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ABSTRACT 

ROBUSTNESS OF TWO FORMULAS TO CORRECT  

PEARSON CORRELATION FOR  

RESTRICTION OF RANGE 

by 

Dung Minh Tran 

Many research studies involving Pearson correlations are conducted in settings 

where one of the two variables has a restricted range in the sample. For example, this 

situation occurs when tests are used for selecting candidates for employment or university 

admission. Often after selection, there is interest in correlating the selection variable, 

which has a restricted range, to a criterion variable. The focus of this research was to 

compare Alexander, Alliger, and Hanges’s (1984) formula to Thorndike’s (1947) formula 

and population values using Monte Carlo simulation when the assumption of normal 

distribution is violated in a particular way. 

In both Thorndike’s and Alexander et al.’s correction formulas, values for the 

variances in the restricted and the unrestricted situations are required. For both formulas, 

the variance in restricted situations was a sample estimate. In the Monte Carlo simulation, 

the difference between the two approaches was that in Thorndike’s formula, the variance 

in the unrestricted situation was the population variance from the exogenous variable, 

whereas in Alexander et al.’s approach, the population variance was estimated based on 

the sample variance in the restricted situation. In the simulation, robustness situations 

were created from non-normal distributions for predicted group membership in a 

classification problem. 

As expected, Thorndike’s corrected correlation values were more accurate than 

Alexander et al.’s corrected correlation values, and Thorndike’s formula had a smaller 



standard error of estimates. Absolute values of the mean differences between the 

estimated and population correlations for Alexander et al.’s approach compared to 

Thorndike’s approach in robustness situations ranged from 1.37 to 2.15 larger. 

Nevertheless, Alexander et al.’s approach, which is based only on estimated variances, 

appears to be a worthwhile correction in most of the simulated situations with a few 

notable exceptions for non-normal distributions. 
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CHAPTER 1 

VARIOUS CORRELATION FORMULAS TO CORRECT FOR 

RESTRICTION OF RANGE 

In this dissertation, which follows the manuscript style format approved by the 

College of Education, the first chapter provides a literature review as background for the 

study. Following this chapter, the second chapter employs an extended manuscript 

format, supplemented by appendices, to describe the study. Many research studies 

involving Pearson correlations are conducted in settings where one of the two variables 

has a restricted range in a sample. For example, this occurs after tests are used for 

selecting people for employment or admission to school, resulting in a distribution which 

has been truncated. Often after selection, there is interest in correlating the selection 

variable, which has a restricted range, to a criterion variable. The focus of this review is 

on Thorndike’s (1947) correction formula and Alexander et al.’s (1984) correction 

formula for use with Pearson’s correlation formula for restriction of range, although I do 

mention other formulas. 

Thorndike’s (1947) correction formula uses known variance for the unrestricted 

situation to obtain an estimate of the corrected correlations, and Alexander et al.’s (1984) 

formula with unknown variance for the unrestricted sample uses Cohen’s (1959) formula 

to obtain an estimate of the unrestricted variance. In other words, Cohen’s approach, 

which is incorporated in Alexander et al.’s formula, uses the restricted variance and 

assumption of a normal distribution to estimate the unrestricted variance. The known 

variance for the unrestricted situation in Thorndike’s formula is sometimes obtained from 

normative tables for an existing educational or psychological test. 
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In this review, there are two types of restriction of range to be considered, direct 

restriction of range and indirect restriction of range. Direct restriction of range occurs 

when there is a restriction of range on one of the two variables of interest. For example, if 

a researcher is interested in two variables, x and y, then the restriction of range occurs on 

variable x or variable y. Indirect restriction of range occurs when restriction of range 

occurs on a variable other than the two variables of interest. For instance, if a researcher 

is interested in two variables, x and y, then the restriction of range occurs on variable z. 

Restrictions of range and cumulative meta-analysis have a strong connection because one 

type of meta-analysis summarizes correlation coefficients from different studies. When 

the studies involve a correlation of a test with a criterion, this form of meta-analysis is 

known as validity generalization and is a potential application for Alexander et al.’s 

formula. 

This literature review will present Pearson’s correlation, Thorndike’s (1947) 

formula, Cohen’s (1959) ratio, Alexander et al.’s (1984) formula using Cohen’s ratio, 

direct and indirect restriction of range, restriction of range in meta-analysis, restriction of 

range with attenuation, and contaminated normal as a background for the study reported 

in manuscript style in Chapter 2. 

Pearson’s Correlation 

Pearson’s correlation is a number between 1 and +1 that measures the 

relationship between the two variables. A positive number implies a positive association, 

whereas a negative number implies the inverse association. Pearson’s correlation is a 

measure of the relationship between two variables x and y, and it could be defined in 

terms of the population correlation, ρx,y, where 
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ρx,y = COV (x,y) / σxσy       1 

with the corresponding sample correlation rx,y, given by 

rx,y = 
∑ (    ̅)(    ̅) 

   

(   )    
        2 

Here, COV(x,y) is the population correlation between x and y, σx is the population 

standard deviation of x, and σy is the population standard deviation of y. In the above 

formula,       are the sample standard deviations of x and y, respectively. The term 

∑ (    ̅)(    ̅) 
   

(   )
                             Additionally, Pearson’s correlation could be 

expressed in terms of z-scores of x and y when the population means and population 

standard deviations of x and y are available. Goodwin and Leech (2006) stated that the 

Pearson’s correlation could be defined in terms of z-score of x and y as follows: 

ρx,y = ∑ (zxzy) / N         3 

where zx is the z-score of the x variable, calculate using the population μx, and  

standard deviation σx, 

zy is likewise the z-score of the y variable, and 

N is the number of pairs of scores. 

The square of the correlation or the coefficient of determination (i.e.,     
 ) explains the 

portion of the shared variance, or the fraction of variance in one variable, x, that could be 

explained by the other variable, y. Furthermore, Rodgers and Nicewander (1988) 

suggested 13 different ways of interpreting a correlation value. Some of most common 

ways included the interpretation of a correlation value (1) as the standardized slope of the 

regression line in a z-score format, (2) as the proportion of variability in common 

between variables x and y, and (3) as a function of test statistics. Rovine and Von (1997) 
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added a 14th way to interpret the correlation value as the proportion of matches of the 

two variables of interest, x and y. 

Thorndike’s Formulas for Restriction of Range 

Thorndike (1947) presented formulas for correcting restriction of range for 

Pearson’s (1904) formula. Thorndike developed three formulas to calculate the restriction 

of range under different circumstances. 

Thorndike’s Formula 1 

The first formula is used to estimate the correlation between two variables of 

interest, x and y, when the range of restriction occurs on variable y; the observed 

correlation between the two variables of interest, x and y, is known; and the standard 

deviations of the unrestricted sample and the restricted sample of variable y are also 

known. Thorndike’s Formula 1 is expressed as 

                  = √   
              

 

                
  (                  

 ) 4 

where                   = correlation between variables x and y in an unrestricted  

sample, 

               = correlation between variables x and y in a restricted sample, 

                = standard deviation of the variable y in an unrestricted sample, 

and  

              = standard deviation of the variable y in a restricted sample. 

It should be noted that the ratio of restricted standard deviation to unrestricted standard 

deviation is not on the variable for which the restriction occurred. Thorndike (1947) 

stated that “This situation was rarely encountered in practice” (p. 65). 
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Thorndike’s Formula 2 

 Thorndike’s second formula estimates the correlation between the two variables 

of interest, x and y, when the restriction of range occurs at variable x; the observed 

correlation value between the variables of interest, x and y, is available; and the standard 

deviations of the unrestricted and restricted distribution x are also known. Thorndike’s 

Formula 2 is 

                  = 

 
               (

                
              

)

√                 
                   

 (
                

 

              
 ) 

 5 

where rx,y unrestricted  is the correlation of x and y in an unrestricted sample, 

                is the correlation of x and y in a restricted sample, 

SDx unrestricted  is the standard deviation of variable x in an unrestricted sample, and  

SDx restricted  is the standard deviation of variable x in a restricted sample. 

In contrast to Formula 1, Thorndike’s Formula 2 is for situations where the 

required information about restricted standard deviation to unrestricted standard deviation 

is on the same variable that had restricted range. Formula 2 is commonly used in real-

world situations. For example, Oleksandr and Deniz (1999) illustrated a case when 

Thorndike’s (1947) Formula 2 was used in the Graduate Record Examination (GRE) 

validation studies with students who were already enrolled at the school. Because the 

selection was based on GRE scores, the range of scores of the students is restricted (i.e., 

most of the GRE scores in the sample are high). In general, no criterion information is 

available for low-scoring persons because these applicants are not admitted to the 

graduate program. Although the researchers could compute the correlation between GRE 
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score and the graduate performance criterion in the restricted sample of the students that 

are already enrolled at the school, they cannot compute the correlation for the total group 

of applicants who applied to the graduate school. Thus, the correlation for the total group 

of graduate applicants is not immediately available using Pearson’s correlation formula 

alone. Thorndike’s (1947) Formula 2 was used to estimate the corrected correlation from 

an unrestricted sample (i.e., the total group of applicants who apply to the graduate 

school) from the correlation of the restricted sample (i.e., the correlation of students who 

are already admitted to the graduate program).  

Thorndike’s Formula 3 

 Alexander et al. (1990) note that there are two types of restrictions of range: (1) 

the direct restriction of range and (2) the indirect restriction of range. The direct 

restriction of range occurs when there is a restriction of range at one of the two variables 

of interest; for example, if there are two variables of interest, x and y, the range 

restriction occurs on variable x. The indirect restriction of range occurs at some third 

variable, z, other than the two variables of interest, x and y. Thorndike’s indirect 

restriction of range Formula 3 is  

        = 
                        (      

       
 ⁄ )   

√          
 ((      

       
 ⁄ )  )           

 ((      
       

 ⁄ )  ) 
 6 

where        = correlation of x and y in an unrestricted sample, 

       = correlation of x and y in a restricted sample, 

                = standard deviation of the variable i in an unrestricted sample,  

and 

              = standard deviation of the variable i in a restricted sample. 
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In some situations, the observed correlation value between variables x and z is not 

known, and Formula 3 is expressed in terms of the correlation between variables x and z. 

Thus, Thorndike’s (1947) indirect restriction of range formula could be rewritten as 

        = 

         √          
 (

        
 

      
   )                 (

      
         

   
        
      

) 

√           
  (

      
 

        
    )

 7 

where         = correlation between variables i and j in an unrestricted sample, 

           = correlation between variable i and j in a restricted sample, 

        = standard deviation of the variable i in an unrestricted sample, and  

          = standard deviation of the variable i in a restricted sample. 

Thorndike’s (1947) third formula (Formula 3), an indirect restriction of range 

formula, addresses correcting the correlation between the two variables of interest, x and 

y, when the restriction of range occurs at a third variable, z. Additionally, Thorndike’s 

Formula 3, the indirect restriction of range, estimates the corrected population correlation 

between the variables of interest, x and y, when the following are known: (1) the 

observed correlation values between the variables x and z and between y and z, (2) the 

standard deviation of z in the unrestricted sample, and (3) the standard deviation of z in 

the restricted sample. 

The Cohen Ratio  

Cohen (1959) proposed a ratio of sample variance in the restricted sample over 

the square of difference between the sample mean in the restricted sample and the point 

of truncation in the restricted sample. The formula for the Cohen ratio is:  
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Cohen ratio =   
            

 

(            
               ) 

 8 

where             
  is the sample variance in a restricted sample, 

            
  is the mean in a restricted sample, and 

              is the highest sorted x value in a restricted sample.  

To apply this formula, sort in ascending order the array of elements of the restricted 

sample from the lowest value to the highest value. The               value is the highest 

sorted value in the restricted sample.  

The Cohen ratio is used to find the restricted standard normal standard deviation 

and the z-score from Cohen’s table (see Appendix B). Cohen’s table is based on the fact 

that his formula results in a unique value for truncation point              . More 

specifically, the Cohen table has three columns. The first column is the Cohen ratio; the 

second column represents the table restricted normal standard deviation (i.e., SDtab), 

which is the “standardized value of the standard deviation after truncation (with a non- 

truncated value of 1.0). That table value also represents the proportion reduction in 

standard deviation due to range restriction” (Alexander et al., 1984, p. 432). The third 

column in the Cohen table represents the z-score. From the table, the restricted normal 

standard deviation value and its z-score are found by doing a table look-up based on 

Cohen’s ratio.  

Alexander et al.’s Formula 

Since the unrestricted standard deviation is not directly known in Alexander, 

Alexander et al.’s (1984) formula uses the Cohen ratio to obtain the SDtab value from 

Cohen’s table (see Appendix B). As Alexander et al. (1984) points out, “Cohen’s ratio 

has the advantage of ease of calculation from sample data” (p. 432). Once the SDtab value 
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is obtained, Alexander et al.’s formula estimates the unrestricted standard deviation based 

on the values of the observed standard deviation in the restricted sample and the table 

restricted normal standard deviation in the restricted sample. Alexander et al.’s formula 

estimates the unrestricted standard deviation as follows: 

     =        /       9 

where     is the estimate  of  the unrestricted standard deviation, 

      is the observed standard deviation in the restricted sample, and 

      stands for avalue for the restricted normal standard deviation. 

The     and      values will then be used to calculate the U ratio, which in turn will be 

used to estimate the corrected correlation using Thorndike’s (1947) Formula 2. Using the 

U ratio and Thorndike’s (1947) Formula 2, Alexander et al. (1984) developed the 

following formula: 

    = (r  *
   

     
) / SQRT (1 -    (    (

   

     
)
 

)) 10 

where    is the corrected correlation value, 

r is the observed correlation value in the restricted sample, 

    is the estimate of the unrestricted standard deviation, and  

      is the observed standard deviation in the restricted sample. 

