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ABSTRACT

In this thesis, we apply smoothed empirical likelihood method to investigate confidence

intervals for the receiver operating characteristic (ROC) curve with right censoring. As a

particular application of comparison of distributions from two populations, the ROC curve

is constructed by the combination of cumulative distribution function and quantile function.

Under mild conditions, the smoothed empirical likelihood ratio converges to chi-square dis-

tribution, which is the well-known Wilks’s theorem. Furthermore, the performances of the

empirical likelihood method are also illustrated by simulation studies in terms of coverage

probability and average length of confidence intervals. Finally, a primary biliary cirrhosis

data is used to illustrate the proposed empirical likelihood procedure.
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Chapter 1

INTRODUCTION

1.1 ROC curve

In the field of modern medicine, diagnostic tests are used to distinguish diseased group

from non-diseased group. In the statistical study, the accuracy of a binary diagnostic test

can be measured by its specificity and sensitivity.

Figure 1: Operating characteristics of diagnostic tests: sensitivity, specificity.

The sensitivity or true positive rate (TPR) of the test is a proportion between diseased

patients who are correctly identified and whole diseased patients. The specificity or true

negative rate (TNR) of the test refers a proportion that non-diseased patients who are cor-

rectly identified and the whole non-diseased patients. The false positive rate (FPR) and false

negative rate (FNR) are defined as 1-specificity and 1-sensitivity, respectively. As Figure 1

shows, specificity increases at the expense of sensitivity. The compromise between sensitivity

and specificity is accounted for assessing discriminatory accuracy. In general, the receiver op-
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erating characteristic (ROC) curve is a plot of sensitivity (TPR) against 1-specificity (FPR),

which is a graphical summary of the discriminatory accuracy of a diagnostic test.

To be specific, suppose a continuous statistics T (X) generated from two samples, i.e.,

diseased patients and non-diseased patients. Let c denote the criterion value of a binary test

to be evaluated by the ROC curve.

Figure 2: The distributions of the test results overlap.

In Figure 2, the sensitivity is indicated by the area (TP) overlapped by the diseased

region and the positive region, where T ≥ c, and, correspondingly, specificity is defined at

the area of non-diseased region and positive region, where T ≤ c. People are interested in

the modification of sensitivity and specificity along criterion value c. Consider true positive

function TPF (c) = Pr(T ≥ c | Diseased) and false positive function FPF (c) = Pr(T ≥ c |

Non − diseased) as the extensions of TPR and FPR. Thus, TPF and FPF are absolutely

monotonically increasing when criterion value c increases and have the same ranges within

[0, 1]. Thus, the ROC curve as a point set can be present by

ROC = {(p, θ) : FPF (c) = p, TPF (c) = θ, c ∈ (−∞,∞)}.
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Furthermore, due to the absolute monotone property of TPF and FPF, the ROC curve can

be revised as a curve of function, from [0, 1] to [0, 1],

ROC(p) = {θ : FPF (c) = p, TPF (c) = θ, c ∈ (−∞,∞)}.

Due to the increasing monotone property by sensitivity p, the ROC curve always starts from

the left bottom point (0, 0) and ends up at right top point (1, 1), lying on the upper half of

diagonal line generally. For instance, Figure 3 demonstrates the typical shape of ROC curve.

Figure 3: ROC curve: a plot of the true positive rate against the false positive rate.

In addition, the ROC curve of one perfect binary diagnostic test should pass through the

left top point (0, 1) since this shape of ROC curve indicates that type 1 error (false positive)

and type 2 error (false negative) could not happen absolutely. Thus, the higher the ROC

curve, the better efficiency a diagnostic test. This property of the ROC curve addresses a
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criterion to evaluate performances of diagnostic tests. At the same time, area under ROC

curve (AUC) extends to the maximum value 1, when ROC curve goes through the left top

point. Alternatively, the value of AUC is one of popular criteria to compare binary diagnostic

tests.

Assuming that cumulative distribution functions of diseased group and non-diseased can be

estimated, the ROC curve function can be represented by

ROC(p) = 1− FD(F
−1
D̄

(1− p)),

where FD and FD̄ are cumulative distribution functions of diseased population and non-

diseased population, respectively. F−1
D̄

is the quantile function of non-diseased population,

i.e., F−1
D̄

(a) = inf{c : FD̄(c) ≥ a}. In this thesis, we develop our procedure based on this

pattern of the ROC curve.

In addition to the diagnostic tests, receiver operating characteristic (ROC) curves are

widely used in epidemiology and medical research, industrial quality control and signal de-

tection. Furthermore, the ROC curve can be utilized in model optimization and adjustment.

1.2 Empirical Likelihood

In the parametric statistical approach, one assumes the data set follows certain distribu-

tion with parameters to be determined. However, in many situations, without enough prior

information, there is no reason to suppose that the data follows a certain distribution family.

To avoid such a problem, statisticians prefer nonparametric methods rather than parametric
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methods. And, empirical likelihood (EL) is one kind of nonparametric method for statis-

tical inference, which employs the maximum likelihood method without having to assume

a known distribution family for the data. Empirical likelihood combines the advantages of

nonparametric methods and the likelihood methods. Let a sample X1, . . . , Xn ∈ R, n ≥ 1

from a cumulative distribution function F0, empirical cumulative distribution function of

X1, . . . , Xn is

Fn(x) =
1

n

n∑
i=1

1Xi≤x, −∞ < x < ∞,

and

Fn(x−) =
1

n

n∑
i=1

1Xi<x, −∞ < x < ∞.

Generally, given any cumulative distribution function F , the nonparametric likelihood can

be defined as

L(F ) =
n∏

i=1

{F (Xi)− F (Xi−)}.

Empirical cumulative distribution function is the maximum nonparametric likelihood esti-

mator of F (Owen 2001), i.e.,

L(Fn) = sup{L(F ) : F ∈ F},
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where F is nonparametric cumulative distribution function space. Furthermore, for every

nonparametric distribution function F , the likelihood ratio can be defined as

R(F ) =
L(F )

L(Fn)
,

and

R(F ) =
n∏

i=1

npi,

where pi denote the probability of Xi happens. In addition, considering the subspace of

F generated by ℓ = T (F ) , where T is functional mapping from CDF F ∈ F to real number

ℓ, the profile of the likelihood ratio equation is adjusted as,

R(ℓ) = sup{R(F ) : T (F ) = ℓ, F ∈ F},

where the likelihood ratio R(F ) = L(F )/L(Fn). Then, T (F ) is normally considered as

a statistics method, such as mean or variance. Once a statistics is required to satisfy a

certain restriction, like T (F ) = ℓ, we can built up a hypothesis test. In this thesis, two

population restriction T (F1, F2) = ℓ can be specified by {1 − FD(F
−1
D̄

(1 − p)) = θ} or

{F1(η) = 1 − θ(p), F2(η) = 1 − p, η ∈ R}, which are introduced in the previous section of

ROC curve. Then, a well-known asymptotic theorem, Empirical Likelihood Theorem (ELT)

proposed by Owen(1990), i.e.,

−2 log(R(ℓ)) → χ2
(1).
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Relying on this theorem, an empirical likelihood hypothesis test can be established. The

null hypothesis, H0 : T (F0) = ℓ0, should be rejected, when −2 log(R(ℓ)) > χ2
1(α). Also,

empirical likelihood confidence regions are of the form

{ℓ : −2 log(R(ℓ)) ≤ χ2
1(α)},

where α is confidence level.

1.3 Structure

The thesis is organized as follows. In Chapter 2, we review literatures about ROC

curve, empirical likelihood and survival data with right censoring. In Chapter 3, major

procedures for empirical likelihood ratio are proposed, including the introduction of data

with right censoring, methods to develop smoothed empirical likelihood and asymptotic

results of empirical likelihood likelihood ratio. In Chapter 4, simulation studies and analysis

are conducted to evaluate empirical likelihood confidence intervals for ROC curves in small

and moderate samples in terms of coverage probability and average length of confidence

intervals. In Chapter 5, an application of the empirical likelihood procedure is proposed by

investigating primary biliary cirrhosis data. General conclusions are summarized in Chapter

6. The list of tables, Splus/R codes and proofs of Empirical Likelihood Theorem are attached

in the Appendix.
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Chapter 2

LITERATURE REVIEW

Empirical likelihood enables us to make develop the inference without the assumption

of a known distribution. Based on this data-driven likelihood, Thomas and Grunkemeier

(1975) introduced the EL method to derive point-wise confidence intervals for complete sur-

vival data. However, during next 10 years, the EL method was not close to the mainstream

research as it was supposed to be, until Owen (1988), (1990) largely extended empirical

likelihood method to wide varieties of statistical aspects, especially for the mean of popula-

tion. Also, empirical likelihood (EL) was recognized by many researchers DiCiccio (1991),

DiCiccio and Romano (1989, 1990) as a powerful method, holding lots of unique features,

such as range respecting, transformation-preserving, asymmetric confidence interval, Bartlett

correctability and the accuracy of coverage probability from Hall (1990) for small sample.

Afterward, Li (1995) and Murphy (1995) proposed the EL point-wise confidence intervals

for empirical likelihood method with a rigorous proof. As a milestone of EL methods, Owen

(2001) has comprehensively and systematically illustrated the theory and application of em-

pirical likelihood methods.

