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ABSTRACT 
 

THE IMPACT OF MANIPULATIVES ON STUDENTS’ PERFORMANCE 
 ON MONEY WORD PROBLEMS 

by 
Jaye K. Luke 

Numeracy skills are needed for daily living. For example, time management and 

budgeting are tasks that adults face on a frequent basis. Instruction for numeracy skills begins 

early and continues throughout childhood. Obtaining numeracy skills is difficult for some 

students. For example, there may be an inadequate fit between the student’s knowledge and the 

design of the instruction, the student may be unable to select an appropriate strategy for solving 

the problem, or the student may have a learning disability. Students with a learning disability 

comprise approximately 40% of identified children with disabilities who receive special 

education services (U.S. Department of Education, 2005). 

The National Council of Teachers of Mathematics helps teachers mediate the difficulties 

students may have in math. The council recommends problem solving and representation with 

physical objects as a teaching method. Chapter 1 presents a literature review on children with a 

learning disability, the use of manipulatives, and problem solving. The literature review indicates 

that children with a learning disability are poor problem solvers, but that further research is 

needed to investigate best instructional strategies. Chapter 2 presents a study on the impact of 

manipulatives on the accurate completion of money word problems. Three populations were 

included: adults who struggle with numeracy (n = 20), children with a learning disability (n = 

20), and children who are typically developing (n = 23). Participants were administered a 

measure of 10 money word problems and were asked to solve them without the use of 

manipulatives. Participants were then randomly assigned to one of two groups: perceptually rich 



	   	   	  

	  

	  

and perceptually bland manipulatives. Results indicate that none of the participants performed 

better with manipulatives than they performed without manipulatives. There was an interaction 

of Condition x Type of participant with the participants with a learning disability in the bland 

condition performing significantly worse than the other participants. More research is warranted 

to understand the impact of manipulative use in mathematics instruction for adults who struggle 

with numeracy, children with a learning disability, and children who are typically developing.
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CHAPTER 1 

THE USE OF PROBLEM SOLVING AND PHYSICAL REPRESENTATION FOR 

TEACHING NUMERACY SKILLS TO STUDENTS WITH LEARNING DISABILITIES 

Introduction 

Numeracy pervades many adult activities and is important for success in today’s society 

(Condelli et al., 2006).  For example, calculating a tip, time management, balancing a budget, 

and figuring out the cost of sale items are tasks that adults face on a frequent basis and illustrate 

the need for numeracy skills to manage diverse quantitative situations (Gal, 2000). In addition, 

many jobs require some level of proficiency in mathematics, and for some jobs it is the essence 

of the worker’s tasks (Patton, Cronin, Bassett, & Koppel, 1997). Inadequate numeracy skills may 

impact an individual’s daily living. 

 Due to the importance of numeracy skills, mathematics instruction to enhance the 

development of mathematical proficiency starts very early in preschool and elementary school. 

From preschool onward, children learn abstract mathematical concepts and principles in 

addition to procedures and facts through various types of instruction. In spite of this focus on 

mathematical instruction throughout school, adults frequently lack the skills necessary for 

solving the multistep problems they encounter in the context of everyday situations and work 

settings (Dossey, Mullis, Lindquist, & Chambers, 1988). A lack of functional math skills in 

adults suggests there is a lack of mastery of math skills while in school. 

 There are a variety of reasons an individual may not master math skills while in school. A 

student may not receive adequate, strategic, and sequenced instruction (Cawley, Fizmaurice, 

Shaw, Kahn, & Bates, 1978), or there may be a poor fit between the design of the instruction 

and student characteristics. Alternatively, the student may learn the skills but not when to apply 
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them.  These reasons may be compounded for children with a learning disability. Learning 

disabilities impact approximately 6%-14% of society (Barberesi, Katusic, Colligan, Weaver, & 

Jacobson, 2005). The National Joint Committee on Learning Disabilities (NCLD, 1991) 

provides the following definition of learning disabilities: 

 Learning disabilities is a general term that refers to a heterogeneous group of disorders 

 manifested by significant difficulties in the acquisition and use of listening, speaking, 

 reading, writing, reasoning, or mathematical skills. These disorders are intrinsic to the 

 individual, are presumed to be due to a central nervous system dysfunction, and may occur 

 across the life span. Problems in self-regulatory behaviours, social perception, and social 

 interaction may exist with learning disabilities but do not by themselves constitute a 

 learning disability. Although a learning disability may occur concomitantly with other 

 disabilities or with extrinsic influences, it would not be a result of those conditions or 

 influences. (NCLD, 1991, p. 20)  

 Children with a learning disability struggle from an early age and throughout their 

schooling with working memory, procedures, and numerical concepts (Geary, 2004). For 

example, young children with a math learning disability may have trouble with counting, 

memorizing numbers, and organizing items in a logical way. School-aged children with a math 

learning disability may encounter problems with retrieving math facts, problem solving, and 

math vocabulary (Miller & Mercer, 1997). Teenagers and adults with a math learning disability 

may have difficulty with estimating time, estimating costs, and finding different approaches to 

one problem (National Joint Committee on Learning Disabilities [NCLD] Editorial Staff, 2010).  

  Fortunately, there are a variety of strategies supported by the literature to address poor 

numeracy skills.  Most of these strategies fall into three dominant categories: a direct instruction 
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model, self-instructional strategy training, and assisted performance. The direct instruction 

model typically is used for task-specific strategies.  This instruction is often scripted and 

students are taught a specific behavioural sequence. The self-instructional strategy training 

reminds students of the current task. The assisted performance model attempts to engage 

cognitive and metacognitive processes.  The teacher models the task just slightly above what the 

learner is independently capable of doing.  Additionally, the teacher may use coaching, fading, 

questions, and explanation to make the task explicit (Goldman, 1989). The goal of all of these 

strategies is to make the problem clear and concise. Making the problem clear and 

comprehending the question is essential to gaining numeracy skills.  Children with a learning 

disability struggle with understanding what the question is asking and can benefit from the 

above recommended strategies, as well as from those found in Miller, Butler, and Lee’s (1998) 

meta-analysis. Miller et al. (1998) examined the research conducted between 1988 and 1997 and 

found the following teaching strategies to be effective for teaching mathematical concepts to 

students with a learning disability: constant time delay, manipulative devices, direct instruction, 

strategy instruction, lecture pause, goal structure, self-regulation, computational synthesis, 

problem-solving instruction, and peer tutoring. Of these, the National Council of Teachers of 

Mathematics (NCTM) stresses problem solving and manipulative devices/representation.  

  The NCTM is an organization created to help teachers mediate students’ difficulties in 

learning math (NCTM, 1989). The council recommends many process standards for the teacher 

to use during instruction.  Process standards are endorsed methods for teaching the NCTM 

content standards. This paper will focus on the combination of two of the process standards: the 

development of problem-solving skills and representing ideas with physical objects (NCTM, 

2000). Teaching content through problem solving and physical representation allows students to 
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have access to two strategies for learning math content. 

 There is mounting evidence that problem solving is a powerful and effective vehicle for 

learning mathematical concepts (Reusser, 1995; Van De Walle, Karp, Bay-Williams, 2009). 

This focus on problem solving is in agreement with mathematics education reformists who 

encourage the understanding of mathematics and the development of problem-solving skills 

rather than the memorization of algorithms. However, many students with a learning disability 

receive specialized math instruction that typically does not include instruction during which 

students can construct their own meaning or connect a relationship to the physical world 

(Schifter & Fosnot, 1993). Instead it emphasizes the teacher telling the students the appropriate 

algorithm to use to solve the problem.  

 Effective teachers guide their students’ learning (Fuson & Briars, 1990) by selecting a 

strategy that matches the content. Recently, the NCTM (2012) reported two trends for the 

successful development of conceptual understanding. The first trend for the development of 

conceptual understanding includes instruction that makes mathematical relationships explicit. 

Secondly, students should wrestle with important ideas. That is, students should use effort to 

make sense of the concepts and relationships. Effective teachers are capable of making math 

relationships explicit and providing activities that allow students to grapple with important 

ideas.  

 Manipulatives, or concrete representations of an item are often used in mathematical 

instruction and may be called a “hands-on-approach” strategy. The NCTM (1989) promotes this 

teaching strategy and teachers are encouraged to use manipulatives to teach abstract (McNeil & 

Jarvin, 2007) and other mathematical concepts (Parmar & Cawley, 1997).  Behrend (2003) 

prepared a report for the NCTM and reported an example of a hands-on approach in which the 
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students were given a word problem, allowed time to think about the problem, and then asked to 

solve the problem using counters. After solving the problem, the students shared their strategy. 

The first problem was: “There are 3 bags of marbles. Each bag has 4 marbles in it. How many 

marbles are there all together?” In the report, one participant’s experience was described as 

follows. Once the problem was posed, Cal stated that he did not know how to solve it. He put 3 

counters down, took 4 more counters and then counted all 7 of the counters. After hearing his 

answer, the teacher prompted, “Does that tell us how many marbles there are? Do you want me 

to reread the question? The problem was reread and Cal said, “Oh, that’s easy” and placed 4 

counters in 3 areas and counted a total of 13. His friend said there were 12, so Cal recounted and 

agreed that the correct answer was 12.  The other problems were solved in a similar manner. It 

was reported that students were able to justify their answers to others and had opportunities to 

make sense of the problems. This example of instruction with manipulatives illustrates the 

benefits of using them in very small groups and with step-by-step guidance from a teacher.  

Problem Solving 

 Problem solving can promote students’ conceptual understanding and foster their ability to 

reason and communicate mathematically (Cai & Lester, 2010). Problem solving is the 

application of knowledge to solve a novel problem (Carnine, 1997). When teaching through 

problem solving, learning occurs while attempting to solve the problem (NCTM, 2012). Good 

problem solvers can estimate, predict, draw conclusions, evaluate, and use information 

effectively (Bley & Thornton, 2001). Students with a math learning disability experience several 

deficits that make it difficult for them to succeed in problem solving (Hanich, Jordan, Kaplan, & 

Dick, 2001; Jitendra & Xin, 1997; Maccini & Gagnon, 2002; Miller & Mercer, 1993; Swanson 

& Bebe-Frankenberger, 2004; Xin & Jitendra, 1999). When confronted with a math problem, 
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students with a math learning disability may not readily be able to retrieve the necessary math 

facts and this could lead to an inconsistency in correct calculations. Additionally, they may 

misperceive what the question is asking or select an ineffective strategy for solving the problem 

(Torgeson & Kail, 1980).  

 To gain the needed skills for problem solving, students must have many occasions to 

practice (NCTM, 1980, 1989).  Word problems are probably the most common form of problem 

solving seen in classrooms and provide many opportunities for students to practice. However, it 

has been suggested that the typical word problems students solve in classrooms are not 

challenging enough (Cai & Lester, 2010). Teachers are encouraged to increase the challenge of 

word problems by providing problem-solving exercises that represent problems students may 

encounter in real life (NCTM, 1980, 1989). 