Alexander et al. (1984) employed a Monte Carlo computer simulation program to 

compare the means of the observed correlation values with the corresponding means of 

the corrected estimated correlations using his formula. In his computer simulation 

program, Alexander et al. used one sample size (i.e., N = 60), different ρ values (i.e., 0.2, 
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0.4, 0.6, 0.8), and various truncation values (i.e., 2.0, 1.5, 1.0, 0.5, 0, 0.5, 1.0). The 

computer simulation produced the table of comparison between the two means (i.e., 

observed correlation values and the corrected correlation values), which is presented in 

Table 1. Alexander et al. did not investigate non-normality nor did he compare his mean 

correlation estimates with estimates from Thorndike’s formula. 

Even though the unrestricted variance was estimated through Alexander et al.’s 

(1984) formula, in every case except for the truncation value at  −2.0, the results of the 

mean estimated corrected correlation values were closer to the true ρ correlation values 

than the mean observed correlation values, as can be seen in Table 1. Similarly, in every 

case except for the severe cut (i.e., +1.0), the mean estimated corrected correlation value 

was an over estimate for truncation values (i.e., 2.0, 1.5, 1.0, 0.5, 0, +0.5). The 

overestimations were either 0.01 or 0.02. For the severe cut, the mean estimated corrected 

correlation value was underestimated by 0.01.  
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Table 1 

Computer Simulation Results from Alexander et al.: Comparison of Mean Observed and 

Corrected Estimated Correlations for Different ρ Values and Truncation Points 

 

  ρ  

Truncation .20 .40 .60 .80 

2.0 0.19 (0.21) 0.38 (0.42) 0.58 (0.62) 0.78 (0.81) 

1.5 0.18 (0.21) 0.36 (0.41) 0.55 (0.62) 0.76 (0.81) 

1.0 0.16 (0.21) 0.33 (0.41) 0.51 (0.61) 0.72 (0.81) 

0.5 0.14 (0.21) 0.29 (0.41) 0.46 (0.61) 0.68 (0.81) 

µ 0.12 (0.21) 0.25 (0.42) 0.41 (0.61) 0.62 (0.81) 

+0.5 0.10 (0.21) 0.22 (0.41) 0.36 (0.61) 0.56 (0.80) 

+1.0 0.09 (0.19) 0.19 (0.39) 0.31 (0.59) 0.50 (0.79) 

Note. Corrected correlation values using Alexander et al.’s formula are in parentheses. 

Data presented are mean correlations for samples with N = 60 for 5,000 replications. This 

table was taken from Alexander et al. (1984). Permission is found in Appendix D.  

 

Alexander et al. (1984) also used the estimate unrestricted standard deviation, z-

score, and the highest sorted value of x from the previous equation to derive a formula to 

correct mean. Alexander et al.’s corrected mean formula is as follows: 

  ̅=    - z    11 

where   ̅ is the corrected mean, 

   is the highest sorted x value in in a restricted sample,   

z  is the z-score from the Cohen’s table, and 

    is the estimated unrestricted standard deviation. 

Thus, Alexander et al.’s (1984) formula is a special case of Thorndike’s (1947) 

Formula 2. In Thorndike’s formula, the restricted variance and unrestricted variance are 
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presented as population values, but in Alexander et al.’s version, the restricted variance is 

estimated from the sample and the unrestricted variance needs to be estimated from the 

sample variance. Consequently, Alexander et al. employed Cohen’s (1959) ratio formula 

to obtain the estimate of the unrestricted variance. From the estimated unrestricted 

variance, Alexander et al. computed the U ratio, which was then entered into the 

Thorndike’s (1947) Formula 2 to estimate the corrected correlation value. 

Attenuation in Restriction of Range  

Sackett and Yang (2000) stated that there are two common methods for correcting 

correlation values in a direct restriction of range and an indirect restriction of range. 

Hunter and Schmidt (2004) mentioned that majority of correlation values are not true 

correlation values because they are in fact lowered by error of measurement. Stauffer and 

Mendoza (2001) suggested a formula for correcting correlation for range restriction and 

unreliability. Additionally, Hunter, Schmidt, and Le (2006) proposed the Hunter-Schmidt 

corrected correlation with attenuation for the direct and indirect restriction of range. 

Further, Raju et al. (2006) suggested another method for corrected correlation with 

attenuation based on the reliabilities of x and y in a restricted sample. Before discussing 

these formulas, a brief overview of basic classical test theory is presented. 

Reliability 

 A true score can be stated in terms of the observed score and its measurement 

error. For example, if a researcher observed a score on a test denoted by x, and there is an 

error of measurement associated with it called ex (i.e., ex is measurement error of variable 

x), then the observed score of x could be written as 

x = tx + ex ,         12 
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where tx is the true score for variable x. 

 In classical test theory, the amount of error of measurement in the variable is 

measured by the number called the reliability of the variable, denoted for variable x as 

rxx. The reliability of an observed test score consists of two components: the true score 

and some form of error measurement (Donald, Lucy, & Asghar, 1990). Given some 

assumptions, it has been shown that the variance of the observed scores (σx
2
) is equal to 

the variance of the true scores (σt
2
) plus the variance of their errors of measurement (σe

2
) 

(Donald et al.). This can be expressed as 

σx
2 

= σt
2
 + σe

2
 13

 

Reliability can be defined as a ratio of true score variance over the observed score 

variance. That is, reliability, rxx,  is equal to 

rxx = σt
2
 / σx

2  
14 

Reliability ranges from 0 to 1, where a reliability of 1 indicates no error. Using equation 

13, formula 14 can be rewritten as 

rxx = 1 - σe
2
/σx

2  
15 

Hunter and Schmidt (1990) stated that reliability measures the percentage of the observed 

variance, which is the true score variance. For example, if the reliability of variable x is 

0.8, it is implied that 80% of the variance in variable x is due to the true score variation 

and the remainder 20% of the variance in variable x belongs to measurement error.  

Attenuation Formulas 

 Correction for attenuation is a statistical procedure, according to Spearman 

(1904), to “rid a correlation coefficient from the weakening effect of measurement error” 
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(Jensen, 1998). Given the fact that the correlation between variables of interest, say x and 

y, is diluted by measurement error, the correction for attenuation procedure, it has been 

argued, provides a more accurate estimate of the correlation between variables x and y by 

accounting for this effect.  

Before presenting corrections for attenuation, the general form of the correction 

approach advocated by Hunter and Schmidt (2004) for a form of meta-analysis called 

“validity generalization” is presented. As stated earlier, since measurement error in 

correlation is associated with artifacts, those artifacts can be addressed in terms of 

correcting correlation with attenuation (Schmidt & Huy, 2006). The following corrected 

correlation could be expressed as  

ρ
’
 = aρ  16 

where ρ
’
 is the corrected population correlation with attenuation, 

a is the artifact, and  

ρ is the population correlation before attenuation. 

Furthermore, if there is a second artifact associated with the population correlation before 

attenuation, the above formula could be rewritten to incorporate the additional artifact as 

follows: 

ρ
’
 = a1 a2ρ 17 

where ρ
’
 is the corrected population correlation with attenuation, 

a1 is the artifact,   

a2 is the artifact, and  

ρ is the population correlation before attenuation. 
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Thus, if there are n artifacts associated with the correct correlation with attenuation, then 

the formula would become 

ρ
’
 = a1 a2…anρ               18 

where ρ
’
 is the corrected population correlation with attenuation, 

a1 is the artifact,   

a2 is the artifact,  

an is the artifact, and  

ρ is the population correlation before attenuation. 

Based on the correlation with attenuation, Schmidt, Le, and Illies (2006) proposed a 

formula to include measurement error in the estimate of the parameter in an unrestricted 

population from the parameter in a restricted population.  

Hunter-Schmidt’s Correlation with Attenuation Formulas 

 Hunter et al. (2006) discussed the error of estimate of an unrestricted population 

correlation through Thorndike’s case two and case three. Thorndike’s (1947) case two 

formula is widely used in the correction for the direct range of restriction of two variables 

of interest, x and y, where the restricted sample correlation is known between the two 

variables, and the correction factor or the sample standard deviation of the unrestricted 

and the restricted populations are known for one of the parameters. Similarly, there is 

also a range restriction with attenuation formula for Thorndike’s (1947) case three 

formula, which is used for the indirect range of restriction. In Thorndike’s case three 

formula, the restriction occurs on the third variable, z, which is correlated to both 

variables of interest, x and y.  
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Hunter et al. (2006) developed a range restriction with attenuation formula to 

address the measurement error of the direct range of restriction for Thorndike’s (1947) 

case two formula: 

ρ
’
 =   ρ 19 

where   is the attenuation coefficient for the correct correlation with attenuation, and it 

could be expressed as 

               = 
  

  (  
   )           20 

         is the U ratio and it was defined as the ratio of                           ⁄ ,  

and ρ  is defined as the product of ρtx,ty, and (SQRT (rxxryy)) where rxx and ryy are the 

reliabilities of variables x and y (Hunter & Schmidt, 1999). Furthermore, Hunter et al. 

(2006) also discussed the range restriction with attenuation for the indirect range 

restriction. 

Hunter and Schmidt’s Formula on Range Restriction with Attenuation for Indirect 

Range Restriction 

Hunter et al. (2006) proposed a formula to range restriction with attenuation for 

the indirect range restriction by giving detailed instructions on how to incorporate 

measurement error and reliability into the existing Thorndike’s formula. The steps are as 

follows: 

Step 1: Estimating the reliability of the independent variable x in the restricted 

population. 

              = 1 -   
  (1 -                  )                                              21 

where    is the U ratio , and 

                               is the reliability of the unrestricted x variable. 
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Step 2: Estimating the range restriction on    used of correcting factor   , and the 

reliability of independent variable x 

  = √  
 (                  )                 ⁄     22 

where    is the U ratio , and 

                               is the reliability of the unrestricted x variable, 

Step 3: Correcting for measurement error before applying restriction of range correction 

             = r / √                                     23 

where r is the correlation before attenuation. 

Step 4: Applying Thorndike case 2 formulas using equations from Step 3 and Step 2 

                        = 
             

√  
            

              
    

    24 

Besides Hunter and Schmidt’s (2006) formulas for correct correlation formulas, 

Stauffer and Mendoza (2001) suggested a new method for the range restriction with 

attenuation. 

Stauffer and Mendoza’s Formula 

Stauffer and Mendoza (2001) proposed a formula for correcting correlation for 

range restriction and unreliability, which was based on Thorndike’s Formula 2 with the 

available estimates: (1) the unrestricted predictor reliability, (2) the incident range 

restricted criterion reliability, and (3) the restricted correlation. Stauffer and Mendoza’s 

(2001) correcting correlation for range restriction and unreliability is defined as follows: 

                      
  = 

           

√   √  
          

            
      

      25 

 where    is the U ratio, 

           is the correlation of the restricted sample, 
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                 is the unrestricted predictor reliability, and 

     is the incident range restricted criterion reliability. 

 Thus, since correction formula and unreliability are common in real-world 

situations, Stauffer and Mendoza (2001) developed a rule of thumb for determining an 

order to handle the corrections by looking at the nature of the reliability estimate. Further, 

Raju et al. (2006) developed new approach for corrected correlation based on reliabilities.  

Raju, Lezotte, Fearing, and Oshima’s Formula 

Raju et al. (2006) proposed a method to calculate the corrected correlation based 

on the reliability of x and y in a restricted sample: 

 

   
  = k     / √            

        
                    26 

 

where     is the reliability of independent variable x, 

    is the reliability of the dependent variable y, 

    is the correlation value of x and y in a restricted sample, and 

k is defined as the ratio of unrestricted true scores standard deviation over the 

restricted true scores standard deviation.  

In other words, k is defined as follows: 

k =                   /                      27 

Raju et al. (2006) offer a procedure for estimating corrected correlation in range 

restriction for unreliability when an estimate of the reliability of a predictor is not 

available for the unrestricted sample. It has been long recognized that measurement error 

in the sample will restrict the observed magnitude of a Pearson product moment; thus, 
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since Thorndike’s day, researchers have been correcting correlation based on 

measurement errors and restriction in range (Mendoza & Mumford, 1987). This topic has 

received considerable attention in recent years, with a new correction formula for 

attenuation from Hunter et al. (1990) and even more recently from Raju et al. (2006). 

These new correction formulas help ease the measurement error for corrected correlation 

in the restriction of range. Meta-analysis uses different type of corrections; thus, when 

applying the restriction of range to meta-analysis, the meta-analysis summary would 

result in a better understanding of what the correlations are in the unrestricted situations. 

Meta-Analysis 

Meta-analysis, a procedure for summarizing empirical studies, can be employed 

to summarize Pearson’s correlation; it can be generally defined by the following steps: 

(a) defining a topic area and criteria for admissible studies, (b) locating relevant primary 

research, (c) coding study characteristic, (d) measuring study results on a common scale, 

and (e) aggregating the study results and relating them to study characteristics (Matheny, 

Aycock, Pugh, Curlette ,& Cannella, 1985). Additionally, meta-analysis can also be used 

as a guide to answer the question about what a researcher should be doing to incorporate 

one study with another study even if the first study employs different instruments across a 

different range of people (Hunter & Schmidt, 1990). Furthermore, Hunter and Schmidt 

(2004) stated that every method of meta-analysis is based on the theory of data, and a 

complete theory of data includes an understanding of sampling error, measurement error, 

and bias sampling in case of range restriction. The estimation of sampling error in meta-

analysis could be expressed as the weight average in each correlation, which is weighted 

by number of scores in the study (Lipsey & Wilson, 2000); accordingly 
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  ̅ = 
∑    

∑  
         28 

where    is the correlation in study i, and 

                is the number of persons in study i. 

Hunter and Schmidt (2004) stated that the corresponding variance across studies is not 

the usual sample variance, but the frequency-weighted average squared error. The 

formula could be derived in term of the above equation as follows: 

              
  

∑  (    ̅) 

∑ 
         29 

where    is the correlation in study i,  

 ̅ is the weighted average, 

               is number of persons in study i, and  

N is total number of persons. 

Furthermore, other correction formulas that focus on the measurement error and bias 

sampling could be addressed by the earlier work of Hunter and Schmidt correction 

formula with attenuation on range restriction for direct and indirect restriction of range in 

the previous section.  