Afterwards, due to great adaption and flexibility, researches on empirical likelihood

methods continue to be very active in statistical communities, especially for incomplete data

problems. Particularly, according to studies about sample comparison , lots of researchers
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employed the empirical likelihood method to compare two samples from a variety of uncom-

plete data sets, recently. For censored data, the empirical likelihood based Q-Q plot method

for comparing two or more censored distribution is developed by Einmahl and McKeague

(1999). McKeague and Zhao (2002) obtained simultaneous confidence bands for the ratios

of two survival functions; also, McKeague and Zhao (2005) derived empirical likelihood si-

multaneous confidence band for the ratio and difference of distribution functions, and then

Shen and He (2006) derived empirical likelihood confidence intervals for the difference of two

survival functions. In the following year, Shen and He (2007) introduced EL method for the

difference of quantiles for one sample censored data.

Receiver operating characteristic (ROC) curve originated from signal processing during

World War II, and then was utilized in medical diagnostic test. Right now, it plays a critical

role in many other areas, such as epidemiology, econometrics, industrial quality control and

signal detection. Under the assumption of parametric methods, ROC curve is proposed with

strong convergence by Tosteston and Begg (1988). However, due to problems of parametric

methods, such as unreasonable assumptions, impractical computation cost, especially, poor

covariance estimator from small and moderate sample sizes, more and more researchers

concerned the feasibility and efficiency of non-parametric methods dealing with ROC curve

problem. Hsieh and Turnbull (1996) started to estimate ROC curve in empirical methods,

contributing the foundation of asymptotic properties. Later, statisticians derive smoothing

methodologies for ROC curves. Zou, Hall and Shapiro (1997) and Lloyd (1998) constructed a

smooth version, a kernel distribution estimator of ROC curve. Then, Lloyd and Yong (1999)
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show that the kernel estimator is better than empirical estimator because of smaller mean

squared error. Claeskens, Jing, Peng and Zhou (2003) proposed the empirical likelihood

confidence intervals for ROC curves, showing that the bandwidth of kernal function needs

to be determined. Additionally, Swets and Pickett (1982), Pepe (1997) and Metz, Herman

and Shen (1998) illustrate ROC curves and their applications.

However, to the best of my knowledge, few literature has ever proposed empirical likeli-

hood (EL) confidence intervals for the ROC curve with right censoring. In this thesis, we are

interested in investigating the formation and asymptotic properties of empirical likelihood

ratio related to the ROC curve with right censoring. Also, we investigate this performance

of the proposed EL method by simulation studies.
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Chapter 3

THEORY AND PROCEDURE

3.1 Right censoring data

Suppose that non-negative failure times Tji, j = 1, 2, i = 1, . . . , nj are i.i.d. samples

with independent two populations, together with corresponding i.i.d. non-negative censoring

times, Cji, j = 1, 2, i = 1, . . . , nj. Distribution functions of Tji and Cji are denoted as Kj

and Gj, j = 1, 2, respectively. Under right censoring, we have the observations for each

sample recorded in the form (Xji, δji), where Xji = min(Tji, Cji) and δji = I(Tji ≤ Cji),

the indicator of Tji ≤ Cji. We denote the distribution function of i.i.d random variables

Tji, j = 1, 2, i = 1, . . . , nj by Fj, j = 1, 2 throughout the thesis. Then, we suppose that

sequences X(j1) ≤ X(j2) ≤ · · ·X(jnj) are the ordered statistics of each sample j, and δ(ji)

are consequences accompanying X(ji), and denote rji =
∑nj

i=1 I(Xji ≥ X(ji)) = nj − i + 1,

j = 1, 2, i = 1, ..., nj.

3.2 Smoothed empirical likelihood ratio

Then, we wish to obtain interval estimator for the ROC curve θ(p) = 1−F1(F
−1
2 (1−p)),

where 0 ≤ p ≤ 1. The empirical likelihood function is defined by

L(F1, F2) =
2∏

j=1

nj∏
i=1

[Fj(xji)− Fj(xji−)]δji [1− Fj(xji)]
1−δji .
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From Li (1995), the empirical likelihood function L(F1, F2) can be changed as

L(F1, F2) =
2∏

j=1

nj∏
i=1

φ
δji
ji (1− φji)

(rji−δji).

where φj1, φj2, . . . , φjnj
are the hazard values at X(j1), X(j2), . . . , X(jnj) given by

φji =
Fj(X(ji))− Fj(X(ji)−)

1− Fj(X(ji)−)
.

We define the empirical likelihood ratio for θ(p) as follows

R(θ(p), η, p) =

sup
φji∈Φ

{L(F1, F2) : F1(η) = 1− θ(p), F2(η) = 1− p}

sup
φji∈Φ

L(F1, F2)
. (3.1)

Without the restriction F1(η) = 1− θ(p), F2(η) = 1−p, the supremum of likelihood function

is re-expressed as

sup
φji∈Φ

L(F1, F2) =
2∏

j=1

nj∏
i=1

(φji/rji)
φji(1− φji/rji)

(rji−φji).

We rewrite the likelihood function

R(θ(t), η, t) =

sup
φji∈Φ1

L(F1, F2)

sup
φji∈Φ

L(F1, F2)
,
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where

Φ1 = {φ ∈ Φ :
∏

X1i≤η

(1− φ1i) = θ,
∏

X2i≤η

(1− φ2i) = p}.

Since it is not easy to maximize L(F1, F2) under discrete restriction, we consider the smoothed

empirical likelihood ratio version. Noted that G(t) is the smooth distribution function chosen

as

G(t) =

∫
u≤t

K(u)du.

Define Gh(t) = G(t/h), where h is a bandwidth. The value of bandwidth and the type of

the kernel function need to be specified by statisticians.

After kernel functions involved in the discrete restriction, the restricted condition can

be adjusted as

Φ2 = {φ ∈ Φ : Σn1
i=1Gh1(η −X1i) ln(1− φ1i) = ln θ,Σn2

i=1Gh2(η −X2i) ln(1− φ2i) = ln p}.

Then, the empirical likelihood ratio is updated to the smoothed empirical likelihood ratio,

R̃(θ(p), η, p) =

sup
φji∈Φ2

L(F1, F2)

sup
φji∈Φ

L(F1, F2)
.

For the fixed p, using Lagrange multiplier’s method, we are able to obtain the log-likelihood
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function,

ln R̃(θ, η, λ1, λ2) =
2∑

j=1

nj∑
i=1

(rji − δ(ji)) ln

(
1 +

λjGhj
(η −X(ji))

rji − δ(ji)

)
−rji ln

(
1 +

λjGhj
(η −X(ji))

rji

)
, (3.2)

where the Lagrange multiplier λ = (λ1, λ2) and η have to satisfy,

Q1n1 =

n1∑
i=1

Gh1(η −X(1i)) ln

(
1−

δ(1i)
r1i + λ1Gh1(η −X(1i))

)
− ln θ = 0, (3.3)

Q1n2 =

n2∑
i=1

Gh2(η −X(2i)) ln

(
1−

δ(2i)
r2i + λ2Gh2(η −X(2i))

)
− ln p = 0, (3.4)

Q3n1n2 =
2∑

j=1

nj∑
i=1

λjG
′

hj
(η −X(ji)) ln

(
1−

δ(ji)
rji + λjGhj

(η −X(ji))

)
= 0. (3.5)

Denote the left sides of equations (3.3),(3.4) and (3.5) as Q1n1 , Q2n2 and Q3n1n2 , respectively.

These equations are deducted from the procedure that maximizes the log-likelihood function

for the Lagrange multiplier λ = (λ1, λ2) and intermediate variable η.

3.3 Asymptotic Studies

With the following two conditions (C1)− (C3),

(C1) Let 0 < h1(η), h2(η) < ∞, here hj(η) = F
′
j (η)/(1−Fj(η)) , the h

′
j(x) exists and is

continuous in neighborhoods of η, respectively, j = 1, 2.

(C2) As nj → ∞, we have hj → 0, njhj → ∞, njh
4
j → 0, lnh−1

j /(njhj) → 0 and

lnh−1
j / ln lnnj → ∞, j = 1, 2.
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(C3) The derivative K(t) of G(t) is a bounded nonnegative function having compact support

[−c, c], such that

∫ ∞

−∞
uiK(u)du =


1 i = 0

0 i = 1

C0 i = 2,

where C0 is a nonzero constant. The second derivative of G(t) exists.

Theorem 1. Assuming satisfying (C1) − (C3) and max{aF1 , aF2} < η < min{bF1 , bF2} for

every fixed p, such that R̃(θ, η) attains maximum value at (θ0, η0), and as nj → ∞, j = 1, 2,

n1/(n1 + n2) → ρ1, 0 < ρ1 < 1,

−2 ln R̃(θ0(p), η0, p)
D−→ χ2

1.

Thus, the asymptotic 100(1− α)% EL confidence interval for θ(p) = ROC(p) is

In,α(p) =
{
θ(p) : −2 logR(θ(p), η0, p) 6 χ2

1(α)
}
, (3.6)

where χ2
1(α) is the upper α-quantile of χ2

1.
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Chapter 4

SIMULATION

4.1 Setting

After proposing the asymptotic theory, we conduct a simulation study to investigate

the performance of empirical likelihood confidence interval for the ROC curve with right

censoring in terms of coverage accuracy and average length of confidence intervals.

With the objective of investigating ROC curve, we need to generate independent data

with right censoring from two distinguished populations. First, we consider two data sets

as failure times, which are generated by same distribution family but different parameters.

