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ON THE LEBESGUE INTEGRAL

by

JEREMIAH D. KASTINE

Under the Direction of Dr. Imre Patyi

ABSTRACT

We look from a new point of view at the de�nition and basic properties of the Lebesgue

measure and integral on Euclidean spaces, on abstract spaces, and on locally compact Haus-

dor� spaces. We use mini sums to give all of them a uni�ed treatment that is more e�cient

than the standard ones. We also give Fubini's theorem a proof that is nicer and uses much

lighter technical baggage than the usual treatments.

INDEX WORDS: Lebesgue measure, Lebesgue integral, Fubini's theorem, Locally compact

Hausdor� space, Riesz representation theorem
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1. INTRODUCTION

In this thesis we look at four basic topics about the beginnings of the theory of the Lebesgue

integral, namely, (i) the de�nition and fundamental convergence theorems of the Lebesgue

integral on Euclidean spaces, (ii) Fubini's theorem, (iii) items (i) and (ii) for the Lebesgue

integral on abstract measure spaces, and (iv) the Riesz representation theorem (see [R]) for

positive linear functionals on the space of continuous functions with compact support on

locally compact Hausdor� spaces.

In the traditional development (e.g., [MW], [S]) of the above topics we have a heavy

technical baggage of notions that we are obliged to carry around but are not really useful for

purposes other than just building up the above. The build up is so long winded and markedly

unpleasant that the analysis textbook [L] drops it entirely, and prefers to spend the more

than half a semester's worth development of (i-iv) on more interesting topics. We give here

a simple and minimalistic treatment that is more economical than the usual ones. It has

neither measure, measurable sets, measurable functions, Borel classes of sets, Baire or Young

classes of functions, trans�nite methods, nor gymnastics with algebras of sets such as the

monotone class lemma, π-systems, and λ-systems. We only rely on the simplest properties

of the real line such as the supremum axiom and notions of elementary point set topology.
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2. THE LEBESGUE INTEGRAL ON EUCLIDEAN SPACES

De�nition. Let X = Rd(X) be the usual Euclidean space of dimension d(X) ∈ N, where

we denote the variable by x = (x1, x2, ..., xd(X)). Let Zd(X) be the integer lattice in X, i.e.,

Zd(X) = {x = (x1, x2, ..., xd(X)) ∈ X : xi ∈ Z for 1 ≤ i ≤ d(X)}. A �nite interval in X is a

subset of the form I =
∏d(X)

i=1 Ii where each Ii is an interval in R with endpoints ai ≤ bi in

R. The elementary volume of an interval I =
∏d(X)

i=1 Ii is |I|X =
∏d(X)

i=1 (bi − ai). For any set

A ⊆ X, the indicator function of A is de�ned and denoted by

1A(x) =


1 if x ∈ A

0 if x ∈ X\A.
Let K be the family of all functions f : X → R of the form f =

∑n
i=1 yi1Ii where yi ∈ R

and Ii ⊂ X is a �nite interval for all i. Let K+ denote the set of f ∈ K for which f ≥ 0 on

X. Any f ∈ K can be represented in terms of pairwise disjoint Ii; furthermore, if f ∈ K+,

then f can be represented in terms of nonnegative yi. Note that K is a function lattice, i.e.,

if f, g ∈ K and c, d ∈ R, then cf + dg ∈ K and |f | ∈ K.

Proposition 1. For a �nite interval I ⊂ R with endpoints a ≤ b in R,

b− a− 1 ≤ card(Z ∩ I) ≤ b− a+ 1

where card(A) is the cardinality of the set A.

Proof. If b− a < 1, then card(Z ∩ I) ∈ {0, 1}. So

b− a− 1 < 0 ≤ card(Z ∩ I) ≤ 1 ≤ b− a+ 1.

If b− a = 1, then card(Z ∩ I) ∈ {0, 1, 2}. So

b− a− 1 = 0 ≤ card(Z ∩ I) ≤ 2 = b− a+ 1.
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Now suppose b − a > 1. Then Z ∩ (a, b) 6= ∅, so we can let N1 = card(Z ∩ (a, b)) and

n1 = min(Z ∩ (a, b)). Then n1 +N1 − 1 = max(Z ∩ (a, b)) and

b ≤ n1 +N1 ≤ a+ 1 +N1

so that b − a − 1 ≤ N1. Now let N2 = card(Z ∩ [a, b]) and n2 = min(Z ∩ [a, b]). Then

n2 +N2 − 1 = max(Z ∩ [a, b]) and

b ≥ n2 +N2 − 1 ≥ a+N2 − 1

so that b−a+1 ≥ N2. Note that N1 ≤ card(Z∩I) ≤ N2, since (a, b) ⊆ I ⊆ [a, b]. Therefore,

b− a− 1 ≤ N1 ≤ card(Z ∩ I) ≤ N2 ≤ b− a+ 1. �

De�nition. De�ne a positive linear functional ξ : K → R by

ξ(f) = lim
H→∞

H−d(X)
∑

n∈Zd(X)

f(n/H).

Proposition 2. The following hold:

(1) If I ⊂ X is a �nite interval, then ξ(1I) = |I|X .

(2) If f =
∑k

i=1 yiIi ∈ K, then ξ(f) =
∑k

i=1 yi|Ii|X .

(3) ξ : K → R is indeed a positive linear functional, i.e. ξ(cf + dg) = cξ(f) + dξ(g) for

c, d ∈ R and |ξ(f)| ≤ ξ(|f |).

Proof. Parts (2) and (3) follow easily from the de�nition of ξ once we have established (1).

To prove part (1), let I =
∏d(X)

i=1 Ii, where the Ii ⊂ R have endpoints ai ≤ bi. Note that

H−d(X)
∑

n∈Zd(X)

1I(n/H) = H−d(X)card((H−1Zd(X)) ∩ I)

= H−d(X)card(Zd(X) ∩ (HI))

= H−d(X)

d(X)∏
i=1

card(Z ∩ (HIi)).
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≤ H−d(X)

d(X)∏
i=1

(Hbi −Hai + 1)

=

d(X)∏
i=1

(bi − ai +
1

H
)

↘ |I|X

as H →∞. Similarly,

H−d(X)
∑

n∈Zd(X)

1I(n/H) = H−d(X)

d(X)∏
i=1

card(Z ∩ (HIi))

≥ H−d(X)

d(X)∏
i=1

(Hbi −Hai − 1)

=

d(X)∏
i=1

(bi − ai −
1

H
)

↗ |I|X

as H→∞. So ξ(1I) = limH→∞H
−d(X)

∑
n∈Zd(X) 1I(

n
H

) = |I|X . �

De�nition. For f : X → [0,∞], let

ξ′(f) = inf
{ ∞∑
n=1

ξ(fn) : fn ∈ K+, f ≤
∞∑
n=1

fn on X
}
.

The sums in this de�nition converge (possibly to in�nity) since all terms are positive. The

set to which the in�mum is applied is nonempty since we have f ≤
∑∞

n=1 1[−n,n]d(X) on X for

all f : X → [0,∞]. So the value of ξ′(f) is well-de�ned and nonnegative.

Proposition 3. Let f, fn : X → [0,∞] and g : X → R. The following properties hold:

(1) If c ∈ [0,∞), then ξ′(cf) = cξ′(f). In particular, ξ′(0) = 0.

(2) If f1 ≤ f2 on X, then ξ′(f1) ≤ ξ′(f2).

(3) (Markov's inequality) If c ∈ (0,∞), then cξ′(1{|g|≥c}) ≤ ξ′(|g|).