 There are multiple advantages to problem solving in a real-life context. Problems presented 

with a real-life context are unique as the problem can be organically tied to the authentic needs 

and instincts of the solver (Kilpatrick, 2003). Problems in a real-life context provide cues that 

can “prime” students to select an effective problem solving strategy (Schliemann & Carraher, 

2002) and make connections between school mathematics and students’ informal knowledge 

(Peterson et al., 1991 as cited in Goldman & Hasselbring, 1997). Students may benefit if 

problems are presented in a real-life context because they are less likely to treat the problems as 

artificial ‘‘games’’ that bear little relation to life outside of school (Palm, 2008; Wyndhamn & 

Saljo, 1997). Using realistic contexts can make problems more engaging for students (Boaler, 

1994) and help the teachers evaluate the ability to generalize problem-solving skills to a similar 

setting. Permitting students to solve problems in realistic contexts may make the problems seem 

more authentic, emphasizing the practical application in real-world settings (Brown, McNeil, & 
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Glenberg, 2009). Authentic tasks tend to provide more freedom to demonstrate competencies 

(Fook & Sidhu, 2010; Pellegrino, Chudowsky, & Glaser, 2001) and may provide motivation for 

the learners (Boaler, 1994; Peacock, 1997). A key finding regarding problems presented in real-

life context is demonstrated by research completed with Brazilian children. 

Carraher, Carraher, and Schliemann (1987) investigated the effect of three different 

contexts on problem solving for 8-13 year old Brazilian children who were low achieving 

students. Each student was interviewed/assessed in a one-on-one setting and allowed to answer 

the math questions orally or with pencil and paper. The problems were presented orally in the 

context of (a) computational problems, (b) simulated store situations, and (c) embedded word 

problems. In the computational problem condition, children were presented with a problem that 

did not have any reference to real-world objects or events (e.g., 8 + 16=?), in the simulated store 

context, the child played the role of the storeowner and the researcher played the role of the 

customer (e.g., One ring costs 8 cruzeiros. One piece of candy costs 16 cruzeiros. I want one of 

each. How much do I have to pay you?). In the embedded word-problem context, the problems 

were presented in a more traditional word-problem format (e.g., Mark went to see a movie. He 

spent 8 cruzeiros for the bus and 16 for the movie ticket. How much did he spend altogether?). 

All of the problems included the same number combinations, but in three different contexts. 

Each child completed 10 problems for each context and had difficulty with all of the problems. 

However, they had the most difficulty with the computational problems (as indicated by an 

average of 3.8 problems solved correctly). They provided a similar number of correct responses 

for both the simulated store problems (mean = 5.7) and the word problems (mean = 5.6). While 

the students had difficulty with all problem types, they performed better on the problems that 
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included real-life contexts and because of this the researchers hypothesized that these real-life 

contexts may have allowed the students to use real-world knowledge.   

Accessing real-world knowledge is easily promoted when problems are presented in a 

real-life context. For example, Jill is presented with the following problem regarding her pizza 

delivery route. “ Each Friday night, you deliver a pizza to the house at 5th and Mission. The pizza 

place is at 1st and Frank. If you keep an average of 22 mph, how long does it take you to deliver 

the pizza?”  Jill responds with two answers: a) 15 minutes if she takes the path suggested by the 

app on her phone and b) 12 minutes if she takes the alley behind the coffee shop to avoid traffic. 

In this example, Jill accessed her real-world knowledge similar to the way students in Bottge’s 

(1999) research accessed real-world knowledge.  

Using a pre/post design, Bottge (1999) recruited 8th graders in remedial math classes and 

divided them into two groups. One group was the contextualized word-problem group; the 

second group was the traditional word-problem group and served as the control group.  Both 

groups received 10 days of instruction and five of the seven steps of Montague’s (1997) 

cognitive strategy for solving problems: paraphrase, hypothesize, estimate, compute, and check. 

The contextualized word-problem group received 10 days of instruction that included two video-

based, contextualized math problems, The 8th Caller and Bart’s Pet Project. The videos included 

purchasing items and solving problems (e.g., building a cage for their pet). The problems were 

vague (i.e., what-if questions) compared to standard word problems. For example, What if the 

cage plans had called for a side that was ¼ inch longer? The students worked in groups of two or 

three, were asked to identify pertinent information, to formulate hypotheses about how the 

information could be used, and to test their hypotheses. The control group received instruction 

with traditional single and multistep word problems. These word problems paralleled the content 
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of Bart’s Pet Project and were written by the researcher. However, while their word problems 

were parallel to the contextualized groups; their problems were not presented within a context 

and looked like typical word problems found in a basal math textbook. For example, Carlos 

bought a candy bar for $2.27 and a drink for $1.72. He gave the cashier $5.00, how much change 

did he receive? 

Both of Bottge’s (1999) groups were asked to complete three tests: computation, word 

problems, and contextualized word problems. The computation test included 18 items that 

measured students’ abilities to add and subtract fractions. The word problem test included 18 

items that measured students’ abilities to solve single-step and multistep word problems about 

linear measurement. The contextualized word-problem test included purchasing a small pet and 

building a home for the pet and was based on an 8-minute video Bart’s Pet Project. The students 

were asked to add and subtract money and fractions, and to convert simple measurement 

equivalents. The students in the contextualized condition outperformed students in the traditional 

word-problem condition on both the word-problem test and the contextualized word-problem 

test. However, the students in the control group outperformed the students in the experimental 

group in the computation test.  Due to the performance of the participants in the contextualized 

condition, the researchers concluded that providing word problems within in a real-life context is 

a strategy to help students be successful. Real-life problems can be complicated as there is 

extraneous information, missing information, and outside influences. To solve real-life problems 

students must focus on the necessary components of the problem.  

Schema-based transfer instruction helps students identify the necessary components of a 

problem by explicitly teaching transfer features. Fuchs, Fuchs, Finelli, Courey, and Hamlett 

(2004) focused on schema-based transfer instruction (SBTI) which explicitly teaches transfer 
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features that change problems in superficial ways to make them appear novel even though they 

still require known solution strategies. Some transfer features used in this study included: 

different formats, different vocabulary, irrelevant information, and different questions. The study 

included 351 students representative of schools in the area (e.g., English language learners, 

students with special needs, etc.,). The students were randomly assigned by classroom to one of 

three conditions: a control condition (basal and district curriculum), SBTI (regular SBTI), or 

expanded SBTI  (SBTI plus expanded transfer features). All conditions included 16-weeks of 

instruction and were similar in amount of instructional time. 

 All students were exposed to four different problem types.  The four problem types 

included: “shopping list" problems (e.g., Joe needs supplies for the science project. He needs 2 

batteries, 3 wires, and 1 board. Batteries cost $4 each, wires cost $2 each, and boards cost $6 

each. How much money does he need to buy supplies?); "half" problems (e.g., Marcy will buy 

14 baseball cards. She'll give her brother half the cards. How many cards will Marcy have?); 

"buying bag" problems (e.g., Jose needs 32 party hats for his party. Party hats come in bags of 4. 

How many bags of party hats does Jose need?); and "pictograph problems (e.g., Mary keeps 

track of the number of chores she does on this chart [pictograph is shown with label; each picture 

represents 3 chores]. She also took her grandmother to the market 3 times last week. How many 

chores has Mary done?).   

 The control condition received instruction from the basal text. During instruction the 

students focused on one of the problem types at a time and the concepts underlying the problem 

type. In addition, a prescribed set of problem-solution rules was taught with explicit steps for 

creating a solution to the problem. There was no attempt to broaden students’ schemas. 

However, in comparison to the other two groups, these students received more practice in 
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applying the problem-solution rules and had a greater emphasis on computational requirements.  

 The participants in the SBTI condition were taught a 6-unit curriculum. The first unit 

taught basic problem-solving strategies. Units 2-5 included the four problem types. In each unit 

the students were taught how to apply the transfer features to the relevant problem type, using 

problems that had varied cover stories, quantities, and one transfer feature per problem. The 

teachers taught the meaning of transfer and three transfer features (i.e., format, vocabulary, and 

question) that changed the problem without altering its type or solution. Fuchs et al. (2004) 

examples included “For the holidays, Anita will buy 1 CD for each of her friends. CDs come in 

bags with 3 CDs in each bag. How many bags will she buy for her 13 friends?” Changing the 

transfer feature of format, that question becomes, “For the holidays, Anita will buy 1 CD for 

each of her friends. The sign at the store reads like this:  !!!!CDs for sale, 3 per bag!!! How many 

bags will she buy her 13 friends? Or, if the transfer feature of vocabulary had been altered, the 

problem could read like this “For the holidays, Anita will buy 1 CD for each of her friends. CDs 

come in wrappers with 3 CDs in each wrapper. How many wrappers will she buy for her 13 

friends.” To change the transfer question feature, the question could have looked like this, “ For 

the holidays, Anita has $30 to spend on CDs. She was going to buy 1 CD for each of her friends. 

CDs are in bags with 3 CDs in each bag. Each bag is $5. How much money will she need for 

buying CDs for her 13 friends? In unit 6, the teachers reviewed the three transfer features. 

Participants were encouraged to look for opportunities during the day where they might transfer 

skills to problems requiring the same solution methods.  

 The expanded SBTI condition was identical to the SBTI condition except that a day of 

instruction per unit was devoted to the incorporation of three additional problem types. These 

problems had three more challenging superficial problem features: irrelevant information, 
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combining problem types, and mixing of the superficial problem features. Students were taught 

that real-life situations include more information than most of the problems at school and that 

extraneous information makes a problem more difficult to solve. 

 Two forms of the Transfer 4 measure (pre and posttest) were administered to all students in 

all conditions. The measure was formatted to appear as a commercial test and included a 

narrative with a real-life problem. The narrative included both irrelevant and needed information 

as is typical in a real-life problem. On the posttest for the Transfer 4, participants in the expanded 

SBTI condition outperformed the participants in the SBTI condition who outperformed the 

participants in the control condition. This indicates that on the Transfer 4 measure, the expanded 

SBTI is beneficial for problem solving.  Six percent of the participants in this study had a 

learning disability and the results for those students paralleled the findings for the larger sample. 

  In teaching through problem solving, learning takes place during the process of attempting 

to solve the problems in which relevant math concepts and skills are embedded (Lester & 

Charles, 2003; Schoen & Charles, 2003). For students to be successful problem solvers, they 

must have multiple sessions of practice. Providing problem-solving opportunities and presenting 

them in a real-life context are of great benefit to helping students gain problem-solving skills. 

Additionally, problem-solving skills also can be enhanced through the instruction of transfer 

features.  

Manipulatives 

When people solve problems in real-life contexts they often have objects to manipulate. 

Objects that are directly manipulated are called manipulatives (Sowell, 1989). To help students 

solve problems, many classrooms have a variety of manipulatives that may include Cuisenaire 

rods, Geoboards, counters, and classroom money kits with bills and coins similar to real 



	   	   	  

	  

	  

13	  

currency. Additionally, numerous classrooms have educational games that use manipulatives as 

part of the game. For example, Payday, High Ho Cherry O, and Monopoly, games that build and 

require math skills, all use manipulatives (Laury & Holt, 1997).  

The use of manipulatives is based on a constructivist approach to math. Constructivism 

includes individuals acting upon environmental stimuli and assimilating new experiences by 

altering an existing schema to construct knowledge (Ormrod, 2011). Many theorists propose that 

children construct abstract concepts through interaction with concrete objects in the environment 

(Bruner, 1966; Montessori, 1917; Piaget, 1952; Skemp, 1987). For example, Maria Montessori 

developed rods to teach length. These earlier theorists hypothesized that interactions with 

concrete objects provide a basis for abstract thought, serve as an opportunity for experience, and 

result in greater understanding. 