In order to investigate broad patterns of data, we arrange six distributions which are chi-

square family with parameter 1 and 2, exponential family with parameter 1 and 1.5 and

Weibull family with parameter (1, 1) and (1, 1.5). All of them are widely utilized in survival

analysis. In addition, the exponential family is selected to produce censoring time data.

Then, combining three failure times data with censoring data respectively, we can obtain

three survival data with right censoring, (Xji, δji), where Xji = min(Tji, Cji) and δji =

I(Tji ≤ Cji), i = 1, ..., nj, j = 1, 2. In order to observe the performance of empirical likelihood

method under different censoring rates, censoring rates are specified at 10% and 40%. Then,

we hold parameters of failure times and carefully calibrate parameters of censoring times.

The selected parameters of censoring distribution are represented in Appendix B. In details,
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they are located under the survival distributions, such as chi-square, exponential and Weibull

distribution. Then, we are ready to explore the simulation with 10% and 40% censoring rates,

respectively.

Before further specifying simulation settings, we need to determine the kernel function.

Following Shen and He (2006), the Epanechnikov kernel

K(u) =


3
4
(1− u2) if |u| ≤ 1

0 otherwise

is utilized, and the smoothing parameter is chosen to be h = cn−1/3 which be called

bandwidth. The constant c would determine the bandwidth entirely when the sample size

is fixed. In order to make the EL method work efficiently, the bandwidth should be selected

appropriately. After the calibration, the constant c is selected within the range [0.1, 10] for

those three distribution families. The selected parameters of c are shown in Appendix B.

In this simulation, it is unnecessary to demonstrate empirical likelihood ratio asymptoti-

cally converges to chi-square at every fixed point from [0, 1]. Our simulation only presents the

performance of empirical likelihood method at the two specified points p = 0.2 and p = 0.7.

Also, in order to see the performance trend associated with sample sizes, we consider three

different small sample sizes, n = 30, 50 and 100. Additionally, I need to investigate the

condition that two samples sizes differ from each other but are still proportional with each

other. Therefore, we arrange all possible combination of data pairs according to three sample

sizes, which are totally nine outcomes in Appendix B.
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Coverage probabilities are generated by 1000 repetitions. If EL method works well in

small sample, the proportion that negative twice log-likelihood ratio fall within 95% confi-

dence interval of chi-square should be close to 0.95, since the coverage probability converges

to chi-square asymptotically. Also, ideally, the proportion about 90% confidence interval

should be close to 0.90. Finally, results of coverage probability are illustrated from Table 1

to Table 8 in Appendix B.

Furthermore, we need to show the simulation results are reliable by checking their av-

erage length. In details, 95% confidence interval for ROC curves can be determined by

bisection method, employing Kaplan Meier estimator of θ as initial true positive value (sen-

sitivity). Then, after 1000 repetitions, we can get the average of 1000 differences between

every two boundary points of confidence interval, i.e., average length. In addition, when we

search the two boundary points by bisection methods, we pick the condition that the initial

ROC values are placed within 95% confidence interval since computational costs were saved

greatly and the average length does not be influenced. We follow the same settings as cover-

age probability, where failure time follows Chi-square distribution and censoring time follows

exponential distribution. We also need consider simulation results with different sample sizes

(30, 50, 100) in order to investigate the effect of sample size to average length. Table 9 and

Table 10 in Appendix B demonstrate the simulated average length with different censoring

rates 10% and 40%.
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4.2 Analysis

The Appendix B includes ten tables about simulation results. The first eight tables

illustrate the coverage accuracy at different settings. The last two tables show the result

of the average length of 95% confidence intervals under 10% and 40% censoring rates. For

instance, Table 1 shows coverage probability of 90% confidence intervals for the ROC curve

at p = 0.2 with 10% censoring rate. After carefully calibrating the proper bandwidth, we can

observe that coverage probability of Table 1 in large samples are placed at the ideal region,

which is around 0.90. If we compare the results with distributions of failure times, we can

realize the Weibull and exponential family’s results are more precise than chi-square family’s.

It shows that in the small samples the EL methods was influenced by data patterns, more

specifically, distribution functions. Then, concerning the impacts of sample sizes, we need

compare coverage probabilities at one certain column at Table 1. From Table 1 according

to different sample sizes, the performance of EL with large sample size are better than that

with the small sample size generally. In summary, from every individual table, we can get a

similar result as Table 1, such as acceptable accuracy of coverage probability, slight influence

from local data pattern and predictable data trend according to sample size changing.

After investigating within one single Table, we would consider the information cross

tables. At first, for example, we set up a comparison between Table 1 and Table 2. Table 2

demonstrates coverage probability of 95% confidence interval for the ROC curve at p = 0.2

with 10% censoring rate. In Table 2, we can obtain that coverage probabilities with large

sample are around 95% and other similar conclusions as Table 1. It indicates that the
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simulated coverage probability does not influenced too much if the confidence level is modified

only. Also, it is same as Table 1 that results of Weibull and exponential distributions in Table

2 perform better than that in chi-square distribution.

In addition, if we attempt to investigate the effect of negative false value p, we can

carefully compare Table 1 and Table 3. In Table 3, settings were adjusted to 90% confidence

level, 10% censoring rate and p = 0.2. Even though all coverage probability in Table 3 are

close enough to 0.9, chi-square and Weibull distribution operate better. This result varies

from Table 1. Also, we find the selected bandwidth in Table 3 is widely different from Table

1. Hence, we can say that the bandwidth has to be selected for every settings individually.

Then, we are interested in the analysis of Table 1 and Table 5 for the effect of censoring

rate. With the censoring rate 40%, the performance of chi-square and exponential distri-

bution declines slightly; Weibull distribution’s performance maintained at the same level as

Table 1. When the censoring rate becomes heavy, accuracies of coverage probabilities are

reduced by strong impacts from the censoring time distribution. Finally, we can arrange

other similar cross-tables comparisons with varied settings, such as Table 2 versus Table 6

or Table 5 versus Table 7. No matter which two tables are selected, we can obtain similar

conclusions as before.

At the end, we investigate simulation results of the average length, showed by Table 9

and Table 10. From either of the two tables, we can clearly obtain the reasonable conclusion

that the larger sample size has the narrower average length, even if two sample sizes may

be different. Besides, comparing average length with (n1, n2) = (30, 100) and the other with
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(n1, n2) = (50, 50), it could not be determined intuitively whose average length is narrower

or wider. Also, there is no general relation between average length and negative false value p.

However, comparing Table 9 and Table 10, we can realize performances with 10% censoring

rate are constantly better than that with 40% censoring rate. Hence, it shows that 40%

censoring rate loses much more information than 10% censoring rate does.
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Chapter 5

THE PRIMARY BILIARY CIRRHOSIS (PBC) DATA

The primary biliary cirrhosis (PBC) data was gained from the Mayo Clinic trial between

1974 and 1984. A amount of 424 patients of (PBC) data fulfilled qualification standards in

terms of randomized placebo controlled the treatment trial, drug D-penicillamine. The 112

cases did not involve in the clinical trial, but those 112 patients accepted to entered basic

measurements and to be followed for survival. Six of them were lost to follow-up after

diagnosis shortly. Additional 312 cases in the data set participated in the randomized trial

and contain main data. To be conservative, the data selected in the thesis only comprises 312

randomized participants with complete information. 158 patients of those 312 cases obtained

D-penicillamine, and other 154 patients were assembled as the placebo. The right censoring

rate is extremely high, 187 out of 312. More details and extended discussions can be found

in Fleming and Harrington (1991), Dickson, et al., (1989) and Markus, et al., (1989).

We construct the 95% confidence interval of ROC curves in terms of treatment (D-

penicillamine) and placebo. To investigate the test of these two sample data with heavy

right censoring rate, we implement the procedure introduced previously by empirical likeli-

hood methods with smoothing kernel function. In order to plot the piecewise ROC curve

avoiding extreme boundary point, we sperate the interval [0.1, 0.9] to 50 parts equally as all

sensitivities. For those levels of sensitivity, we can determine the Kaplan Meier estimator
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firstly. Without the known true sensitivity, we use the Kaplan Meier estimator of θ as initial

true positive value to set up bisection methods. The bandwidths of kernal functions are se-

lected according to h = cn−1/3, which is same as settings in Chapter 4. Then, the bisection

method is used to search two numerical roots of the following equation as confidence interval,

−2 ln R̃(θ, η, λ1, λ2) = 1.962,

under three restrictions Q1n1 = 0, Q1n2 = 0 and Q3n1n2 = 0. After we obtain the empirical

likelihood confidence interval regarding each specificity p, respectively, we can plot point-wise

ROC curve.
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Figure 4: 95% Empirical likelihood confidence interval for ROC curves

Hence, 95% empirical likelihood confidence intervals for the ROC curves are illustrated in

Figure 4 above. It can be observed that the green line indicates the upper bound of confidence
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interval and blue line shows the lower bound of confidence interval.
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Chapter 6

CONCLUSION

The theoretical proof provides the asymptotic property of the empirical likelihood

method for the ROC curve under right censoring data. Also, the simulation results demon-

strate that coverage probability of EL confidence interval can be very close to ideal results

regardless of distribution, location of the ROC curve for even moderate censoring rate. Thus,

the smoothing empirical likelihood method can be recognized a feasible procedure for the

ROC curve with right censoring.