(4) If f ≤
∑∞

n=1 fn on X, then ξ′(f) ≤
∑∞

n=1 ξ
′(fn).
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Proof. Part (1) is clear. Part (2) follows directly from the de�nition of ξ′, since any series of

functions in K+ that dominates f2 also dominates f1. For part (3), we apply parts (1) and

(2): cξ′(1{|g|≥c}) = ξ′(c1{|g|≥c}) ≤ ξ′(|g|).

For part (4), if
∑∞

n=1 ξ
′(fn) =∞, then there is nothing to show. So suppose

∑∞
n=1 ξ

′(fn) <

∞. Let ε > 0 and, for each n, choose {gnk}∞k=1 ⊂ K+ such that fn ≤
∑∞

k=1 gnk on X and∑∞
k=1 ξ(gnk) < ξ′(fn) + 2−nε. Then f ≤

∑∞
n=1

∑∞
k=1 gnk and

ξ′(f) ≤
∞∑
n=1

∞∑
k=1

ξ(gnk) <
∞∑
n=1

(ξ′(fn) + 2−nε) =
∞∑
n=1

ξ′(fn) + ε.

Letting ε↘ 0, we obtain ξ′(f) ≤
∑∞

n=1 ξ
′(fn). �

De�nition. Let X be a topological space and f : X → R. We say that f is lower semicon-

tinuous on X if {f > c} is open in X for all c ∈ R.

Proposition 4. Let X be a topological space. The following hold:

(1) If f : X → R is lower semicontinuous, then so is af for a ∈ [0,∞).

(2) If f, g : X → R are lower semicontinuous, then so is f + g.

(3) If G ⊂ X is open, then 1G is lower semicontinuous.

(4) If F ⊂ X is closed then −1F is lower semicontinuous.

(5) If f : X → R is lower semicontinuous and f(x0) > 0 for an x0 ∈ X, then there is an

open neighborhood of U of x0 such that f > 0 on U .

Proposition 5. If f, fn ∈ K+ for n ≥ 1 and f ≤
∑∞

n=1 fn on X, then for any ε > 0 there

exists N ≥ 1 such that ξ(f) ≤ ε+
∑N

n=1 ξ(fn).

The condition in the conclusion of Proposition 5 is, of course, equivalent to ξ(f) ≤∑∞
n=1 ξ(fn), which expresses a form of σ-subadditivity of ξ, and is the crucial point for

all of our further development here.
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Proof. Choose M > 0 such that f ≤M on X and f = 0 on X\[−M,M ]d(X). Let ε > 0 and

ε′ = ε/[(2M + 2)d(X) +M + 1]). Write f and fn as

f =
m∑
i=1

yi1Ii fn =
mn∑
i=1

yni1Ini

where yi, yni ≥ 0 and de�ne

F =
m∑
i=1

yi1Ii Fn =
mn∑
i=1

yi1Jni

where each Jni is an open set that covers Ini and ξ(Fn) ≤ ξ(fn) + ε′/2n. This is possible

since the elementary volume of an interval varies continuously with its edge lengths, as the

explicit product formula shows. Since each ∂Ii is a null set, we can choose open intervals

{Gik}Ki
k=1 such that

⋃Ki

k=1Gik ⊇ ∂Ii and
∑m

i=1

∑Ki

k=1 |Gik|X < ε′. Let

G =
m∑
i=1

Ki∑
k=1

1Gik

Q = (−M − 1,M + 1)d(X)

HN = ε′1Q − F +MG+
N∑
n=1

Fn

H = ε′1Q − F +MG+
∞∑
n=1

Fn.

Note that H > 0 on C = [−M,M ]d(X), since F ≤ MG +
∑∞

n=1 Fn on X and C ⊂ Q. For

each x ∈ C, we can choose N(x) ∈ N such that

HN(x)(x) = ε′1Q(x)− F (x) +MG(x) +

N(x)∑
n=1

Fn(x) > 0.

As HN(x) is lower semicontinuous, we can choose an open neighborhood U(x) of x such that

HN(x) = ε′1Q − F +MG+
∑N(x)

n=1 Fn > 0 on U(x). Since {U(x)}x∈C is an open cover of the

compact set C, we can choose a �nite subcover {U(xi)}si=1 of C. Fix N = max{N(xi)}si=1.

Then HN > 0 on C and

0 ≤ ξ(HN) = ε′ξ(1Q)− ξ(F ) +Mξ(G) +
N∑
n=1

ξ(Fn).
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So

ξ(f) = ξ(F )

≤ ε′ξ(1Q) +Mξ(G) +
N∑
n=1

ξ(Fn)

≤ ε′(2M + 2)d(X) +Mε′ +
N∑
n=1

(ξ(fn) + ε′/2n)

≤ ε′[(2M + 2)d(X) +M + 1] +
N∑
n=1

ξ(fn)

= ε+
N∑
n=1

ξ(fn). �

Proposition 6. If f ∈ K+, then ξ′(f) = ξ(f).

Proof. Letting f1 = f and fn = 0 for n ≥ 2, we see that ξ′(f) ≤
∑∞

n=1 ξ(fn) = ξ(f) by the

de�nition of ξ′. To show the opposite inequality, let {fn}∞n=1 ⊂ K+ with f ≤
∑∞

n=1 fn on

X. For ε > 0, we can choose N ≥ 1 such that ξ(f) ≤ ε+
∑N

n=1 ξ(fn). Letting N →∞ and

ε↘ 0, we have ξ(f) ≤
∑∞

n=1 ξ(fn). Therefore, ξ(f) ≤ ξ′(f). �

De�nition. Let K1 be the set of functions f : X → [−∞,∞] for which there is a sequence

{fn}∞n=1 ⊂ K with ξ′(|f − fn|)→ 0 as n→∞. Let K+
1 = {f ∈ K1 : f ≥ 0 on X}.

De�nition. The positive and negative parts of a number x ∈ R are denoted and de�ned by

x+ =
1

2
(|x|+ x),

x− =
1

2
(|x| − x),

and satisfy

(−x)+ = x−, |x+ − y+| ≤ |x− y|,

(−x)− = x+, |x− − y−| ≤ |x− y|,

|x| = x+ + x−,
∣∣|x| − |y|∣∣ ≤ |x− y|.

7



Proposition 7. The following hold:

(1) If f ∈ K+
1 , then there is a sequence {gn}∞n=1 ⊂ K+ with ξ′(|f − gn|)→ 0 as n→∞.

(2) If f, g ∈ K1 and c, d ∈ [0,∞), then cf + dg ∈ K1.

(3) If f ∈ K1, then |f | ∈ K+
1 .

(4) If f1, f2 ∈ K1, then f1 ∧ f2 ∈ K1 and f1 ∨ f2 ∈ K1.

(5) If f ∈ K+
1 , then

f
1+f
∈ K+

1 .

Proof. For part (1), choose {fn}∞n=1 ⊂ K with ξ′(|f−fn|)→ 0 as n→∞. Let gn = f+
n ∈ K+.

Then

ξ′(|f − gn|) = ξ′(|f+ − f+
n |) ≤ ξ′(|f − fn|)↘ 0

as n→∞.

For parts (2) and (3), choose {fn}∞n=1, {gn}∞n=1 ⊂ K such that ξ′(|f − fn|)→ 0 as n→∞

and ξ′(|g − gn|)→ 0 as n→∞. Then cfn + dgn ∈ K and

ξ′(|cf + dg − (cfn − dgn)|) ≤ ξ′(c|f − fn|+ d|g − gn|)

≤ cξ′(|f − fn|) + dξ′(|g − gn|)

↘ 0

as n→∞. So cf + dg ∈ K1. Also, |fn| ∈ K and

ξ′
(∣∣|f | − |fn|∣∣) ≤ ξ′(|f − fn|)↘ 0

as n→∞. So |f | ∈ K+
1 .