Bruner (1966) theorized students needed to progress through three stages of representation to 

learn: enactive, iconic, and symbolic. In the enactive stage, children begin to develop 

understanding through actively manipulating objects. In the iconic stage, children begin to make 

mental images of something and no longer need the object in their visual field. Finally, in the 

symbolic stage, children begin to use abstract ideas to represent the world. Bruner’s theory of 

intellectual development is the foundation for the CRA (concrete-representational-abstract) 

strategy for teaching mathematical concepts (Witzel, Riccomini, & Schneider, 2008).  It may 

also be called the CSA (concrete-semiconcrete-abstract) strategy. The CRA strategy is an 

instructional method that has been used with students with disabilities and allows the teacher to 

select the manipulative he/she thinks will be most beneficial for the student’s learning 

 The CRA sequence is a three-part instructional strategy that permits students to build on 
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previous instruction. Instruction begins with the concrete phase and includes the use of 

manipulatives to illustrate the mathematical concept. The representational phase may involve 

drawing pictures to help solve a problem, and while concrete materials are not provided during 

this phase students are guided to bridge the learning from the concrete phase to this new phase. 

Eventually, in the abstract phase the students use symbols to illustrate the mathematical concept. 

There is evidence that the CRA sequence is effective for teaching students with a learning 

disability to learn mathematical concepts such as fractions (Jordan, Miller, & Mercer, 1999), 

algebra (Maccini & Hughes, 1997), place value (Peterson, Mercer, & O’Shea, 1988), and basic 

math facts (Mercer & Miller, 1992).  

Prior to 1990 there was little empirical evidence of the effectiveness of the CRA strategy. To 

test the effectiveness of the CRA strategy, Mercer and Miller (1992) field-tested the Strategic 

Math Series using the CRA strategy with 40 students with special needs. Instruction for place 

value (n = 20) and basic math facts (n = 20) included scripted lessons and instruction. Each 

instructional session lasted 30 minutes. The lessons included three concrete lessons, three 

representational lessons, and three abstract lessons. The lessons included the following 

instructional sequence, the teacher provided an advanced organizer, described and modeled the 

problem for the students, conducted guided practice, gave independent practice time, and 

provided feedback. Each student was given a pretest, a posttest, and a retention test. The 

retention test was given 5 to 10 days after the conclusion of instruction.  There was a mean 

increase of 70% from pretest to posttest. There was an average of 90% retention. These results 

led to the inclusion of the CRA sequence in the Strategic Math Series curriculum for teaching 

place value and basic math facts. Additionally, it initiated the empirical research for the CRA 
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strategy. 

Butler, Miller, Crehan, Babbitt, and Pierce (2003) examined the impact of the CRA 

instructional sequence on mastery of fraction concepts and procedures with middle school 

students  (aged 11-15) with disabilities (e.g., learning disability, attention deficit disorder, 

emotional disability). Twenty-six students formed the CRA group and 24 students comprised the 

RA (representational-abstract) group. Again, all students received sequenced instruction over 10 

lessons and the instruction followed the format presented in the Strategic Math Series. That is, 

the teachers provided an advance organizer, modeling, guided and independent practice, and 

feedback. The CRA group received concrete manipulatives for the first three lessons. Lessons 4-

6 focused on concept development with representational drawings. Lesson 7 introduced the 

algorithm needed to compute equivalent fractions. Lessons 8-10 allowed students to practice the 

application of the algorithm to abstract problems. The RA group received the same amount of 

instructional time with the same instructional sequence as the CRA group.  However, in lessons 

1-3, the students used drawings representing the concepts being taught. Lessons 4-10 were the 

same as for the CRA group. Both groups of students improved on the five subtests used to 

measure fraction concepts and procedures suggesting there was no particular advantage to 

beginning the instruction with manipulatives.  

 Selecting the appropriate manipulative for instruction is crucial for learning.  For example, 

counters (of different colors) can be used for addition, subtraction, and fractions. Undoubtedly, 

some manipulatives can be used for instruction for several mathematical concepts and some are 

better suited for specific mathematical concepts. Marsh and Cooke (1996) found Cuisenaire rods 

were beneficial for selecting the correct operation for a word problem. 
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Using a multiple baseline across participants design, Marsh and Cooke (1996) tested the 

impact of using Cuisenaire rods to set up word problems. They recruited third graders with a 

history of low achievement and provided instruction on how to use Cuisenaire rods to select the 

correct operation for a word problem. During baseline all students received group instruction 

using the verbal five-step plan SOLVE (Enright & Beattie, 1989). The SOLVE strategy includes 

studying the problem, organizing the problem, lining up the data, verifying the problem, and 

evaluating the match. Once a student was placed into intervention he/she was given 20 minutes 

of instruction similar to baseline and an additional 20 minutes of instruction on how to use the 

Cuisenaire rods to select the correct operation for a word problem. Compared to baseline, 

students exhibited immediate and sustained improvement on probes administered during 

treatment. The researchers concluded that Cuisenaire rods (along with the SOLVE strategy) were 

beneficial for selecting the correct operation for a word problem. 

The Geoboard is another manipulative that is effective for solving word problems. Using a 

multiple baseline across participants design Cass, Cates, Smith, and Jackson (2003) presented 

problems requiring the calculation of area and perimeter to 13 to 16 year old students with a 

learning disability. The students used paper and a Geoboard. All students received an 

intervention that included modeling, prompting/guided practice, independent practice, and 

manipulative training to help them solve area and perimeter problems. After the intervention all 

of the students increased their percentage of correctly solved problems for the area and perimeter 

questions. The authors suggested that this study demonstrated that teenage students with a 

learning disability can improve their math performance with the use of manipulatives because of 

the functional relation between the percent of correctly solved problems and the intervention. 

However, this intervention was an instructional package that included other strategies and not 
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just manipulatives. That is, the intervention had four components. The students’ success could be 

based on any one of those four components or on a combination of any number of those 

components. It would be erroneous to assume that it was the manipulatives, and the 

manipulatives alone, that helped the students solve the problems.  

Both Cuisenaire rods and Geoboards have existed for decades, but have little empirical 

research regarding their impact on student achievement. A more recently developed manipulative 

is the Rekenrek. Tournaki, Bae, and Karakes (2008) taught first grade students with a learning 

disability to use the Rekenrek to solve addition and subtraction problems. The Rekenrek has two 

strings attached to supports and each string has five white balls and five red balls. The students 

were randomly assigned to one of three groups. All three groups completed the pretest measure 

that included addition and subtraction questions with numbers from zero to 20. Group One 

received normal classroom instruction plus fifteen, 30-minute individual sessions with the 

Rekenrek across three weeks. Group Two received normal classroom instruction plus fifteen, 30-

minute individual sessions without the Rekenrek across three weeks. Group Three received only 

normal classroom instruction. The results from the posttest, similar in format/content to the 

pretest, indicated that the students in Group One (received instruction with Rekenrek) performed 

at a higher level than the other two groups. 

 Many teachers of the learning disabled are encouraged to use manipulatives and 

manipulatives intuitively make sense (McNeil & Jarvin, 2007). Additionally, it is reasonable to 

assume that when money is the manipulative that is made available to students they would 

perform better because their real-life knowledge was cued (Hiebert & Wearne, 1996; McNeil, 

Uttal, Jarvin, & Sternberg, 2009). However manipulatives may not always be beneficial for 

students with a learning disability when learning abstract mathematical concepts (Amaya, Uttal, 
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O’Doghtery, Liu, & DeLoache, 2008; Fennema, 1972; Moody, Bausell, & Abell, 1971; Petersen 

& McNeil, 2008).   

Dual Representation 

One hypothesized explanation of why manipulatives may not always be beneficial is that 

manipulatives do not necessarily carry meanings of insight for everyone (Moyer, 2001). That is, 

the physical apparatus does not offer an unmediated mathematical experience, as the apparatus 

does not contain nor generate mathematics (Pimm, 1994). Instead, a manipulative is a symbol. 

The primary function of symbols is to free us from the here and now (Werner, 1963). A symbol 

is an entity that someone intends to stand for something other than itself (DeLoache, 1995). 

Learners may struggle with using symbolically-represented information to solve the problems. 

Representational insight is the basic realization of the existence of a symbol-referent 

relation (DeLoache, 1995) and one must detect and mentally represent the relation between the 

symbol and its referent (DeLoache, 2000). Gaining representational insight does not occur in a 

continuous and predictable pattern but rather depends on the particular stimuli and situation 

(DeLoache, 2000). To have representational insight, one must understand the intention of the 

symbol maker. If one cannot understand the intention of the symbol maker, it is possible the 

individual has an issue with dual representation. For example, if a learner is given a map and 

asked to find a location and the learner does not understand that the blue parts of the map 

symbolize water, the learner does not have representational insight for that map.  

To recognize dual representation is to understand an object’s dual reality, that is, to 

represent both the concrete and abstract nature of the symbol simultaneously (DeLoache, 1987). 

There are three obstacles to dual representation: (a) nontransparent mapping between the 
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manipulatives and the concepts or procedure they symbolize (b) an individual’s limited cognitive 

resources (c) an individual’s resistance to change (McNeil & Jarvin, 2007). Dual representation 

is not automatic because manipulatives are not transparent. For example, the reeling of a fishing 

pole line can be predicted by a linear function and directly manipulated (i.e., a person can cast 

and reel the line). However, the linear function may not be automatically inferred. Instead the 

student’s attention may be drawn to the fishing pole as an object or activity, rather than to the 

mathematical relationship (linearity) it is intended to demonstrate. 

Additionally, recognizing dual representation is resource intensive. When children 

interact with manipulatives their cognitive resources may be devoted to manipulating and 

representing the object, leaving few cognitive resources for other tasks (e.g., the problem to be 

solved, math facts). Finally, a third obstacle to dual representation is resistance to change. This is 

apparent when an individual is unable to see or understand an object in a new light.  For 

example, if a student is used to cookies as a snack, he/she may struggle with using them as 

counters during math instruction. 

 McNeil et al. (2009) examined dual representation by asking fourth and sixth grade 

students to solve word problems that involved money. The money problems were a subset of a 

paper-pencil assessment designed to assess students’ understanding of concepts and procedures 

targeted by the NCTM for grades 3-5 (e.g., Charles buys a gumball for $.20 and a candy bar for 

$1.15. If he gives the cashier $5.00, how much change does he get back?) Students were 

randomly assigned to one of two conditions. In the first condition, students were given a stack of 

bills (major denominations up to $50) and a small plastic bag containing pennies, nickels, dimes, 

and quarters. The bills and coins looked similar to United States currency. Students were told 

that they should use the money to help them solve the problems. However, the students were not 
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instructed to use the money in any certain manner. In the control condition, students did not 

receive bills and coins and were asked to solve the same problems. Students in the control 

condition solved more problems correctly suggesting the concrete objects designed to give a 

concrete representation and activate students’ real-world knowledge may have hindered 

performance on mathematics problems. Additionally, the participants in the control condition 

were not required to use additional cognitive resources that the participants in the experimental 

condition may have used. Additional cognitive resources would have not been needed for the 

control group because they were not given manipulatives and would not have needed to dually 

represent an item. 

McNeil et al. (2009) extended the above research by including an additional condition. 

Fifth grade students were randomly assigned to one of three conditions (a) a perceptually rich 

condition (i.e., the bills and coins had a similar appearance to US currency), (b) a bland condition 

(i.e., the bills and coins were black type-on-white paper that had no extraneous perceptual 

details), and (c) a control condition that did not receive any bills or coins. The students who 

received the perceptually rich bills and coins made more errors than the students who received 

the bland bills and coins or the students who did not receive any bills and coins. The perceptually 

rich stimuli seemed to interfere with successful completion of the task. The researchers 

hypothesized that students had difficulty with dual representation. For example, they may have 

focused on the interesting details of the stimuli, failing to see the money as a tool to help them 

and instead viewing it as something they used to buy items. The researchers reported the use of 

the manipulatives may lead to a trade-off between real-life knowledge and school-learned 

algorithms. That is, the manipulatives may have activated real-life knowledge but it may have 

interfered with a student’s understanding of a problem. 
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 A potential way to mediate dual representation is to examine how manipulatives impact 

performance. Once empirically-based guidelines are established it would be important to train 

teachers how to effectively use manipulatives (e.g., the step-by-step guidance used in the CRA 

method). Research by Moyer (2001) supports the need for teacher training since teachers 

reported that manipulatives were fun and rewarding but they did not see the value in using them 

as tools for math.  For manipulatives to be helpful, it is essential for teachers to make the 

connection between the concrete and abstract concepts because simply providing manipulatives 

does not guarantee success. 