Because the normal approximation confidence interval for ROC curves with right cen-

soring still needs to be established in the future, our simulation results are lack of enough

comparison with alternative methods. Additionally, the optimal selection of bandwidth are

still disputable. Without the appropriate calibration, we can not guarantee the selection of

bandwidth is the optimal one. Besides, researchers should keep seeking more efficient and

precise algorithm to replace bisection method, which costs a number amount of computation

resource. Also, a few strange results in the simulation study about coverage probability of

different censoring rates maybe enlighten some advanced thinking about the performance in

small samples.
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Appendix A

PROOF OF WILKS’ THEROM

Lemma A.1. Assume max{aF1 , aF2} < η < min{bF1 , bF2} and the density G
′
(t) of G(t) has

compact support [−c, c]. sup{L(F1, F2)} subject to restriction Φ2 attained at a unique φ with

probability one for large n, where

Φ2 = {φ ∈ Φ : Σn1
i=1Gh1(η −X(1i)) ln(1− φ1i) = ln θ,Σn2

i=1Gh2(η −X(2i)) ln(1− φ2i) = ln p}.

.

Proof. The full version of restrictionj, functions were demonstrated as followings,



Σn1
i=1Gh1(η −X(1i)) ln(1− φ1i) = ln θ

Σn2
i=1Gh2(η −X(2i)) ln(1− φ2i) = ln p

0 < φ1j < 1, i = 1, ...n1

0 < φ2j < 1, i = 1, ...n2

(A.1)

Since the equations system can be decomposed as two independent equations, we only show

the procedure for one of them,


Σn1

i=1Gh1(η −X(1i)) ln(1− φ1i) = ln θ

0 < φ1i < 1, i = 1, ...n1
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It is easy to see that φ1 = (φ11, ..., φ1n1), the solution of restriction functions, exists.

Then, define that

ωi =
Gh1(η −X(1i)) ln(1− φ1i)

ln θ
, i = 1, ..., n1.

Due to 0 < θ < 1 and 0 < φ1i < 1, i = 1, ..., n1, ωi must fall into the interval [0, 1] for

i = 1, ...n1. After the transformation based on the definition of ωi, we can get a compact

solution set φ1 = (φ11, ..., φ1n1),

φ1i = 1− exp{ ωi ln(θ)

Gh1(η −X(1i))
},

and

0 ≤ φ1i ≤ 1− exp{ ωi ln(θ)

Gh1(η −X(1i))
} ≤ 1, i = 1, ..., n1,

since 0 ≤ ωi ≤ 1. Similar results of φ2 = (φ21, ..., φ2n2) can be obtained also. Then, the

subject function,

L(F1, F2) =
2∏

j=1

nj∏
i=1

φ
δji
ji (1− φji)

(rji−δji),

is a continuous function of φ = (φ1, φ2) on closed and compact domain. Therefore, the

supremum of likelihood function can be achieved. Then, we investigate the uniqueness of

solutions. Assume that two distinct solutions φ1 = (φ1
1, φ

1
2) and φ2 = (φ2

1, φ
2
2). Then, we

construct a set of solutions of equations (A.1) generated by φ1 and φ2,

φji = 1− (1− φ1
ji)

λ(1− φ2
ji)

1−λ, i = 1, ..., nj, j = 1, 2,
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where 0 < λ < 1. By the inequality

1− xλy1−λ > (1− x)λ(1− y)1−λ, 0 ≤ x, y ≤ 1, x ̸= y,

we can obtain that

φji > (φ1
ji)

λ(φ2
ji)

1−λ.

Since we know that

1− φji = (1− φ1
ji)

λ(1− φ2
ji)

1−λ,

2∏
j=1

nj∏
i=1

φ
δji
ji (1−φji)

(rji−δji) > (
2∏

j=1

nj∏
i=1

(φ1
ji)

δji(1−φ1
ji)

(rji−δji))λ(
2∏

j=1

nj∏
i=1

(φ2
ji)

δji(1−φ2
ji)

(rji−δji))1−λ,

which is

L(φ) > L(φ1)λL(φ2)1−λ = L(φ1)

However, this inequality contradict with assumption that L(φ1) achieved the supremum of

likelihood function. Hence, the solution is unique.

Lemma A.2. Assume max{aF1 , aF2} < η0 < min{bF1 , bF2} and conditions (C1) − (C3). If

|η − η0| ≤ εn = min{εn1 , εn2}, where εn1 = n−s
1 and εn2 = n−s

2 , 1/3 < s < 1/2, n = n1 + n2

and n1 and n2 proportional, i.e n1/n2 → p > 0, then the solution λ = (λ1(η), λ2(η)) of

equations (3.3) and (3.4) satisfy

λj(η)/nj = O(ϵnj
), j = 1, 2.
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Proof. Let us consider first equation (3.3), Q1n1(η, λ1) = 0, where λ1, λ2 are the solution of

equations (3.3) and (3.4) for every fixed η. By the inequality | ln(1−x)− ln(1−y)| ≥ |x−y|,

0 < x, y < 1, and λ1(ln(1−
δ(1i)

γ1i+λ1Gh1
(η−X(1i))

)− ln(1− δ(1i)/γ1i)) > 0,

λ1(Q1n1(η, λ1)−Q1n1(η, 0))

=

n1∑
i=1

λ1Gh1(η −X(1i))(ln(1−
δ(1i)

γ1i + λ1Gh1(η −X(1i))
)− ln(1− δ(1i)/γ1i))

≥
n1∑
i=1

λ1Gh1(η −X(1i))|
δ(1i)

γ1i + λ1Gh1(η −X(1i))
−

δ(1i)
γ1i

|

= λ1/n1

n1∑
i=1

λ1n1δ(1i)G
2
h1
(η −X(1i))

γ2
1i(1 +

λ1

γ1i
Gh1(η −X(1i)))

>
λ1

n1

λ1

1 + λ1 max γ−1
1i

n1∑
i=1

n1δ(1i)G
2
h1
(η −X(1i))

γ2
1i

>
λ1

n1

λ1

1 + λ1 max γ−1
1i

∫ ∞

0

G2
h1
(η −X(1i))dσ̂2

1(η)

=
λ1

n1

λ1(σ
2(η0) + o(1))

1 + λ1max γ−1
1i

, (A.2)

where

σ̂1
2(η) = n1

n1∑
i=1

δ(i)
γ2
1i

I(X(1i) ≤ η),

and ∫ ∞

0

G2
hj
(η − s)dσ̂2

j (s) = σ2(η0) + o(1), a.s.

which is represented by Theorem 1 (Csörgo and Horvath, 1983) and Lemma 4.1 (Shen and

He, 2007).
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Then, considering the Taylor expansion of Q1n1 , we get

Q1n1(η, 0)

=

n1∑
i=1

Gh1(η −X(1i)) ln(1−
δ(1i)
γ1i

)− ln(θ)

= −
n1∑
i=1

Gh1(η −X(1i))
δ(1i)
γ1i

− ln(θ) +O(n−1
1 )

= −
∫ ∞

0

Gh1(η − u)
dH1n(u)

1−Hn(u−)
+

∫ η

0

dF1(u)

S1(u−)
+O(n−1

1 )

= −Λ̃n1(η) + Λ(η0) +O(n−1
1 ) a.s.

= O(εn1) a.s., (A.3)

where

Λ̃n1(η) =

∫ ∞

0

G2
h1
(η − s)

dH1n1(s)

H̄n(s−)
,

Λ(η) =

∫ η

0

dF1(u)

S1(u−)
,

H1n(x) = n−1

n1∑
i=1

I{Xi ≤ x, δi = 1},

Hn(x) = n−1

n1∑
i=1

I{Xi ≤ x}

and

Λ̃n1(η) = Λ(η0) +O(εn1)

from Lemma 4.1 (Shen and He, 2007). Then, combining the the previous inequalities (A.2)
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and (A.3), we can obtain easily

λ1

n1

≤ 1 + λ1 max γ−1
1i

λ1(σ2(η0) + o(1))
λ1(Q1n1(η, λ1)−Q1n1(η, 0)) =

1 + λ1 max γ−1
1i

(σ2(η0) + o(1))
O(εn1) = O(εn1). a.s.

That is

λ1

n1

= O(εn1). a.s.

Similarly, from the equation (3.4), Q2n2(η, λ2) = 0, we can get

λ2

n2

= O(εn2). a.s.

Lemma A.3. Assume max{aF1 , aF2} < η < min{bF1 , bF2} and conditions (C1)−(C3). Then,

there exists ηE to equation (3.5) such that R(θ, η) attains its maximum value.

Proof. Firstly, using Taylor expansion with respect to λj, j = 1, 2, we consider equation

ln(1−
δ(ji)

γji + λjGnj
(η −X(ji))

)

= ln(1−
δ(ji)
γji

(1−
λjGnj

(η −X(ji))

γji
+O(

λ2
jδ(ji)G

2
nj(η −X(ji))

γ2
ji

)))

= ln(1−
δ(ji)
γji

) +
δ(ji)

γji(γji − δ(ji))
λjGnj(η −X(ji)) +O(ε2nj

/nj), j = 1, 2. (A.4)

Hence, the equation (3.3) and (3.4), Q1n1(η, λ1) = 0 and Q2n2(η, λ2) = 0 can be transformed
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by (3) as the following procedures,

(Q1n1(η, λ1), Q2n2(η, λ2))

= (Q1n1(η, 0), Q2n2(η, 0)) + (λ1/n1, λ2/n2)Σ̌ +O(ε2n1
) +O(ε2n2

) a.s.