For part (4), note that

f1 ∧ f2 =
1

2
(f1 + f2 − |f1 − f2|) ∈ K1

f1 ∨ f2 =
1

2
(f1 + f2 + |f1 − f2|) ∈ K1.

8



For part (5), choose {fn}∞n=1 ∈ K with ξ′(|f − fn|)→ 0 as n→∞. Then fn
1+fn

∈ K and

ξ′
(∣∣∣ f

1 + f
− fn

1 + fn

∣∣∣) = ξ′
(∣∣∣ f − fn

(1 + f)(1 + fn)

∣∣∣) ≤ ξ′(|f − fn|)↘ 0

as n→∞. �

Theorem 8. (Monotone convergence theorem) The following hold:

(1) If fn ∈ K+
1 for n ≥ 1 and

∑∞
n=1 ξ

′(fn) < ∞, then ξ′(
∑∞

n=1 f) =
∑∞

n=1 ξ
′(fn) and∑∞

n=1 fn ∈ K
+
1 .

(2) If fn ∈ K+
1 for n ≥ 1, fn ↗ f pointwise on X as n → ∞, and limn→∞ ξ

′(fn) < ∞,

then ξ′(fn)↗ ξ′(f) as n→∞ and f ∈ K+
1 .

Proof. For part (1), note that ξ′(
∑∞

n=1 fn) ≤
∑∞

n=1 ξ
′(fn) by Proposition 3. To show the

opposite inequality, let ε > 0 and, for each n ≥ 1, choose gn ∈ K+ such that ξ′(|fn − gn|) <

ε/2n+1. Then
N∑
n=1

ξ′(fn) ≤
N∑
n=1

ξ′(gn + |fn − gn|)

≤
N∑
n=1

ξ′(gn) +
N∑
n=1

ξ′(|fn − gn|)

≤
N∑
n=1

ξ(gn) +
∞∑
n=1

ξ′(|fn − gn|)

< ξ
( N∑
n=1

gn

)
+
ε

2

= ξ′
( N∑
n=1

gn

)
+
ε

2

≤ ξ′(
∞∑
n=1

gn) +
ε

2

≤ ξ′
( ∞∑
n=1

(fn + |fn − gn|)
)

+
ε

2

9



≤ ξ′
( ∞∑
n=1

fn

)
+
∞∑
n=1

ξ′(|fn − gn|) +
ε

2

< ξ′
( ∞∑
n=1

fn

)
+ ε.

Letting N →∞ and ε↘ 0, we have
∑∞

n=1 ξ
′(fn) ≤ ξ′(

∑∞
n=1 fn).

Fix N ≥ 1 such that
∑∞

n=N+1 ξ
′(fn) < ε/2. Then

∑N
n=1 gn ∈ K+ and

ξ′
(∣∣∣ ∞∑

n=1

fn −
N∑
n=1

gn

∣∣∣) ≤ N∑
n=1

ξ′(|fn − gn|) +
∞∑

n=N+1

ξ′(fn) < ε.

Therefore
∑∞

n=1 fn ∈ K
+
1 .

For part (2), we have fk − fk−1 ∈ K+
1 for each k ≥ 1 (with f0 = 0) by Proposition 7. So

ξ′(fn) = ξ′
( n∑
k=1

(fk − fk−1)
)

=
n∑
k=1

ξ′(fk − fk−1)

↗
∞∑
k=1

ξ′(fk − fk−1)

= ξ′
( ∞∑
k=1

(fk − fk−1)
)

= ξ′(f)

and f =
∑∞

k=1(fk − fk−1) ∈ K
+
1 by part (1). �

De�nition. If f : X → [−∞,∞] and ξ′(f+) or ξ′(f−) is �nite, then we can de�ne ξ′(f) =

ξ′(f+)− ξ′(f−). Clearly ξ′(cf) = cξ′(f) for c ∈ R whenever either side is de�ned.

We call a f : X → [−∞,∞] a null function if ξ′(|f |) = 0 and A ⊂ X a null set if

1A is a null function. We say that two functions f and g are equal almost everywhere if

{x ∈ X : f(x) 6= g(x)} is a null set. In this case, it is clear that ξ′(f) = ξ′(g), ξ′(f+) = ξ′(g+),

ξ′(f−) = ξ′(g−), and ξ′(|f |) = ξ′(|g|).
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If A ⊆ B ⊂ X and B is a null set, then A is a null set, since 1A ≤ 1B on X. Also, if

ξ′(|f |) <∞, then A = {|f | =∞} is a null set, since 1A ≤ 1{|f |≥n} for all n and 0 ≤ ξ′(1A) ≤

ξ′(1{|f |≥n}) ≤ 1
n
ξ′(|f |)↘ 0 as n→∞ by Proposition 3.

For f ∈ K1, let

f̂(x) =


f(x) if |f(x)| <∞

0 if |f(x)| =∞.

Note that f̂ = f almost everywhere. For f, g ∈ K1, we can de�ne f + g = f̂ + ĝ.

Proposition 9. If fn ∈ K+
1 for n ≥ 1, then infn≥1 fn ∈ K+

1 .

Proof. Let fk = f1−
∧k
n=1 fn. Then fk ↗ f1− infn≥1 fn. By theorem 8, f1− infn≥1 fn ∈ K+

1 .

So infn≥1 fn = f1 − (f1 − infn≥1 fn) ∈ K+
1 . �

Theorem 10. (Fatou's lemma) The following hold:

(1) If fn ∈ K+
1 for n ≥ 1, then ξ′(lim infn→∞ fn) ≤ lim infn→∞ ξ

′(fn). If, furthermore,

lim infn→∞ ξ
′(fn) <∞, then lim infn→∞ fn ∈ K+

1 .

(2) If fn, g ∈ K+
1 and g ≥ fn for n ≥ 1, then lim supn→∞ ξ

′(fn) ≤ ξ′(lim supn→∞ fn).

Proof. For part (1), if lim infn→∞ξ
′(fn) =∞, then the inequality obviously holds. So suppose

that lim infn→∞ ξ
′(fn) < ∞. Let gn = infk≤n fk. Note that gn ∈ K+

1 and gn ≤ fn for all n

and gn ↗ lim infn→∞ fn as n→∞. Also,

lim
n→∞

ξ′(gn) = lim inf
n→∞

ξ′(gn) ≤ lim inf
n→∞

ξ′(fn) <∞.

So by Theorem 8,

ξ′(lim inf
n→∞

fn) = ξ′( lim
n→∞

gn) = lim
n→∞

ξ′(gn) ≤ lim inf
n→∞

ξ′(fn)

and lim infn→∞ fn = limn→∞ gn ∈ K+
1 .
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For part (2), let Fn = g − fn. Then

ξ′(g) = ξ′(lim inf
n→∞

Fn + lim sup
n→∞

fn) ≤ ξ′(lim inf
n→∞

Fn) + ξ′(lim sup
n→∞

fn)

and, by Theorem 8

ξ′(g) = ξ′(Fn + fn) = ξ′(Fn) + ξ′(fn)

Therefore
lim sup
n→∞

ξ′(fn) = lim sup
n→∞

(ξ′(g)− ξ′(Fn))

= ξ′(g)− lim inf
n→∞

ξ′(Fn)

≤ ξ′(g)− ξ′(lim inf
n→∞

Fn)

≤ ξ′(lim sup
n→∞

fn). �

Lemma. If f1, f2 ∈ K1, then |ξ′(f1)− ξ′(f2)| ≤ ξ′(|f1 − f2|).