Conclusion 

Research has indicated that problem solving may be especially difficult for students with 

a learning disability (Hanich et al., 2001; Jitendra & Xin, 1997; Swanson & Bebe-Frankenberger, 

2004). This is unfortunate because students with mild disabilities will live independent and 

productive lives, and therefore mathematical problem-solving skills are essential for them 

(Wilson & Sindelar, 1991). There have been attempts to help students become more proficient in 

mathematics through the use of authentic problems for problem solving (Boaler, 1994; Brown et 

al., 2009) and by giving students a chance to solve problems within a real-life context. 

Manipulatives also have been introduced as a way to make abstract math more concrete (NCTM, 

2000; Parmar & Cawley, 1997). However, while the literature is mixed regarding the use of 

manipulatives for the general population of students (Amaya et al., 2008; Fennema, 1972; 

Moody et al., 1971; Petersen & McNeil, 2008; Stein & Bovalino, 2001), there has been some 

research that supports the use of manipulatives with students with a learning disability (Marsh & 

Cooke, 1996; Tournaki et al., 2008). To establish clear guidelines for manipulative use and 
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benefits for students with a learning disability, additional research is needed (Funkhouser, 1995; 

Marsh & Cook, 2006; Tournaki et al., 2008).  

Future research is recommended to explore the following types of questions: What are 

the crucial elements of instruction for teaching problem solving to this population? Are there 

other NCTM process methods, in addition to the use of manipulatives, that could be used in 

combination with problem solving? With what types of questions are students more likely to use 

manipulatives to help them find a solution to a problem? Can all math concepts be effectively 

taught using manipulatives? Answers to these questions will help identify appropriate 

mathematical instructional situations for the use of manipulatives with children who have a 

learning disability.   
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CHAPTER 2 

THE USE OF PERCEPTUALLY RICH AND PERCEPTUALLY BLAND MANIPULATIVES 

ON SOLVING MONEY WORD PROBLEMS 

Introduction 

Acquiring mathematical skills is important in today’s society (Condelli et al., 2006; Gal, 

2000).  Balancing a budget, figuring the cost of sale items, and knowing the amount of money a 

quarter is worth are all tasks that adults face on a frequent basis. To facilitate the development of 

mathematical proficiency, mathematics instruction begins at a very young age.  

Many educators, theorists, and reformists have influenced today’s mathematics 

instruction. The National Council for Teaching of Mathematics (NCTM) initiated curriculum 

standards addressing both content and emphasis (NCTM, 1989). These standards helped to guide 

educators in designing lessons for their pupils. In 2000 the NCTM updated their standards 

identifying both content and process standards.  Problem solving and representation are both 

recommended methods for acquiring content. 

The NCTM standards recognize the need for problem-solving skills within mathematics 

instruction (NCTM, 2000), and there is strong evidence that problem solving is a powerful and 

effective vehicle for learning mathematical concepts (Reusser, 1995; Van De Walle, Karp, Bay-

Williams, 2009). This focus on problem solving is in agreement with mathematics education 

reformists who caution that memorizing algorithms is not as valuable as understanding 

mathematics and developing problem-solving skills.  

 Problem solving provides real contexts through which learners can develop and learn 

mathematical ideas and concepts (NCTM, 1989, 1991).  The NCTM (1980, 1989) emphasizes 

that students should have multiple opportunities for solving problems that represent those they 
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may encounter in real life, such as word problems. There are many advantages to problem 

solving in a real-life context. Problems presented with a real-life context can be organically tied 

to the authentic needs and instincts of the solver (Kilpatrick, 2003) and can “prime” students to 

select an effective problem solving strategy (Schliemann & Carraher, 2002). If problems are 

presented in a real-life context students are less likely to treat the problems as artificial 

‘‘games’’ that bear little relation to life outside of school (Palm, 2008; Wyndhamn & Saljo, 

1997). Using realistic contexts can make problems more engaging for students (Boaler, 1994) 

and help teachers evaluate students’ abilities to generalize the problem-solving skills to a similar 

setting. Problems with realistic contexts, may seem more authentic, emphasizing the practical 

application in real-world settings (Brown, McNeil, & Glenberg, 2009).  

When people solve problems in real-life contexts they often have objects to manipulate. 

The NCTM suggests that representing ideas with physical objects is key in mathematical 

understanding (NCTM, 2000). Teachers are encouraged to use manipulatives or concrete objects 

that are directly manipulated (Sowell, 1989) to teach mathematical concepts (McNeil & Jarvin, 

2007; Parmar & Cawley, 1997). Manipulatives are objects that are directly manipulated (Sowell, 

1989). For example, students in some classrooms may use discs to count objects. That is, when 

they see a problem 3 + 4 =?, they gather three discs and four discs and count them, for a total of 

seven discs. Many classrooms have a variety of manipulatives that may include Cuisenaire rods 

(colored rods of differing lengths), Geoboards (a flat piece of wood with nails hammered in at 

lattice points; Coleman, 1978), counters (any tangible object that is used for counting or other 

basic math operations), and classroom money kits with bills and coins similar to real currency. 

Numerous classrooms have educational games that often use manipulatives as part of the game. 
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For example, Payday, High Ho Cherry O, and Monopoly are all games that use manipulatives 

and such educational games build and require math skills (Laury & Holt, 1997).   

 Suydam and Higgins (1976) and Sowell (1989) reviewed the literature on the efficacy of 

manipulative use in mathematical instruction. In a review of 40 studies in grades 1-8, Suydam 

and Higgins found that 24 studies favored the use of manipulative materials, 12 studies showed 

no difference if manipulatives were used, and 4 studies supported non-manipulative materials.  

Suydam and Higgins concluded that “lessons involving manipulative materials are more likely to 

produce greater mathematical achievement if the materials are used well” (p 2). In a more current 

review, Sowell reported findings similar to those reported by Suydam and Higgins. Additionally, 

Sowell reported that in many of the studies in which the use of manipulatives was successful, the 

administrators of the experimental conditions had extensive training in teaching with 

manipulatives. However, Sowell also stated that it was unclear whether there is a grade level or 

specific amount of instructional time needed before students can benefit from the use of 

manipulatives.  

One hypothesized explanation of why manipulatives may not always be beneficial is that 

manipulatives do not necessarily carry meanings of insight for everyone (Moyer, 2001). That is, 

the physical apparatus does not offer an unmediated mathematical experience, as the apparatus 

does not contain nor generate mathematics (Pimm, 1994). Instead, the manipulative is a symbol. 

The primary function of symbols is to free us from the here and now (Werner, 1963). A symbol 

is an entity that someone intends to stand for something other than itself (DeLoache, 1995). 

Learners may struggle with using symbolically represented information to solve the problems. 

Representational insight is the basic realization of the existence of a symbol-referent relation 

(DeLoache, 1995), one must detect and mentally represent the relation between the symbol and 
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its referent (DeLoache, 2000). Gaining representational insight does not occur in a continuous 

and predictable pattern but rather depends on the particular stimuli and situation (DeLoache, 

2000). To have representational insight, one must understand the intention of the symbol maker. 

If one cannot understand the intention of the symbol maker, it is possible there is an issue with 

dual representation. For example, a child’s established knowledge of an object could be a 

hindrance to the successful use of manipulatives (Petersen & McNeil, 2008). If a chocolate chip 

cookie is used as a counter, the child may not be able to effectively use it to solve a word 

problem because the child knows the cookie as something one can eat not something one uses to 

count. 

To recognize dual representation is to understand an object’s dual reality, that is, to represent 

both the concrete and abstract nature of the symbol simultaneously (DeLoache, 1987). The dual 

representation hypothesis predicts that performance will be dependent upon the salience of a 

symbolic artifact as an object (DeLoache, 2000) . That is, if the symbolic artifact is very similar 

to the object, performance should not be as affected and it might be easier to recognize a 

symbol’s dual representation. 

McNeil, Uttal, Jarvin and Sternberg (2009) examined dual representation by asking fourth 

and sixth grade students to solve word problems that involved money. The problems were a 

subset of a paper-pencil assessment designed to assess students’ understanding of concepts and 

procedures targeted by the NCTM for grades 3-5 (e.g., Charles buys a gumball for $.20 and a 

candy bar for $1.15. If he gives the cashier $5.00, how much change does he get back?) Students 

were randomly assigned to one of two conditions. In the first condition, students were given a 

stack of bills (major denominations up to $50) and a small plastic bag containing pennies, 

nickels, dimes, and quarters. The bills and coins looked similar to United States currency. 
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Students were told that they should use the money to help them solve the problems. However, 

the students were not instructed to use the money in any certain manner. In the control condition, 

students did not receive bills and coins and were asked to solve the same problems. Students in 

the control condition solved more problems correctly; suggesting the objects designed to give a 

concrete representation and activate students’ real-world knowledge may have hindered 

performance on mathematics problems.   

Some scholars suggest the richness of manipulatives may account for why some students 

make mistakes when working with manipulatives (McNeil et al. 2009). Using objects, especially 

ones that stand out from their surroundings, not only attract attention but also stimulate 

investigation. When a manipulative is brightly colored and unusually textured, it is referred to as 

a perceptually rich manipulative. Kaminski, Sloutsky, and Heckler (2009) explained that some 

perceptually rich objects have irrelevant richness, and this can hinder transfer and learning.  

A second aspect of the previously described McNeil et al.’s (2009) study, further 

investigated the impact of the richness of manipulatives. They randomly assigned fifth grade 

students to one of three conditions: a perceptually rich condition (i.e., the bills and coins had a 

similar appearance to US currency), a bland condition (i.e., the bills and coins were black type-

on-white paper that had no extraneous perceptual details), and a control condition in which the 

children did not receive any bills or coins. All students were asked to solve paper and pencil 

word problems that involved money.  The students in the control condition performed similarly 

when compared to the students who received the bland bills and coins. However, the students 

who received the perceptually rich bills and coins made more errors than the students who 

received the bland bills and coins or the students who did not receive any bills or coins. The 

perceptually rich stimuli interfered with successfully completing the task. The researchers 
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hypothesized that students had difficulty with the richness of the manipulatives. In other words, 

they may have focused on the interesting details of the stimuli.  However, the researchers did not 

asses the students’ baseline performance and therefore, it is unknown if the students in the 

experimental conditions would have been successful without the use of money. 