= (Q1n1(η, 0), Q2n2(η, 0)) + (λ1/n1, λ2/n2)Σ +O(ε2n), a.s. (A.5)

where

Σ̌(η) =

 n1

∑n1

i=1

δ(1i)
γ1i(γ1i−δ(1i))

G2
n1(η −X(1i)) 0

0 n2

∑n2

i=1

δ(2i)
γ2i(γ2i−δ(2i))

G2
n2(η −X(2i))

 ,

and

Σ(η) =


∫ η

0
dF1(u)

1−F1(u)(1−H1(u−))
0

0
∫ η

0
dF2(u)

1−F2(u)(1−H2(u−))

 .

It is also relied on the Greenwood estimate from Andersen et al. (1993). Define that

σ̌2
1(η) = n1

n1∑
i=1

δ(1i)
γ1i(γ1i − δ(1i))

G2
n1(η −X(1i))

and

σ2
1(η) =

∫ η

0

dF1(u)

1− F1(u)(1−H1(u−))
.

When |η − η0| ≤ ϵn = min{ϵn1 , ϵn2}, the smoothed σ2
1(η), σ̌2

1(η), can be represented as
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following procedures,

n1

n1∑
i=1

δ(1i)
γ1i(γ1i − δ(1i))

G2
n1(η −X(1i))

=

∫ ∞

0

G2
h1
(η − u)dσ̂2

n(s)

=

∫ η

0

dF1(u)

1− F1(u)(1−H1(u−))
+ o(1) a.s.

= σ2
1 + o(1) a.s.

where

σ̂2
n(s) = n1

n1∑
i=1

δ1i
γ1i(γ1i − δ1i)

I(X(1i) ≤ s).

Then, we transform the previous equation (A.5) as

(λ1/n1, λ2/n2) = −(Q1n1(η, 0), Q2n2(η, 0))Σ
−1 +O(ε2n). (A.6)
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Then, we focus on the empirical log likelihood ratio.

− 2 lnR(η)

= −
2∑

j=1

nj∑
i=1

(
(rji − δji) ln

(
1 +

λjGhj
(η −X(ji))

rji − δji

)
− rji ln

(
1 +

λjGhj
(η −X(ji))

rji

))

= −
2∑

j=1

nj∑
i=1

δ(ji)
γji(γji − δ(ji))

G2
nj(η −X(ji))λ

2
j +O(n1ε

3
n1
) +O(n2ε

3
n2
)

= (n1λ1/n1, n2λ2/n2)Σ̌(λ1/n1, λ2/n2)
T +O(nε3n)

= (n1Q1n1(η, 0), n2Q2n2(η, 0))Σ̌
−1(Q1n1(η, 0), Q2n2(η, 0))

T +O(nε3n)

= (n1Q1n1(η0, 0) + n1τ̌1(η
′
)εn1 , n2Q2n2(η0, 0) + n2τ̌2(η

′
)εn2)Σ̌

−1(Q1n1(η0, 0)

+ τ̌1(η
′
)εn1 , Q2n2(η0, 0) + τ̌2(η

′
)εn2)

T +O(nε3n),

where η
′ ∈ (η0, η)

τ̌j(η) = −
nj∑
i=1

ln(1− δji/γji)G
′

hj
(η −X(ji)),

and we know |τ̌j(η
′
)− τ(η0)| −→ 0 a.s. by (Diehl and Stute, 1988).

By (Csörgo and Horvath, 1983), note that

Qjnj
(η0, 0) = Λ̃nj

(η0)− Λnj
(η0) +O(n−1) = o(εnj

).
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So we can simplify

−2 lnR(η) = O(n1ε
2
n1
) + o(n2ε

2
n2
) +O(nε3n) = O(nε2n).

On the other hand,

−2 lnR(η0) = (n1Q1n1(η0, 0), n2Q2n2(η0, 0))Σ̌
−1(Q1n1(η0, 0), Q2n2(η0, 0))

T +O(nε3n)

= o(nε2n) +O(nε3n) = o(nε2n).

Hence, when n1 and n2 are large enough, −2 lnR(η) ≥ −2 lnR(η0), where |η − η0| ≤ ϵn.

That means that −2 lnR(η) can attain minimum value at ηE.

Proof of Theorem 1:

Proof. Now, we are ready to demonstrate the main procedure to prove Theorem 1. Firstly,

We define β1 = λ1/n1, β2 = λ2/n2 and Jacobian matrix of equations Q1, Q2 and Q3,

Ŝn(η0) =
∂(Q1n1Q2n2Q3n)

∂(η, β1, β2)
|(η0,0,0)

=


−τ̌1(η0) σ̌2

1(η0) 0

−τ̌2(η0) 0 σ̌2
2(η0)

0 −n1τ̌1(η0) −n2τ̌2(η0)

 ,

where τ̌j and σ̌j, j = 1, 2 are defined the same as before.
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By Taylor expansion, we can obtain


Q1n1(ηE, λ1, λ2)

Q2n2(ηE, λ1, λ2)

Q3n(ηE, λ1, λ2)

 =


Q1n1(η0, 0, 0)

Q2n2(η0, 0, 0)

Q3n(η0, 0, 0)

+ Ŝn(η0)


ηE − η0

β1

β2

+O(ε2n), a.s. (A.7)

Then, since left side of the equation equals to zero, the equation can be rewritten as follows,


ηE − η0

β1

β2

 = −Ŝ−1
n (η0)


Q1n1(η0, 0, 0)

Q2n2(η0, 0, 0)

Q3n(η0, 0, 0)

+O(ε2n), a.s.

where

Ŝ−1
n =

1

Det(Ŝn)


n1τ̌1(η0)σ̌

2
2(η0) n2σ̌

2
1(η0)τ̌2(η0) σ̌2

1(η0)σ̌
2
2(η0)

−n2τ̌
2
2 (η0) n2τ̌2(η0)τ̌1(η0) τ̌1(η0)σ̌

2
2(η0)

n1τ̌2(η0)τ̌1(η0) −n1τ̌
2
1 (η0) σ̌2

1(η0)τ̌2(η0)

 ,

and

Det(Ŝn) = −n1τ̌
2
1 (η0)σ̌

2
2(η0)− n2σ̌

2
1(η0)τ̌

2
2 (η0).

By Andersen et al. (1993), Stute (1982), Shen and He (2007), when njh
4 → 0, we know

n
1/2
j Qjnj

(η0, 0, 0)
D−→ N

(
0, σ2

j (η0)
)
, j = 1, 2.
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Then, applying these results and σ̌j
D−→ σj, τ̌j

D−→ τj, j = 1, 2, on Q1n1 , Q2n2 , we can

obtain two independent normal distributions when njh
4 → 0, j = 1, 2 and n1/n2 → p , as

follows,

(−τ̌ 22
√
n1Q1n1(η0, 0, 0) +

√
n1τ̌2τ̌1√
n2

√
n2Q2n2(η0, 0, 0))

2

D−→ (N
(
0, τ 42σ

2
1

)
+
√
pN

(
0, τ 22 τ

2
1σ

2
2

)
)2

= (N
(
0, τ 42σ

2
1 + pτ 22 τ

2
1σ

2
2

)
)2

= τ 22 (τ
2
2σ

2
1 + pτ 21σ

2
2)χ

2
1.

By the condition of Theorem 1, εn1 = n−s
1 and εn2 = n−s

2 , 1/3 < s < 1/2, we know

O(nε4n) +O(ε2n) = O(nε4n) = o(1).

λ2
1

n1

=
n1

Det(Ŝn)2
(−n2τ̌

2
2 (η0)Q1n1(η0, 0, 0) + n2τ̌2(η0)τ̌1(η0)Q2n2(η0, 0, 0))

2 +O(nε4n) +O(ε2n)

=
n1

(−n1τ̌ 21 σ̌
2
2 − n2σ̌2

1 τ̌
2
2 )

2
(
−n2τ̌

2
2√

n1

√
n1Q1n1(η0, 0, 0) +

n2τ̌2τ̌1√
n2

√
n2Q2n2(η0, 0, 0))

2 +O(nε4n)

=
n2
2

(−n1τ̌ 21 σ̌
2
2 − n2σ̌2

1 τ̌
2
2 )

2
(−τ̌ 22

√
n1Q1n1(η0, 0, 0) +

√
n1τ̌2τ̌1√
n2

√
n2Q2n2(η0, 0, 0))

2 +O(nε4n)

D−→ 1

(pτ 21σ
2
2 + σ2

1τ
2
2 )

2
τ 22 (τ

2
2σ

2
1 + pτ 21σ

2
2)χ

2
1

=
1

(pτ 21σ
2
2 + σ2

1τ
2
2 )
τ 22χ

2
1.
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From the equation (A.7), we obtain the equation as follows,

−n1τ̌1(η0)β1 − n2τ̌2(η0)β2 = O(ε2n),

and

τ̌1(η0)

τ̌2(η0)
= −λ2

λ1

+O(n−1εn).

Finally, we have

− 2 lnR(ηE)

=
λ2
1

n1

σ̌2
1(ηE) +

λ2
2

n2

σ̌2
2(ηE) +O(nε3n)

=
λ2
1

n1

σ̌2
1(ηE)(1 +

λ2
2n1σ̌

2
2(ηE)

n2λ2
1σ̌

2
1(ηE)

) +O(nε3n)

=
λ2
1

n1

σ̌2
1(ηE)(1 +

τ̌ 21n1σ̌
2
2(ηE)

n2τ̌ 22 σ̌
2
1(ηE)

) + o(1)

D−→ σ2
1

1

(pτ 21σ
2
2 + σ2

1τ
2
2 )
τ 22χ

2
1

(τ 22σ
2
1 + τ 21 pσ

2
2)

τ 22σ
2
1

a.s.