Proof. First, we show that this result holds for f1, f2 ∈ K+
1 . Note that ξ′(f1) ≤ ξ′(|f1 −

f2|) + ξ′(|f2|). So ξ′(f1)− ξ′(f2) ≤ ξ′(|f1 − f2|) and, similarly, ξ′(f2)− ξ′(f1) ≤ ξ′(|f1 − f2|).

Therefore, |ξ′(f1)− ξ′(f2)| ≤ ξ′(|f1 − f2|) for f1, f2 ∈ K+
1 .

Now let f1, f2 ∈ K1. Then f
+
1 + f−2 ∈ K+

1 and f−1 + f−2 ∈ K+
1 . So

|ξ′(f1)− ξ′(f2)| = |ξ′(f+
1 )− ξ′(f−1 )− ξ′(f+

2 ) + ξ′(f−2 )|

= |ξ′(f+
1 + f−2 )− ξ′(f−1 + f−2 )|

≤ ξ′(|(f+
1 + f−2 )− (f−1 + f−2 )|)

= ξ′(|f1 − f2|). �

Theorem 11. (Dominated convergence theorem) Let fn, g ∈ K1 with |fn| ≤ g for all n ≥ 1.

If fn → f pointwise on X, then f ∈ K1, ξ
′(|f − fn|)→ 0 as n→∞, and ξ′(fn)→ ξ′(f) as

n→∞.
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Proof. Note that g ± fn ∈ K+
1 . Also, g ± f = lim infn→∞ g ± f ∈ K+

1 by Theorem 10.

Therefore, f = 1
2
(g + f)− 1

2
(g − f) ∈ K1. Next, note that |f − fn| ∈ K+

1 and |f − fn| ≤ 2g

for each n. So

lim
n→∞

ξ′(|f − fn|) = lim sup
n→∞

ξ′(|f − fn|) ≤ ξ′(lim sup
n→∞

|f − fn|) = ξ′(0) = 0,

and by the previous lemma, |ξ′(f)− ξ′(fn)| ≤ ξ′(|f − fn|)→ 0 as n→∞. �

Theorem 12. (Bounded convergence theorem) If A ⊂ X, 1A ∈ K+
1 , fn ∈ K1, and |fn| ≤

M1A for some M < ∞ and all n ≥ 1, and fn → f pointwise on X, then f ∈ K1 and

ξ′(|f − fn|)→ 0 as n→∞, and ξ′(fn)→ ξ′(f) as n→∞.

Proof. It follows directly from the previous theorem with g = M1A. �

De�nition. De�ne K1(loc) to be the set of all functions f : X → [−∞,∞] that such that

f1Qn ∈ K1 for all cubes Qn = [−n, n]d(X) with n ≥ 1. Let K+
1 (loc) = {f ∈ K+

1 (loc) : f ≥

0 on X}. Let A be the set of all A ⊂ X with 1A ∈ K+
1 (loc).

Proposition 13. If f : X → R is continuous, then f ∈ K1(loc).

Proof. For k ≥ 1, let fk = f( 1
k
bkx1c, 1kbkx2c, . . . ,

1
k
bkxd(X)c) where bxc = max{m ∈ Z : m ≤

x}. Fix n ∈ N. Note that fk1Qn ∈ A for all k and fk1Qn → f1Qn . So by Theorem 12,

f1Qn ∈ K1. Therefore, f ∈ K1(loc). �

Proposition 14. The following hold:

(1) A is a σ-algebra on X.

(2) If f ∈ K1(loc), then {f > 0} = {x ∈ X : f(x) > 0} ∈ A. Also, for c ∈ R,

{f > c}, {f ≥ c}, {f < c}, {f ≤ c}, {f =∞}, {f = −∞} ∈ A

13



(3) A contains all open sets and all closed sets in X and, therefore, all Borel sets in X

since it is a σ-algebra on X.

Proof. For part (1), note that ∅ ∈ A, since 1∅ = 0 ∈ K+
1 (loc). If A ∈ A, then X\A ∈ A since

1X\A1Qn = 1Qn − 1A1Qn ∈ K+
1

for all n. If {Ak}∞k=1 ⊂ A, then A =
⋃∞
k=1Ak ∈ A, since

1A1Qn = 1Qn − 1X\A1Qn = 1Qn − inf
k≥1

1X\Ak
1Qn ∈ K+

1 .

For part (2), �x n ≥ 1 and note that

1{f>0}1Qn = lim
k→∞

kf+

1 + kf+
1Qn ∈ K+

1

by Theorem 11, since | kf+

1+kf+
1Qn| ≤ f+ ∈ A+. Therefore, {f > 0} ∈ A. The other sets are

in A since A is a σ-algebra and f ∈ K1(loc) if and only if ±f ± c ∈ K1(loc).

For part (3), it is su�cient to show that any open set O ⊆ X is in A. Let f(x) =

d(x,X\O) = infy∈O |x− y|. Then f ∈ K+
1 (loc), since f is continuous. Therefore, O = {f >

0} ∈ A. �

Proposition 15. The following hold:

(1) If f : X → [0,∞] and ξ′(f) < ∞, then there exists F ∈ K+
1 such that f ≤ F and

ξ′(f) = ξ′(F ). We call F a hull of f .

(2) If fn, f : X → [0,∞] and fn ↗ f pointwise on X an n→∞, then ξ′(fn)↗ ξ′(f) as

n→∞.

Proof. For part (1), choose {gnk}∞k=1 ⊂ K+
1 for each n ≥ 1 such that f ≤ fn =

∑∞
k=1 gnk on

X and ξ′(f) ≤
∑∞

k=1 ξ(gnk) ≤ ξ′(f) + 1/n. Note that fn ∈ K+
1 by Theorem 8 and ξ′(f) ≤

ξ′(fn) ≤
∑∞

k=1 ξ(gnk) < ξ′(f)+1/n for each n ≥ 1. By Theorem 10, F = lim infn→∞ fn ∈ K+
1

14



and

ξ′(F ) ≤ lim inf
n→∞

ξ′(fn) ≤ lim inf
n→∞

(ξ′(f) +
1

n
) = ξ′(f).

Also, ξ′(f) ≤ ξ′(F ) since f ≤ F . Therefore, ξ′(f) = ξ′(F ).

For part (2), clearly ξ′(fn) ↗ L ≤ ξ′(f) as n → ∞ for some L ∈ [0,∞]. We must show

that ξ′(f) ≤ L. Without loss of generality, suppose L < ∞. By part (1), we can choose

Fn ∈ K+
1 such that fn ≤ Fn, and ξ

′(fn) = ξ′(Fn). Then

ξ′(f) ≤ ξ′(lim inf
n→∞

Fn) ≤ lim inf
n→∞

ξ′(Fn) = lim inf
n→∞

ξ′(fn) = L. �

Theorem 16. (Riesz-Fischer theorem) If fn ∈ K1 for n ≥ 1 and for each ε > 0 there

exists N such that ξ′(|fn − fm|) < ε for all n,m ≥ N , then there exists f ∈ K1 such that

ξ′(|f − fN |)→ 0 as N →∞.

