ 0.098 per barrel tax is levied on crude oil received at refineries;

the tax expired in 1995.

Other Parametric Specifications

Parametric regression discontinuity results in Chapter 3 are estimates from a fully

interacted model of the form:

yi =+ Y Bidist] + Y Bidist] x OK + TOK + 7 + €. (27)

J=1 Jj=1
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Where dist; represents distance to the border (in terms of decimal degrees) of well i.

To show robustness of results, in this appendix I re-estimate a model of the form:

Vit = 0+ Z B;latitude] + TOK + v, + €. (28)

j=1

The reasoning for showing this result is that since there is no reason to expect
that the Oklahoma treatment should affect latitude, except via the intercept,
latitude should not be interacted with treatment. This is to say that latitude affects
the dependent variable in the same way in Oklahoma and Texas. These models were
run with pooled data, as well as a sample of data limited to the reservoirs straddling
the border ("within”), and the sample of reservoirs that do not cross the border
("between”).

As is argued in the paper, we expect the sample of within reservoirs to provide a
lower bound on the true treatment effect because Texas production may interfere
with the benefit of partial Oklahoma unitization. Indeed, the tables show that
between estimates are larger, but also slightly less comparable in terms of exogenous

variables.
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Table 32: Within and between estimation: sample of old wells

Pooled Within Between
DEP. VAR. (1) (2) (1) (2) (1)
log gas -2.299%FFk 2 207H*K* -2.289%** -1.961
(0.456) (0.455) (0.561) (1.407)
log oil 1.452%#F  1,385%** 1.277%** 1.189***  3.104***
(0.319) (0.320) (0.394) (0.389) (0.893)
log rev 0.711%* 0.48 2.209%4*
(0.319) (0.379) (0.815)
log cum rev 0.323 0.364 -0.208
(0.310) (0.387) (0.965)
log cum oil ~ 2.967***  2.786G*** 2.860*** 2.692%#* 4 O8*H*
(0.638) (0.645) (0.732) (0.735) (1.802)
log cum gas -0.873 -1.038 -0.701
(0.618) (0.759) (1.580)
well depth 281.35 169.881 1,117.48
248.287 (243.706) (1031.974)
completion  -983.098** -1,118.789** -81.629
(386.351) (472.208) (1195.052)
longitude 0.333*** 0.274%** 0.650**
(0.074) (0.078) (0.279)

Notes: The columns represent average treatment effects estimates from OLS regression for different orders
of polynomial distance interactions (the model is specified in equation 28). Rows represent different inde-
pendent variables. Robust standard errors clustered at the lease level are reported in parentheses. Only
specifications where the polynomials are jointly significant are reported.

117



Appendix B

APPENDIX TO CHAPTER IV

The main result of Chapter IV is of the model with separate weighting for the effect
of neighboring wells, based on whether those wells have common owners or
competing owners, while controlling for other covariates. The results from this
specification are flawed because they fail to include dummy variables for time. The
tables below include time dummies, which significantly change the results. The
estimated spillover parameter for “ friendly” and “unfriendly” wells are negative

and not statistically different from each other or zero.
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Table 33: Simultaneous weight matrices with injec-
tion and time dummies: oil

OLS GLS 25LS  GS25LS

c.l1.1. ~ -0.0097 0.1188 -0.0102 -0.0115
0.0148 0.2879 0.0153 0.0058

went 0.0135 0.1220 0.0134 0.0219
0.0034  0.0425 0.0057 0.0129

went2  -0.0076  -0.0422  -0.0076  -0.0151
0.0016  0.0155 0.0026 0.0059

age 0.0000  0.0000  0.0000 0.0000
0.0000  0.0000  0.0000 0.0000

wtr 0.5416  0.6595  0.5418 0.3074
0.0337  0.2499  0.0364 0.0497

ginj  -0.0069 0.0879 -0.0070  -0.0270
0.0026  0.0305  0.0064 0.0110

winj 0.0103 -0.2609  0.0103 0.0453
0.0021  0.1247  0.0211 0.0452

AR 0.0088 0.0058  -0.4663
0.0016 0.3131 0.6755
AU 0.0041 0.0519  -0.0703
0.0004 0.0452 0.0715

Moran 177.2908
P 0.1229 0.0938
0.0053 0.0035

Notes: Results in this table replicate the specification of table 22 in
Chapter IV, except with time dummies added to the specification.
Oil production is the dependent variable.
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Table 34: Simultaneous weight matrices with injection
and time dummies: gas

OLS GLS 25LS  GS2SLS

c.1.1. -0.0125 -0.9334 -0.0188 -0.0102
0.0566  0.3252  0.0566 0.0174

went 0.0502 0.2354 0.0501 0.0560
0.0131  0.0522  0.0211 0.0246

went2 -0.0217 -0.0521 -0.0228  -0.0172
0.0061  0.0258  0.0097  0.0109

age 0.0000  0.0000  0.0000 0.0000
0.0000  0.0001  0.0000 0.0000

wtr 0.8746  1.2446  0.8489 0.5178
0.1285 0.4780 0.1360 0.1080

ginj -0.0314  0.0970 -0.0305 0.0141
0.0098 0.1183  0.0238 0.0238

winj 0.0701 -0.3051 0.0681  -0.0804
0.0082 0.2402 0.0781 0.0845

AF 0.0068 -0.8763 1.1273
0.0040 1.1605 1.2704
AU 0.0036 0.0254 0.1200
0.0012 0.1674 0.1627

Moran -692.7790
p 0.0684 0.0469
0.0034 0.0019

Notes: Results in this table replicate the specification of table 23
in Chapter IV, except with time dummies added to the specification.
Gas is the dependent variable.

This specification is still the favored model because it controls for local injection,
and the different incentives for production based on the ownership of nearby wells.
The result can be investigated further in future research with different specifications
of the friendly and unfriendly weighting matrix. At present both use simple inverse
distance, which may put too much weight on wells that are far apart. There is little
reason to expect wells to communicate at great distances; even wells that are close
would not communicate if there is not a direct line of sight between them.
Parameter estimates are of an average spillover based on the assumption that the
spatial landscape is homogenous and isotropic. Within reservoir, I argue this

assumption is tenable, but it undoubtedly becomes more so as we examine only the



121

wells that are relatively close to one another within reservoir (which the square of
inverse distance would achieve). Additional information on the reservoir, such as
rock permeabilities, elevations changes, faults and nonconformities would allow even
more accurate weighting.

Also for future research, owner dummies can be added to the models. At present
the idiosyncrasies of producers fall in the error term, and it is possible that this can

bias the estimated spillover parameters.
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