= χ2
1 a.s.
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Appendix B

SIMULATION RESULTS

Table 1: 90% coverage probability for ROC(p) = 1− F1(F
−1
2 (1− p)) with 10% censoring

rate at point p = 0.2.

n1 n2 chi− square exponential Weibull

30 30 0.873 (4) 0.915 (4.5) 0.919(0.5)

50 50 0.915 (4) 0.916(4.5) 0.866(0.5)

100 100 0.907 (4) 0.895(4.5) 0905(0.5)

survival time chi-square 1, 2 exponential 1, 1.5 Weibull 1, 1.5

censoring time exponential 0.1, 0.05 exponential 0.11, 0.15 exponential 0.1, 0.075
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Table 2: 95% coverage probability for ROC(p) = 1− F1(F
−1
2 (1− p)) with 10% censoring

rate at point p = 0.2.

n1 n2 chi− square exponential Weibull

30 30 0.965 (4) 0.958 (4.5) 0.924(0.5)

50 50 0.956 (4) 0.960(4.5) 0.956(0.5)

100 100 0.958 (4) 0.956(4.5) 0.943(0.5)

survival time chi-square 1, 2 exponential 1, 1.5 Weibull 1, 1.5

censoring time exponential 0.1, 0.05 exponential 0.11, 0.15 exponential 0.1, 0.075
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Table 3: 90% coverage probability for ROC(p) = 1− F1(F
−1
2 (1− p)) with 10% censoring

rate at point p = 0.7.

n1 n2 chi− square exponential Weibull

30 30 0.931 (1.6) 0.925 (10) 0.912(5.5)

50 50 0.925 (1.6) 0.921(10) 0.893(5.5)

100 100 0.905 (1.6) 0.908(10) 0.906(5.5)

survival time chi-square 1, 2 exponential 1, 1.5 Weibull 1, 1.5

censoring time exponential 0.1, 0.05 exponential 0.11, 0.15 exponential 0.1, 0.075
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Table 4: 95% coverage probability for ROC(p) = 1− F1(F
−1
2 (1− p)) with 10% censoring

rate at point p = 0.7.

n1 n2 chi− square exponential Weibull

30 30 0.965 (1.6) 0.965 (10) 0.966(5.5)

50 50 0.965 (1.6) 0.963(10) 0.954(5.5)

100 100 0.959 (1.6) 0.955(10) 0.952(5.5)

survival time chi-square 1, 2 exponential 1, 1.5 Weibull 1, 1.5

censoring time exponential 0.1, 0.05 exponential 0.11, 0.15 exponential 0.1, 0.075
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Table 5: 90% coverage probability for ROC(p) = 1− F1(F
−1
2 (1− p)) with 40% censoring

rate at point p = 0.2.

n1 n2 chi− square exponential Weibull

30 30 0.921(10) 0.892 (0.5) 0.891(1.5)

50 50 0.903 (10) 0.914(0.5) 0.896(1.5)

100 100 0.892 (10) 0.910(0.5) 0.905(1.5)

survival time chi-square 1, 2 exponential 1, 1.5 Weibull 1, 1.5

censoring time exponential 0.95, 0.35 exponential 0.67, 1 exponential 0.7, 0.45
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Table 6: 95% coverage probability for ROC(p) = 1− F1(F
−1
2 (1− p)) with 40% censoring

rate at point p = 0.2.

n1 n2 chi− square exponential Weibull

30 30 0.948 (10) 0.924 (0.5) 0.961(1.5)

50 50 0.937 (10) 0.943(0.5) 0.958(1.5)

100 100 0.938 (10) 0.944(0.5) 0.953(1.5)

survival time chi-square 1, 2 exponential 1, 1.5 Weibull 1, 1.5

censoring time exponential 0.95, 0.35 exponential 0.67, 1 exponential 0.7, 0.45
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Table 7: 90% coverage probability for ROC(p) = 1− F1(F
−1
2 (1− p)) with 40% censoring

rate at point p = 0.7.

n1 n2 chi− square exponential Weibull

30 30 0.934 (7) 0.874 (0.08) 0.924(0.15)

50 50 0.921 (7) 0.886(0.08) 0.915(0.15)

100 100 0.896 (7) 0.893(0.08) 0.919(0.15)

survival time chi-square 1, 2 exponential 1, 1.5 Weibull 1, 1.5

censoring time exponential 0.95, 0.35 exponential 0.67, 1 exponential 0.7, 0.45
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Table 8: 95% coverage probability for ROC(p) = 1− F1(F
−1
2 (1− p)) with 40% censoring

rate at point p = 0.7.

n1 n2 chi− square exponential Weibull

30 30 0.970 (7) 0.905 (0.08) 0.962(0.15)

50 50 0.963 (7) 0.923(0.08) 0.961(0.15)

100 100 0.949 (7) 0.919(0.08) 0.952(0.15)

survival time chi-square 1, 2 exponential 1, 1.5 Weibull 1, 1.5

censoring time exponential 0.95, 0.35 exponential 0.67, 1 exponential 0.7, 0.45
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Table 9: Average length for ROC(p) = 1− F1(F
−1
2 (1− p)), chi-square distribution with

10% censoring rate.

points n1 n2 95%C.I.

30 30 0.1422

30 50 0.1428

50 30 0.1165

50 50 0.1175

30 100 0.1438

0.2 100 30 0.0982

50 100 0.1118

100 50 0.0963

100 100 0.0932

30 30 0.1467

30 50 0.1201

50 30 0.1435

0.7 50 50 0.1161

30 100 0.0900

100 30 0.1345

50 100 0.0807

100 50 0.1003

100 100 0.0687
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Table 10: Average length for ROC(p) = 1− F1(F
−1
2 (1− p)), chi-square distribution with

40% censoring rate.

points n1 n2 95%C.I.

30 30 0.2280

30 50 0.2354

50 30 0.1938

50 50 0.1913

0.2 30 100 0.2552

100 30 0.1868

50 100 0.2046

100 50 0.1849

100 100 0.173

30 30 0.4345

30 50 0.3771

50 30 0.4014

0.7 50 50 0.3383

30 100 0.3298

100 30 0.3952

50 100 0.2944

100 50 0.3071

100 100 0.2489
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Appendix C

R CODE OF COVERAGE PROBABILITY

library(rootSolve)

library(survival)

#testchi<-function(t,cc,R,n1,n2,distribution)

testchi<-function(t,n1,n2,R,distribution,censor)

{

cc=1

k=0

pp=0

l=1

eta1=-0.5

eta2=0.5

####### no. of iterations #######

eta.string=rep(0,R)

rho1.string=rep(0,R)

rho2.string=rep(0,R)

chi.string=rep(0,R)

count=rep(0,length(cc))
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count90=rep(0,length(cc))

while (k<R) ######### repeat 1000 times ########## {

{

difference.estimate=0

difference.likelihood=0

### True Value ###

if (distribution==1)

theta<-1-pchisq(qchisq(1-t, 2),1 )

if (distribution==2)

theta<-1-pexp(qexp(1-t, 1.5),1 )

if (distribution==3)

theta<-1-pweibull(qweibull(1-t,1,1.5),1,1)

kernal1<-function(u)

{n1<-length(u)

temp<-rep(0, n1)

for (i in 1:n1)

{

if (abs(u)[i]<=abs(h1))

temp[i]<-3/(4*h1)*(1-u[i]^2/h1^2)

}

return(temp)
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}

kernal2<-function(u)

{

n2<-length(u)

temp<-rep(0, n2)

for (i in 1:n2)

{

if (abs(u)[i]<=abs(h2))

temp[i]<-3/(4*h2)*(1-u[i]^2/h2^2)

}

return(temp)

}

G1<-function(u)

{

n1<-length(u)

temp<-rep(0, n1)

for (i in 1:n1)

{

if (abs(u)[i]<=h1)

temp[i]<- 3/4*(u[i]/h1-u[i]^3/(3*h1^3)+2/3)

if (u[i]>h1)
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temp[i]<-1

if (u[i]< (-h1))

temp[i]<-0

}

return(temp)

}

G2<-function(u)

{

n2<-length(u)

temp<-rep(0, n2)

for (i in 1:n2)

{

if (abs(u)[i]<=h2)

temp[i]<-3/4*(u[i]/h2-u[i]^3/(3*h2^3)+2/3)

if (u[i]>h2)

temp[i]<-1

if (u[i]<(-h2))

temp[i]<-0

}

return(temp)

}
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ln<- function(x) ##### set new ln function to define -Inf*0

{

temp<-rep(0,length(x))

for (i in 1:length(x))

{

if (x[i]>0)

temp[i]<-log(x[i])

}

return(temp)

}

inverse <-function(x) ##### to deal with the 1/0 issue

{

temp<-rep(0,length(x))

for (i in 1:length(x))

{

if (abs(x[i])>10e-6)

temp[i]<-1/x[i]

}

return(temp)

}

########## Generate Data #########
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m<-1

while (m>=1)

{

####### Sample Size #######

####### Quantile: Set t=0.2 & t=0.7 ######

if (distribution==1&&censor==0.1)

{

T1<-rchisq(n1,1) #Simulation 1: Chi-square

T2<-rchisq(n2,2)

theta1=0.1

theta2=0.05

}

if (distribution==2&&censor==0.1)