Proof. At �rst, let us suppose that
∑∞

n=1 ξ
′(|fn − fn−1|) <∞ (with f0 = 0). By Theorem 8,

f =
∞∑
n=1

(fn − fn−1)+ −
∞∑
n=1

(fn − fn−1)− ∈ K1

Then

ξ′(|f − fN |) = ξ′
(∣∣∣ ∞∑

n=1

(fn − fn−1)+ −
∞∑
n=1

(fn − fn−1)− −
N∑
n=1

(fn − fn−1)
∣∣∣)

= ξ′
(∣∣∣ ∞∑

n=N+1

(fn − fn−1)+ −
∞∑

n=N+1

(fn − fn−1)−
∣∣∣)

≤ ξ′
( ∞∑
n=N+1

(fn − fn−1)+ +
∞∑

n=N+1

(fn − fn−1)−
)

≤
∞∑

n=N+1

ξ′((fn − fn−1)+) +
∞∑

n=N+1

ξ′((fn − fn−1)−)

=
∞∑

n=N+1

ξ′(|fn − fn−1|)

↘ 0

as N →∞.
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Now, if
∑∞

n=1 ξ
′(|fn − fn−1|) = ∞, then we can choose a subsequence (using the Cauchy

property) such that
∑∞

k=1 ξ
′(|fn(k) − fn(k−1)|) <∞. Then

ξ′(|f − fN |) ≤ ξ′(|f − fn(N)|) + ξ′(|fn(N) − fN |)↘ 0

as N →∞. �

De�nition. Let X, Y , and Z = X × Y be Euclidean spaces with ξ, η, and ζ set up so

that ζ(1A×B) = ξ(1A)η(1B) for �nite intervals A ⊂ X, B ⊂ Y , and A × B ⊂ Z. We use

the notations K(X), K1(X), K+
1 (X),... and similarly for Y and Z. For f : Z → [−∞,∞]

and y ∈ Y , de�ne [f ]y : X → [−∞,∞] by [f ]y(x) = f(x, y). De�ne [f ]x similarly. If

f ∈ K(Z), we can interpret ξ(f) as a function of y ∈ Y , i.e., ξ(f) : Y → [−∞,∞] de�ned

by ξ(f)(y) = ξ([f ]y). The same convention holds for η(f), ξ′(f) and η′(f). With this

convention, compositions such as (ξη)(f) = ξ(η(f)) make sense.

Proposition 17. The following hold:

(1) If f ∈ K(Z), then η(f) ∈ K(X), ξ(f) ∈ K(Y ), and ζ(f) = (ξη)(f) = (ηξ)(f).

(2) If f : Z → [0,∞], then (ξ′η′)(f) ≤ ζ ′(f) and (η′ξ′)(f) ≤ ζ ′(f).

(3) If g : X → [0,∞], h : Y → [0,∞], and f : Z → [0,∞] with f(x, y) = g(x)h(y) for

(x, y) ∈ Z, then ζ ′(f) ≤ ξ′(g)η′(h) where 0 · ∞ =∞ · 0 = 0.

(4) In fact, given the conditions in part (3), ζ ′(f) = ξ′(g)η′(h). In particular, ζ ′(1A×B) =

ξ′(1A)η′(1B) for any A ⊆ X and B ⊆ Y .

Proof. For part (1), Let f =
∑n

i=1 ui1Ai×Bi
where Ai ⊂ X and Bi ⊂ Y are �nite interval and

ui ∈ R. Then

η(f) = η
( n∑
i=1

ui1Ai
1Bi

)
=

n∑
i=1

ui1Ai
η(1Bi

) =
n∑
i=1

ui|Bi|Y 1Ai
∈ K(X)

16



and

(ξη)(f) = ξ
( n∑
i=1

ui|Bi|Y 1Ai

)

=
n∑
i=1

ui|Bi|Y ξ(1Ai
)

=
n∑
i=1

ui|Ai|X |Bi|Y

=
n∑
i=1

ui|Ai ×Bi|Z

= ζ(f)

The proof of the other claims in part (1) is directly analogous.

For part (2), if ζ ′(f) = ∞, then there is nothing to prove. So suppose ζ ′(f) < ∞, let

ε > 0, and choose {fn}∞n=1 ⊂ K+(Z) with f ≤
∑∞

n=1 fn on Z and
∑∞

n=1 ζ(fn) ≤ ζ ′(f) + ε.

Then

(ξ′η′)(f) ≤ (ξ′η′)
( ∞∑
n=1

fn

)
≤

∞∑
n=1

(ξ′η′)(fn)

=
∞∑
n=1

(ξη)(fn)

=
∞∑
n=1

ζ(fn)

≤ ζ ′(f) + ε

Letting ε↘ 0, we have (η′ξ′)(f) ≤ ζ ′(f).

For part (3), if ξ′(g)η′(h) =∞, then there is nothing to prove. We will �rst suppose that

ξ′(g) = 0 and show that ζ ′(f) = 0. Choose {hk}∞k=1 ⊂ K+(Y ) with h ≤
∑∞

k=1 hk on Y . Let

ε > 0 and εk = ε · 2−k(1 + η(hk))
−1 for k ≥ 1. Choose {gnk}∞n=1 ⊂ K+(X) for each k such

17



that g ≤
∑∞

n=1 gkn and
∑∞

n=1 ξ(gkn) ≤ εk. Let fkn(x, y) = gkn(x)hk(y) for (x, y) ∈ Z and

k, n ≥ 1. Then fkn ∈ K+(Z) and for (x, y) ∈ Z,

f(x, y) = g(x)h(y) ≤
∞∑
k=1

g(x)hk(y) ≤
∞∑

k,n=1

gkn(x)hk(y) =
∞∑

k,n=1

fkn(x, y)

Therefore,

ζ ′(f) ≤
∞∑

k,n=1

ζ(fkn)

=
∞∑

k,n=1

ξ(gnk)η(hk)

=
∞∑
k=1

η(hk)
∞∑
n=1

ξ(gnk)

≤
∞∑
k=1

η(hk)εk

=
∞∑
k=1

εη(hk)

2k(1 + η(hk))

< ε

Letting ε↘ 0, we have ζ ′(f) = 0 as desired.

Now assume that both ξ′(g) and η′(g) are �nite. Let ε > 0. Choose {gn}∞n=1 ⊂ K+(X)

such that g ≤
∑∞

n=1 gn and
∑∞

n=1 ξ(gn) ≤ ξ′(g) + ε and choose {hn}∞n=1 ⊂ K+(Y ) such that

h ≤
∑∞

n=1 hn and
∑∞

n=1 η(hn) ≤ η′(h) + ε. Let fnk(x, y) = gn(x)hk(y) for (x, y) ∈ Z. Then

fnk ∈ K+(Z), f ≤
∑∞

n,k=1 fnk, and

ζ ′(f) ≤
∞∑

n,k=1

ζ(fnk)

=
∞∑

n,k=1

ξ(gn)η(hk)

=
∞∑
n=1

ξ(gn)
∞∑
k=1

η(hk)

≤ (ξ′(g) + ε)(η′(h) + ε)
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Letting ε↘ 0, we have ζ ′(f) ≤ ξ′(g)η′(h).

For part (4), note that

(ξ′η′)(f) ≤ ζ ′(f) ≤ ξ′(g)η′(h)

from parts (2) and (3). But (ξ′η′)(f) = ξ′(g)η′(h), so

(ξ′η′)(f) = ζ ′(f) = ξ′(g)η′(h). �

Theorem 18. (Lebesgue, Fubini, Tonelli) If f ∈ K+
1 (Z, loc), then

ζ ′(f) = (ξ′η′)(f) = (η′ξ′)(f).

Proof. We already have (ξ′η′)(f) ≤ ζ ′(f). To show the opposite inequality, �rst suppose

that ζ ′(f) < ∞. Then f ∈ K+
1 (Z), so we can choose a sequence {fn}∞n=1 ⊂ K+(Z) with

ζ ′(|f − fn|)→ 0 as n→∞. Then

ζ ′(fn) = ζ(fn)

= (ξη)(fn)

= (ξ′η′)(fn)

≤ (ξ′η′)(f) + (ξ′η′)(|f − fn|)

≤ (ξ′η′)(f) + ζ ′(|f − fn|)

Taking the limit of both sides as n→∞, we have ζ ′(f) ≤ (ξ′η′)(f). So ζ ′(f) = (ξ′η′)(f).