Contaminated Normal 

Contrary to the general belief that correlation value in a restricted sample tends to 

be smaller than the correlation value in the unrestricted sample, Zimmerman and 

Williams (2000) state that the correlation in the restricted sample is sometimes larger 

than the correlation in the unrestricted sample. This happens in a class called the 

“contaminated normal,” in which the assumption of normal distribution is violated in a 

particular way. In a contaminated normal situation, scores of outliers increase the 

magnitude of the correlation (Zimmerman & Williams, 2000). 



21 

 

Standard Error 

 Cochran (1977) suggested a mean square error (MSE) formula to compare a 

biased estimator with an unbiased estimator or the two biased estimators that could be 

presented as the expected value of the square of the difference between the estimated 

population correlation value and the true population correlation value:  

MSE  = E (ρ̂ – ρ)
2
        30 

where  ̂  is the estimated population correlation value and ρ is the population correlation 

value. Additionally, when the estimated population correlation value approaches the 

mean population correlation value, the MSE could be expressed in terms of the mean of 

the population correlation values, such as 

MSE = E [( ̂   ) + (m - ρ)]
2
                 31 

MSE = E ( ̂   )
2
 + 2 (m - ρ) E( ̂   ) + (m - ρ)

2
    32 

Since the expected value of the difference of the estimated population correlation value 

and the mean of population correlation equals to zero, the MSE could be simplified to  

MSE = E ( ̂   )
2
 +  (m - ρ)

2
                          33 

Thus, the MSE could be expressed in terms of variance of  ̂ and bias, where 

E ( ̂   )
2
 is the variance of  ̂ , 

(m - ρ)
2
 is the bias, 

 ̂ is the estimated population correlation value, 

ρ  is the true population correlation value, and 

m is the mean of population correlation. 
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Furthermore, the standard error can be derived from the MSE as the square root (SQRT) 

of the MSE, where the standard error equals to the SQRT (MSE). 

Summary 

Restriction of range is a frequent topic in education and other areas where there is 

a selection process and criterion-related validity using Pearson’s correlation is desired. 

Thorndike’s (1947) and Alexander et al.’s (1984) formulas use the original Pearson’s 

correlation formula to develop their corrected correlation formulas for restriction of 

range. As stated earlier, Thorndike’s formula uses known variance for the unrestricted 

situation to obtain an estimate of the corrected correlation, whereas Alexander et al.’s 

formula with unknown unrestricted variance uses the Cohen ratio formula to obtain the 

population variance, and then it uses the population variance in Thorndike’s Formula 2 in 

order to obtain the estimated corrected correlation. Hunter and Schmidt (2004) stated that 

the majority of correlation values were not true correlation values because they were in 

fact lowered by error of measurement. Thus, because of unreliability, since Thorndike’s 

day, researchers have been correcting correlation based on measurement errors and 

restriction in range (Mendoza, Hart, & Powell, 1994). Furthermore, correcting correlation 

based on measurement errors has received considerable attention in recent years with new 

correction formulas for attenuation from Hunter and Schmidt (1990), Mendoza et al. 

(1994), and most recently from Raju et al. (2006). Those new correction formulas help 

ease the measurement error for corrected correlation in the restriction of range. For 

example, works on corrected correlation in restriction of range with attenuation have 

been shown through Hunter and Schmidt’s formulas for direct and indirect restriction of 

range with attenuation, Stauffer and Mendoza’s formula, and Raju et al.’s formula for 
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corrected correlation with attenuation. Also, meta-analysis uses different types of 

corrections; thus, applying the restriction of range to meta-analysis would result in a 

better understanding of what correlations are in unrestricted situations. This literature 

review included restriction of range formulas, restriction of range with attenuation 

formulas, meta-analysis, and contaminated normal as a background of the following 

study, which is presented in manuscript form for this dissertation. 
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CHAPTER 2 

A COMPARISON OF ROBUSTNESS OF THORNDIKE’S AND AN ADAPTATION 

OF COHEN’S FORMULA TO CORRECT FOR RESTRICTION OF RANGE 

The focus of this research was to compare Alexander et al.’s formula to 

Thorndike’s formula and to population values using Monte Carlo simulation when the 

assumption of a normal distribution is violated in a particular way. Many research studies 

involving Pearson’s correlations are conducted in settings where one of the two variables 

has a restricted range in a sample. For example, this occurs when tests are used for 

selecting people for employment or admission to school. Often after selection, there is 

interest in correlating the selection variable, which has a restricted range, to a criterion 

variable in order to obtain criterion-related validity using Pearson’s correlation. Since the 

restriction of range situation occurs in many settings and Pearson’s correlation is 

fundamental to many statistical procedures, the accuracy of correction approaches for 

restriction of range can relate to many statistical procedures. A particular statistical 

procedure for which these correction procedures have potential application is validity 

generalization, which is a form of meta-analysis. 

           A unique feature of the current study is the way in which the robustness situations 

are defined. They are defined from the perspective of a statistical classification problem 

for two groups and one variable on which to make the classification decision. Group 1 

has a normal distribution on variable X and is referred to as distribution 1. Likewise, 

group 2 has been measured on variable X and has a normal distribution, designated as 

distribution 2. Both distributions have the same population standard deviations but 

different population means.  
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 In this classification problem, after the classification decision is made, there are 

two potential errors of classification: (1) an individual from group 1 is misclassified into 

group 2 and (2) an individual from group 2 is misclassified into group 1. There could be a 

desire to identify individuals who are predicted to be in group 1 when the classification 

rule is applied to a new group of people. Suppose, for example, that the task was to 

predict people leaving a job based on the supervisor’s rating after two years of 

employment. The supervisor’s ratings of employees would be obtained after one year of 

employment, and the employees’ work statuses in the organization would be obtained at 

the end of the second year. Then, a classification rule would be obtained to predict which 

employees would stay and which employees would leave. Given two normal distributions 

and one predictor variable, the cut point for the classification rule on rating variable, X, 

would be halfway between the mean of the two distributions without consideration of 

prior probabilities. Now, a new group of employees comes along, and it is desired to 

study the correlations between those predicted to stay with another variable of interest, 

for example, Y. Those predicted to stay make a mixed distribution of group 1 and group 

2. In particular, those individuals from distribution 1 below the cut point constitute group 

1, along with those individuals from group 2 who have been misclassified because they 

are below the cut point. An illustration of the classifying problem is shown by Figure 1, 

Figure 2, and Figure 3 presented in Appendix F. In this fashion, the robustness situations 

for the restriction of range situations are defined for the Monte Carlo simulation. 

Two other contributions of this research are to (1) compare the accuracy of 

Thorndike’s (1947) case 2 formula to Alexander et al.’s (1984) formula based on point 

estimates of correlations and (2) to compare the standard errors of these two approaches. 
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In his article, Alexander et al. (1984) compares estimates of correlations based on 

Cohen’s approach to population correlation values and not to estimates from Thorndike’s 

formula. After a brief review of the literature in the background section, I identify the 

exogenous variables to define the simulated situations and provide a more detailed 

description of the robustness situations that will be described in the methodology section. 

Background 

Thorndike’s Direct Restriction of Range Formula 

Thorndike (1947) introduced the corrections for restriction of range. Thorndike’s 

Formula 2 estimates the population correlation between two variables of interest, X and 

Y, when the restriction of range has occurred on variable X. Thorndike’s Formula 2 is 

shown as follows:  

    =((     ) (
   

      
))       (       

        
 (

    
 

      
 )) 30 

where    is the corrected correlation for the unrestricted restriction of range, 

      is the restricted range correlation, 

SDu is the unrestricted standard deviation, and  

SDrest is the restricted standard deviation. 

The ratio of SDu over SDrest is defined as the U ratio or the correcting factor. The 

U ratio for Thorndike’s formula is defined as the ratio of the unrestricted standard 

deviation over the restricted standard deviation. Thorndike’s Formula 2 is designed for 

situations where the required information about restricted standard deviation to 

unrestricted standard deviation is on the same variable that had restricted range. In 

addition, Thorndike’s (1947) correction formula is well known for utilizing known 
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variance for the unrestricted situation to obtain an estimate of the corrected correlations. 

Oleksandr and Deniz (1999) provides a case when Thorndike’s (1947) Formula 2 was 

used in Graduate Record Examination (GRE) validation studies in which the researcher 

was interested in estimating the corrected correlation from an unrestricted sample from 

the correlation of the restricted sample. Additionally, Thorndike’s (1947) case two 

formula is widely employed in personnel selection for employment, when the test scores 

used for new applicants are related to job performances (Viswesvaran, Ones, & Schmidt, 

1996; Schmidt & Hunter, 1998). In this study, selection was made on the scores; thus, the 

range of scores was restricted in the sample. Even though the correlation between test 

score and job performance could have been obtained from the restricted sample, the 

researcher still wanted to know the correlation in the unrestricted sample (Henriksson & 

Wolming, 1998; Hunter & Schmidt, 1990). Hence, Thorndike’s (1947) Formula 2 has 

been used in many instances in real-world situations ranging from educational research to 

employment, and it has been shown to produce close estimates of the correlation in the 

population (Oleksandr & Deniz, 1999). 

The Cohen Ratio 

 Cohen (1959) based his formula on the sample variance in the restricted sample 

over the square of difference between the sample mean in the restricted sample and the 

point of truncation in the restricted sample. The formula for the Cohen ratio can be 

presented as 

Cohen ratio = 
      

 

(     ) 
 31 

where       
  is the variance of the restricted sample,  
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   is the mean of the restricted sample , and  

   is the point of truncation in the restricted sample. 

Alexander et al. (1984) points out that Cohen’s ratio has an advantage over others’ 

formulas because it needs only the variance of the restricted sample, the mean of the 

restricted sample, and the highest observed Xc in the restricted sample. The value Xc can 

be obtained from an ascending-ordered array where all X scores could be stored in an 

unordered array, and the unordered array could be sorted by an efficient sorting algorithm 

named quick sort (Horowitz & Sahni, 2000). Thus, once the Cohen ratio is determined, 

the z-score and table restricted normal standard deviation, named SDtab, could be 

obtained from the Cohen table, which has three columns (see Appendix B). The first 

column is the Cohen ratio, the next column is the SDtab, and the last column is the z-

score. The SDtab, and z-score would be found from the Cohen table by performing a table 

look-up of the Cohen ratio.  

Cohen’s Ratio in Alexander et al.’s Formula 

 Thorndike’s (1947) case two formula assumes that the variance of variables in the 

unrestricted area is known, whereas in Alexander et al.’s formula, the unrestricted 

variance is unknown. With the unknown variance in the unrestricted sample, Alexander 

suggested a method for estimating the unrestricted standard deviation using the Cohen 

ratio. Alexander et al. (1984) used the Cohen ratio in the previous equation to obtain the 

z-score and the SDtab (as seen in the Cohen table in Appendix B). Once the       value 

was obtained, Alexander et al.’s (1984) formula was then employed to estimate the 

unrestricted standard deviation as follows: 

                  32 
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where     is the unrestricted standard deviation, 

        is the observed standard deviation in the restricted sample, and 

SDtab is the tabled restricted normal standard deviation in restricted sample. 

Once the estimates of the unrestricted standard deviation, the observed standard 

deviation, and the restricted correlation are available, the estimate corrected correlation 

could be calculated using Thorndike’s Formula 2. An example of the Monte Carlo 

computer simulation program of the comparison of the mean observed and corrected 

correlations for different population’s correlation and truncation values is given in Table 

2. Even though the unrestricted variance was estimated through Alexander et al.’s (1984) 

formula, in every case except for the truncation value at −2.0, the results of the estimated 

corrected correlation values were closer to the true ρ correlation values than the observed 

correlation values. Likewise, in every case except for the severe cut (i.e., +1.0), the 

estimated corrected correlation value was an overestimate for truncation values (i.e., 

2.0, 1.5, 1.0, 0.5, 0, +0.5). The overestimations were either 0.01 or 0.02. Thus, the 

results show that Alexander et al.’s formula is a worthwhile estimate of corrected 

correlation in a real-world situation where more than often, the variance of the 

unrestricted sample is not given and the researcher could estimate it using the Cohen 

ratio. 
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Table 2 

Computer Simulation Results: Comparison of Mean Observed and Corrected 

Correlations for ρ and Truncation Points 

 

 ρ  

Truncation .20 .40 .60 .80 

2.0 0.19 (0.21) 0.38 (0.42) 0.58 (0.62) 0.78 (0.81) 

1.5 0.18 (0.21) 0.36 (0.41) 0.55 (0.62) 0.76 (0.81) 

1.0 0.16 (0.21) 0.33 (0.41) 0.51 (0.61) 0.72 (0.81) 

0.5 0.14 (0.21) 0.29 (0.41) 0.46 (0.61) 0.68 (0.81) 

µ 0.12 (0.21) 0.25 (0.42) 0.41 (0.61) 0.62 (0.81) 

+0.5 0.10 (0.21) 0.22 (0.41) 0.36 (0.61) 0.56 (0.80) 

+1.0 0.09 (0.19) 0.19 (0.39) 0.31 (0.59) 0.50 (0.79) 

Note. Corrected values are in parentheses. Data based on N = 60 with 5,000 replications. 

This table was taken from Alexander et al. (1984). Permission is found in Appendix D. 