{

T1<-rexp(n1,1) #Simulation 2: Exponential

T2<-rexp(n2,1.5)

theta1=0.11

theta2=0.15

}

if (distribution==3&&censor==0.1)

{
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T1<-rweibull(n1,1,1) #Simulation 3: Weibull

T2<-rweibull(n2,1,1.5)

theta1=0.1

theta2=0.075

}

if (distribution==1&&censor==0.4)

{

T1<-rchisq(n1,1) #Simulation 1: Chi-square

T2<-rchisq(n2,2)

theta1=0.95

theta2=0.35

}

if (distribution==2&&censor==0.4)

{

T1<-rexp(n1,1) #Simulation 2: Exponential

T2<-rexp(n2,1.5)

theta1=0.67

theta2=1.0

}

if (distribution==3&&censor==0.4)

{
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T1<-rweibull(n1,1,1) #Simulation 3: Weibull

T2<-rweibull(n2,1,1.5)

theta1=0.7

theta2=0.45

}

C1<-rexp(n1,theta1)

C2<-rexp(n2,theta2)

X1<-pmin(T1,C1) ##generate the data

X2<-pmin(T2,C2)

delta1<-rep(1,n1)

delta2<-rep(1,n2)

count1<-0

count2<-0

for (i in 1:n1)

{

if (T1[i]>C1[i])

{

delta1[i]<-0

count1<-count1+1

}

}
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for (i in 1:n2)

{

if (T2[i]>C2[i])

{

delta2[i]<-0

count2<-count2+1

}

}

count1/n1

count2/n2

if ( abs(count1/n1-censor)<=0.05

&&abs(count2/n2-censor)<=0.05) #censoring rate=10%

break

else

m<-m+1

}

######### Using EL method #######

sort.delta1<-delta1[order(X1)]

sort.delta2<-delta2[order(X2)]

sort.X1<-sort(X1)

sort.X2<-sort(X2)
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ii1<-1:n1

r1<-n1-ii1+1 ###### number of patients at risk before T_{ji}

ii2<-1:n2

r2<-n2-ii2+1

### Eta Hat & Theta Hat ###

Fn1<-rep(1, n1)

M<-1

for (i in 1:n1)

{

M<- M*(1-sort.delta1[i]*inverse(r1[i]))

Fn1[i]<-1-M

}

Fn2<-rep(1, n2)

M<-1

for (i in 1:n2)

{

M<- M*(1-sort.delta2[i]*inverse(r2[i]))

Fn2[i]<-1-M

}

#### ETA.HAT ####
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M<-1

eta.hat<-0

for (i in 1:(n2-1))

{

if (Fn2[i]<1-t & Fn2[i+1]>1-t)

eta.hat<-(sort.X2[i]+sort.X2[i+1])/2

}

#### THETA.HAT ####

M<-1

for (i in 1:(n1-1))

{

M<- M*(1-sort.delta1[i]*inverse(r1[i]))

if(sort.X1[i]>eta.hat)

break

}

theta.hat<-M

#############################NLM######################################

equation<-function(x, y0)

{

F=numeric(3)

F[1]<-ln(1-sort.delta1*inverse(r1+x[2]*G1(x[1]-sort.X1)))%*%G1(x[1]-sort.X1)



63

F[2]<-ln(1-sort.delta2*inverse(r2+x[3]*G2(x[1]-sort.X2)))%*%G2(x[1]-sort.X2)

F[3]<-x[2]*ln(1-sort.delta1*inverse(r1+x[2]*G1(x[1]-sort.X1)))

%*%kernal1(x[1]-sort.X1)

+x[3]*ln(1-sort.delta2*inverse(r2+x[3]*G2(x[1]-sort.X2)))

%*%kernal2(x[1]-sort.X2)

res<- sum((F-y0)^2)

return(res)

}

if(censor==0.1)

{

if(t==0.2&&distribution==1)

{

cc=4

eta1=2

eta2=-2

}

if(t==0.2&&distribution==2)

{

cc=4.5

eta1=0.5

eta2=-0.5
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}

if(t==0.2&&distribution==3)

{

cc=0.5

eta1=0.25

eta2=-0.25

}

if(t==0.7&&distribution==1)

{

cc=1.7

eta1=2

eta2=-2

}

if(t==0.7&&distribution==2)

{

cc=10

eta1=0.5

eta2=-0.5

}

if(t==0.7&&distribution==3)

{
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cc=5.5

eta1=0.25

eta2=-0.25

}

}

if(censor==0.4)

{

if(t==0.2&&distribution==1)

{

cc=10

eta1=0.75

eta2=-0.75

}

if(t==0.2&&distribution==2)

{

cc=0.48

eta1=-0.1

eta2=0.1

}

if(t==0.2&&distribution==3)

{
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cc=1.5

eta1=0.25

eta2=-0.25

}

if(t==0.7&&distribution==1)

{

cc=7

eta1=0.2

eta2=-0.2

}

if(t==0.7&&distribution==2)

{

cc=0.085

eta1=-0.2

eta2=0.2

}

if(t==0.7&&distribution==3)

{

cc=0.14

eta1=0.25

eta2=-0.25
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}

}

h1<-cc[l]*n1^(-1/3) ## bandwidth ##

h2<-cc[l]*n2^(-1/3) ## bandwidth ##

theta.L<-nlm(equation,c(eta.hat,eta1,eta2),c(ln(theta),ln(t),0))

theta.L

error=theta.L$minimum

x=theta.L$estimate

F4=(r1-sort.delta1)%*%ln(1+x[2]*G1(x[1]-sort.X1)*inverse(r1-sort.delta1))

-r1%*%ln(1+x[2]*G1(x[1]-sort.X1)*inverse(r1))

+(r2-sort.delta2)%*%ln(1+x[3]*G2(x[1]

-sort.X2)*inverse(r2-sort.delta2))-r2%*%ln(1+x[3]

*G2(x[1]-sort.X2)*inverse(r2))

F4.L=-2*F4

pp=pp+1

if ( F4.L>0 && theta.L$estimate/eta.hat<2 && error<10^(-4))

{

k=k+1

eta.string[k]=theta.L$estimate[1]

rho1.string[k]=eta.hat

rho2.string[k]=abs(x[1])<3 && error<10^(-4)
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chi.string[k]=F4.L

if(F4.L<1.96^2)

{count[l]=count[l]+1}

if(F4.L<1.64^2)

{count90[l]=count90[l]+1}

#}

}

}

eta11=eta1

cc1=cc

h11=h1

#return(F4.L,eta.hat,x,eta11,cc1,abs(x[1])<3&&error<10^(-5))

countr11=count/R

countr21=count90/R

countr=matrix(0,length(cc),2)

countr[,1]=countr11

countr[,2]=countr21

return(countr,chi.string,eta.string,rho1.string,pp)

#return(count,pp,k,R,chi.string,eta.string,rho1.string,rho2.string)

}
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testchi(0.2,100,100,1000,1,0.1)

testchi(0.7,100,100,1000,1,0.1)

testchi(0.2,100,100,1000,2,0.1)

testchi(0.7,100,100,1000,2,0.1)

testchi(0.2,100,100,1000,3,0.1)

testchi(0.7,100,100,1000,3,0.1)

testchi(0.2,100,100,1000,1,0.4)

testchi(0.7,100,100,1000,1,0.4)

testchi(0.2,100,100,1000,2,0.4)

testchi(0.7,100,100,1000,2,0.4)

testchi(0.2,100,100,1000,3,0.4)

testchi(0.7,100,100,1000,3,0.4)
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Appendix D

R CODE OF AVERAGE LENGTH

library(survival)

library(rootSolve)

testchi<-function(t,R,cc,n1,n2)

{

### True Value ###

theta<-1-pchisq(qchisq(1-t, 1),0.8 )

######### Initial Set-Up ##########

z<-0

l=0 ####### no. of iterations #######

k<-1

eta.string=rep(0,R)

rho1.string=rep(0,R)

rho2.string=rep(0,R)

chi.string=rep(0,R)

diff=rep(0,length(cc))

count=rep(0,length(cc))

count90=rep(0,length(cc))
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for(l in 1:length(cc))

{

for(k in 1:R) ######### repeat 1000 times ########## {

{

########## Generate Data #########

m<-1

while (m>=1)

{

#####q<-n*(1-p) ####

alpha<-0.1

h1<-cc[l]*n1^(-1/3) ## bandwidth ##

h2<-cc[l]*n2^(-1/3) ## bandwidth ##

T1<-rchisq(n1,0.3) #Simulation 1: Chi-square

T2<-rchisq(n2,1)

theta1<-2/3 #Distribution of Censoring time, Cj

theta2<-1/8

C1<-rexp(n1,theta1)

C2<-rexp(n2,theta2)

X1<-pmin(T1,C1) ##generate the data

X2<-pmin(T2,C2)

delta1<-rep(1,n1)
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delta2<-rep(1,n2)

for (i in 1:n1)

{

if (T1[i]>C1[i])

delta1[i]<-0

}

for (i in 1:n2)

{

if (T2[i]>C2[i])

delta2[i]<-0

}

count1<-0

count2<-0

for (j in 1:n1)

{

if (delta1[j]==0)

count1<-count1+1 # censoring side

}

for (i in 1:n2)

{

if (delta2[i]==0)
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count2<-count2+1 # censoring side