Now suppose ζ ′(f) = ∞. Let gn = f1[−n,n]d(X) and apply the previous result to the gn to

get ζ ′(gn) = (ξ′η′)(gn). Note that gn ↗ f as n → ∞, so by taking the limit as n → ∞ we

have, by Proposition 15, that ζ ′(f) = (ξ′η′)(f). �
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Theorem 19. The following hold:

(1) (Borel-Cantelli lemma) If An ⊆ X,
∑∞

n=1 ξ
′(1An) < ∞, and A = lim supn→∞An =⋂∞

N=1

⋃∞
n=N An, then ξ

′(1A) = 0, i.e. A is a null set.

(2) If {an}∞n=1 ⊂ [0,∞) and
∑∞

n=1 an = A < ∞, then there exists {bn}∞n=1 ⊂ N with

bn ↗∞ such that
∑∞

n=1 anbn <∞.

(3) If φn : X → [0,∞] for all n with
∑∞

n=1 ξ
′(φn) <∞, then φn → 0 for ξ′ almost every

x ∈ X.

Proof. For part (1), note that 1A ≤
∑∞

n=N 1An for all N , so

ξ′(1A) ≤ ξ′
( ∞∑
n=N

1An

)
≤

∞∑
n=N

ξ′(1An)↘ 0

as N →∞.

For part (2), let N(0) = 1 and, for k ≥ 1 a natural number choose N(k) > N(k − 1) such

that
∑∞

n=N(k) an ≤ A/2k. Note that {N(k)}∞k=1 is a strictly increasing sequence of natural

numbers, so N(k) ≥ k ↗ ∞ as k → ∞. For each n ≥ 1, let bn be the unique natural

number such that N(bn − 1) ≤ n < N(bn). Then N(bn − 1) ≤ n < n + 1 < N(bn+1) for all

n and, by the strict monotonicity of {N(k)}∞k=1, we have bn− 1 < bn+1 for all n . Therefore,

{bn}∞n=1 is monotonically increasing. Also, N(bN(k) − 1) ≤ N(k) for all k and, by the strict

monotonicity of {N(k)}∞k=1, we have bN(k) ≤ k + 1 for all k. So

∞∑
n=1

anbn =
∞∑
k=1

N(k)−1∑
n=N(k−1)

anbn

≤
∞∑
k=1

bN(k)

N(k)−1∑
n=N(k−1)

an

≤
∞∑
k=1

bN(k)
A

2k−1
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≤
∞∑
k=1

(k + 1)
A

2k−1

< ∞

by the ratio test.

For part (3), we can use part (2) to choose {bn}∞n=1 such that {bn}∞n=1 ⊂ N with bn ↗∞

and
∑∞

n=1 ξ
′(φn)bn < ∞. Let Bn = {x ∈ X : φn(x) ≥ 1/bn} and B = lim supn→∞Bn. Note

that
∑∞

n=1 ξ
′(1Bn) ≤

∑∞
n=1 bnξ

′(φn) <∞ by Proposition 3. So by part (1), ξ′(1B) = 0. Also,

if x ∈ X\B, then 0 ≤ φn(x) < 1/bn for all but �nitely many n, i.e. φn(x)↘ 0. So X\B ⊆ A

and ξ′(1X\A) ≤ ξ′(1B) = 0. �

Theorem 20. If f ∈ K+
1 (Z), then

(1) η′(f) ∈ K+
1 (X).

(2) [f ]x ∈ K+
1 (Y ) for ξ′ almost every x ∈ X .

Proof. For part (1), choose {fn}∞n=1 ⊂ K+(Z) such that ζ ′(|f − fn|) → 0 as n → ∞. Then

η′(fn) = η(fn) ∈ K+(X) for each n and

ξ′(|η′(f)− η′(fn)| ≤ (ξ′η′)(|f − fn|) ≤ ζ ′(|f − fn|)→ 0

as n→∞.

For part (2), we can assume
∑∞

n=1 ζ
′(|f − fn|) < ∞ (otherwise, pass to a subsequence).

Note that [fn]x ∈ K(Y ) for all n ≥ 1 and x ∈ X and let hn(x) = η′(|[f ]x − [fn]x|). Then
∞∑
n=1

ξ′(hn) =
∞∑
n=1

(ξ′η′)|f − fn| ≤
∞∑
n=1

ζ ′|f − fn| <∞.

Therefore, hn(x) = η′(|[f ]x− [fn]x|)→ 0 as n→∞ for ξ′ almost every x ∈ X by the previous

theorem, i.e., [f ]x ∈ K+
1 (Y ) for ξ′ almost every x ∈ X. �

21



De�nition. For A ⊆ X, recall that the Lebesgue outer measure of A is

λ(A) = inf{
∞∑
k=1

|Ik|X : Ik ⊂ X �nite intervals, and

∞⋃
k=1

Ik ⊇ A}.

Also, let µ(A) = ξ′(1A).

Proposition 21. The following hold:

(1) For A ⊆ X, µ(A) = µ̃(A) = inf{µ(G) : G is open, G ⊇ A}.

(2) For A ⊆ X, λ(A) = λ̃(A) = inf{λ(G) : G is open, G ⊇ A}.

(3) For A ⊆ X, µ(A) ≤ λ(A).

(4) If G ⊆ X is open, then µ(G) = λ(G).

(5) For A ⊆ X, µ(A) = λ(A).

Proof. For part (1), it is clear that µ(A) ≤ µ̃(A), since for all open sets G ⊇ A, we have

µ(A) = ξ′(1A) ≤ ξ′(1G) = µ(G) by the monotonicity of ξ′. To show the opposite inequality,

let ε > 0 and suppose µ(A) < ∞. For ε > 0, choose {un}∞n=1 ⊂ [0,∞) and �nite open

intervals {In}∞n=1 such that 1A ≤
∑∞

n=1 un1In on X and
∑∞

n=1 un|In|X ≤ µ(A) + ε. The

function g =
∑∞

n=1(1 + ε)un1In is lower semicontinuous, so G = {x ∈ X : g(x) > 1) is open

in X and G ⊇ A, so

µ̃(A) ≤ µ(G) ≤ (1 + ε)
∞∑
n=1

un|1In|X ≤ (1 + ε)(µ(A) + ε).

Letting ε→ 0, we have µ̃(A) ≤ µ(A).

For part (2), it is clear that λ(A) ≤ λ̃(A), since for all open sets G ⊇ A, we have

λ(A) ≤ λ(G) by the monotonicity of λ. To show the opposite inequality, suppose that

λ(A) <∞ and let ε > 0. Choose �nite open intervals {In}∞n=1 in X such that
⋃∞
n=1 In ⊇ A

and
∑∞

n=1 |In|X ≤ λ(A) + ε. Then G =
⋃∞
n=1 In is open in X with G ⊇ A and

λ̃(A) ≤ λ(G) ≤
∞∑
n=1

|In|X ≤ λ(A) + ε.

Letting ε→ 0, we have λ̃(A) ≤ λ(A).
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For part (3), suppose that λ(A) < ∞, let ε > 0, and choose �nite intervals {In}∞n=1

in X such that
⋃∞
n=1 In ⊇ A and

∑∞
n=1 |In|X ≤ λ(A) + ε. Then µ(A) ≤

∑∞
n=1 ξ(1In) =∑∞

n=1 |In|X ≤ λ(A) + ε. Letting ε↘ 0, we have µ(A) ≤ λ(A).