Petersen and McNeil’s (2008) study examined the use of perceptually rich manipulatives for 

counting tasks. The participants were an average age of four years old and were randomly 

assigned to one of four groups that differed by the type of objects being counted: (a) the object 

was not perceptually rich and students did not have an established knowledge of the item (e.g., 

solid colored plastic discs and solid colored wooden pegs), (b) the object was not perceptually 

rich but students did have an established knowledge of the item (e.g., popsicle sticks and colored 

pencils), (c) the object was perceptually rich and students did not have an established knowledge 

of the object (e.g., sparkly hand poms and neon and metallic pinwheels without the stem), and 

(d) the object was perceptually rich and children did have an established knowledge of the object 

(e.g., plastic animals and plastic fruit). The children met individually with the researchers and 

completed two counting tasks: puppet counting and give-a-number to the puppet.  For the puppet 

counting task students watched a frog puppet count objects in an array. After the puppet was 

finished counting, the children were asked if the puppet made a mistake.  In the give-a-number to 

the puppet task children were given a pile of 15 objects. The children were asked to give the 

monkey puppet a specified number of objects. For example, the researcher said, “The monkey 

wants to play with seven objects. Can you give him seven objects?” For both tasks, results 

indicated that if the students had the objects that were perceptually rich they were only helpful if 

the students did not have an established knowledge of the object. If the child had an established 

knowledge about the object item the perceptual richness negatively impacted the student’s 
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performance on the task. Results indicated that the children may have had difficulty utilizing 

perceptually rich known objects as symbols to help them with the mathematical task (McNeil & 

Jarvin, 2007; Petersen & McNeil, 2008).  

In summary, a review of the literature indicates that activities that use manipulatives may not 

always be the best way to help students gain abstract mathematical knowledge and generalize 

learning to new situations (McNeil, et al., 2009; Petersen & McNeil, 2008; Sowell, 1989; 

Suydam & Higgins, 1976). However, in practice many teachers are encouraged to use 

manipulatives (NCTM, 2000). The use of manipulatives in mathematical instruction intuitively 

makes sense, but as indicated by the literature, it may not always be beneficial. In addition, there 

are some populations for whom there is very little or no research in the area of manipulatives. 

Two of these populations, children with learning disabilities and adults who struggle with 

numeracy are the focus of the current study.    

Students with a learning disability comprise approximately 40% of identified children with 

disabilities who receive special education services (U.S. Department of Education, 2005). 

“Learning disabilities is a general term that refers to a heterogeneous group of disorders 

manifested by significant difficulties in the acquisition and use of listening, speaking, reading, 

writing, reasoning or mathematical abilities” (U. S. Department of Education, 1999). 

 Children with a learning disability take longer to process information and may struggle with 

many mathematical concepts including fact retrieval, representing numerical information 

spatially, and keeping information in working memory (Swanson & Jerman, 2006). Many 

students with a learning disability have difficulty with higher-level mathematics skills such as 

applied mathematical problems and measurement skills (Carnine, Jones, & Dixon, 1994).  
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One major area of concern for children with a learning disability is problem solving (Hanich, 

Jordan, Kaplan, & Dick, 2001; Maccini & Gagnon, 2002; Miller & Mercer, 1993, Jitendra & 

Xin, 1997; Swanson & Bebe-Frankenberger, 2004; Xin & Jitendra, 1999). Traditional 

mathematics education for students with a learning disability has emphasized “telling math” 

(Schifter & Fosnot, 1993) which largely includes the teacher telling students to use algorithms to 

solve problems. “Telling math” typically does not include instruction during which students can 

explore multiple possibilities and connect a relationship to the physical world. Therefore, this 

instruction does not allow students with a learning disability to have ready access to real-world 

problem solving contexts (Maccini, Mulcahy, & Wilson, 2007).  

In addition to “telling math,” there are a variety of strategies that can be used to help students 

with a learning disability be successful in math. Some of these strategies include: problem 

solving, problem solving within a real-life context, and the use of manipulatives. Unfortunately, 

there is very little research conducted in this area, and the results show mixed findings. 

 Bottge’s (1999) study exemplifies the use of problem solving, and problem solving within a 

real-life context as 8th grade remedial math students were placed into two groups and assessed by 

solving word problems. The first group was instructed with lessons presented in a real-life 

context while the second group was instructed with lessons in a traditional word problem format. 

Results indicated that the students in the first group outperformed the second group in 

contextualized word problem solving, with the author speculating that the use of real-life 

contextual word problems might be a more effective teaching tool than the use of traditional 

word problems.  

The use of Cuisenaire rods (Marsh & Cooke, 1996) and the Rekenrek (Tournaki, Bae, & 

Karakes, 2008) has also been suggested for use with this population. Marsh and Cooke (1996)  
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taught third grade students with a history of low achievement how to use Cuisenaire rods to set 

up math word problems to aid in selecting the correct operation and examined the impact of this 

strategy in a multiple baseline across participants design. During baseline all students received 

group instruction using the verbal five-step plan SOLVE (Enright & Beattie, 1989). The SOLVE 

strategy includes studying the problem, organizing the problem, lining up the data, verifying the 

problem, and evaluating the match. Once a student was placed into intervention he/she was given 

20 minutes of instruction similar to baseline and an additional 20 minutes of instruction on how 

to use the Cuisenaire rods to select the correct operation for a word problem. Compared to 

baseline, students exhibited immediate and sustained improvement on probes administered 

during treatment. The researchers concluded that Cuisenaire rods were beneficial for selecting 

the correct operation for the word problems in this study. 

The Rekenrek was developed in the Netherlands by math curriculum researcher, Adrian 

Treffers. The Rekenrek consists of 20 beads in two rows of ten, each broken into two sets of five 

by color. Unlike the abacus, this manipulative is not based on place value columns, instead it is a 

structure that represents the five fingers on each of our hands and the five toes on each of our 

feet (Fosnot & Dolk, 2001).  Tournaki, Bae, and Karakes (2008) randomly assigned first graders 

with a learning disability to one of three groups. All three groups completed the pretest measure 

that included addition and subtraction questions with numbers from zero to 20. Group One 

received normal classroom instruction plus fifteen, 30-minute individual sessions with the 

Rekenrek for three weeks. Group Two received normal classroom instruction plus fifteen, 30-

minute individual sessions without the Rekenrek for three weeks. Group Three received only 

normal classroom instruction. The results from the posttest, similar in format/content to the 
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pretest, indicated that the students in Group One (received instruction with Rekenrek) performed 

at a higher level than the students in the other two groups. 

Other research does not support the use of manipulatives with children with a learning 

disability.  For example, Miller and Mercer’s (1993) participants were students (aged 11-15) who 

struggled with math. One group of students was randomly assigned to the Concrete-

Representational -Abstract (CRA) sequence while another group of students was assigned to an 

RA sequence (i.e., they were not exposed to the concrete instructional component of the 

sequence). Both groups received 10 scripted lessons. For the students receiving the CRA 

sequence, the first 3 lessons included instruction with manipulatives, followed by 3 lessons of 

representational instruction, and then 4 lessons at the abstract level. For the students receiving 

the RA sequence, 3 sessions were at the representational and 7 were at the abstract levels. The 

students in the CRA sequence scored higher than their counterparts on standardized and 

experimentally-based mathematical test items. However, these differences were not statistically 

significant. The researchers suggested that future studies should test the efficacy of 

implementing the CRA instructional sequence for a longer period of time.   

Using a multiple baseline across participants design Cass, Cates, Smith, and Jackson (2003), 

presented problems requiring the calculation of area and perimeter to 13 to 16 year old children 

with a learning disability. The students used paper and a Geoboard. All students received an 

intervention that included modeling, prompting/guided practice, independent practice, and 

manipulative training to help them solve area and perimeter problems. After the intervention all 

of the students increased their percentage of correctly solved problems for the area and perimeter 

questions. The authors suggested that this study demonstrates teenage students with a learning 

disability can improve their math performance with the use of manipulatives because of the 
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functional relation between the percent of correctly solved problems and the intervention. 

However, this intervention was an instructional package that included four strategies and not just 

manipulatives (modeling, prompting/guided practice, independent practice, and manipulative 

training). The students’ success could be based on any one of those four components or any 

combination of the components. It would be erroneous to assume that it was the manipulatives, 

and the manipulatives alone, that helped the students solve the problems. 

The research regarding the use of problem solving and manipulatives for students with a 

learning disability is very limited. Unfortunately, until effective instructional approaches are 

developed and tested, many young students who struggle with math will continue to struggle 

with math (Engelmann, Carnine, & Steely, 1991). More research is desperately needed in this 

area. 

According to the 2003 National Assessment of Adult Literacy (NAAL) (US Department of 

Education) approximately 55% of adults in the United Stated have basic or below basic 

numeracy skills. Examples of basic numeracy skills include figuring a tip for a bill or balancing a 

checkbook. The NAAL is a nationally represented assessment of English literacy among 

American adults age 16 and older and is sponsored by the National Center for Educational 

Statistics. Unfortunately, there is very little information about adult learners who struggle with 

numeracy and their problem-solving capabilities. There is also very little information on 

mathematical instruction for these individuals.  

According to Mikulec and Miller (2011) a good quality instructional task for adult learners 

has authenticity and involves a real-world problem. This is important because adults choose 

when learning will be transferable and applicable to a particular facet of their lives (Herr, 1998).  

Teachers of adults with low numeracy skills have been encouraged to use real-world/authentic 
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problems to develop problem-solving skills (Ginsburg, 2008). The use of real-world problems is 

important in all academic areas (Purcell-Gates, Degener, Jacobson, & Soler, 2002) and is being 

used in some classes. A perusal of posts archived in the math and numeracy LINCS discussion 

list (http://lincs.ed.gov/mailman/listinfo/numeracy/) indicated that a few adult numeracy teachers 

encourage authentic activities in their classroom. For example, a teacher stated that when he/she 

blends prior knowledge and real-life examples it helps take the student from what is known to 

what is unknown (Carro, February 19, 2010). However, other posts are not as affirmative. For 

instance, a few teachers stated that the use of manipulatives may add a layer of confusion (Jones, 

February 18, 2010) if the connection between the concrete and the symbol is not solidified. In an 

additional post Kiefler (February 20, 2010) noted that she used manipulatives (i.e., algebra tiles) 

to teach algebra and it was a complete disaster. However, when she used the tiles to teach the 

concept of integers she felt she was more successful. 

 Over half of the adults in the United States have below basic or basic math skills (U. S. 

Department for Education, 2003). To improve their math skills individuals may attend classes in 

adult literacy programs. Although it appears that at least in some classes, the adults are exposed 

to authentic tasks and real-word problems with manipulatives, there are no empirical data to 

support the efficacy of these practices.  

Current Study 

This study replicates and extends two studies conducted by McNeil et al. (2009). In their 

first study, fourth, and sixth grade students who are typically developing (N = 230) were given 

10 money word problems to solve. Students were randomly assigned to either the experimental 

condition in which they were given manipulatives that were perceptually rich (i.e., similar to U. 

S. currency) or a control condition with no manipulatives. The students in the control condition 
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outperformed the students in the perceptually rich condition, and the authors reported that objects 

aimed at activating real-world knowledge may hinder performance. To further examine the 

impact of the manipulatives’ perceptual details, they conducted a second study in which they 

invited fifth grade students (N = 85) to complete the same 10 money word problems. The 

participants were assigned to one of three conditions: control, perceptually rich (similar to U.S. 

currency), and perceptually bland (white paper with black writing). Again, the perceptually rich 

bills hindered performance on the problems as students in the perceptually rich condition solved 

fewer problems correctly than students in the other two conditions. The number of problems 

solved correctly by students in the bland condition did not differ significantly from the number 

of problems solved correctly by students in the control condition. Thus, bland manipulatives did 

not improve performance, and the perceptual richness of the manipulatives hindered performance 

on the problems.  

The current study on problem solving with manipulatives furthers work by McNeil et al. 

(2009) in three key ways: a) population, b) definition and measurement of manipulative use, and 

c) exclusion of a control group. The current study included two populations who historically 

struggle with numeracy (children with a learning disability, and adults who struggle with 

numeracy), and children who are typically developing. McNeil et al. estimated the participants’ 

use of manipulatives and included participant behaviors such as looking, touching, and counting. 

