
37 

 

 

Figure 2-7 Scanning Electronic Microscope  

2.5.1 SEM Samples preparation  

To prepare the specimen for analysis, a grain of material approximately 5mm in 

diameter was mounted on double-sided carbon tape, and affixed to a metal specimen 

mount. The mount and sample were then placed in the vacuum evaporation system (VES), 

and the VES was depressurized to create a high vacuum. An electrical current was passed 

through a rod of graphite positioned between two conductors, vaporizing the graphite at the 

atomic level and causing it to adhere to the sample. This process, known as thermal 

deposition, increases the thermal and electrical conductivity of the sample by coating the 

sample in a thin layer of carbon. This electroconductive carbon layer allowed the specimen 

to be viewed using an electron optical system. The coated specimens were then placed on 

the viewing stage of the SEM, and sealed inside the vacuum chamber (Uchic et al., 2006) 
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Figure 3-1 Halite vs. latitude. 

 

 

Figure 3-2 Quartz (low) vs. latitude. 
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shifted to 22.70 Å. To identify the mineral composition of sample # 16 the scanning 

electron microscopy analysis had been assigned to this sample (Section 3-3). Based on 

diffraction characteristics, the peak at 20.71 Å is identified as magadiite. 

 

Figure 3-7 XRD Pattern of Sample #16 (Group A) after sonication.  

 

3.3 SEM-EDS Results  

 

The following SEM – EDS results were carried out for samples 12, 16 and 17, in 

order to further confirm the aforementioned presence of magadiite as well as the presence 

of okeonite and zeolites. Okeonite would be a possible explanation for the 20.71 Å peak 

observed Figure 3-7. In particular, they were used to check whether or not the okenite was 

present in the specimens. The findings are shown in Figures 3-10 through 3-17.   The X-ray 

microanalysis for each sample, respectively, is shown in Figure 3-8 and Figure 3-14. The 

corresponding X-ray secondary electron images are shown in Figure 3-9,Figure 3-9, Figure 

3-10 and Figure 3-14. All the images were taking at the cross with 15.00 kV accelerating 
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voltage for electron gun (beam energy), from the distance of 25 mm by SE1 as a secondary 

electron detector Figure 2-7. 

The SEM analysis found that the most abundant elements in sample #12 of Group B 

(Figure 3-8) were sodium (Na), silicate (Si), iron (Fe) and potassium (K). Weak peaks of 

titanium could also observed in the microanalysis, but since they did not exceed the 

calculated background noise (grey line), no formal conclusion could be made about the 

presence of titanium.  

 

Figure 3-8 X-Ray Microanalysis of Sample #12 (Group B). 
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Figure 3-9 X-Ray Electron Image of Sample #12 (Group B). 

Three representative secondary electron images were taken of sample #16 (Group 

A). Figure 3-10 demonstrates the snapshot of the sample 16. All the images of sample 16 

were taken at the same parameters. The scale of the image illustrated on the picture. The 

other two images of sample 16 are located in the Appendix C. 
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Figure 3-10 X-Ray Electron Image of Sample #16-01 (Group A). 

 

Figure 3-11 Ray Microanalysis of Sample #16-01 (Group A). 
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of alkali-rich and alkali-earth poor minerals concentration, but decreasing of detrital 

minerals.  

Similarly, there seems to be a linear relationship between Halite and latitude (Figure 

3-1). Halite increases with latitude, which coincides with increasing of elevation. This 

correlation might mean that the concentration of actual clay increases with altitude. It is 

feasible, because the higher elevation area has more fresh water precipitation, more 

vegetation. Thus, the Kiserian area (Group C) consists of actual clay at the elevation of 

1600 m above sea, whereas the Magadi basin has a negligible amount of poor clay. This 

observation supports our hypothesis.  

 

4.2 XRD Clay Results 

 

 

Figure 4-1 Sample #16 clay mineralogy analysis (red pattern – air dry, green 

pattern – ethylene glycol treatment) 
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dehydrated magadiite did not have the peak at 21 Å. Thus, the scanning electron 

microscopy procedure was used to help identify the mineralogy of specimen #16. Likewise, 

samples #12 and 17 with questionable mineralogy were chosen for SEM analyses.  

 

4.3 SEM Results  

SEM results provided qualitative chemical microanalysis and high-resolution 

surface images.  First examined sample was specimen # 12 from Nairobi area (Group A) 

from the Kiserian area.  The microanalysis of sample #12 identifies that the most abundant 

elements are sodium (Na), silicate (Si), aluminum (Al), iron (Fe) and potassium (K) (Figure 

3-8). These SEM results support our assumption that the Magadi Trachyte area described as 

detrital silicates, quartz, calcite and saline minerals.  

The first representative SEM image and microanalysis was taken from the surface of 

sample #16 (Figure 3-11). The microanalysis reveals that the surface of the specimen 

comprised of sodium (Na), silicate (Si), and low percentage of potassium (K), as small 

peaks were observed. Chemical composition and SEM image support our evidence that 

montmorillonite is possibly present at this sample.  

The next three images were taken from different cavities of the sample. 

Surprisingly, chemical analysis showed the abundance of calcium (Ca), which can be the 

evidence of the presence of okenite based on  silicon (Si) and a peak of sodium (Na). The 

high peaks of calcium were the first evidence of okenite  [Ca3[Si6O15]•6(H2O] present in 

abundance in the cavity.  Sodium is not the part of the okenite mineral structure. However  

Cole & Lancucki, (1983) stated that “calcium in okenite can be replaced with sodium with 

time”. Based on the method of sample preparation for SEM where the sample is put under 

high vacuum, the okenite was assumed to be dehydrated and thus the crystal structure 
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Figure 4-3 Unstable Calcium Carbonate Crystal  
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5 CONCLUSION 

The following conclusions are derived from the research conducted on hand 

samples collected from the Lake Magadi South Kenya:  

1) Lake Magadi (Group A) is characterized by very little authigenic clay (constitute with 

quartz, calcite) and more authigenic minerals (such as zeolites and zeolite-associated 

minerals) due to low precipitation, little vegetative cover and extreme alkalinity of ground 

water that recharge the lake. Bulk mineralogy is dominated by albite, sanidine, analcime, 

trona, halite and phillipsite. Clay analysis revealed the presence of erionite, moderite, 

montmorillionite, phillipsite. 

2) The Olorgesailie area (Group B) is composed of weathered basalt clay and 

zeolites. These minerals are associated with more humid climate patterns and lake deposits. 

The area also can reflect changes in overall humid climate regime and might not reflect 

recent to modern climate patterns but reflect the Pleistocene humid period.    

3) The Kiserian area (Group C) is characterized by similar bulk composition to the 

other sites, reflecting similar rift volcanism across the region. The mineralogy of detrital 

clay suggests more humid climate regime compare the other two localities. The diverse clay 

mineral assemblage as well as presence of kaolinite indicates intense weathering associated 

with more humid climate patterns.  

To conclude, although the bulk mineralogy is the same on all localities due to 

similar volcaniclastics compositions throughout the Kenya Rift Valley, the clay mineralogy 

significantly differs between sample localities reflected different tectonic settings and 

climate regime. In humid climate at higher elevation detrital clay minerals dominate, 

whereas, in humid climate at higher elevation detrital clay minerals dominate. In the 
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transition region between higher elevation with detrital clay and lower elevation with 

authigenic clay, both detrital and authigenic minerals were present.  The clay minerals are 

potentially useful as qualitative terrestrial climate proxies.  
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