For part (4), we only need to show that λ(G) ≤ µ(G). Suppose µ(G) <∞. We can write

G =
⋃∞
n=1 In where the In are pairwise disjoint open intervals. Then

λ(G) ≤
∞∑
n=1

|In|X =
∞∑
n=1

ξ′(1In) = ξ′
( ∞∑
n=1

1In

)
= ξ′(1G) = µ(G)

by the monotone convergence theorem.

For part (5), we have

µ(A) = µ̃(A) = inf{µ(G) : G is open, G ⊇ A}

= inf{λ(G) : G is open, G ⊇ A} = λ̃(A). �

De�nition. If f : X → [0,∞], then we call G(f) = {(x, y) ∈ Z : 0 < y < f(x)} the

subgraph of the function f .

Proposition 22. The following hold:

(1) If f : X → [0,∞], then ξ′(f) = (ξ′η′)(1G(f)).

(2) If f : X → [0,∞], then ξ′(f) ≤ ζ ′(1G(f)) = µZ(G(f)).

(3) If a ∈ [0,∞) and A ⊂ X, then G(a1A) = A× (0, a).

(4) If f ∈ K+(X), then 1G(f) ∈ K+(Z) and ξ(f) = ζ(1G(f)) = µZ(G(f)).

(5) If f : X → [0,∞], then ξ′(f) = ζ ′(1G(f)) = µZ(G(f)).

Proof. For part (1), we have 1G(f)(x, y) = 1(0,f(x))(y) for all (x, y) ∈ Z. So η′([1G(f)]x) =

η′(1(0,f(x))) = f(x) for all x ∈ X and (ξ′η′)(1G(f)) = ξ′(η′(1G(f))) = ξ′(f).

For part (2), we have ξ′(f) = (ξ′η′)(1G(f)) ≤ ζ ′(1G(f)) = µZ(G(f)).

Part (3) is clear from the de�nition.
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For part (4), write f =
∑N

n=1 un1In where un ∈ [0,∞) and the In are disjoint �nite

intervals in X. Then 1G(f) ∈ K+(Z), since G(f) = ∪Nn=1G(un1In) = ∪Nn=1(In× (0, un)) is the

disjoint union of �nite intervals In × (0, un) ⊂ Z. Also,

ξ(f) =
N∑
n=1

un|In|X =
N∑
n=1

|In × (0, un)|Z = ζ(1G(f)).

For part (5), we already have ξ′(f) ≤ µZ(G(f)). To show the opposite inequality, suppose

µZ(G(f)) <∞, let ε > 0, and choose {fn}∞n=1 ⊂ K+(X) such that F =
∑∞

n=1 fn ≥ f on X

and
∑∞

n=1 ξ(fn) ≤ ξ′(f) + ε. Note that FN =
∑N

n=1 fn ∈ K+(X) for each N and Fn ↗ F as

N →∞. So

µZ(G(f)) ≤ µZ(G(F ))

= ζ ′(1G(F ))

= lim
N→∞

ζ ′(1G(Fn))

= lim
N→∞

ξ′(Fn)

= lim
N→∞

N∑
n=1

ξ(fn)

≤ ξ′(f) + ε.

Letting ε↘ 0, we have µZ(G(f)) ≤ ξ′(f). �

In conclusion, let us say that K(X) is the set of Riemann step functions f on X where

ξ(f) is the elementary Riemann integral of f . Then ξ′(f) is the Lebesgue outer measure

of the subgraph G(f) of any f : X → [0,∞], K1(X) is the usual Lebesgue class L1(X),

ξ′(f) =
∫
X
f(x)dx for Lebesgue summable functions f on X, A is the σ-algebra of Lebesgue

measurable sets on X (including all subsets of null sets), and µX is the usual Lebesgue outer

measure on X.
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3. THE LEBESGUE INTEGRAL ON ABSTRACT SPACES

De�nition. Let (X,A, µ) be a measure space, i.e., µ ≥ 0 is a measure on a σ-algebra A

of subsets of a ground set X. Let K be the family of functions f : X → R of the form

f =
∑n

i=1 yi1Ai
, where n ≥ 1, yi ∈ R, and Ai ∈ A with µ(Ai) <∞. Let K+ = {f ∈ K : f ≥

0 on X}. For f ∈ K, de�ne ξ(f) =
∑n

i=1 yiµ(Ai) =
∑

y∈R\{0} yµ({x ∈ X : f(x) = y}). Then

ξ is a positive linear functional on the function lattice K. For any f : X → [0,∞], de�ne

ξ′(f) = inf
{ ∞∑
n=1

ξ(fn) : fn ∈ K+, f ≤
∞∑
n=1

fn on X
}

Let K1(loc) be the family of functions f : X → [−∞,∞] such that f1Q ∈ K1 for all Q ∈ A

with µ(Q) <∞. Also, let K+
1 (loc) = {f ∈ K1(loc) : f ≥ 0 on X}.

In order to establish that Propositions/Theorems 3, 6-12, 15-20 hold in the setting of

measure spaces (Theorems 18 and 20 for σ-�nite measure spaces only), it is enough to show

that Proposition 5 holds; all other arguments are generic.

Proposition 23. If f, fn ∈ K+ for n ≥ 1 and f ≤
∑∞

n=1 fn on X, then for any ε > 0 there

exists N0 ≥ 1 such that ξ(f) ≤ ε+
∑N0

n=1 ξ(fn).

Proof. We can write f =
∑m

i=1 yi1Ai
with yi ∈ [0,∞) and Ai ∈ A. Let A =

⋃m
i=1Ai

and Y =
∑m

i=1 yi. Note that µ(A) ≤
∑m

i=1 µ(Ai) < ∞. For N ≥ 1, consider gN =

−f +
∑N

n=1 fn1A ∈ K and BN = {x ∈ X : gN(x) < 0} ∈ A. Since BN ↘ ∅ as N → ∞

and µ(B1) ≤ µ(A) <∞, the decreasing continuity of the measure µ gives us µ(BN)↘ 0 as

N →∞. Let ε > 0 and choose N0 ≥ 1 such that µ(BN0) < ε/Y . Then,

ξ(f) = ξ
(
− gN0 +

N0∑
n=1

fn1A

)

≤ ξ
(
Y 1BN0

+

N0∑
n=1

fn

)
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= Y µ(BN0) +

N0∑
n=1

ξ(fn)

< ε+

N0∑
n=1

ξ(fn). �

Let us now assume a knowledge of the beginnings of the theory of the Lebesgue integral

so that we may show that ξ′(f) =
∫
X
f dµ.

Proposition 24. If f : X → [0,∞] and
∫
X
f dµ exists and is �nite, then ξ′(f) =

∫
X
f dµ.

Proof. If f ≤
∑∞

n=1 fn on X for fn ∈ K+, then∫
X

f dµ ≤
∫
X

∞∑
n=1

fn dµ =
∞∑
n=1

∫
X

fn dµ =
∞∑
n=1

ξ(fn)

by the monotone convergence theorem for the Lebesgue integral with respect to µ. Thus,∫
X
f dµ ≤ ξ′(f) .

To show the opposite inequality, �rst suppose that f is a µ null function. Let ε > 0 and

choose {An}∞n=1 ⊂ A such that f ≤
∑∞

n=1 1An on X and
∑∞

n=1 µ(An) < ε. Then

ξ′(f) ≤ ξ′(
∞∑
n=1

1An) ≤
∞∑
n=1

ξ(1An) =
∞∑
n=1

µ(An) < ε.

Letting ε↘ 0, we have ξ′(f) = 0 =
∫
X
f dµ.

Second, suppose that f =
∑∞

n=1 fn on X for fn ∈ K+ and
∑∞

n=1

∫
X
fn dµ <∞. Then

ξ′(f) ≤
∞∑
n=1

ξ(fn) =
∞∑
n=1

∫
X

fn dµ =

∫
X

∞∑
n=1

fn dµ =

∫
X

f dµ

by the monotone convergence theorem for the Lebesgue integral with respect to µ.