}

count1/n1

count2/n2

if ( abs(count1/n1-0.1)<=0.05 & abs(count2/n2-0.1)<=0.05)

break

else

m<-m+1

}

######### Using EL method #######

sort.delta1<-delta1[order(X1)]

sort.delta2<-delta2[order(X2)]

sort.X1<-sort(X1)

sort.X2<-sort(X2)

ii1<-1:n1

r1<-n1-ii1+1 ###### number of patients at risk before T_{ji}

ii2<-1:n2

r2<-n2-ii2+1

### Eta Hat & Theta Hat ###

Fn1<-rep(1, n1)

M<-1
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for (i in 1:n1)

{

M<- M*(1-sort.delta1[i]*inverse(r1[i]))

Fn1[i]<-1-M

}

Fn2<-rep(1, n2)

M<-1

for (i in 1:n2)

{

M<- M*(1-sort.delta2[i]*inverse(r2[i]))

Fn2[i]<-1-M

}

#### ETA.HAT ####

M<-1

eta.hat<-0

for (i in 1:(n2-1))

{

if (Fn2[i]<1-t & Fn2[i+1]>1-t)

eta.hat<-(sort.X2[i]+sort.X2[i+1])/2

}

#### THETA.HAT ####
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M<-1

for (i in 1:(n1-1))

{

M<- M*(1-sort.delta1[i]*inverse(r1[i]))

if(sort.X1[i]>eta.hat)

break

}

theta.hat<-M

h1<-max(sort.X1)*n1^(-1/3) ## bandwidth ##

h2<-max(sort.X2)*n2^(-1/3) ## bandwidth ##

############################NLM######################################

equation<-function(x, y0)

{

F=numeric(3)

F[1]<-ln(1-sort.delta1*inverse(r1+x[2]*G1(x[1]-sort.X1)))%*%G1(x[1]-sort.X1)

F[2]<-ln(1-sort.delta2*inverse(r2+x[3]*G2(x[1]-sort.X2)))%*%G2(x[1]-sort.X2)

F[3]<-x[2]*ln(1-sort.delta1*inverse(r1+x[2]*G1(x[1]-sort.X1)))

%*%kernal1(x[1]-sort.X1)+x[3]*ln(1-sort.delta2*

inverse(r2+x[3]*G2(x[1]-sort.X2)))%*%kernal2(x[1]-sort.X2)

res<- sum((F-y0)^2)

return(res)
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}

lnR<- function(theta0)

{

theta.L<-nlm(equation,c(eta.hat,0.21,-0.21),c(ln(theta0),ln(t),0))

x=theta.L$estimate

error=theta.L$minimum

F4=(r1-sort.delta1)%*%ln(1+x[2]*G1(x[1]-sort.X1)

*inverse(r1-sort.delta1))-r1%*%ln(1+x[2]*G1(x[1]-sort.X1)

*inverse(r1))+(r2-sort.delta2)%*%ln(1+x[3]*G2(x[1]-sort.X2)

*inverse(r2-sort.delta2))-r2%*%ln(1+x[3]*G2(x[1]-sort.X2)*inverse(r2))

a=c(2,1)

a[1]=-2*F4-1.96^2

a[2]=error

return(a)

}

upperbound<-function(t)

{

if (t>0.5)

{lap=0.02}

if (t<0.5)

{lap=0.03}
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distance=0

upper=t

value=c(-1,0)

while(value[1]<0 & value[2]<10^(-5) & t+distance<1 & t+distance>0)

{

distance=distance+lap

upper=t+distance

value=lnR(t-distance)

}

return(upper)

}

lowerbound<-function(t)

{

if (t<0.5)

lap=0.02

if (t>0.5)

lap=0.03

distance=0

lower=t

value=c(-1,0)

while(value[1]<0 & value[2]<10^(-5)& t-distance<1 & t-distance>0.000001)
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{

distance=distance+lap

lower=t-distance

value=lnR(t-distance)

}

return(lower)

}

diff[l]=diff[l]+upperbound(theta.hat)-lowerbound(theta.hat)

}

}

averagelength=diff/R

countr11=count/R

countr21=count90/R

countr=matrix(0,length(cc),3)

countr[,1]=cc

countr[,2]=countr11

countr[,3]=countr21

return(averagelength)

}

t<-0.2

R<-1000
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cc=c(1)

testchi(t,R,cc,30,30)

testchi(t,R,cc,50,50)

testchi(t,R,cc,100,100)
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Appendix E

R CODE OF REAL APPLICATION

############ Real Application ##################

library(survival)

library(rootSolve)

###### Import Data #########

treatment<-read.table("C:\\Documents and Settings\\Hanfang Yang\\Desktop\\tr[1].txt")

placebo<-read.table("C:\\Documents and Settings\\Hanfang Yang\\Desktop\\pl[1].txt")

########## Initial Set-up #########

n1<-nrow(treatment)

n2<-nrow(placebo)

X1<-treatment[,1]

X2<-placebo[,1]

delta1<-1-treatment[,2]

delta2<-1-placebo[,2]

count1=sum(delta1)

count2=sum(delta2)

sort.delta1<-delta1[order(X1)]

sort.delta2<-delta2[order(X2)]
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sort.X1<-sort(X1)

sort.X2<-sort(X2)

i<-1:n1

j<-1:n2

r1<-n1-i+1 ###### number of patients at risk before T_{ji}

r2<-n2-j+1

### Eta Hat & Theta Hat ###

Fn1<-rep(1, n1)

M<-1

for (i in 1:n1)

{

M<- M*(1-sort.delta1[i]*inverse(r1[i]))

Fn1[i]<-1-M

}

Fn2<-rep(1, n2)

M<-1

for (i in 1:n2)

{

M<- M*(1-sort.delta2[i]*inverse(r2[i]))

Fn2[i]<-1-M

}
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alpha<-0.05 #nominal level:1-alpha, set alpha=0.1 & alpha=0.05

#### Equal 0.5886076

#### Equal 0.6103896

#### sorts of Function ####

lnR<- function(theta0,t,eta)

{

theta.L<-nlm(equation,c(eta,0.21,-0.21),c(ln(theta0),ln(t),0))

x=theta.L$estimate

error=theta.L$minimum

F4=(r1-sort.delta1)%*%ln(1+x[2]*G1(x[1]-sort.X1)*

inverse(r1-sort.delta1))-r1%*%ln(1+x[2]*G1(x[1]-sort.X1)

*inverse(r1))+(r2-sort.delta2)%*%ln(1+x[3]*G2(x[1]-sort.X2)

*inverse(r2-sort.delta2))-r2%*%ln(1+x[3]*G2(x[1]-sort.X2)*inverse(r2))

a=c(2,1)

a[1]=-2*F4-1.96^2

a[2]=error

return(a)

}

bisection<- function(point1,t,eta)

{ point=point1

left=0
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if(lnR((left+point)/2,t,eta )>0)

left=(left+point)/2

else point=(left+point)/2

point

right=1

point=point1

if(lnR((right+point)/2,t,eta )>0)

right=(right+point)/2

else point=(right+point)/2

}

upperbound<-function(theta0,t,eta)

{ lap=0.005

if (theta0>0.5)

{lap=0.005}

if (theta0<0.5)

{lap=0.005}

distance=0

upper=theta0

value=c(-1,0)

while(value[1]<0 & value[2]<10^(-5) & theta0+distance<1 & theta0+distance>0)

{
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distance=distance+lap

upper=theta0+distance

value=lnR(theta0-distance,t,eta)

}

return(upper)

}

lowerbound<-function(theta0,t,eta)

{ lap=0.005

if (theta0<0.5)

lap=0.005

if (theta0>0.5)

lap=0.005

distance=0

lower=theta0

value=c(-1,0)

while(value[1]<0 & value[2]<10^(-5)& theta0-distance<1 & theta0-distance>0.000001)

{

distance=distance+lap

lower=theta0-distance

value=lnR(theta0-distance,t,eta)
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}

return(lower)

}

band<-function(t)

{

#### ETA.HAT ####

M<-1

eta.hat<-0

for (i in 1:(n2-1))

{

if (Fn2[i]<1-t & Fn2[i+1]>1-t)

eta.hat<-(sort.X2[i]+sort.X2[i+1])/2

}

#### THETA.HAT ####

M<-1

for (i in 1:(n1-1))

{

M<- M*(1-sort.delta1[i]*inverse(r1[i]))

if(sort.X1[i]>eta.hat)

break
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}

theta.hat<-M

h1<-2*n1^(-1/3) ## bandwidth ##

h2<-2*n2^(-1/3) ## bandwidth ##

low=lowerbound(theta.hat,t,eta.hat)

upper=upperbound(theta.hat,t,eta.hat)

return(low,upper,eta.hat,theta.hat)

}

nnn=50

lowa=rep(0,nnn)

uppera=rep(0,nnn)

eta.hata=rep(0,nnn)

theta.hata=rep(0,nnn)

for (i in 1:nnn)

{

b=band(i/nnn*0.7+0.15)

lowa[i]=b$low

uppera[i]=b$upper

eta.hata[i]=b$eta.hat

theta.hata[i]=b$theta.hat
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}

lowa

uppera

eta.hata

theta.hata

index=(1:nnn)/nnn*0.7+0.15

plot(index,lowa , type=’l’,col=’green’,xlab=’1-specificity’,ylab=’sensitivity’)

lines(index,uppera , type=’l’, col=’green’)

lines(index,theta.hata , type=’l’, col=’black’)

lines(index,index , type=’l’, col=’blue’)

legend(0.5, 0.38, legend = c("EL confidence bands", "45 degree diagonal", "Empirical estimator \

of the ROC curve"),lty = c(1),col = c(3,4, 1))
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