 

Thorndike’s and Alexander et al.’s Variances in the Unrestricted and Restricted 

Situations 

In both Thorndike’s and Alexander et al.’s correction formulas, values for the 

variances in the restricted and the unrestricted situations are required. For both formulas, 

the variance in restricted situations was a sample estimate. In the Monte Carlo simulation, 

the difference between the two approaches was that in Thorndike’s formula, the variance 

in the unrestricted situation was the population variance from the exogenous, whereas in 

Alexander et al.’s approach, the population variance was estimated based on the sample 

variance in the restricted situation. The particular method that was used to create the 

robustness situations was the non-normal distributions for predicted group membership in 

a classification problem. Shown in Appendix C is a table that shows the sources for the 

variances in the restricted and unrestricted situations for Thorndike’s and Alexander et 

al.’s correction formulas. 
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Non-Normal Situations as a Result of a Classification Problem 

The problem of classifying people into groups is formed on the basis of a set of 

measurements, such as the aptitude tests and personal inventory scores, which often 

arises in applied research psychology or social science (Johnson & Wichern, 1998; 

Kuncel, Hezlett, & Ones, 2004). The particular classification problem employed to define 

non-normal distribution for robustness situations is a two-group classification situation 

with one predictor variable. Group 1 has a normal distribution on variable X and is 

referred to as distribution 1. Likewise, group 2 has been measured on variable X also and 

has a normal distribution that will be designated as distribution 2. Both distributions have 

the same population standard deviations but different population means. In this 

classification problem, after the classification decision is made, there are two errors of 

classification; more particularly, an individual from group 1 is misclassified into group 2, 

and an individual from group 2 is misclassified into group 1.Suppose it is desired to study 

the individuals predicted to be in group 1, that is, those individuals below a cut point on 

the predictor variable. These individuals are a mixture of group 1 and group 2, which has 

a non-normal distribution. 

Standard Error  

 Standard error is the square root of the mean square error, which can be defined as 

the expected value of the square of the difference between the estimated population value 

and the true population value. Cochran (1977) presented a mean square error formula 

(i.e., MSE) that can be expressed as the expected value of the square of the difference 

between the estimated population correlation value and the true population correlation 

value as: 
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MSE = E (ρ̂ – ρ)
2
        33 

The MSE could be rewritten in terms of the mean of population correlation value m as: 

MSE = E ( ̂   )
2
 + (m - ρ)

2
        34 

where  E ( ̂   )
2
 is the variance of  ̂ , 

(m - ρ)
2
 is the bias, 

 ̂ is the estimated population correlation value, 

ρ  is the true population correlation value, and 

m is the mean of population correlation. 

Thus, the standard error estimate could be derived from the square root of the mean 

square error such as 

Standard error  = √          35 

Degree of Closeness of Two Correlations 

 Cohen (1987) suggested using Fisher’s z transformation in the computing of the 

degree of closeness of the two correlations by taking the absolute value of the difference 

of the two z-values that were derived from one-half of the natural log of the quotient of  

(1 + r) and (1 - r); the result was then compared with Cohen’s effect size to find out the 

magnitude of the closeness of the correlations: 

d = |      |         36 

z = 0.5 ln(
   

   
)        37 

where z is the Fisher’s z transformation, 

and ln is the natural log. 
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Ultimately, the practical significance of the differences of two correlation corrections 

compared to population values depends on how the differences affect conclusions drawn 

from applied research. 

Skewness 

 Skew can be defined as an expected value of the averaged cubed deviation from 

the mean divided by the standard deviation cubed as E[(
    

 
)
 

], where µ is the 

population mean and σ is the population standard deviation (Groeneveld & Meeden, 

1984). If the skew value is greater than zero, then there is a positive skew, whereas 

negative skew occurs when the result is less than zero. Additionally, it is symmetric, or 

“no skew,” when the result is zero. 

Research Questions 

The significance of the current study is to contribute an additional understanding 

of the corrections for the effect of restriction of range on correlation. Because 

Thorndike’s Formula 2 uses known population unrestricted variance and Alexander et 

al.’s formula has to estimate the unrestricted variance by utilizing the Cohen (1959) ratio 

formula, I expected that Thorndike’s Formula 2 would provide better precision than 

Alexander et al.’s formula. I investigated four research questions related to the restriction 

of range: 

1. How accurate in terms of point estimates of correlations are Thorndike’s 

(1947) and Alexander et al.’s (1984) formulas to correct for restriction of 

range for an original normal distribution that has been truncated? 
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2. How do the standard errors of Thorndike’s corrected correlations compare to 

Alexander et al.’s corrected correlations for an original normal distribution 

that has been truncated? 

3. In the robustness situations, how accurate in terms of point estimates of 

correlations are Thorndike’s (1947) and Alexander et al.’s (1984) formulas to 

correct for restriction of range? 

4. In the robustness situations, how do the standard errors of Thorndike’s (1947) 

corrected correlations compare to the standard errors of Alexander et al.’s 

(1984) corrected correlations? 

Methodology 

The robustness situations for restriction of range situations are defined for the 

Monte Carlo simulation from the perspective of a statistical classification problem for 

two groups and one variable on which to make the classification decision. Group 1 has a 

normal distribution on variable X and is referred to as distribution 1. Likewise, group 2 

has also been measured on variable X and has a normal distribution, designated as 

distribution 2. Both distributions have the same population standard deviations of 1.0 but 

different population means. Group 1 has a population mean of 10.0, and group 2 has the 

following population means: 11.0, 12.0, and 14.0. The cut points for classifying an 

observation into group 1 and group 2 are the average of the population mean of group 1 

and the population mean of group 2. The values of the cut points are 10.5, 11.0, and 12.0. 

The corresponding z-score for the cut points are 0.5, 1.0, and 2.0, referenced from 

distribution 1. From the viewpoint of sample size, two classifications are considered, one 
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in which group 1 and group 2 have a sample size of 60, and the other in which the sample 

size for both groups is 120.  

For the Monte Carlo simulation, the above classification problem forms the basis 

for defining areas 1 and 2. Area 1 is defined as the truncated normal distribution for 

group 1 only below the cut point. Area 2 is defined as members of group 2 below the cut 

point or those individuals predicted to be in group 1. Figure 1, Figure 2, and Figure 3 in 

Appendix F illustrate a graphical presentation of  both areas 1 and 2 and the combined 

areas 1 and 2. 

Table 3 and Table 4 represent the expected number of pairs of scores in area 1 

after the truncation and the expected number of pairs of scores in areas 1 and 2 after 

truncation. When comparing Thorndike’s and Alexander et al.’s approaches on 

estimating the corrected correlations in the restriction of range, I measured the accuracy 

in terms of point estimates of correlations of the two approaches for restriction of range 

in area 1. Similarly, I compared the point of estimates of correlation between Thorndike’s 

formula and Alexander et al.’s formula for restriction of range in the robustness situations 

defined by combining areas 1 and 2. When comparing the point of estimates of 

correlations of the two approaches, I investigated different error terms based on the two 

approaches. These error terms are the differences between the observed correlation, 

corrected correlation, and population correlation. Defining an error term in this way 

facilitates summarizing error terms across situations with different populations. Eight 

error terms have been identified: (a) error 1 for the Thorndike’s (1947) observed 

correlation value in area 1, (b) error 2 for the Thorndike’s corrected correlation value in 

area 1 with a known variance, (c) error 3 for Alexander et al.’s (1984) observed 
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correlation value for area 1, (d) error 4 for Alexander et al.’s corrected correlation value 

for area 1 with an unknown variance, (e) error 5 for Thorndike’s observed correlation 

value for area 1 and area 2, (f) error 6 for Thorndike’s corrected correlation value for 

areas 1 and 2 with a known variance , (g) error 7 for Alexander et al.’s observed 

correlation value in area 1 and area 2, and (h) error 8 for Alexander et al.’s corrected 

correlation value with an unknown variance in areas 1 and 2. 

Table 3 

 

The Expected Number of Elements in Area 1 after Truncation 

 

Mean 

X 

Mean 

Y 
Truncation 

Z 

Score 
Area 1 N 

No. of Elements 

Expected in Area 1 

10 11 10.5 0.5 0.69 60 41.4 

10 12 11.0 1.0 0.84 60 50.4 

10 14 12.0 2.0 0.975 60 58.5 

10 11 10.5 0.5 0.69 120 82.8 

10 12 11.0 1.0 0.84 120 100.8 

10 14 12.0 2.0 0.975 120 117.0 

Note. N is the number of elements before truncation. No. of elements expected in Area 1 

is the number of pairs of scores (x,y) in sample distribution 1 after truncation. 

 

Table 4 

 

The Areas Defining the Truncation and Robustness Situations for Areas 1 and 2 

 

Mean 

X 

Mean 

Y Truncation 

Z-

Score 

Area 

 1 

Area 

2 N 

No. of 

Elements 

Expected in 

Area 1 

No. of 

Elements 

Expected 

in Area 2 

10 11 10.5 0.5 0.69 0.31 60 41.4 18.6 

10 12 11.0 1.0 0.84 0.16 60 50.4 9.6 

10 14 12.0 2.0 0.975 0.025 60 58.5 1.5 

10 11 10.5 0.5 0.69 0.31 120 82.8 37.2 

10 12 11.0 1.0 0.84 0.16 120 100.8 19.2 

10 14 12.0 2.0 0.975 0.025 120 117.0 3.0 

Note. N is the number of elements before truncation. No. of elements expected in Area 1 

is the number of pairs of scores (x,y) in sample distribution 1 after truncation. No. of 

elements expected in Area 2 is the number of pairs of scores (x,y) in sample distribution 

2 after truncation. 
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I used a Monte Carlo simulation to investigate the mean of estimated error terms for each 

of the error terms based on the truncation point defined by the average of the population 

means of distribution one and distribution two for area 1 and for the combined areas 1 

and 2. 

Research Design  

The four research questions previously presented are now stated in terms of area 1 

and area 2. 

1. How accurate in terms of point estimates of correlation are Thorndike’s 

(1947) and Alexander et al.’s (1984) formulas to correct for restriction of 

range in area 1? 

2. How do the standard errors of Thorndike’s corrected correlations compare to 

those of Alexander et al.’s corrected correlations for area 1? 

3. In the robustness situations that are defined by combining areas 1 and 2, how 

accurate in terms of point estimates of correlations are Thorndike’s (1947) and 

Alexander et al.’s (1984) formulas to correct for restriction of range? 

4. In the robustness situations that are defined by combining areas 1 and 2, how 

do the  standard errors of Thorndike’s (1947) corrected correlations compare 

to those of Alexander et al.’s (1984) corrected correlations for area 1 and area 

2 combined? 

The research design uses a set of exogenous variables shown in Table 5 that were 

inputs into the Monte Carlo simulation program. Thorndike’s formula uses known 

population variance to estimate the corrected correlation value, whereas Alexander et 

al.’s formula estimates the unrestricted variance from Cohen’s ratio and then uses it to 
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calculate the corrected correlation. The particular contributions of exogenous variables 

used in the simulation are presented in Table 6. 

Table 5 

 

Exogenous Variables Used to Define a Situation in Monte Carlo Study 

 

 

 

 

 

 

 

 

 

 

Exogenous Variables Values 

Number of Populations 2 

Number of Variables 2 denoted as (X, Y) 

Sample Size   60, 120 

Population Mean of  Distribution 1 10.0 

Population Mean of Distribution 2 11.0, 12.0, 14.0 

Degree of Truncation (compute by using the  

average of the population means of distribution 1 

and distribution 2) 

 

10.5, 11.0, and 12.0 

True Underlying Population Normal distribution 

Degree of Correlation in Population ρ = 0.20, ρ = 0.40, ρ = 0.60 

Number of Replications 2000  
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Table 6 

Simulated Situations Used to Produce Estimated Correlations from Thorndike’s and  

Alexander et al.’s Approaches 

 

Situation 

Sample 

Size ρ Truncation Areas 

1 60 0.2 10.5 1, 1 & 2 

2 60 0.2 11.0 1, 1 & 2 

3 60 0.2 12.0 1, 1 & 2 

4 60 0.4 10.5 1, 1 & 2 

5 60 0.4 11.0 1, 1 & 2 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

60 

60 

60 

60 

120 

120 

120 

120 

120 

120 

120 

120 

120 

0.4 

0.6 

0.6 

0.6 

0.2 

0.2 

0.2 

0.4 

0.4 

0.4 

0.6 

0.6 

0.6 

12.0 

10.5 

11.0 

12.0 

10.5 

11.0 

12.0 

10.5 

11.0 

12.0 

10.5 

11.0 

12.0 

1, 1 & 2 

1, 1 & 2 

1, 1 & 2 

1, 1 & 2 

1, 1 & 2 

1, 1 & 2 

1, 1 & 2 

1, 1 & 2 

1, 1 & 2 

1, 1 & 2 

1, 1 & 2 

1, 1 & 2 

1, 1 & 2 

 

Situations 1 through 9 account for both non-robustness and robustness situations 

for the sample size of 60; truncation values of 10.5, 11.0, and 12.0; and population 

correlation values of 0.2, 0.4, and 0.6 in area 1, and in both areas 1 and 2. Likewise, 

situations 10 through 18 offer non-robust and robust situations for a different sample size 

(N = 120). The results for situations 1 through 18 are shown in Appendix A in terms of 

corrected correlations and standard errors. 

Endogenous Variables in Monte Carlo Computer Simulation 

The fundamental outcome variables, or endogenous variables, were the eight error 

estimate terms defined previously in the methodology section and shown in Table 7.  
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Table 7 

Error Terms for Estimating Corrected Correlation Values for Thorndike’s and Alexander 

et al.’s Formulas 

 

Error Terms Formula 

Error estimate for Thorndike observed 

correlation for area 1 

ρ
’
xy,obs,T1 - ρxy 

Error estimate for Thorndike corrected 

correlation for area 1 

ρ
’
xy,est,T1 - ρxy 

Error estimate for Alexander et al. 

observed correlation for area 1 

ρ
’
xy,obs,A1 - ρxy 

Error estimate for Alexander et al. 

corrected correlation for area 1  

ρ
’
xy,est,A1 - ρxy 

Error estimate for Thorndike observed 

correlation for area 1 and area 2 

ρ
’
xy,obs,T12 - ρxy 

Error estimate for Thorndike corrected 

correlation for area 1 and area 2 

ρ
’
xy,est,T12 - ρxy 

Error estimate for Alexander et al. 

observed correlation for area 1 and area 2 

ρ
’
xy,obs,A12 - ρxy 

Error estimate for Alexander et al. 

corrected correlation for area 1 and area 2 

ρ
’
xy,est,A12 – ρxy 

Note. Subscript obs is for observed, est is for estimate. T1 is for Thorndike for area 1, 

T12 is for Thorndike for area 1 and area 2. A1 is for Alexander et al. for area 1, A12 is 

for Alexander et al. for area 1 and area 2. ρ’ is the estimated correlation. ρ is the true 

correlation value. 