The current study collected interval data on manipulative use, but did not include looking as part 

of the operational definition. By the request of a school official, a control group was not included 

in the current study. However, through the screening measure, each participant’s baseline 

performance was established and therefore, it was possible to compare the students against 

themselves with and without manipulatives. 
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Rationale 

The United States continues to increase the mathematical standards for all learners. 

According to the NCTM (2000) the “need to understand and ability to use mathematics in 

everyday life and the workplace has never been greater and will continue to increase” (p. 4).  

These standards influence all students, including adults with low numeracy skills and children 

with a learning disability. Students should be taught using strategies that are supported by 

research. 

Real-world problems or materials (e.g., graphs, employee manuals) may activate real-world 

knowledge and help students solve math word problems (Goonen & Pittman-Shetler, 2010).  A 

variety of strategies are used to help students solve real-world problems including games and 

manipulatives. The research regarding the use of manipulatives is mixed. While some research 

indicates that manipulatives are helpful to students when solving word problems (Cass et al., 

2003; Marsh & Cooke, 1996), other research indicates that manipulatives are not beneficial for 

students to use when solving word problems (McNeil et al., 2009; Petersen & McNeil, 2008).  

Research Questions 

Due to limited previous research, this study was exploratory in nature. The following 

questions were addressed in this study:  

1. Is there an interaction effect between the sample (children who are typically 

developing, children with a learning disability, and adults who struggle with numeracy) and 

manipulative conditions (perceptually rich, perceptually bland)?  

2. To what extent do children who are typically developing, children with a learning 

disability, and adults who struggle with numeracy who are all matched for mathematical ability 

differ on their performance on math word problems?  
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Methodology 

Participants 

The current study included participants from three populations: 20 adults who struggled 

with numeracy, 20 children with a diagnosed learning disability who were receiving specialized 

math instruction, and 23 children who were typically developing and not receiving specialized 

math instruction. As indicated by their teachers all participants possessed math performance 

skills at approximately the 5th grade level and all read at or above the 4th grade equivalency level. 

In addition, according to the teachers, all participants were proficient in English.  

All individuals who participated in this study were recruited from their educational 

settings in a large city in the Southeastern United States. The adult participants were recruited 

from four different classrooms in one adult literacy program. The children with a diagnosed 

learning disability came from four different classrooms in one private school for students with a 

learning disability. The children who were typically developing were recruited from seven 

classrooms in three public schools (three classrooms from each of two schools, and one 

classroom from a third school). 

The adults were mainly female (65%) and African American (95%) with 5% reporting 

“other” for ethnicity. Adults ranged in age from 19 to 75. The children with a learning disability 

were in grades 5-6, mostly male (70%) and ranged in age from 10-15. Thirty percent of the 

children were African American, 45% reported their ethnicity as “other,” 10% Hispanic, 10% 

Caucasian, and 5% declined to report their ethnicity. The children who were typically developing 

were fifth grade children who ranged in age from 10 to 11 years. They did not have a history of 

remedial instruction, grade retention, and/or grade acceleration. Most of the participants (70%) 
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were female, 26% were African American, 26% Caucasian, 17% Hispanic, and 31% reported 

their ethnicity as “other.”  

Procedure 

 Before recruiting participants, the primary researcher contacted each school’s 

administrator to explain the purpose of the study and obtain permission for recruiting participants 

from the school.  The administrators identified classrooms that included students who met the 

inclusion criteria.  To meet the inclusion criteria, all participants had to possess 5th grade math 

skills and a reading level of at least 4th grade.  Additionally, the students with a learning 

disability had to have a diagnosed learning disability and be receiving specialized math 

instruction. The students who were typically developing were required to have advanced through 

the grades in the predetermined sequence (i.e., they could not have skipped a grade, or been 

retained), and they could not be receiving specialized math instruction. The primary researcher 

discussed the purpose of the research and the space requirements (i.e., a quiet place for 

participants to complete the required tasks). For the child participants, the teachers distributed 

the parental permission forms. For the adult participants, the primary researcher distributed the 

informed consent documents directly to the potential participants.  

Once consent and assent forms were collected, the individuals participated in a quiet 

room in their respective educational settings in small groups of 2-6 individuals for both the 

screening and experimental procedures. Two to seven days after the participants completed 

screening, those who answered correctly 10-70% of the items (Gagne, personal communication, 

June 20, 2011; Palm, 2008) were invited to participate in the experimental condition. Thirty 

individuals were excluded because they correctly answered fewer than 10% or more than 70% of 

the items. Specifically, nine adults and 16 children who were typically developing were excluded 
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because they correctly answered more than above 70% of the items. Five children with a learning 

disability were excluded because they correctly answered fewer than 10% of the items. 

Screening condition. 

In small groups, the participants were asked to complete 10 money word problems 

(Appendix A). The participants were told that they could skip any problem, use scratch paper 

(not a calculator), and could have any problem read to them. They were not provided with 

manipulatives. 

Experimental conditions.  

To complete the experimental measure (Appendix B), participants were randomly 

assigned to one of two conditions (perceptually rich, perceptually bland) by flipping a coin to 

create two groups of ten for each sample of participants. Due to an on-site confusion, for the 

children who were typically developing, there were 11 who received the perceptually bland 

manipulatives and 12 who received the perceptually rich manipulatives.  

All participants in each of the experimental conditions were tested separately. That is, the 

participants in the perceptually rich condition were tested separately from the participants in the 

perceptually bland condition. All participants first completed a demographic measure 

(Appendices C & D) that was read aloud by the researcher, and then were provided with the 

experimental procedure. In the perceptually rich condition, the participants were provided with 

manipulatives that were perceptually rich (i.e., real United States currency). The participants in 

the perceptually bland condition were provided with manipulatives that were perceptually bland 

(i.e., white paper with the monetary amount written in the middle).  

The participants received the following instructions: “There are 10 word problems that I 

would like you to complete. Please use the money in a plastic bag to help you solve the 
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problems. When you are finished, please raise your hand and someone will come and collect the 

word problems and the money.” There was a small subset of participants (n = 6) who were not 

administered the above directions--three adults and three children who were typically 

developing.  Instead, they received the following instructions, “There are 10 word problems that 

I would like you to complete, if you would like to use the money in a plastic bag to help you 

solve the problems, it is available. When you are finished, please raise your hand and someone 

will come and collect the word problems and the money.” None of the 63 participants in the 

study received any directions about how to use the money to solve the word problems. 

Measures.  

Demographic measure.  

A demographic measure (Appendices C & D) was used to explore gender, age, and 

ethnicity of participants. In addition, participants were asked about previous experience with 

games that use money. The games comprised two groups: a) games that primarily used money in 

their procedures (i.e., Monopoly, Life, Payday) and b) games that did not use money in their 

procedures (i.e., Candyland, Battleship, Taboo, Scattergories). Participants were also asked about 

their use of manipulatives in the classroom to help solve word problems. 

Screening measure.  

The screening measure (Appendix A) was adapted from McNeil et al. (2009) and is a 

subtest of a paper and pencil assessment used to assess students’ understanding of concepts and 

procedures targeted by the NCTM (2000). It included 10 word problems that required basic 

mathematical operations. The wording of the measure was slightly altered to ensure that the 

readability level of the word problems was at a third grade level according the Spache readability 
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formula (Spache, 1953). None of the mathematical concepts on this measure were changed from 

the McNeil et al. (2009) study.  

A second observer independently scored the screening measures of 20% of the 

participants in each of the participant samples. Interobserver agreement (IOA) was calculated 

using point-by-point agreement. The number of agreements was divided by the number of 

agreements plus disagreements and converted to a percent. The IOA for the screening measures 

for the adults who struggled with numeracy and for the children who were typically developing 

was 100%. For the students with a learning disability there was 100% agreement except for one 

child. In this instance, the primary observer incorrectly scored a problem as correct, and 

therefore for this child, there was 90% agreement. The IOA for the children with a learning 

disability was 95% (90%-100%).  

Experimental measure.  

The measure (Appendix B) was in the same format and assessed the same mathematical 

concepts as the screening measure. When possible, the problems were slightly altered. That is, 

the name of the individual differed (e.g., John to Jake), the monetary amounts differed (e.g., 

$1.25 to $1.75), and the contexts differed (e.g., wash cars changed to pulls weeds).  

A second observer independently scored the experimental measures of 20% of the 

participants in each of the participant samples. Interobserver agreement (IOA) was calculated 

using point-by-point agreement. The number of agreements was divided by the number of 

agreements plus disagreements and converted to a percent. The IOA for the experimental 

measures for the adults who struggle with numeracy and for the children who have a learning 

disability was 100%. For the students who are typically developing there was 100% agreement. 
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Manipulative usage measure.  

This measure (Appendix E) examined the use of the manipulatives during the 

experimental condition. A research-team member conducted momentary-interval observation 

checks for 100% of the experimental sessions of all participants to examine if the manipulatives 

were being used.  The observer observed the participants at 10 second intervals. Using the 

Intervalminder data application (which chimes into headphones to a predetermined time 

interval), every 10 seconds the observer marked a “+” on the data sheet if the participant was 

using the manipulative (defined as: behaviors of touching, counting, or lining up the 

manipulative. It did not include, rolling or spinning the manipulatives), or marked a “0” if the 

participant was not using a manipulative when observed.  IOA was collected for 33% of the 

experimental sessions using point-by-point agreement. The number of agreements was divided 

by the number of agreements plus disagreements and was multiplied by 100%.  The calculated 

IOA for the sessions of the adult participants was 100%.  The IOA for the students with a 

learning disability was 97% (90%-100%) and the IOA for the students who were typically 

developing was 100%.    

Teacher questionnaire.  

This measure (Appendix F) was used to assess the teachers’ use and attitudes towards the 

use of manipulatives in the classroom.  

Treatment integrity.  

This measure was used to assess the extent to which the participants (in each condition 

and group) received the correct instructions. There are two measures (Appendix G & H) because 

the instructions were slightly altered during the study.  Appendix G demonstrates the first set of 

instructions that were given to six of the participants (3 adults and 3 students who were typically 
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developing) while Appendix H demonstrates the second set of instructions that were given to the 

remaining participants (n = 57). Treatment Integrity was measured for approximately 20% of all 

sessions and was calculated at a 100% for all groups and conditions. 

Results 

Demographic measure.  

In addition to gaining information about gender, age, and ethnicity, participants were 

asked questions regarding in-class use of tools employed to help them solve word problems. The 

adults reported using the following tools in class to help them solve word problems: calculator 

(85%), money (45%), drawing a picture (35%), and counters (30%).  Thirty percent of the adults 

reported they had not played any of the listed board games. The remaining 70% percent reported 

that they had played board games that used money. 

 The students with a learning disability reported using the following tools in class to help 

them solve word problems: calculator (70%), money (40%), drawing a picture (30%), and 

counters (20%). Ninety-five percent of the children with a learning disability reported that they 

played at least one of the listed board games. Of the children who reported playing at least one of 

the listed games, 80% reported that they had played a board game that used money. 

 The students who are typically developing reported the use of the following tools to help 

them solve word problems in class: drawing a picture (78%), money (74%) calculator (57%) , 

and counters (44%).  All of the students reported they had played at least one of the listed board 

games, with 91% reporting that they had played a board game that used money.  

Manipulative usage. 