Third, consider the general case, in which f can be written as f = g + h on X where g is

a µ null function and h =
∑∞

n=1 hn on X for hn ∈ K+. Then∫
X

f dµ =

∫
X

g dµ+

∫
X

h dµ = ξ′(g) + ξ′(h) = ξ′(h) = ξ′(f)

since h = f almost everywhere on X. �

26



4. THE RIESZ REPRESENTATION THEOREM

De�nition. Let X be a locally compact Hausdor� space and let K = K(X) the set of

all continuous functions f : X → R with compact support. Endow K with the sup/max

norm ‖f‖ = supx∈X |f(x)|, which is �nite for all f ∈ K. Let K+ = {f ∈ K : f ≥ 0}.

Let ξ : K → R be a positive linear functional. (Recall that a functional ξ is positive if

|ξ(f)| ≤ ξ(|f |) for all f ∈ K.) For f : X → [0,∞], let

ξ′(f) = inf
{ ∞∑
n=1

ξ(fn) : fn ∈ K+, f ≤
∞∑
n=1

fn on X
}
.

In order to establish Propositions/Theorems 3 and 6-12 in the setting of locally compact

Hausdor� spaces, it is enough to show that Proposition 5 holds; the rest of the arguments

are generic.

Proposition 25. If f, fn ∈ K+ for n ≥ 1 and f ≤
∑∞

n=1 fn on X, then for any ε > 0 there

exists N ≥ 1 such that ξ(f) ≤ ε+
∑N

n=1 ξ(fn).

Proof. Since f has compact support, there is a compact set L ⊂ X with f = 0 on X\L.

Urysohn's lemma gives a continuous function χ : X → [0, 1] with compact support and χ = 1

on L.

Let ε > 0 and ε′ = ε/(1 + ξ(χ)). Since χf = f ≤
∑∞

n=1 fn on X, the function φ =

ε′χ − f +
∑∞

n=1 fn is strictly positive on L. Let φk = ε′χ − f +
∑k

n=1 fn and note that

φk ↗ φ > 0 on L as k → ∞. So for each point x ∈ L, we can choose N(x) ∈ N such that

φN(x)(x) > 0. Since φN(x) is continuous we can choose an open neighborhood U(x) of x on

which φN(x) > 0. Then {U(x)}x∈L is an open cover of L which is compact. So there is a

�nite subcover {U(xi)}si=1 of L. Setting N = max{N(xi)}si=1, we see that φN > 0 on L.
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Also, φN ≥ 0 on X\L, since f = 0 on X\L. So φN ≥ 0 on X and ξ(φN) ≥ 0. Therefore,

ξ(f) ≤ ε′ξ(χ) +
N∑
n=1

ξ(fn) < ε+
N∑
n=1

ξ(fn). �

De�nition. De�ne µ(A) = ξ′(1A) for A ⊆ X and A as the σ-algebra on X generated by the

Gδ compact subsets of X, i.e., A is the Baire σ-algebra. Then µ is a measure on A by the

following proposition and the monotone convergence theorem. The σ-algebra A contains all

compact sets of the form L = {x ∈ X : f(x) ≥ c}, where f ∈ K+ and c ∈ [0,∞).

Proposition 26. If f ∈ K+ and ε > 0, then there is a continuous function λ : X → [0, 1]

with compact support such that λ = 1 on the compact set L = {x ∈ X : f(x) ≥ 1} and

µ(L) ≤ ξ(λ) ≤ µ(L) + ε.

Proof. For each n ≥ 1, Urysohn's separation theorem gives us a continuous function Λn :

X → [0, 1] with

Λn =



1 on Ln = {f ≥ n+1
n+2
}

continuous in between

0 on Pn = {f ≤ n
n+1
}.

Note that λN =
∧N
n=1 Λn ↘ 1L as N →∞ and each λN is a continuous function with support

in the compact set {f ≥ 1
2
}. By the monotone convergence theorem, 1L ∈ K+

1 , L ∈ A, and

ξ(λN) = ξ′(λN) ↘ ξ′(1L) = µ(L) as N → ∞. Thus, λ = λN will work for su�ciently large

N . �

Theorem 27. (Riesz representation theorem) If f ∈ K, then f is integrable in the measure

space (X,A, µ) and
∫
X
f dµ = ξ(f).

Proof. By decomposing f as f = f+ − f−, it is enough to show that the theorem holds for

f ≥ 0. As f is bounded and both
∫
X
and ξ are linear, we can assume f is normalized so
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that ‖f‖ = supx∈X |f(x)| ≤ 1. Since f is continuous, {f > c} is open and, therefore, in A

for all c > 0 in R. Thus, f is measurable with respect to the σ-algebra on A.

Choose a compact set L ∈ A such that f = 0 on X\L. Also, choose a continuous

function χ : X → [0, 1] with compact support such that χ = 1 on L. For n ≥ i ≥ 1,

let Lni = {f ≥ i
n
} ∈ A and consider the step function gn = 1

n

∑n
i=1 1Lni

. Note that if

i
n
≤ f(x) < i+1

n
, then gn(x) = i

n
. So gn ≤ f < gn + 1

n
1L on X for all n.

For each of the compact sets Lni, the previous proposition gives us a continuous function

λni : X → [0, 1] in K with 1Lni
≤ λni and µ(Lni) ≤ ξ(λni) ≤ µ(Lni) + 1

n
. Consider the

function hn = 1
n
χ+ 1

n

∑n
i=1 λni which belongs to K+ and satis�es f ≤ 1

n
1L + gn ≤ hn on X.

Note that ∫
X

f dµ ≤
∫
X

(
1

n
1L + gn) dµ

=
1

n
µ(L) +

1

n

n∑
i=1

µ(Lni)

≤ 1

n
ξ(χ) +

1

n

n∑
i=1

ξ(λni)

= ξ(hn)

and

ξ(hn) =
1

n
ξ(χ) +

1

n

n∑
i=1

ξ(λni)

≤ 1

n
ξ(χ) +

1

n

n∑
i=1

(µ(Lni) +
1

n
)

=
1

n
(1 + ξ(χ)) +

∫
X

gn dµ

≤ 1

n
(1 + ξ(χ)) +

∫
X

f dµ.

So
∫
X
f dµ ≤ ξ(hn) ≤ 1

n
(1+ξ(χ))+

∫
X
f dµ for all n. Therefore, ξ(hn)→

∫
X
f dµ as n→∞.
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Next note that

ξ(f) = ξ′(f)

≤ ξ′(
1

n
1L + gn)

=
1

n
ξ′(1L) + ξ′(gn)

=
1

n
ξ′(1L) +

1

n

n∑
i=1

ξ′(1Lni
)

≤ 1

n
ξ(χ) +

1

n

n∑
i=1

ξ′(λni)

= ξ(hn)

and

ξ(hn) =
1

n
ξ(χ) +

1

n

n∑
i=1

ξ′(λni)

≤ 1

n
ξ(χ) +

1

n

n∑
i=1

(µ(Lni) +
1

n
)

=
1

n
(1 + ξ(χ)) + ξ′(gn)

≤ 1

n
(1 + ξ(χ)) + ξ′(f)

=
1

n
(1 + ξ(χ)) + ξ(f)

So ξ(f) ≤ ξ(hn) ≤ 1
n
(1 + ξ(χ)) + ξ(f) for all n. Therefore, ξ(hn) → ξ(f) as n → ∞. Thus

ξ(f) = limn→∞ ξ(hn) =
∫
X
f dµ. �
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