 

In each replication of a simulated situation, one error term is calculated. The 

fundamental outcome variables for the simulated situations are shown in Table 7, and the 

square root of the variance of these errors constitutes the standard error. 

Planned Analysis for Research Questions 

For the mean point estimate of correlation for area 1 with degree of truncation 

values of 10.5, 11.0, and 12.0, with sample size before truncation of 60 and 120, and the 

number of repetitions at 2000, the simulation results are summarized across these 

situations for the appropriate areas. The summary includes the mean observed correlation 
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values after truncation, the mean of corrected correlation values, the mean of standard 

errors for observed correlations values, the mean of error estimates for the observed 

correlation values, and the mean of error estimates for the corrected correlation values. 

The corrected correlations are calculated using Thorndike’s (1947) formula and 

Alexander et al.’s (1984) formula. To address the research questions, each of the different 

error estimates, defined previously as the fundamental outcome variables, are compared. 

The summary will include the standard errors of the two approaches.  

Simulation Program 

 I used pseudo code to illustrate the Monte Carlo simulation. Pseudo code is a 

high-level language description of a programming task. The primary method for this 

effort is defined by the Monte Carlo simulation program. The program was written in R 

language, which is a programming language for statistical analysis, and it is available as 

an open-source software program (Crawley, 2007). I used R language to analyze the 

quantitative data and to make a prediction of the estimated corrected correlation values in 

the restriction of range using the given simulation’s quantitative data. The R 

programming language library includes a random number generator function to generate 

data (Crawley, 2005). The random number generator takes the following input 

parameters for each sample distribution: the sample size, the mean of sample distribution, 

the sample standard deviation, and the ρ value. It gives the vector array of ordered pairs 

(x,y) as the output. I wrote the Monte Carlo computer program that generates the number 

of inputs for the model. The simulation program can perform the following tasks: (1) read 

the input data file, which contains the exogenous variables described in Table 5; (2) read 

random user’s inputs for the truncation, sample size, population correlation values, 
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number of replications, population mean of distribution 1, population mean of 

distribution 2, and population standard deviation of distributions 1 and 2; (3) compute the 

results; and (4) write the results to a file for further analysis. A snippet of the R program 

on estimating the unrestricted standard deviation for Alexander et al.’s formula is found 

in Appendix G. 

The Monte Carlo simulation program takes the exogenous variables in Table 5 as 

the input parameters to the program. The input parameters are as follows: 

a. Sample size, defined as R language variables, containing the population 

sample size parameters (i.e., 60, 120) as an integer value. 

b. Variables, defined as R language input variables, containing 4 elements 

denoted as “Mean X,” “Standard deviation X,” “Mean Y,” and “Standard 

deviation Y,” where Mean X contains the population mean (i.e., 10.0), 

Mean Y contains the population mean (i.e., 11.0, 12.0, 14.0), and the 

population standard deviation for distribution 1 and distribution 2 (i.e., 1). 

c. Correlations, defined as R language variables, containing 3 elements, 

which are the constant values 0.2, 0.4, 0.6.  

d. Number of repetitions, defined as R language variable, which is the 

constant value 2000.  

e. Underlying population, defined as R language variables, containing 2 

elements, which are represented as “normal-normal” distributions for 

distribution 1 and distribution 2. 
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f. Truncation location, defined as R language variable, containing the value 

for the cut point, which is defined as the average of the population mean 

of distribution 1 and the population mean of distribution 2.  

Parameters defined in Table 5 are used as the input parameters to the simulation program 

with the particular simulated situations defined in Table 6. The simulation program 

produces the endogenous variables or output as shown for each situation in Appendix A. 

Expected Findings 

Based on previous research, I expected that differences in the approaches of 

Thorndike (1947) and Alexander et al. (1984) to restriction of range would be found. 

Given the facts that Thorndike’s (1947) estimate is based on a known unrestricted 

variance and Alexander et al.’s (1984) formula uses Cohen’s (1959) ratio for the estimate 

of the unrestricted variance, I expected that the results of Thorndike’s formula would be 

closer to the population correlation values than the results of Alexander et al.’s formula 

for normal situations. For the non-normal situations, there was no expectation about the 

magnitude of the errors in predicting the correlations for either procedure. My results 

should help inform the researcher about the magnitudes of the correlations to be expected 

in the robustness situations for both approaches. 

Results 

Results from the computer simulation for situations 1 through 18 (see Appendix 

A) are shown in Tables 8, 9, 10, and 11. Table 8 gives the mean point estimates of 

correlations for N = 60. Table 9 gives the mean differences for point estimates for N = 

60. Likewise, Tables 10 and 11 give similar values for N = 120. Tables 8, 9, 10, and 11 
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provide the information that is summarized in Tables 12 and 13 to address the first 

research question. 

Table 8 

Comparison of the Mean Observed and Corrected Correlation Values for Thorndike’s 

Approach and Alexander et al.’s Approach in Area 1 for N = 60 

 

Truncation 

values 

ρ 

(N = 60, number of repetitions = 2000) 

0.2 0.4 0.6 

Thorn Alex Thorn Alex Thorn Alex 

10.5 0.134 

(0.188) 

0.134 

(0.206) 

0.284 

(0.386) 

0.284 

(0.413) 

0.456 

(0.590) 

0.456 

(0.615) 

11.0 0.155 

(0.194) 

0.155 

 (0.207) 

0.323 

(0.395) 

0.323 

(0.415) 

0.507 

(0.597) 

0.507 

(0.617) 

12.0 0.189 

(0.202) 

0.189  

(0.210) 

0.381 

(0.404) 

0.381  

(0.418) 

0.577 

(0.603) 

0.577 

(0.619) 

Note. Thorn is for Thorndike. Alex is for Alexander et al. N refers to sample size in 

distribution 1 before truncation. Corrected correlation values shown in parentheses; 

observed correlation values not in parentheses. 

 

Table 9 

Mean Differences of the Observed and Corrected Correlation Values for Thorndike’s 

Approach and Alexander et al. ’s Approach for Area 1 for N = 60 

 

Truncation 

values 

ρ 

(N = 60, number of repetitions = 2000) 

0.2 0.4 0.6 

Thorndike Alexander Thorndike Alexander Thorndike Alexander 

10.5 0.066 

(0.012) 

0.066 

(0.006) 

0.116 

(0.014) 

0.116  

(0.013) 

0.144 

(0.010) 

0.144 

(0.015) 

11.0 0.045 

(0.006) 

0.045 

(0.007) 

0.077 

(0.005) 

0.077 

(0.015) 

0.093 

(0.003) 

0.093 

(0.017) 

12.0 0.011 

(0.002) 

0.011 

(0.010) 

0.019 

(0.004) 

0.019 

(0.018) 

0.023 

(0.003) 

0.023 

(0.019) 

Note. N refers to sample size in distribution 1 before truncation. Thorndike and 

Alexander et al. corrected correlation values error estimated values shown in parentheses; 

observed error estimated values of correlations from truncation situation not in 

parentheses. 
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Table 10 

Comparison of the Mean Observed and Corrected Correlation Values for Thorndike and 

Alexander et al. in Area 1 Across 2000 Replications for N = 120 

 

Truncation 

values 

ρ 

(N = 120, number of repetitions = 2000) 

0.2 0.4 0.6 

Thorndike Alex Thorndike Alex Thorndike Alex 

10.5 0.138 

(0.195) 

0.138 

(0.202) 

0.287 

(0.395) 

0.287 

(0.406) 

0.459 

(0.596) 

0.459 

(0.607) 

11.0 0.159 

(0.199) 

0.159 

(0.204) 

0.326 

(0.399) 

0.326 

(0.408) 

0.510 

(0.600) 

0.510 

(0.609) 

12.0 0.189 

(0.201) 

0.189 

(0.205) 

0.380 

(0.402) 

0.380 

(0.408) 

0.577 

(0.602) 

0.577 

(0.609) 

Note. Alex is for Alexander et al. N refers to sample size in distribution 1 before 

truncation. Corrected correlation values shown in parentheses; observed correlation 

values not in parentheses. 

 

Table 11 

Mean Differences of the Observed and Corrected Correlation Values For Thorndike and 

Alexander et al. for Area 1 for N = 120 

 

 
ρ 

(N = 120, number of repetitions = 2000) 

 0.2 0.4 0.6 

Truncation 

values 
Thorndike Alex Thorndike Alex Thorndike Alex 

10.5 0.062 

(0.005) 

0.062 

(0.002) 

0.113 

(0.005) 

0.113 

(0.006) 

0.141 

(0.004) 

0.141 

(0.007) 

11.0 0.041 

(0.001) 

0.041 

(0.004) 

0.074 

(0.001) 

0.074 

(0.008) 

0.090 

(0.000) 

0.090 

(0.009) 

12.0 0.011 

(0.001) 

0.011 

(0.005) 

0.020 

(0.002) 

0.020 

(0.008) 

0.023 

(0.002) 

0.023 

(0.009) 

Note. Alex is for Alexander et al. N refers to sample size in distribution 1 before 

truncation. Thorndike and Alexander et al. corrected correlation values error estimated 

values shown in parentheses; observed error estimated values of correlations from 

truncation situation not in parentheses. 
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Table 12 

Summary of the Absolute Values of the Mean Differences of the Observed and Corrected 

Correlation Values for Area 1 for N = 60 

 

Truncation  

values 

 

ρ 

(N = 60, number of repetitions = 2000) 

0.2 0.4 0.6 

Thorndike Alex Thorndike Alex Thorndike Alex 

10.5 0.012 0.006 0.014 0.013 0.010 0.015 

11.0 0.006 0.007 0.005 0.015 0.003 0.017 

12.0 0.002 0.010 0.004 0.018 0.003 0.019 

Mean 0.0067 0.0077 0.0077 0.0153 0.0053 0.0170 

Mean difference   0.0010  0.0076  0.0117 

Factor   1.150  2.000  3.188 

Note. Alex is for Alexander et al. N refers to sample size in distribution 1 before 

truncation. Mean difference is the mean difference between Thorndike and Alexander et 

al. Factor is the factor of Alexander et al. over Thorndike. Exact value of Thorndike = 

0.006556. Exact value of Alexander et al. = 0.04. 

 

Table 13 

Summary of the Absolute Values of the Mean Differences of the Observed and Corrected 

Correlation Values for Area 1 for N = 120 

 

 
ρ 

(N = 120, number of repetitions = 2000) 

 0.2 0.4 0.6 

Truncation values Thorndike Alex Thorndike Alex Thorndike Alex 

10.5 0.005 0.002 0.005 0.006 0.004 0.007 

11.0 0.001 0.004 0.001 0.008 0.000 0.009 

12.0 0.001 0.005 0.002 0.008 0.002 0.009 

Mean 0.0023 0.0037 0.0027 0.0073 0.0020 0.0083 

Mean difference  0.0014  0.0046  0.0063 

Factor   1.571  2.750  4.167 

Note. Alex is for Alexander et al. N refers to sample size in distribution 1 before 

truncation. Mean difference is the mean difference between Thorndike and Alexander et 

al. Factor is the factor of Alexander et al. over Thorndike. Exact value of Thorndike = 

0.002333. Exact value of Alexander et al. = 0.006444. 
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Results for Research Question 1 

Research question 1 addresses the overall effect of Thorndike’s and Alexander et 

al.’s approaches and compares the results with the population correlations across 

simulated situations for different patterns of population correlations in the set of studies 

for area 1. Inspection of Tables 12 and 13 shows the results from the computer simulation 

on the robustness of the point of estimate of the corrected correlation for Thorndike’s and 

Alexander et al.’s formulas for truncation values of 10.5, 11.0, and 12.0; ρ values of 0.2, 

0.4, and 0.6; and sample sizes of 60 and 120 in area 1. As shown in Table 12, 

Thorndike’s approach is closer to correct than Alexander et al.’s approach in terms of 

point of estimates of correlations for a sample size of 60. The differences of the mean 

estimates for Alexander et al.’s approach and Thorndike’s approach in Table 12 ranged 

from 0.0010 to 0.0117. The factors of Alexander et al. over Thorndike are 1.150, 2.00, 

and 3.188. The exact values of Thorndike and Alexander et al. are 0.007 and 0.040. In 

every case, Thorndike’s formula is better than Alexander et al.’s formula in terms of 

estimating the corrected correlation values. It is also shown that in every case in Table 

12, the error estimates and the exact value of Thorndike are less than the error estimates 

and the exact value of Alexander et al. These results appear because Thorndike is used to 

estimate the corrected correlation value based on the known population variance (i.e., 1 in 

the simulation), while Alexander et al. is used to estimate the corrected estimate 

correlation value based on the Cohen ratio formula. Therefore, Thorndike’s estimate of 

the true correlation value is closer to the population correlation value than Alexander et 

al.’s estimate. Nevertheless, Alexander et al.’s approach appears to give very good 

estimates. Likewise, shown in Table 13 is the result of the computer simulation on the 
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robustness of the point estimate of the corrected correlation for Thorndike and Alexander 

et al. for truncation values of 10.5, 11.0, and 12.0; ρ values of 0.2, 0.4, and 0.6; and a 

sample size of 120. As shown in the table, Thorndike is closer to correct than Alexander 

et al. in terms of point of estimates of correlations. The differences of the mean of point 

of error estimate of Alexander et al. and Thorndike in Table 13 ranged from 0.0014 to 

0.0063. The factors between Alexander et al. and Thorndike are 1.571, 2.750, and 4.167. 

The exact values of Thorndike and Alexander et al. are 0.0023 and 0.0064. In every case 

in Table 13, the error estimates and the exact value of Thorndike are less than the error 

estimates and the exact value of Alexander et al. Thus, for both sample sizes of 60 and 

120 in area 1, Thorndike gives a better estimate of corrected correlations than Alexander 

et al.; however, Alexander et al. appears to be a reasonable approximation. 