Fifty percent of the adult participants used the manipulatives at least once during their 

session, and on average, used the manipulatives during approximately 7% of the observations.  
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Of the 50% who used the manipulatives, 40% received the perceptually bland manipulative, and 

60% received the perceptually rich manipulative. Eighty percent of the children with a learning 

disability used the manipulative at least once during their session and on average used the 

manipulatives during approximately 10% of the observations. Of the 80% who used the 

manipulatives, 43% received the perceptually bland manipulative and 57% received the 

perceptually rich manipulative. Seventy-four percent of the children who were typically 

developing used the manipulative at least once during their session, and on average, used the 

manipulatives during approximately 3% of the observations. Of the 74% who used the 

manipulative, 47% received the perceptually bland manipulative and 53% received the 

perceptually rich manipulative.  

Teacher questionnaire.   

 The teachers of the participants were asked to complete a survey about their use and 

attitude toward the use of manipulatives in the classroom. If a teacher reported he/she used 

manipulatives he/she was asked to complete the survey. If a teacher reported he/she did not use 

manipulatives, he/she only had to report why they did not use them and did not have to complete 

the remainder of the survey. For the teachers who reported they did not use manipulatives for 

instruction, 50% reported it was due to lack of time and 50% reported “other” as the reason why 

they did not use manipulatives in classroom instruction.  

The adult students were recruited from four different classrooms with three different 

teachers. However, only two of the three teachers said they used manipulatives for classroom 

instruction. Therefore, these results will only include the responses from the two teachers who 

reported using manipulatives. Of the teachers who reported manipulative use, 1 of the teachers 

used them for instruction 1-2 times a week and the other teacher reported that she used them 3 
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times a week. Of the two teachers who reported manipulative use, only one of those teachers had 

received training in using manipulatives in instruction. Both of the teachers reported that their 

students enjoyed working with manipulatives, with one teacher rating the benefit of 

manipulatives in math instruction as a 7 and the other as an 8, on a scale of 1 to 10, with 10 being 

the most beneficial. Both teachers responded that fraction burgers/bars were the manipulatives 

that were viewed as the most beneficial. A teacher explained that fraction burgers are pieces of 

material that represent an ingredient in a hamburger and a fraction. For example, the hamburger 

patty is split into halves or is split into fourths. Fraction bars are bars that are split into fractions. 

For example, a bar is split into halves or fourths. 

The children with a learning disability in this study were recruited from four different 

classrooms with two different teachers. Both teachers reported that they used manipulatives 1-2 

times a week. One of the teachers had received training in manipulative use for instruction. Both 

teachers reported that the students enjoyed working with manipulatives. Both teachers reported 

that base 10 blocks were the manipulatives that they found most beneficial and stated that on a 

scale of 1 to 10, the benefit of using manipulatives was an 8. 

The children who were typically developing were recruited from seven different 

classrooms with seven different teachers. However, only four of the seven teachers said they 

used manipulatives in classroom instruction. Three of these teachers used them fewer than 1-2 

times a week, and one used them 1-2 times a week. Three of the teachers had received training in 

the use of manipulatives in instruction. All four of the teachers reported that students enjoyed 

working with manipulatives. Each teacher reported a different manipulative as most beneficial; 

fraction burgers/bars (1 teacher), base 10 blocks (1 teacher), Geoboard (1 teacher) and shapes (1 

teacher). On a scale of 1 to 10, each teacher gave a different rating (7, 8, 9, 10).  
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Research questions results. 

This study focused on two research questions, 1) Is there an interaction effect between 

the participant types (adults, children with a learning disability, children who were typically 

developing) and manipulative conditions (perceptually rich, perceptually bland)? 2) To what 

extent do children who are typically developing, children with a learning disability, and adults 

who struggle with numeracy who are all matched for mathematical ability differ on their 

performance on math word problems? To address these questions, a 2 (manipulative condition) x 

3 (type of participant) ANOVA was conducted. 

Results indicated that the difference between the scores on the screening measure of the 

adults (M = 5.30, SD = 1.80), and of the students who were typically developing (M = 5.35, SD 

= 1.61) was not statistically significant at the .05-level, t(38.46) = -.091, p = .928 and the 

difference on the screening measure scores between adults and students with a learning disability 

(M = 4.30, SD = 6.27) was not statistically significant at the .05-level, t(22.13) = .685, p = .501. 

Additionally, the difference on the screening measure scores between the students who were 

typically developing and the students with a learning disability was not statistically significant at 

the .05-level, t(21.18) = -.726, p = 476.  

However, on the experimental measures, a significant interaction of Condition x Type of 

participant was present (F(2,62) = 3.816, p < .05). According to the post hoc S-N-K, in the 

perceptually bland condition, there was no significant difference in performance between the 

adults (M = 6.2, SD = 1.61) and the children who were typically developing (M = 4.92, SD = 

2.10). However, in the perceptually bland condition, the adults and the children who were 

typically developing, performed significantly better than the children with a learning disability 

(M = 1.90, SD = 1.37). In the perceptually rich condition, there was no significant difference 
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among the adults (M = 4.30, SD = 2.40), the children with a learning disability (M = 3.30, SD = 

1.76), and the children who were typically developing (M = 5.55, SD = 2.33).  

T-tests were conducted to compare the difference between the groups and the type of 

manipulatives they received.  With α = .05, the difference in performance between the adults in 

the perceptually rich condition (M = 4.30, SD = 2.40) and the adults in the perceptually bland 

condition (M = 6.20, SD = 1.61) was not statistically significant, t(15.765) = -2.072, p = .055, d = 

.926 . With α = .05, the difference in performance between the children with a learning disability 

in the perceptually rich condition (M = 3.30, SD = 1.76) and the perceptually bland condition (M 

= 1.90, SD = 1.37) was not statistically significant, t(16.950) = 1.980, p = .064; the effect size for 

this analysis was d = .885  With α = .05, the difference in performance between the children who 

were typically developing in the perceptually rich condition (M = 5.55, SD = 2.33) and in the 

perceptually bland condition (M = 4.92, SD = 2.10) was not statistically significant, t(20.238) = 

.675, p = .507.  The effect size for this analysis was d = .282  

To examine the participants’ performance on their screening measure and their 

experimental measure (regardless of type of manipulative received), dependent-sample t-tests 

were used.  For the adult participants, with an α = .05, the mean on the screening measure was 

5.30 (SD = 1.80), the mean on the experimental measure was 5.25 (SD = 2.22). No significant 

difference from screening measure to experimental measure was found (t(19)=.121, p > .05).  

For the children with a learning disability, the mean on the screening measure was 4.30 (SD = 

6.27), the mean on the experimental measure was 2.60 (SD = 1.69). No significant difference 

from screening measure to experimental measure was found (t(19)= 1.700, p > .05). For the 

children who are typically developing, the mean on the screening measure was 5.35 (SD = 1.61), 
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the mean on the experimental measure was 5.22 (SD = 2.19). No significant difference from 

screening measure to experimental measure was found (t(19)=.340, p > .05).  

Conclusions 

The purpose of the current study was to examine the impact of manipulatives 

(perceptually rich and perceptually bland) on money word problem solving in adults who 

struggle with numeracy, children who have a learning disability, and children who were typically 

developing. The current study was a replication of McNeil et al.’s study (2009) with three key 

differences including participant population, definition and measurement of manipulative use, 

and established baseline performance. Results of this study support McNeil et al.’s findings that 

when compared to screening performance levels (manipulatives were not present), the 

presentation of manipulatives did not increase participants’ performance levels. In other words, 

results from this study indicate that regardless of the type of manipulative condition, none of the 

participants performed better than they performed during the screening condition (no 

manipulative). However, while McNeil et al. found that perceptually rich manipulatives hindered 

performance, participants in this study were neither hindered nor helped by the perceptually rich 

manipulatives. 

  There was an interaction of Condition x Type of participant, with the participants with a 

learning disability in the bland condition performing significantly worse than the other 

participants. This was the only statistically significant finding among the simple effects tests.  

Due to the relatively low power for those tests, another difference among the groups is notable. 

In the perceptually bland group, the adults performed better than students who were typically 

developing by 1.28 points; in the perceptually rich group, students who were typically 

developing outperformed adults by 1.25 points. This has two implications for future research. 
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First, holding the magnitiude of the effect constant, a modest increase in sample size would 

render these differences significant and this would contribute further to the Condition x Type 

interaction. Second, that the differences were similar in magnitude but opposite in direction 

means that inspection of only the main effect of Type would lead to the conclusion that the two 

groups were essentially identical, differing by only 0.03 points in the present study. Researchers 

should seek to improve upon the statistical power of the present study and be mindful of the 

potential for a complex interaction effect which could be lost if attending only to basic main 

effects. 

McNeil et al. (2009) found their child participants who were typically developing were 

impacted by the use of manipulatives, with the children receiving the perceptually rich bills 

performing more poorly than the children receiving the perceptually bland bills, or the children 

who did not receive any manipulatives. The results of this current study do not confirm these 

findings. It is possible that McNeil et al’s participants used the manipulatives more frequently 

than the participants in this study. McNeil et al. estimated their participants’ manipulative use at 

71%. That is, 71% of their participants were seen interacting with the bills and coins on a 

consistent basis (“consistent basis” is not described by the authors). However, observations in 

this study indicated that the participants hardly used the manipulatives. Only 50% of the adults, 

80% of the children with a learning disability, and 74% of the children who were typically 

developing touched the money at least once. More telling, the manipulatives were not touched 

during most of the observations, with adults using the manipulatives during approximately 7% of 

the observations, the children with a learning disability only 10% of the observations, and the 

children who were typically developing 3% of the observations. Therefore, it cannot be known in 

this study whether using the manipulatives would have helped the participants or not. In 
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hindsight, it would have been helpful to ask the participants about why they used or did not use 

the manipulatives. 

Both the children with a learning disability and the adults reported the calculator as the 

tool they most frequently used in class to help them solve word problems. While money was 

reported as the second most frequently used manipulative, none of the teachers of these two 

struggling populations reported its use in instruction. It can be assumed that the students reported 

the use of money to help them solve word problems as something they had used in a previous 

class. Of interest is a comment reported by a teacher of some of the adult students who reported 

that some of her students characterized manipulatives as “babyish.” Additionally, one adult 

reported that she did not use cash--she always used her debit card.  It is possible that the parents 

of the participants with a learning disability also do not use cash for most interactions, but 

instead use a debit card or write a check. Finally, although 74% of the children who were 

typically developing reported using money to help them solve problems in class, compared to the 

other participants, they had the fewest interactions with the manipulatives. In addition, the 

teachers of the children who were typically developing did not report using money as 

manipulatives in the classroom. For all three populations, it would have been interesting to 

include follow-up questions addressing which grades they used each of the manipulatives in and 

how often they use cash on a weekly basis. 

Eight of the teachers (2 teacher for adults, 2 teachers for children with a learning 

disability, 4 teachers of children who were typically developing) reported that they use 

manipulatives in their mathematical instruction. It would have been interesting to ask teachers to 

report how they used the manipulatives in instruction. For the teachers who reported they did not 

use manipulatives for instruction, 50% reported it was due to lack of time. As Moyer (2001) 
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explained, this makes sense, as additional time may be required for using manipulatives in 

instruction. Fifty percent reported “other” as the reason they did not use manipulatives in 

classroom instruction. Teachers were not questioned further, but it is possible that their reasons 

could have included the view of manipulatives as “just for fun” or that they do not see the 

effectiveness of using manipulatives. Additionally, Moyer (2001) explained that compared to 

other instructional strategies, manipulatives may have an inferior connotation. 