Results for Research Question 2 

 Research question 2 addresses the comparison of the standard errors for both 

Thorndike’s approach and Alexander et al.’s approach. Results of the simulation on 

standard error estimates are summarized in Table 14. In most of the cases, Alexander et 

al.’s average standard error is larger than Thorndike’s average standard error at each cut 

point except at the minimal cut (i.e., 12.0), the difference between the standard errors of 

the two approaches is 0.004 at most. This is to be expected because Thorndike’s formula 

estimates the corrected correlation from a known variance, while Alexander et al.’s 

formula estimates the corrected correlation using the Cohen ratio. Thus, it makes the 

standard error of the Alexander et al.’s formula larger than the standard error of 

Thorndike’s formula in most cases. Additionally, the results also indicate that Alexander 

et al.’s correction formula has closer estimates to the true correlation value with sample 
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size equal to 60. Thus, it matches the earlier work from Alexander et al. (1984), which 

indicates that his formula can produce a very close estimate of the corrected correlation 

for a sample size of 60. Furthermore, Table 14 also shows that the observed correlation’s 

standard error after truncation before any correction as additional information to help see 

the effect of the correction factors.  

Table 14 

Standard Errors of Estimated Correlations for Area 1 

 

 
ρ 

 (Area = 1, number of replications = 2000) 

Truncation 

values 

                       N = 60     N = 120 

0.2 0.4 0.6 0.2 0.4 0.6 

10.5 

(1) 

(2) 

(3) 

 

0.133 

0.188 

0.203 

 

0.125 

0.162 

0.182 

 

0.106 

0.116 

0.141 

 

0.087 

0.121 

0.127 

 

0.080 

0.102 

0.115 

 

0.068  

0.073    

0.091     

11.0 

(1) 

(2) 

 

0.096 

0.120 

 

0.088 

0.103 

 

0.072 

0.076 

 

0.067  

0.084    

 

0.061   

0.072          

 

0.049 

0.053 

(3) 0.129 0.116 0.091 0.086     0.078        0.062 

12.0 

(1) 

(2) 

(3) 

 

0.047 

0.052 

0.053 

 

0.043 

0.051 

0.050  

 

0.035 

0.045 

0.041 

 

0.033 

0.037 

0.036 

 

0.030   

0.036       

0.034     

 

0.024   

0.032    

0.028      

Note. N refers to sample size in distribution before truncation.  

(1) Standard error of estimate of the observed correlation values after truncation. 

(2) Standard error of estimate of the estimated corrected correlation values 

Thorndike. 

(3) Standard error of estimate of the estimated corrected correlation values Alexander 

et al. 

 

Results from the computer simulation for situations 1 through 18 for areas 1 and 2 

are shown in Tables 15, 16, 17, and 18. These tables represent the robustness of 

Thorndike’s and Alexander et al.’s approaches for area 1 and 2. Table 15 gives mean 
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point of estimates of correlations for N = 60. Table 16 gives the mean differences for 

point estimates for N = 60. Likewise, Tables 17 and 18 give similar values for N = 120. 

Tables 15, 16, 17, and 18 provide the information that is summarized in Tables 19 and 20 

to answer research question 3. 

Table 15 

Comparison of the Observed and Corrected Correlation Values in Area 1 and Area 2 for 

N = 60 

 

 
ρ 

(N = 60, number of repetitions = 2000) 

 0.2 0.4 0.6 

Truncation 

values 
Thorndike Alex Thorndike Alex Thorndike Alex 

10.5 0.154 

(0.224) 

0.154 

(0.227) 

0.265 

(0.373) 

0.265 

(0.411) 

0.398 

(0.536) 

0.398 

(0.580) 

11.0 0.275 

(0.337) 

0.275 

(0.381) 

0.393 

(0.471) 

0.393 

(0.530) 

0.527 

(0.612) 

0.527 

(0.673) 

12.0 0.254 

(0.265) 

0.254 

(0.282) 

0.420 

(0.438) 

0.420 

(0.460) 

0.591 

(0.611) 

0.591 

(0.634) 

Note. Alex is for Alexander et al. N is sample size. Corrected correlation values shown in 

parentheses; observed correlation values not in parentheses. 
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Table 16 

 

Mean Differences of the Observed and Corrected Correlation Values for Area 1 and 

Area 2 for Thorndike and Alexander et al. for N = 60 

 

Truncation 

values 

ρ 

(N = 60, number of repetitions = 2000) 

0.2 0.4 0.6 

Thorndike Alex Thorndike Alex Thorndike Alex 

10.5 0.046 

(-0.024) 

0.046 

(-0.047) 

0.135 

(0.027) 

0.135 

(-0.011) 

0.202 

(0.064) 

0.202 

(0.020) 

11.0 -0.075 

(-0.137) 

-0.075 

(-0.181) 

0.007 

(-0.071) 

0.007 

(-0.130) 

0.073 

(-0.012) 

0.073 

(-0.073) 

12.0 -0.054 

(-0.065) 

-0.054 

(-0.082) 

-0.02 

(-0.038) 

-0.02 

(-0.06) 

0.009 

(-0.011) 

0.009 

(-0.034) 

Note. Alex is for Alexander et al. N is sample size. Thorndike and Alexander et al. 

corrected correlation/error estimated values shown in parentheses; observed error 

estimated values of correlations from truncation situation not in parentheses. 

 

Table 17 

Comparison of the Observed and Corrected Correlation Values in Area 1 and Area 2  

 

Truncation 

values 

ρ 

(N = 120, number of repetitions = 2000) 

0.2 0.4 0.6 

Thorndike Alex Thorndike Alex Thorndike Alex 

10.5 0.179 

(0.260) 

0.179 

(0.283) 

0.297 

(0.373) 

0.297 

(0.411) 

0.436 

(0.583) 

0.436 

(0.622) 

11.0 0.294 

(0.360) 

0.294 

(0.404) 

0.416 

(0.497) 

0.416 

(0.551) 

0.550 

(0.636) 

0.550 

(0.689) 

12.0 0.277 

(0.288) 

0.277 

(0.301) 

0.435 

(0.450) 

0.435 

(0.468) 

0.598 

(0.614) 

0.598 

(0.633) 

Note. Alex is for Alexander et al. N is sample size. Corrected correlation values shown in 

parentheses; observed correlation values not in parentheses. 
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Table 18 

Mean Differences of the Observed and Corrected Correlation Values for Area 1 and 

Area 2  

 

 
ρ 

(N = 120, number of repetitions = 2000) 

 0.2 0.4 0.6 

Truncation 

values 
Thorndike Alex Thorndike Alex Thorndike Alex 

10.5 0.021 

(-0.060) 

0.021  

(-0.083) 

0.103 

(-0.018) 

0.103 

 (-0.053) 

0.164 

(0.017) 

0.164 

(-0.022) 

11.0 -0.094 

(-0.16) 

-0.094 

(-0.204) 

-0.016 

 (-0.097) 

-0.016 

(-0.151) 

0.050 

 (-0.036) 

0.050 

(-0.089) 

12.0 -0.077 

(-0.088) 

-0.077 

(-0.101) 

-0.035 

(-0.050) 

-0.035 

(-0.068) 

0.002 

(-0.014) 

0.002 

(-0.033) 

Note. Alex is for Alexander et al. N is sample size. Thorndike and Alexander et al. 

corrected correlation error estimated values shown in parentheses; observed error 

estimated values of correlations from truncation situation not in parentheses. 

 

Table 19 

Summary of the Absolute Values of the Mean Differences of the Observed and Corrected 

Correlation Values for Area 1 and Area 2 for N = 60 

 

 
ρ 

(N = 60, number of repetitions = 2000) 

 0.2 0.4 0.6 

Truncation 

values 
Thorndike Alex Thorndike Alex Thorndike Alex 

10.5 0.024 0.047 0.027 0.011 0.064 0.020 

11.0 0.137 0.181 0.071 0.130 0.012 0.073 

12.0 0.065 0.082 0.038 0.060 0.011 0.034 

Mean 0.075 0.103 0.045 0.067 0.029 0.042 

Mean 

Difference  

 0.028  0.022  0.013 

Factor  1.371  1.478  1.460 

Note. Alex is for Alexander et al. N refers to sample size in distribution 1 before 

truncation. Mean difference is the mean difference between Thorndike and Alexander et 

al. Factor is the factor of Alexander et al. over Thorndike. Exact value Thorndike = 

0.049889. Exact value Alexander et al. = 0.070889. 
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Table 20 

 

Summary of the Absolute Values of the Mean Differences of the Observed and Corrected 

Correlation Values for Area 1 and Area 2 for N = 120 

 

 
ρ 

(N = 120, number of repetitions = 2000) 

 0.2 0.4 0.6 

Truncation 

values 
Thorndike Alex Thorndike Alex Thorndike Alex 

10.5 0.060 0.083 0.018 0.053 0.017 0.022 

11.0 0.160 0.204 0.097 0.151 0.036 0.089 

12.0 0.088 0.101 0.050 0.068 0.014 0.033 

Mean 0.103 0.129 0.055 0.091 0.022 0.048 

Mean 

difference  

 0.026  0.036  0.026 

Factor   1.260  1.649  2.150 

Note. Alex is for Alexander et al. N refers to sample size in distribution 1 before 

truncation. Mean difference is the mean difference between Thorndike and Alexander et 

al. Factor is the factor of Alexander et al.’s error estimate over Thorndike’s error 

estimate. Exact value Thorndike = 0.06. Exact value Alexander et al. = 0.089333. 

 

Results for Research Question 3 

Research question 3 addresses the degree of accuracy in terms of the mean 

differences of the point estimates of correlations for Thorndike’s approach and Alexander 

et al.’s approach in robustness situations (i.e., combined areas 1 and 2). Tables 19 and 20 

show the results from the computer simulation in the robustness situations for Thorndike 

and Alexander et al. for truncation values of 10.5, 11.0, and 12.0; ρ values of 0.2, 0.4, 

0.6; and sample size of 60 and 120. As shown in Table 19, Thorndike’s approach is 

closer to correct than Alexander et al.’s approach in terms of mean differences when the 

sample size equals 60. In every summarized situation in Table 19, the mean differences 

of Thorndike’s approach are smaller than Alexander et al.’s approach. Additionally, in 

every summarized situation, the mean difference of the two methods is never larger than 
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0.028; thus, I believe that Alexander et al.’s method is worthwhile. Likewise, Table 20 

shows the results of the computer simulation in the robustness situations for Thorndike 

and Alexander for truncation values of 10.5, 11.0, and 12.0; ρ values of 0.2, 0.4, 0.6; and 

sample size of 120. As shown in Table 20, Thorndike’s approach is closer to correct than 

Alexander et al.’s approach in terms of point of estimates of correlations. In every 

summarized situation, Thorndike’s approach is better than Alexander et al.’s approach in 

term of estimating the population correlation values. These results appear because 

Thorndike’s approach uses for estimating the corrected estimate correlation value based 

on the known parameters population variance (i.e., 1), while Alexander et al.’s approach 

uses the corrected estimate correlation value based on the Cohen ratio. Here, the 

restricted standard deviations are “thrown off” by the non-normal situations, which 

results in the Cohen ratio working with less accurate information when predicting the 

unrestricted variance. However, the main point is the magnitude of these differences, 

particularly in regard to Alexander et al.’s estimates and population values as compared 

to Thorndike’s approach in robustness situations ranged from 1.37 to 2.15 larger factor 

for Alexander et al. to population value. Furthermore, in every case, the mean difference 

between Alexander et al.’s and Thorndike’s formulas is never larger than 0.036. This 

again indicates that Alexander et al.’s method is a worthwhile estimate. Furthermore, 

simulation results also illustrate that the degree of truncation contributes to increased 

correlation for a few situations when both areas 1 and 2 are mixed. As shown in Table 16 

and Table 18, the mean differences of Thorndike’s approach and Alexander et al.’s 

approach at a truncation value of 11.0 for both sample sizes of 60 and 120 are larger 

when compared to the other mean estimates of Thorndike’s and Alexander et al.’s 
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approaches at other truncation values. These results appear because there are pairs of 

scores (x,y) from area 2 in which the x values are close to the truncation line that 

contribute to an increase in the uncorrected observed correlation values in robust 

situations. Thus, with uncorrected observed correlation values that are less representative 

of the nominal population correlations (i.e., ρ = .2, .4, or .6), the adjustment formulas start 

with less accurate data. 

Results for Research Question 4 

 Research question 4 addresses the comparison of the standard error estimates of 

Thorndike’s formula and Alexander et al.’s formula for the robustness situations. Results 

of the simulation for standard error estimates are summarized in Table 21. In almost 

every case, average standard error estimates for Alexander et al.’s approach are larger 

than the average standard error for Thorndike’s approach at each cut point. Furthermore, 

with Alexander et al.’s formula at the most severe cut (i.e., 10.5), the difference between 

the two methods is never greater than 0.030 except as stated earlier in a few situations in 

the contaminated normal situations. Table 21 shows the observed correlations after 

truncation as a guide to help interpret the other standard error. 
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Table 21 

Standard Error Estimates for Area 1 + 2 

 

 
ρ 

(Area 1 + 2, number of replications = 2000) 

 N = 60  N = 120 

Truncation 

values 
0.2 0.4 0.6 0.2 0.4 0.6 

10.5 

(1) 

(2) 

(3) 

 

0.164 

0.235 

0.265 

 

0.155 

0.212 

0.237 

 

0.144 

0.178 

0.196 

 

0.118 

0.169 

0.186 

 

0.106 

0.144 

0.156 

 

 

0.094     

0.112          

0.122 

       

11.0 

(1) 

(2) 

 

0.147 

0.178 

 

0.122 

0.144 

 

0.097 

0.106 

 

0.101    

0.124     

 

0.078    

0.093     

 

0.059 

0.063 

(3) 0.201 0.156 0.113 0.186  0.097 0.068 

 

 

12.0 

(1) 

(2) 

(3) 

 

 

0.099 

0.100 

0.108 

 

 

0.067 

0.067 

0.073 

 

 

0.041  

0.045 

0.045 

 

 

0.073 

0.076 

0.079 

 

 

0.049   

0.051        

0.053 

 

 

0.030 

0.033 

0.033 

 

 

Note. N refers to sample size in distribution before truncation.  

(1) Standard error of the observed correlation values without correction after 

truncation. 

(2) Standard error of the corrected correlation values Thorndike. 

(3) Standard error of the corrected correlation values Alexander et al. 

 

Discussion 

After studying and comparing Thorndike’s and Alexander et al.’s approaches for 

estimating the corrected correlation values, I summarize and discuss the results in the 

following three areas: The accuracy of the correction formulas, the need for the 

correction formulas, and the worthiness of Alexander et al.’s formula. 
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1. Thorndike’s formula was a better estimate of the corrected correlation than 

Alexander et al.’s formula in both non-robustness and robustness situations 

for truncation values of 10.5, 11.0, 12.0; ρ values of 0.2, 0.4, 0.6; and sample 

sizes of 60 and 120. This is expected because Thorndike’s formula uses 

known variance, while Alexander et al.’s formula uses the Cohen ratio to 

estimate the corrected correlations. The computer simulation shows that for 

every case in the tables, from situations 1 to 18, Thorndike’s mean differences 

from the population values are smaller than Alexander et al.’s mean 

differences, and Thorndike’s standard errors are lower than Alexander et al.’s 

standard errors for both non-robustness and robustness situations. This, once 

again, confirms the expectation that Thorndike’s approach is better than 

Alexander et al.’s approach in estimating corrected correlations for both non-

robustness and robustness situations, given that a population variance for the 

unrestricted situation is available. This is frequently not the case, so the 

accuracy of Alexander et al.’s formula in comparison to population values is a 

major focus. The advantage of Alexander et al.’s approach is that it uses the 

data on hand by estimating the population variance from the available 

restricted variance. As stated earlier, the mean differences of the estimated 

values compared to population values for Alexander et al.’s approach 

compared to Thorndike’s approach in robustness situations ranging from a 

factor of 1.37 to 2.15, and its magnitude of mean differences ranged from 

0.013 to 0.036. 
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2. Corrections are needed because without the corrections, the correlation results 

tend to be much less accurate. The corrected correlations give results closer to 

the ρ values for both non-robustness and robustness situations except for a few 

robustness situations discussed below. This has implications for summarizing 

correlations in meta-analysis for situations which have restricted range based 

on one of the observed variables. 

3. As stated earlier, Thorndike’s corrected correlation values were more accurate 

than Alexander et al.’s corrected correlation values in terms of both mean 

differences and standard errors. Mean differences of the correlations for 

Alexander et al.’s approach compared to Thorndike’s approach in robustness 

situations ranged from 1.37 to 2.15 larger. Nevertheless, Alexander et al.’s 

approach, based only on estimated variances, appears to be a worthwhile 

correction in most of the situations that were simulated, with a few notable 

exceptions. The exceptions occurred for truncation value of 11.0 for sample 

sizes of 60 and 120. This indicates that how non-normality plays an important 

role in robustness situations. As shown in Table 16 and Table 18, the mean 

differences of Thorndike’s approach and Alexander et al.’s approach at a 

truncation value of 11.0 are larger when compared to the mean differences of 

Thorndike’s approach and Alexander et al.’s approach at other truncations. I 

believe this occurs in robustness situations because there are more x scores 

from area 2 next to the truncation line, which contributes to a more inaccurate 

estimate of the restricted variance resulting in Cohen’s formula, giving a less 

accurate estimate of the unrestricted variance.  Additionally, the degree of 
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skewness in mixed areas 1 and 2 is shown in Appendix E for sample sizes of 

60 and 120,  ranging from 0.408 to 0.766, thus it indicated  that a degree of 

negative skewness happened in mixed areas 1 and 2 after truncation occurred 

at 11.0 for every ρ value of 0.2, 0.4, and 0.6.  A negative-skew situation exists 

when there is a long tail in the negative direction; whereas, a positive-skew 

situation occurs in the opposite direction. Additionally, in most of the cases, 

the degree of negative skewness for the robustness situation (i.e, combined 

areas 1 and 2) tended to decrease when there was an increase in sample size, 

as shown in Appendix E. Furthermore, the corrected correlations for both 

formulas are adversely affected by observed uncorrected correlations that may 

be inflated. This is expected because range restriction sometimes increases 

correlation between variables in a contaminated normal distribution 

(Zimmerman & Williams, 2000).  

Limitations Leading to Future Directions 

One limitation of the current study is that it does not address the double truncation 

on both distributions 1 and 2. Alexander et al. (1990) suggested to experiment with Wells 

and Fruchter’s (1970) approach for corrected correlation when both x and y are truncated. 

The current research also does not address the corrected correlation for the skew-normal 

distributions 1 and 2 or the skew-skew of distributions 1 and 2. This limitation could be 

alleviated by modifying the current distribution function in the existing computer 

program to produce skewed distributions in lieu of normal distributions.  

Another limitation is related to the increased correlation in a contaminated normal 

or robustness situation, which occurs when areas 1 and 2 are mixed together. This 
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increased correlation could be resolved by implementing a filtering algorithm based on 

the detection of highly at-risk scores from area 2 that are close to the truncation line and 

preventing them from entering common areas 1 and 2. The filtering algorithm is based on 

the “divide and conquer” computational methodology in which at-risk scores from area 2 

would be searched by the binary search algorithm and eliminated before reaching the 

common areas 1 and 2. Another limitation of the research is that the formulas 

investigated did not include measurement error; however, this research produces a 

baseline that can be replicated with an error in the variables model to compare the effect 

reliability corrected correlations. These limitations provide directions for future research 

that can build on the results of this study. 
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APPENDIXES 

Appendix A 

 

Results for Simulation Situations 

 

The following tables provide the results for simulated situations 1 to 18. For all 

simulated situations, the number of replications is 2000. The same random numbers 

generated in distribution 1 were used for area 1 by itself and for area 1 from distribution 1 

when area 1 was combined with area 2. The population standard deviation in distribution 

1 is 1, and the population standard deviation in distribution 2 is also 1. Thorndike stands 

for Thorndike’s (1947) case 2 Formula. The Thorndike’s case 2 Formula is used to 

calculate the estimated corrected correlation value in a direct restriction of range. 

Alexander stands for Alexander et al.’s (1984) formula which uses the Cohen’s (1959) 

ratio formula. (1984). The Cohen’s (1959) ratio is defined as the ratio of the sample 

variance over the difference between the sample mean and the point of truncation 

squared. The “Mean correlation” is the mean correlation across 2000 replications. The 

“Error estimate” is the mean correlation minus the population correlation. The “Std error” 

is the standard deviation of the estimated correlation minus the population correlation. 

The median is the median correlation across 2000 replications. 



68 

 

Situation 1 

 

Exogenous Variables 

    

Population correlation = 0.2,   Sample size = 60, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 11,   

 

Truncation value = 10.5 

 

                                   Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.134 0.188 0.134 0.206 0.154 0.224 0.154 0.247 

Error 

Est 
0.066 0.012 0.066 -0.006 0.046 -0.024 0.046 -0.047 

Std 

Error 

Est 

0.133 0.188 0.133 0.203 0.164 0.235 0.164 0.265 

Median 

 
0.138 0.192 0.138 0.212 0.177 0.261 0.177 0.298 
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                                                                   Situation 2 

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.2,   Sample size = 60, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 12,   

 

Truncation value = 11.0 

 

                              Comparison of Observed and Corrected Correlation Values 

 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.155 0.194 0.155 0.207 0.275 0.337 0.275 0.381 

Error 

Est 
0.045 0.006 0.045 -0.007 -0.075 -0.137 -0.075 -0.181 

Std 

Error 

Est 

0.096 0.120 0.096 0.129 0.147 0.178 0.147 0.201 

Median 

 
0.160 0.199   0.16 0.209 0.304 0.372 0.304 0.423 
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                                                                   Situation 3 

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.2,   Sample size = 60, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 14,   

 

Truncation value = 12.0 

 

                                   Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.189 0.202 0.189 0.210 0.254 0.265 0.254 0.282 

Error 

Est 
0.011 -0.002 0.011 -0.010 -0.054 -0.065 -0.054 -0.082 

Std 

Error 

Est 

0.047 0.052 0.047 0.053 0.099 0.100 0.099 0.108 

Median 

 
0.200 0.207 0.200 0.217 0.218 0.238 0.218 0.246 
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                                                                   Situation 4    

                                                           Exogenous Variables 

 

    

Population correlation = 0.4,   Sample size = 60, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 11,   

 

Truncation value = 10.5 

 

                             Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.284 0.386 0.284 0.413 0.265 0.373 0.265 0.411 

Error 

Est 
0.116 0.014 0.116 -0.013 0.135 0.027 0.135 -0.011 

Std 

Error 

Est 

0.125 0.162 0.125 0.182 0.155 0.212 0.155 0.237 

Median 

 
0.289 0.396 0.289 0.424 0.291 0.414 0.291 0.457 
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                                                                   Situation 5 

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.4,   Sample size = 60, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 12,   

 

Truncation value = 11.0 

 

                            Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.323 0.395 0.323 0.415 0.393 0.471 0.393 0.530 

Error 

Est 
0.077 0.005 0.077 -0.015 0.007 -0.071 0.007 -0.130 

Std 

Error 

Est 

0.088 0.103 0.088 0.116 0.122 0.144 0.122 0.156 

Median 

 
0.327 0.402 0.327 0.419 0.419 0.499 0.419 0.561 
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                                                                   Situation 5 

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.4,   Sample size = 60, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 12,   

 

Truncation value = 11.0 

 

                            Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.323 0.395 0.323 0.415 0.393 0.471 0.393 0.530 

Error 

Est 
0.077 0.005 0.077 -0.015 0.007 -0.071 0.007 -0.130 

Std 

Error 

Est 

0.088 0.103 0.088 0.116 0.122 0.144 0.122 0.156 

Median 

 
0.327 0.402 0.327 0.419 0.419 0.499 0.419 0.561 
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                                                                   Situation 7 

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.6,   Sample size = 60, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 11,   

 

Truncation value = 10.5 

 

                                   Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.456 0.590 0.456 0.615 0.398 0.536 0.398 0.580 

Error 

Est 
0.144 0.010 0.144 -0.015 0.202 0.064 0.202 0.020 

Std 

Error 

Est 

0.106 0.116 0.106 0.141 0.144 0.178 0.144 0.196 

Median 

 
0.465 0.600 0.465 0.627 0.419 0.574 0.419 0.617 
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                                                                   Situation 8 

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.6,   Sample size = 60, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 12,   

 

Truncation value = 11.0 

 

                     Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.507 0.597 0.507 0.617 0.527 0.612 0.527 0.673 

Error 

Est 
0.093 0.003 0.093 -0.017 0.073 -0.012 0.073 -0.073 

Std 

Error 

Est 

0.072 0.076 0.072 0.091 0.097 0.106 0.097 0.113 

Median 

 
0.513 0.603 0.513 0.622 0.543   0.631 0.543   0.692 
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                                                                   Situation 9 

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.6,   Sample size = 60, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 14,   

 

Truncation value = 12.0 

 

                                             Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.577 0.603 0.577 0.619 0.591 0.611 0.591 0.634 

Error 

Est 
0.023 -0.003 0.023 -0.019 0.009 -0.011 0.009 -0.034 

Std 

Error 

Est 

0.035 0.045 0.035 0.041 0.041 0.045 0.041 0.045 

Median 

 
0.587 0.606 0.587 0.625 0.600 0.614 0.600 0.636 
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                                                                   Situation 10 

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.2,   Sample size = 120, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 11,   

 

Truncation value = 10.5 

 

                                        Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.138 0.195 0.138 0.202 0.179 0.260 0.179 0.283 

Error 

Est 
0.062 0.005 0.062 -0.002 0.021 -0.060 0.021 -0.083 

Std 

Error 

Est 

0.087 0.121 0.087 0.127 0.118 0.169 0.118 0.186 

Median 

 
0.139 0.199 0.139 0.203 0.197 0.292 0.197 0.317 
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                                                                   Situation 11   

                                                           Exogenous Variables 

 

    

Population correlation = 0.2,   Sample size = 120, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 12,   

 

Truncation value = 11.0 

 

                                        Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.159 0.199 0.159 0.204 0.294 0.360 0.294 0.404 

Error 

Est 
0.041 0.001 0.041 -0.004 -0.094 -0.16 -0.094 

 

-0.204 

 

Std 

Error 

Est 

0.067   0.084    0.067   0.086     0.101    0.124     0.101    0.186 

Median 

 
0.161 0.201   0.161 0.207    0.313   0.383    0.313   0.432 
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                                                                   Situation 12   

                                                           Exogenous Variables 

 

    

Population correlation = 0.2,   Sample size = 120, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 14,   

 

Truncation value = 12.0 

 

                                        Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.189 0.201 0.189 0.205 0.277 0.288 0.277 0.301 

Error 

Est 
0.011 -0.001 0.011 -0.005 -0.077 -0.088 -0.077 -0.101 

Std 

Error 

Est 

0.033 0.037 0.033 0.036 0.073 0.076 0.073 0.079 

Median 

 
0.192 0.203 0.192 0.209    0.280 0.287 0.280 0.305 
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                                                                   Situation 13 

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.4,   Sample size = 120, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 11,   

 

Truncation value = 10.5 

 

                                        Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.287 0.395 0.287 0.406 0.297 0.418 0.297 

 

0.453 

 

Error 

Est 
0.113 0.005 0.113 -0.006 0.103 -0.018 0.103 -0.053 

Std 

Error 

Est 

0.080 0.102 0.080 0.115 0.106 0.144 0.106 

 

0.156 

 

Median 

 

0.288 0.399   0.288 0.407    0.312   0.447    0.312   

 

0.478 
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                                                                   Situation 14   

                                                           Exogenous Variables 

 

    

Population correlation = 0.4,   Sample size = 120, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 12,   

 

Truncation value = 11.0 

 

                                        Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.326 0.399 0.326 0.408 0.416  0.497 0.416   0.551 

Error 

Est 
0.074 0.001 0.074 -0.008 -0.016 -0.097 -0.016 

 

 -0.151 

 