Of special interest is that although the NCTM (2012) encourages teachers to use 

manipulatives, of the eight teachers who reported use of manipulatives during instruction, only 

five  (1 teacher of adults, 1 teacher of students with a learning disability, and 3 teachers of 

students who were typically developing) reported they had received training on how to 

incorporate manipulatives in instruction. Even with training, it should be noted there is a growing 

body of research, that the use of concrete materials alone does not guarantee successful 

acquisition of mathematical concepts (Brown, McNeil, & Glenberg, 2009). More research needs 

to be conducted to explore the efficacy behind the use of manipulatives (NCTM, 2012). If the 

body of research shows that manipulative use is beneficial, then teachers will need specific 

training in manipulative use. Knowing how to effectively incorporate problem solving and 

manipulative use into a math curriculum is not inherent in being an effective math teacher 

(NCTM, 2012).  

Students can gain some experience with numeracy through games (Booker, 2000). In this 

study, the children who were typically developing reported more experiences with the listed 

games, but they did not score better than the other two groups, and they used the manipulatives 

the least amount. Therefore, the participants may not have made the connection between the 

money word problems presented by the researcher and the money problems they would have 
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experienced in the games of Monopoly, Payday, or Life (Palm, 2008; Wyndhamn & Saljo, 

1997).  

 In the perceptually bland condition, the children with a learning disability performed 

poorer than adults who struggle with numeracy and the children who are typically developing. 

Additional research is needed to understand this finding, as this is the first known study to 

investigate the difference between the impact of perceptually rich and perceptually bland 

manipulatives on the money word performance of children with a learning disability. In addition, 

it is clear that much more research is needed in the general area of manipulative use and money 

word problems. Such an effort is important because numeracy skills are needed on a frequent 

basis in daily adult living (Condelli et al. 2006; Gal, 2001). Over half of the adults in the United 

States do not have these skills (US Department of Education, 2003). To help adults who struggle 

with numeracy, children with a learning disability, and children who are typically developing 

gain the numeracy skills that they currently and in the future will need, their instruction should 

be guided by evidence-based instructional strategies.  
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APPENDIXES 

APPENDIX A 

Screening Measure 

1. Maggie wants to save money to buy a new T.V. She gets $15.00 at the end of each week. 

The T.V costs $45.99. How many weeks will it take her to save the money she needs if 

she saves all her money each week? 

 

 

 

 

 

2. John wants money so he mows the lawn. His dad says he can be paid weekly or daily. 

John’s father said he would either pay him $1.25 a week or pay him in the following way 

for a week: On Monday, he would give him 1 cent; on Tuesday, 2 cents; on Wednesday 4 

cents; on Thursday, 8 cents, and so on through Sunday. Which choice should John choose 

so that he can get more money? 
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3. Mike is at the store to buy gum. He is trying to decide between buying a 6-pack of gum 

for $4.80 or an 18-pack for $12.60. Which is cheaper taking into account how much gum 

he gets for his money? 

 

 

 

 

 

 

4. In Emily and Rick’s family, some children get paid each week, and others get paid each 

month. Emily gets $15.00 a week, and her brother gets $50.00 per month. Do they both 

get the same amount of money each month? (1 month = 4 weeks) 

 

 

 

 

 

5. Will’s mom and dad are having a big party. They are expecting many guests, so they 

have decided to ask a cook to help them prepare the food. The cook tells them it will cost 

$7.50 per person. If they order for 12 people, what will the total cost be? 
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6. Chad buys a ball for $.20 and a candy bar for $1.15. If he gives the cashier $5.00, how 

much change does he get back? 

 

 

 

 

 

7. Mr. and Mrs. Jones paid $7.00 for tickets for themselves and their three kids. Considering 

the following prices, which game did they buy tickets for? 

SOFTBALL: Adults $2.00-Children $1.00 

BASKETBALL: Adults $3.00-Children $1.00 

SOCCER: Adults $5.00-Children $2.50 

 

 

 

 

 

8. Dan and Elle want to buy a birthday cake for their friend. Dan has $6.00 and can spend ¼ 

of his money. Elle has $10.00 and can spend ¼. How much can they spend altogether? 
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9. Pat and Jim are going shopping for their mom at the bakery. They were told to buy 18 

rolls, 12 hot dog buns, and 2 loaves of rye bread. How much will it cost them if the 

following prices apply? 

-‐ White bread loaves- 2 for $1.25 

-‐ Rye bread loaves 2 for $1.35 

-‐ Rolls- 6 for $1.00 

-‐ Hamburger buns- 6 for $0.85 

-‐ Hot dog buns—6 for $0.69 

 

 

 

 

 

10. You decide to wash cars to earn money. Each month you decide to save part of your money. 

If you saved $2.00 from your car washes on January 1, $4.00 from your car washes on  

February 1, $6.00 from your car washes on March 1 , and so on, how much money would you 

save in 6 months? 
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APPENDIX B 

Experimental Measure 

1. Chan buys an apple for $.40 and a drink for $1.75. If he gives the cashier $5.00, how much 

change does he get back? 

 

 

 

 

 

2. Mim is at the store to buy gum. He is trying to decide between buying a 6-pack of gum for 

$2.40 or an 18-pack for $10.20. Which is cheaper taking into account how much gum he gets for 

his money? 

 

 

 

 

 

3. Jake wants money so he mows the lawn. His dad says he can be paid weekly or daily. Jake’s 

dad said he would either pay him $2.15 a week or pay him in the following way for a week: On 

Monday, he would give him 1 cent; on Tuesday, 2 cents; on Wednesday 4 cents; on Thursday, 8 

cents, and so on through Sunday. Which choice should John choose so that he can get more 

money? 
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4. James wants to save money to buy a new bike. He gets $13.00 at the end of each week. The 

bike costs $85.92. How many weeks will it take him to save the money he needs if he saves all 

his money each week? 

 

 

 

 

 

 

5. Mr. and Mrs. Jimenez paid $9.00 for tickets for themselves and their three kids. Considering 

the following prices, which game did they buy tickets for? 

SOFTBALL: Adults $2.00-Children $1.00 

BASKETBALL: Adults $3.00-Children $1.00 

SOCCER: Adults $5.00-Children $2.50 
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6. In Emile and Rico’s family, some children get paid each week, and others get paid each 

month. Emile gets $20.00 a week, and his brother gets $55.00 per month. Do they both get the 

same amount of money each month? (1 month = 4 weeks) 

 

 

 

 

 

7. Bob decides to pull weeds to earn money. Each month he decides to save part of his money. If 

he saved $1.00 from his weed pulling on January 1, $3.00 from his weed pulling on February 1, 

$5.00 from his weed pulling on March 1, and so on, how much money would he save in 6 

months? 

 

 

 

 

8. Wynn’s mom and dad are having a big party. They are expecting many guests, so the have 

decided to ask a cook to help them prepare food. The cook tells them it will cost $6.50 per 

person. If they order for 11 people, what will the total cost be? 
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9. Drake and Elin want to buy a gift for their friend. Drake has $6.00 and can spend ¼ of his 

money. Elin has $10.00 and can spend ¼. How much can they spend altogether? 

 

 

 

 

 

 

10. Pam and Jon are going shopping for their mom at the bakery. They were told to buy 18 rolls, 

12 hot dog buns, and 2 loaves of rye bread. How much will it cost them if the following prices 

apply? 

-‐ White bread loaves- 2 for $2.25 

-‐ Rye bread loaves 2 for $2.75 

-‐ Rolls- 6 for $2.00 

-‐ Hamburger buns- 6 for $0.87 

-‐ Hot dog buns—6 for $0.69 



	  	  

	   80	  

APPENDIX C 

Child Demographic Measure 

Are you a ? 

 

   Boy    Girl           SKIP 

 

 

How old are you? ________ 

  

 

Ethnicity   

Asian 

African American 

Hispanic or Latino 

Caucasian 

American Indian/Alaska Native 

Not mentioned 

Decline to say 

 

Have you ever played any of the following games?   

 

Candyland 

Monopoly 
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Life 

Taboo 

Payday 

Battleship 

Scattergories 

 

 

 

In class, I have used money to help me solve a word problem.               Yes No 

 

In class, I have used counters to help me solve a word problem.             Yes      No 

 

In class, I have used a calculator to help me solve word a problem.         Yes       No 

 

In class, I have drawn a picture to help me solve a word 

problem.                 Yes No 
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APPENDIX D 

Adult Demographic Measure 

Are you a ? 

 

   Man    Woman   SKIP 

 

What age are you? __________ 

         OR 

What year were you born? __________ 

 

 

Ethnicity 

Asian 

African American 

Hispanic or Latino 

Caucasian 

American Indian/Alaska Native 

Not mentioned 

Decline to say 

 

Have you ever played any of the following games?   

 

Candyland 
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Monopoly 

Life 

Taboo 

Payday 

Battleship 

Scattergories 

 

 

 

In class, I have used money to help me solve a word problem.                Yes      No 

 

In class, I have used counters to help me solve a word problem.         Yes       No 

 

In class, I have used a calculator to help me solve a word problem.        Yes      No 

 

In class, I have drawn a picture to help me solve a word 

problem.                Yes      No 
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APPENDIX E 

Manipulative Usage Measure 

 

Use of manipulative is defined as: behaviors of touching, counting, or lining up the 

manipulative 

      Use of manipulative does not include: 

           Spinning or rolling of the manipulative 

   

  

"+" = behavior observed 

 Start Time _________________ 

                                                          “+” = behavior observed 

 End Time _________________      “0” = behavior not observed 

 

 

                               ID #                          ID #                           ID # 

Interval     

1    

2    

3    

4    

5    

6    

7    

8    
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9    

10    

11    

12    

13    

14    
 

Note. The data sheet had intervals1-308. 
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APPENDIX F 

Teacher Questionnaire 

1. Do you use manipulatives (concrete objects) in your class for mathematical instruction?  
 

Yes  No 
 
If yes, on Average, how often do you use manipulatives (concrete objects) in your 
classroom? 
 
 1-2 times a week 3 times a week    4 or more times a week 
 
If no, what are some reasons you do not use manipulatives in your class? ** 
 
not enough time    not available to you      lack of training    other 

 

**If you answered “No” to question 1 this is the last item you need to complete on this survey 

 

2. Have you had any training for using manipulatives in the classroom? 

 
   Yes   No 
 

3.What manipulatives do you use in your classroom? 

Money     Counters    Geoboards   base10 blocks Other 

4. On a scale of 1 to 10 with one not at all beneficial and 10 very beneficial, how beneficial do 
you think the use of manipulatives is in the classroom? 

               1       2      3      4      5      6      7      8      9      10 

 5. Name the manipulatives you think are the most beneficial in your class. 

6. Do you think your students enjoy working with manipulatives? 

Yes   No 
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APPENDIX G 

Treatment integrity checklist for first set of directions 

(3 adults and 3 children who are typical) 

 

1. The participants are greeted and thanked for     Y    N 

coming. 

 

2. Each participant receives the manipulatives.     Y    N 

 

3. The directive of There are 10 word problems that I would  

like you to complete. If you would like to use the money in a plastic bag to help you solve the 

problems, it is available. When you are finished, please raise your hand and someone  

will come and collect the word problems and money.    Y    N 

  ,  

  

4. All of the materials are collected.      Y     N 
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APPENDIX H 

Treatment integrity checklist for second set of directions 

(17 adults, 20 students with LD, and 20 students who are typically developing) 

 

1. The participants are greeted and thanked for     Y    N 

coming. 

 

2. Each participant receives the manipulatives.     Y    N 

 

3. The directive of There are 10 word problems that I would  

like you to complete. Please use the money in the bag to help you solve the problems.  

When you are finished, please raise your hand and someone  

will come and collect the word problems and money.    Y    N 

   

  

4. All of the materials are collected.      Y     N 
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