Std 

Error 

Est 

0.061   0.072          0.061   0.078        0.078    0.093     0.078      0.097 

Median 

 
0.329 0.403 0.329 0.411 0.429 0.513 0.429 

 

0.566 
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                                                                   Situation 15   

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.4,   Sample size = 120, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 14,   

 

Truncation value = 12.0 

 

                                        Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.380 0.402 0.380 0.408 0.435 0.450 0.435   0.468 

Error 

Est 
0.020 -0.002 0.020 -0.008 -0.035 -0.050 -0.035 

 

-0.068 

 

Std 

Error 

Est 

0.030   0.036       0.030   0.034     0.049    0.051        0.049       0.053 

Median 

 
0.384 0.404 0.384 0.412 0.438 0.451 0.438 

 

0.471 
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                                                                   Situation 16   

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.6,   Sample size = 120, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 11,   

 

Truncation value = 10.5 

 

                                        Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.459 0.596 0.459 0.607 0.436 0.583 0.436 

 

 0.622 

 

Error 

Est 
0.141 0.004 0.141 -0.007 0.164 0.017 0.164 

 

-0.022 

 

Std 

Error 

Est 

0.068   0.073    0.068   0.091     0.094      0.112          0.094     0.122 

Median 

 
0.461    0.600 0.461    0.610    0.451   0.606    0.451   

 

0.642 
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                                                                   Situation 17   

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.6,   Sample size = 120, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 12,   

 

Truncation value = 11.0 

 

                                        Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.510 0.600 0.510 0.609 0.550 0.636 0.550 

 

 

 0.689 

 

 

Error 

Est 
0.090 0.000 0.090 -0.009 0.050 -0.036 0.050 

 

-0.089 

 

Std 

Error 

Est 

0.049 0.053 0.049 0.062 0.059 0.063 0.059 

 

0.068 

 

Median 

 
0.513 0.602   0.513 0.612    0.556     0.644    0.556   

 

0.696 
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                                                                   Situation 18   

 

                                                           Exogenous Variables 

 

    

Population correlation = 0.6,   Sample size = 120, 

 

Population mean of distribution 1 = 10,   Population mean of distribution 2 = 14,   

 

Truncation value = 12.0 

 

                                        Comparison of Observed and Corrected Correlation Values 

 

 Area 1 Area 1 + Area 2 

 Thorndike Alexander et al. Thorndike Alexander et al. 

Statistics 
Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Obs 

Corr 

Est 

Corr 

Mean 

Corr 
0.577 0.602 0.577 0.609 0.598 0.614 0.598 

 

 

 0.633 

 

 

Error 

Est 
0.023 -0.002 0.023 -0.009 0.002 -0.014 0.002 

 

-0.033 

 

Std 

Error 

Est 

0.024   0.032    0.024   0.028      0.030  0.033 0.030 

 

0.033 

 

Median 

 
0.581 0.603   0.581 0.612 0.599       0.615    0.599   

 

 

0.634 
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Appendix B 

Cohen’s Table 

Cohen Ratio SD tab z-score 

0.109 

0.113 

0.116 

0.120 

0.124 

0.128 

0.132 

0.137 

0.141 

0.146 

0.151 

0.156 

0.161 

0.167 

0.172 

0.178 

0.184    

0.190 

0.197 

0.203 

0.210 

0.217 

.993 

.992 

.991 

.990 

.989 

.987 

.986 

.984 

.982 

.980 

.978 

.975 

.972 

.969 

.966 

.963 

.959 

.955 

.951 

.946 

.942 

.936 

3.00 

2.95 

2.90 

2.85 

2.80 

2.75 

2.70 

2.65 

2.60 

2.55 

2.50 

2.45 

2.40 

2.35 

2.30 

2.25 

2.20 

2.15 

2.10 

2.05 

2.00 

1.95 
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0.224 

0.231 

0.239 

0.247 

0.254 

0.263 

0.271 

0.279 

0.288 

0.296 

0.305 

0.314 

0.323 

0.332 

0.342 

0.351 

0.361 

0.370 

0.380 

0.389 

0.399 

0.409 

0.419 

0.429 

0.438 

.931 

.926 

.920 

.914 

.907 

.901 

.894 

.886 

.879 

.871 

.863 

.855 

.847 

.838 

.830 

.821 

.812 

.803 

.794 

.784 

.775 

.765 

.756 

.746 

.736 

1.90 

1.85 

1.80 

1.75 

1.70 

1.65 

1.60 

1.55 

1.50 

1.45 

1.40 

1.35 

1.30 

1.25 

1.20 

1.15 

1.10 

1.05 

1.00 

0.95 

0.90 

0.85 

0.80 

0.75 

0.70 
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0.448 

0.458 

0.468 

0.477 

0.487 

0.497 

0.506 

0.516 

0.525 

0.534 

0.544  

0.553 

0.562 

0.571 

0.580 

0.588 

0.597 

0.605 

0.614 

0.622 

0.630 

0.638 

0.646 

0.653 

0.661 

.726 

.717 

.707 

.697 

.688 

.678 

.668 

.659 

.649 

.640 

.630 

.621 

.612 

.603 

.594 

.585 

.576 

.568 

.559 

.551 

.542 

.534 

.526 

.518 

.510 

0.65 

0.60 

0.55 

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 

-0.05 

-0.10 

-0.15 

-0.20 

-0.25 

-0.30 

-0.35 

-0.40 

-0.45 

-0.50 

-0.55 
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0.668 

0.675 

0.682 

0.689 

0.696 

0.703  

0.709 

0.716 

0.722 

0.728 

0.734 

0.740 

0.746 

0.751 

0.757 

0.762 

0.767 

0.772 

0.777 

0.782 

0.787 

0.791 

0.796 

0.800 

0.804   

.503 

.495 

.488 

.481 

.473 

.466 

.460 

.453 

.446 

.440 

.433 

.427 

.421 

.415 

.409 

.403 

.398 

.392 

.387 

.381 

.376 

.371 

.366 

.361 

.356 

-0.60 

-0.65 

-0.70 

-0.75 

-0.80 

-0.85 

-0.90 

-0.95 

-1.00 

-1.05 

-1.10 

-1.15 

-1.20 

-1.25 

-1.30 

-1.35 

-1.40 

-1.45 

-1.50 

-1.55 

-1.60 

-1.65 

-1.70 

-1.75 

-1.80 
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0.809 

0.813 

0.817 

0.820 

0.825 

0.828 

0.832 

0.835 

0.838 

0.842 

0.845 

0.848 

0.851 

0.855 

0.857 

0.860 

0.864 

0.867 

0.869 

0.868 

0.875 

0.875 

0.882 

0.882 

.352 

.347 

.343 

.338 

.334 

.329 

.325 

.321 

.317 

.313 

.309 

.306 

.302 

.298 

.295 

.291 

.288 

.285 

.281 

.278 

.275 

.272 

.269 

.266 

-1.85 

-1.90 

-1.95 

-2.00 

-2.05 

-2.10 

-2.15 

-2.20 

-2.25 

-2.30 

-2.35 

-2.40 

-2.45 

-2.50 

-2.55 

-2.60 

-2.65 

-2.70 

-2.75 

-2.80 

-2.85 

-2.90 

-2.95 

-3.00 
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Note : Taken from Alexander  et al. (1984). Permission is found in Appendix D. 
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Appendix C 

Thorndike’s and Alexander et al.’s Variances in the Unrestricted and Restricted 

Situations 

 

The following table illustrates where and how to obtain the variances in 

Thorndike’s and Alexander et al.’s formulas. 

 Thorndike Alexander et al. 

Restricted variance Sample estimate Sample estimate 

Unrestricted variance Population variance 

 

Cohen’s approach to use 

sample to estimate 

population variance 

 

In Thorndike’s formula, both the restricted and unrestricted variance are known from the 

sample estimate, and population variance whereas in Alexander et al.’s formula, the 

restricted variance is known from the sample estimate, and the unrestricted variance has 

to be estimated from the sample variance using the Cohen’s formula. 
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Appendix D 

Dear Dung Minh Tran, 

Thank you for placing your order with Copyright Clearance Center. 
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Appendix D Continue 
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Appendix E 

Mean of  Skewness for Sample Size of 60, Truncation Value of 11.0, and Number of 

Repetitions of 10 

ρ Area 1 Areas 1 and 2 

0.2 -0.249 -0.408 

0.4 -0.503 -0.567 

0.6 -0.667 -0.766 

 

 

Mean of  Skewness for Sample Size of 120, Truncation Value of 11.0, and Number of 

Repetitions of 10 

 

 

 

 

 

 

ρ Area 1 Areas 1 and 2 

0.2 -0.352 -0.537 

0.4 -0.438 -0.496 

0.6 -0.441 -0.544 
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Appendix F 
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Appendix G 

A Snippet of Calculating the Corrected Standard Deviation from the Alexander et al.'s 

formula Using the Cohen's  Table 

### set up Cohen's Table = [Cohen ratio, STD tab, and Z truncation]. 

### Table look up could be done by matching the SD tab value based on key value of the 

Cohen ### ratio. 

#### See explanation in background section for computing the Cohen ratio, and the 

corrected  

#### standard deviation for the Alexander’s Formula. 

#### comments are followed the pound sign 

cohenRatio<- 

c(.109,.113,.116,.120,.124,.128,.132,.137,.141,.146,.151,.156,.161,.167,.172,.178,.184 

,.190,.197,.203,.210,.217,.224,.231,.239,.247,.254,.263,.271,.279,.288,.296,.305,.314,.323

,.332,.342,.351,.361,.370,.380,.389,.399,.409,.419,.429,.438,.448,.458,.468,.477,.487,.497

,.506,.516,.525,.534,.544,.553,.562,.571,.580,.588,.597,.605,.614,.622,.630,.638,.646,.653

,.661,.668,.675,.682,.689,.696,.703,.709,.716,.722,.728,.734,.740,.746,.751,.757,.762,.767

,.772,.777,.782,.787,.791,.796,.800,.804,.809,.813,.817,.820,.825,.828,.832,.835,.838,.842

,.845,.848,.851,.855,.857 

,.860,.864,.867,.869,.868,.875,.875,.882,.882) 

SDtab<-  

c(.993,.992,.991,.990,.989,.987,.986,.984,.982,.980,.978,.975,.972,.969,.966,.963,.959,.9

55 
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,.951,.946,.942,.936,.931,.926,.920,.914,.907,.901,.894,.886,.879,.871,.863,.855,.847,.838

,.830,.821,.812,.803,.794,.784,.775,.765,.756,.746,.736,.726,.717,.707,.697,.688,.678,.668

,.659,.649,.640,.630,.621,.612,.603,.594,.585,.576,.568,.559,.551,.542,.534,.526,.518,.510

,.503,.495,.488,.481,.473,.466,.460,.453,.446,.440,.433,.427,.421,.415,.409,.403,.398,.392

,.387,.381,.376 

,.371,.366,.361,.356,.352,.347,.343,.338,.334,.329,.325,.321,.317,.313,.309,.306,.302,.298

,.295, 

.291,.288,.285,.281,.278,.275,.272,.269,.266) 

ZTruncation<- 

c(3.00,2.95,2.90,2.85,2.80,2.75,2.70,2.65,2.60,2.55,2.50,2.45,2.40,2.35,2.30,2.25,2.20,2.

15,2.10,2.05,2.00,1.95,1.90,1.85,1.80,1.75,1.70,1.65,1.60,1.55,1.50,1.45,1.40,1.35,1.30,1.

25,1.20,1.15,1.10,1.05,1.00,0.95,0.90,0.85,0.80,0.75,0.70,0.65,0.60,0.55,0.50,0.45,0.40,0.

35,0.30,0.25,0.20,0.15,0.10,0.05,0.00,-0.05,-0.10,-0.15,-0.20,-0.25,-0.30,-0.35,-0.40,-

0.45,-0.50,-0.55,-0.60,-0.65,-0.70,-0.75,-0.80,-0.85,-0.90,-0.95,-1.00,-1.05,-1.10,-1.15,-

1.20,-1.25,-1.30,-1.35,-1.40,-1.45,-1.50,-1.55,-1.60,-1.65,-1.70,-1.75,-1.80,-1.85,-1.90,-

1.95,-2.00,-2.05,-2.10,-2.15,-2.20,-2.25,-2.30,-2.35,-2.40,-2.45,-2.50,-2.55,-2.60,-2.65,-

2.70,-2.75,-2.80,-2.85,-2.90,-2.95,-3.00) 

 

CorrectedStd<- function (RestSample, StdObs) 

## Corrected Standard deviation function with input restricted sample vector, and the 

standard ## deviation of the restricted sample 

 { 
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CohenTableVector<- data.frame (cohenRation,SDtab,ZTruncation) 

dx<- 0.005 

sortRestSample<-  sort (RestSample[,c(1)]) 

   ## sort in ascending order x values of the restricted sample 

highestXValue<- sortRestSample[length (RestSample[,c(1)])]      

diffDeno<- square(mean(RestSample[,c(1)]) -  highestXValue) 

  ## compute square of the difference of the mean of the restricted sample and the highest    

###score X value 

cohenRatio<- var (RestSample[,c(1)]) / diffDeno 

  ## compute the Cohen ratio by simply calculating the ratio of the variance of the 

restricted  

## sample and the above equation on diffDeno 

  cohenZRestrictedArea1 <- 0 

  cohenSDtabRestrictedArea1 <- 0 

for (i in 1 : length (CohenTableVector[,c(1)])) 

   { 

      ## Performing the table look up on Cohen’s ratio 

if (( cohenRatio - CohenTableVector[,c(1)][i]) < dx) 

         { 

              cohenZRestrictedArea1 <- CohenTableVector[,c(3)][i] 

              cohenSDtabRestrictedArea1 <- CohenTableVector[,c(2)][i] 

break;  

              ### exit of the for loop once the Cohen ratio is found 
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         } 

 

   } 

CorrectedStdValue<- stdObs / cohenSDtabRestrictedArea1; 

## The corrected standard deviation in the Alexander’s formula is obtained by the ratio of 

the 

## standard deviation of the restricted sample and the Sd tab  

returnCorrectedStdValue 

} 
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